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Embedded contact homology and
Seiberg–Witten Floer cohomology II

CLIFFORD HENRY TAUBES

This is the second of five papers that construct an isomorphism between the embedded
contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold
with a given contact 1–form.

57R17; 57R57

1 Introduction

This is the second of a five part series whose purpose is to prove that the embedded
contact homology of a compact, oriented 3–dimensional manifold with contact 1–form
is isomorphic to the manifold’s Seiberg–Witten Floer cohomology. This isomorphism
theorem is stated formally in the first paper of this series [8]. This part constructs a
map between generators of the corresponding complexes that gives the isomorphism,
and a map that is used to compare the corresponding differentials. The former map
is denoted in [8, Theorem 4.2] by ˆr and the latter is denoted in [8, Theorem 4.3]
by ‰r .

The main theorem here about ˆr is Theorem 1.1 in Section 1.d. Theorem 1.1 brings
together ideas from three distinct parts of geometry. The first part concerns the closed
orbits of the Reeb vector field for a given contact structure, the second concerns the
moduli spaces of solutions to the vortex equations on C , and the third concerns the
moduli spaces of solutions to certain versions of the Seiberg–Witten equations on M .
Sections 1.a–1.c introduce the necessary background for each of these three topics.
The main theorem on ‰r is Theorem 1.2 in Section 1.g. This theorem brings into play
two additional geometric notions. The first is that of a pseudoholomorphic curve in
R�M , and the second is that of a Seiberg–Witten instant on R�M . Sections 1.e–1.f
provide the background material for these last two subjects.

1.a Contact 3–manifolds and Reeb orbits

This subsection reintroduces from [8] the contact geometry notions that are needed for
Theorem 1.1. There are three parts to this reintroduction.
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Part 1 Let M denote the 3–manifold in question and let a denote the contact 1–form.
The manifold M is oriented using as volume form a^ da. Use v in what follows to
denote the Reeb vector field for a; this the vector field on M that generates the kernel
of da and pairs with a so as to equal 1. The integral curves of v are deemed to be
Reeb orbits. They are oriented implicitly by v . The integral of the contact 1–form
along a Reeb orbit  is denoted by ` .

Fix an almost complex structure, J , on the kernel of a so that da. � ;J. � // defines a
Riemannian metric on the kernel of a. Let  denote a Reeb orbit. This loop in M has
a neighborhood that is parameterized by the product of S1 and a disk D �C about
the origin by an embedding 'W S1�D!M which makes a, da and the Reeb vector
field v appear as

2�
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� 2i.�xzC x�z/

@

@xz
C � � � :

(1-1)

Here, � and � are respectively real and complex valued functions on S1 . The unwritten
terms in the top equation are O.jzj3/ and those in the lower two equations are O.jzj2/.
Here and in what follows, the circle S1 is implicitly identified with R=.2�Z/ and
t 2R=.2�Z/ is used to denote its affine coordinate. These coordinates are such that the
vector field @=@z at z D 0 pushes forward via ' so as to generate the Ci eigenspace
of J on kernel.a/.

Part 2 Define a first order, R–linear symmetric operator on C1.RIC/, this the
operator that takes a function t ! z.t/ to

(1-2) Lz D
i

2

d

dt
zC �zC�xz:

Such an operator is defined given any pair .�; �/2C1.S1IR˚C/. When z is written
in terms of real functions x and y as z D xC iy , then any function in the kernel of
(1-2) can be written as

(1-3)
�

x.t/

y.t/

�
D U

�
x.0/

y.0/

�
where U jt 2 SL.2IR/ for each t 2R:

As t varies in Œ0; 2��, the map t ! U jt defines a path in SL.2IR/ from the identity.

A pair of functions .�; �/ is said to be nondegenerate when the corresponding matrix U

has trace.U j2�/¤ 2. The pair is deemed to be elliptic when jtrace.U j2�/j < 2 and
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hyperbolic when jtrace.U j2�/j > 2. Note that when .�; �/ is hyperbolic, then the
k –th power of U j2� does not have eigenvalue 1 for any k . Such is the case because
U j2� in this case has two real eigenvalues, one with absolute value greater than 1 and
the other with absolute value less than 1. When elliptic, the pair .�; �/ is said to be
n–elliptic when the k –th power of U j2� does not have eigenvalue 1 for all k � n.
Note here that a matrix in SL.2IR/ whose trace has absolute value less than 2 has two
complex eigenvalues, these are on the unit circle and one is the conjugate of the other.
A Reeb orbit  is said to be respectively nondegenerate, hyperbolic or n–elliptic when
such is the case for the functions .�; �/ that come from (1-1). This notion of being
hyperbolic or elliptic is intrinsic to  ; it depends neither on the map ' or the almost
complex structure J .

Let k denote a positive integer. A map from R to C is said to be 2�k –periodic if it is
invariant under the shift t! tC2�k but is not invariant under any shift t! tC2�k 0

for k 0 2 f1; : : : ; kg. With S1 viewed as R=.2�Z/, a map from S1 to C is neither
more nor less than a 2� –periodic map from R to C . The operator L has trivial kernel
on the space of maps from S1 to C if and only if .�; �/ is nondegenerate. If .�; �/ is
hyperbolic, then L has trivial kernel on the space of 2�k –periodic maps from R to C
for any positive integer k . Meanwhile, if .�; �/ is n–elliptic, then L has trivial kernel
on the space of 2�k –periodic maps from R to C for all k 2 f1; 2; : : : ; ng.

1.b Vortices and Reeb orbits

This subsection reintroduces from [8] the spaces of solutions of the vortex equations on
C and discusses some of their relevant features. There are four parts to this subsection.

Part 1 The vortex moduli spaces are labeled by a nonnegative integer, with the
integer n version of the vortex moduli space denoted by Cn . The latter consists of
certain equivalence classes of pairs .A; ˛/, where A is a Hermitian connection on the
trivial complex line bundle over C , and where ˛ is a section of this bundle. A pair
cD .A; ˛/ is in Cn if and only if the curvature of A and the A–covariant derivative of
˛ satisfy

(1-4)

� �FA D�i.1� j˛j2/.

� x@A˛ D 0.

� j˛j � 1.

� The function .1� j˛j2/ is integrable on C and
R

C.1� j˛j
2/D 2�n.

Here, x@A denotes the d –bar operator that is defined by the connection A. The equiv-
alence relation that defines a point in Cn identifies pairs .A; ˛/ and .A0; ˛0/ when
A0 DA�u�1du and ˛0 D u˛ where u is a smooth map from C to S1 .
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Part 2 The vortex moduli space Cn is a smooth complex manifold, in fact Cn . The
identification is given by functions f�qg1�q�n given by

(1-5) �q D
1

2�

Z
C

zq.1� j˛j2/:

Note that �q D
P

1�k�nz
q
j where fz1; : : : ; zng denote the set of zeros of ˛ where it

is understood that a zero with multiplicity k contributes k identical copies of itself to
this set. The function depicted in (1-5) is well defined because

(1-6) 1� j˛j2 < c0

P
1�j�me�

p
2jz�zj j;

where c0 is a constant that is independent of n and .A; ˛/ 2 Cn .

Note that proofs of these and subsequent assertions in this subsection about the solutions
to (1-4) either follow directly from what is done by the author in [4; 1], or can be
established in a straightforward fashion using the techniques in these references. This
being the case, the proofs are not given.

The holomorphic tangent space to Cn at any given cD .A; ˛/ is isomorphic to the vector
space of square integral pairs, .x; �/, of complex functions that obey the equations

(1-7) @xC 2�1=2
x̨�D 0 and x@A�C 2�1=2˛x D 0:

A Hermitian metric on Cn is defined by declaring the square of the norm of .x; �/ to be

(1-8)
1

�

Z
C

�
jxj2Cj�j2

�
:

As it turns out this is a complete, Kahler metric. Only in the case n D 1 is this the
metric that is pulled back from Cn using the functions in (1-5). The metric defined
by (1-8) and the associated symplectic form are used implicitly in what follows.

Part 3 Let .�; �/ denote a pair consisting of a real number and a complex number.
Any such pair defines a function, h , on Cn given by

(1-9) h D
1

4�

Z
C

�
2�jzj2C .�xz2

C x�z2/
�
.1� j˛j2/:

As with any function on Cn , this one defines a Hamiltonian vector field as defined by
the symplectic form from the Kahler metric.

Now suppose that � and � are respectively, a real valued function on S1 and a C–
valued function on S1 . Then (1-9) defines a 1–parameter family of Hamiltonian vector
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fields on Cn . Of interest are the closed, integral curves of this now time dependent
vector field. These are maps cW S1! Cn that obey at each t 2 S1 the equation

(1-10)
i

2
c0Cr.1;0/h jc D 0;

where c0 is shorthand for the .1; 0/ part of c�.d=dt/, and where r.1;0/h denotes the
.1; 0/ part of the gradient of h .

A map cW S1! Cn defines the symmetric operator

(1-11) �!
i

2
rt�C .r�R

r
1;0h/jc

on C1.S1I c�T1;0Cn/. Here, rt is the covariant derivative on C1.S1I c�T1;0Cn/

as defined by the pull back of the Levi-Civita connection on T1;0Cn . Meanwhile,
.r�R
r1;0h/jc denotes the covariant derivative at c along the vector defined by � in

TCnjc of the vector field r1;0h 2 C1.CnIT1;0Cn/. The operator depicted in (1-11)
can rightly be said to be the linearization of (1-10) at the given map c. A solution to
(1-10) is deemed to be nondegenerate when the corresponding version of (1-11) has
trivial kernel.

Part 4 Let  denote a Reeb orbit. Fix a tubular neighborhood map for  of the sort
described in Section 1.a. Then  has an associated pair .�; �/ for use in (1-9), this the
pair that appears in (1-1) and (1-3). Given  and a positive integer m, use C.;m/ to
denote the set of maps cW S1! Cm that obey (1-10).

1.c The Seiberg–Witten equations on M

Fix a metric on TM for which �daD 2a and jaj D 1. Such a metric induces one on
kernel.a/ that can be written as da. � ;J. � // with J an almost complex structure on
kernel.a/. Conversely, an almost complex structure J on kernel.a/ with da. � ;J. � //

a metric defines a metric on TM with jaj D 1 and �daD 2a. If J is given, then the
metric on TM will be assumed to be defined in this manner.

Let F !M denote a SpinC structure. This is a principal U.2/ bundle lift of the
oriented, orthonormal frame bundle of M . Use S to denote the associated C2 bundle
F �U.2/C2 . As done in [8, Section 3.a], introduce the Clifford multiplication homo-
morphism clW T �M !End.S/. This homomorphism is such that cl.b/|D�cl.b/ and
cl.b/cl.b0/D�cl.�.b^b0//�hb; b0i. Here, h ; i denotes the metric inner product and �
denotes the associated Hodge star. The endomorphism cl.a/ on S has square �1 and so
its eigenspaces in each fiber define a splitting of S as the orthogonal, direct sum of two
complex, Hermitian line bundles. This direct sum is written here as E˚EK�1 where
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E!M and K!M are complex line bundles. The convention has cl.a/ act as i on
the first summand and �i on the second. The bundle K�1!M is isomorphic as an
SO.2/ bundle to the kernel of a in TM with the orientation defined by da. The Seiberg–
Witten equations constitute a system of first order, nonlinear partial differential equations
for a pair consisting of a connection on E and a section of S D E ˚EK�1 . The
versions used here are written below in Part 5 of what follows. Parts 1–4 set the stage.

Part 1 Introduce two related endomorphisms. The first, ycW S˝T �M ! S , is defined
so as to send any given decomposable element �˝ b to cl.b/�. The second is a
quadratic, bundle preserving map from S to iT �M . The image of any given � 2 S
under the latter map is written in what follows as �|��. It is defined by the rule
hb; �|��i D �|cl.b/�.

Part 2 The choice of a connection on det.S/ determines, with the metric’s Levi-Civita
connection, a covariant derivative, rW C1.M IS/!C1.M IS˝T �M /. Composing
with yc gives the Dirac operator. The contact form, a, determines an associated canonical
SpinC structure, this with S D SI D IC ˚K�1 where IC!M denotes the trivial
complex line bundle. Fix a unit norm section 1C of IC . This section defines a
canonical connection on K�1 D det.SI /. This is the unique connection for which the
section  I D .1C; 0/ of SI is annihilated by the corresponding Dirac operator. This
canonical connection is written as AK .

Let S D E˚EK�1 now denote the spinor bundle for some other SpinC structure.
Any given connection on det.S/DE2K�1 can be written as AK C 2A where A is a
connection on E . The space of smooth connections on E is denoted by Conn.E/.

The symbol DA is used to denote the Dirac operator on C1.M IS/ that is defined
by using the connection AK C 2A on the line bundle det.S/. This operator sends a
given section  to DA D yc.rA / where rA denotes the version of r defined by
connection AK C 2A.

Part 3 Use BA 2 C1.M IT �M / in what follows to denote the Hodge star of the
curvature of A. This enters in the story through both the Seiberg–Witten equations,
and via the functional E on Conn.E/ that is given by

(1-12) E.A/D i

Z
M

a^�BA:

Part 4 [8, Section 3.d] discusses a certain dense, Banach subspace, �, of the Frechet
space of smooth, coclosed and exact 1–forms on M . The norm on � is called the
“P norm” This P norm can be assumed to dominate any given C k norm. The versions
below of the Seiberg–Witten equations require the choice of a 1–form from �.
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Part 5 Any given .r; �/ with r 2 Œ1;1/ and �2� determines a certain version of the
Seiberg–Witten equations. These equations require .A;  / 2 Conn.E/�C1.M IS/
to obey

(1-13)
� BA� r. |� � ia/� i � d�C 1

2
BAK

D 0.

� DA D 0.

The group C1.M IU.1// acts on Conn.E/�C1.M IS/ as follows: If cD .A;  /

and u 2C1.M IU.1//, then ucD .A�u�1du;u /. Pairs c and c0 from Conn.E/�
C1.M IS/ are said to be gauge equivalent when c0Duc for some u2C1.M IU.1//.
The condition that c obey (1-13) is preserved by this action of C1.M IU.1//. Thus, if
.A;  / solves (1-13), then so does .A�u�1du;u /. With � fixed, the set of gauge
equivalence classes of solutions to (1-12) is denoted by M r .

1.d The map ˆr

Let ‚ denote a finite set whose typical element is a pair .;m/ whereby  is a Reeb
orbit and m is a positive integer. Require in addition that distinct pairs from ‚ have
distinct Reeb orbit components, and that the formal sum

P
.;m/2‚ m defines a chain

that represents the Poincare 0 dual of c1.E/ in H1.M IZ/. Let Z denote the set of
such ‚. Given L� 1, use ZL � Z to denote the subset ‚ with

P
.;m/2‚ m` . An

element ‚ 2 Z is said to be nondegenerate when the following is true: If .;m/ 2‚,
then  is nondegenerate, and if elliptic, then also m–nondegenerate.

Given ‚ 2 Z , let C‚ to denote �.;m/2‚C.;m/ . An element in C‚ associates to
each .;m/ 2 ‚ a solution to the corresponding version of (1-10). Use C‚� � C‚

to denote the subset with the property that each c is nondegenerate. Fix L� 1 and
introduce CZL to denote fC‚� W‚ 2 ZLg and CZL� � CZL to denote fC‚� W‚ 2
ZL is nondegenerateg.

Theorem 1.1 Suppose that a is a contact form on M and that J is an almost complex
structure on the kernel of a such that da. � ;J. � // defines a Riemannian metric on the
kernel of a. Fix L � 1 and a finite subset X � CZL� . There exists � > 1 with the
following significance: Fix � 2� with P norm less than 1, and fix r > � . Use r and
� to define M r . There is an injective map ˆr W X!M r whose image lies where
E < 2�L.

The map ˆr is constructed in Section 3. The assertions about ˆr are proved in
Section 3.g.
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1.e Pseudoholomorphic subvarieties

Assume now that the contact form a is such that all elements in Z are nondegenerate.
Such is the case for a residual set in the space contact forms. Fix an almost complex
structure, J , on R �M in the set Ja that is described in [8, Section 2c]. Keep in
mind that J.@=@s/D v , that J preserves the kernel of a, and that da. � ;J. � // is the
induced metric from M on the kernel of a. Furthermore, J is translation invariant. A
2–dimensional submanifold C �R�M is said to be pseudoholomorphic if J maps
T C to itself, and if the integral over C of da is finite.

Let ‚ denote a finite set whose typical element is a pair .;m/ with  a Reeb orbit
and with m a positive integer. Assume, as before, that distinct pairs in ‚ have distinct
Reeb orbit components. A set such as ‚ appears as a generator of the embedded
contact homology chain complex if each hyperbolic Reeb orbit has partner m D 1.
Let ‚� and ‚C denote a given pair of generators of the embedded contact homology
chain complex. [8, Section 2.c] assigns to this ordered pair a set M1.‚�; ‚C/ whose
typical element, †, is a finite set of the following sort: An element in † consists of a
pair .C;m/ where C is a pseudoholomorphic subvariety and where m is a positive
integer. In this regard, m D 1 if C is not an R–invariant cylinder. [8, Section 2.c]
describes additional constraints on the elements in M1.‚�; ‚C/.

As noted in [8], the set M1.‚�; ‚C/ has the structure of a smooth, 1–dimensional
manifold. As such, it has a finite set of components, each diffeomorphic to R. In
fact, each component is an orbit of the action of R on the set of pseudoholomorphic
subvarieties; this is the action that translates a given subvariety a constant amount
along the R factor of R�M . Moreover, the identification of a given component with
R can be chosen so as to intertwine the R action on the set of pseudoholomorphic
subvarieties with R’s action on itself via translation.

1.f Instantons

A smooth map dW R! Conn.E/˚C1.M IS/ is deemed to be an instant on when
the following conditions are met: Write dD .A;  /. Then

(1-14)
�

@
@s

ACBA� r. |� � ia/� i � d�C 1
2
BAK

D 0.

�
@
@s
 CDA D 0.

In addition, both the s!�1 and s!1 limits of fdjsgs2R exist, and both limits
are solutions to (1-13). Given solutions c� and cC to (1-14), use M .c�; cC/ to denote
the set of instantons with s!�1 equal to c� and with s!1 limit equal to ucC
with u 2 C1.M IU.1//. Recall that this set depends only on the gauge equivalence
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classes of c� and cC in the following sense: Suppose that u 2 C1.M IU.1//. If
d D .A;  / 2 M .c�; cC/, then ud D .A � u�1du;u / 2 M .uc�; cC/. The set
M .c�; cC/ enjoys an action of R that is induced by that of R on R�M via translation
along the R factor.

1.g The map ‰r

Let ‚ denote a finite set whose typical element is a pair .;m/ with  a Reeb orbit
and with m a positive integer. Assume, as always, that distinct pairs in ‚ have distinct
Reeb orbit components. Say that ‚ is simple if the following condition is met:

If  is elliptic and paired with an integer m> 1, then there is a tubular
neighborhood of  of the sort described in Section 1.a for which

(1-15) .�; �/D

�
1

2
R; 0

�
with R 2R an irrational constant:

As it turns out, this last assumption implies that C‚� D C‚; and that this set consists
of a single element. This fact is proved in Section 2.b.

Theorem 1.2 Assume that a is such that all elements in Z are nondegenerate, and
that J 2 Ja . Suppose that both ‚� and ‚C are simple. There exists � � 1 with the
following properties: Fix � 2 � with P norm less than 1. Fix r � � large enough
to define ˆr .C‚�/ and ˆr .C‚C/ via Theorem 1.1. Fix c� and cC in the respective
gauge equivalence classes ˆr .C‚�/ and ˆr .C‚C/. There exists an R–equivariant
injective map ‰r WM1.‚�; ‚C/!M .c�; cC/.

As an addendum to this theorem, note that the construction of ‰r given below is suitably
equivariant with respect to the action of C1.M IU.1//. This means the following: Let
u 2 C1.M IU.1//. Then the version of ‰r that maps into M .uc�; cC/ is obtained
from the version that maps to M .c�; cC/ by acting by u on the latter map’s image.

The construction of ‰r occupies Sections 4–7 of this article. The assertions about ‰r

are proved in Section 7.k.

1.h Table of contents

What follows is a table of contents for the remainder of this paper.

Section 2 discusses the vortex equations on C . Solutions to the latter play a prominent
role in the construction of both ˆr and ‰r . The section presents what is needed for
these constructions.
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Section 3 constructs the map ˆr . It then proves that ˆr obeys the assertions that are
made by Theorem 1.1.

Section 4 sets the stage for the construction of ‰r . It starts by summarizing what
is needed about pseudoholomorphic curves. The constraints on the allowed curves
are presented. The section ends with a definition of the parameters that enter the
construction.

Section 5 uses the solutions of the vortex equations to construct a set of approximations
to the map ‰r . This set is parameterized by a ball in a certain Banach space.

Section 6 explains how each approximate version of ‰r can be deformed so as to solve
most of (1-14).

Section 7 proves that the deformation given in Section 6 solves the whole of (1-14) for
one and only one element in Section 5’s Banach space. The latter element is used to
define the map ‰r . The final subsection here proves Theorem 1.2.

After Section 7 is an index to the notation and then the references. The index to the
notation lists the commonly used symbols with the equation number or subsection that
contains the definition.

1.i A note on conventions

What is written below as c0 in all cases denotes a constant greater than 1. The value of
this constant can be assumed to increase from appearance to appearance. Unless said
otherwise, it should be assumed to be independent of any other constants such as the
parameter r , or a particular solution to a given equation.

Acknowledgements This work was supported in part by the National Science Foun-
dation.

2 Vortices on C

As noted in Section 1.b, the constructions of both ˆr and ‰r make use of the solutions
to the vortex equations on C . This section constitutes a digression to summarize
the salient properties of these solutions. Subsections 2.e–2.g discuss properties that
are solely used in the construction of ‰r ; the latter can be read just prior to starting
Section 4.
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2.a Properties of solutions

What follows describes the properties of the solutions to (1-4) that are explicitly used in
later constructions. The proofs for the properties asserted below either follow directly
from [4] and what the author does in [1], and/or are obtained from straightforward
modifications of these arguments. This the case, no proofs are given here.

1 Exponential decay There exists for each k�0 a constant ck�1 with the following
significance: Let cD .A; ˛/ 2 Cn and let ZD fz1; : : : ; zng 2 Symn.C/ denote the zero
locus of ˛ . Then

(2-1) 1� j˛j2C
P

kD1;2;:::c
�1
k jr

k
A˛j

2
� c0

P
1�j�ne�

p
2jz�zj j;

at each point z 2C . Here, rA denotes the covariant derivative that is defined by A.
The following is also true: With c and Z as above, let .x; �/ denote a solution to (1-7).
Then

(2-2)
P

kD0;1;2;:::c
�1
k

�
l jrkxj2Cjrk

A�j
2
�
�
P

1�j�ne�
p

2jz�zj j

Z
C
.jxj2Cj�j2/:

2 The action of C The action of the group C on C by translations induces a
holomorphic and isometric action of C on Cn because the equations in (1-4) are
translationally invariant. This is a free action; its generating vector field at any given
cD .A; ˛/ is the solution .x; �/ to (1-7) given by

(2-3) x D 2�1=2.1� j˛j2/ and �D @A˛:

Note that this fact has the following two implications: First, the holomorphic identifi-
cation between C1 and C given by the q D 1 version of (1-5) is, up to a constant, an
isometry. Second, the n> 1 versions of this holomorphic identification between Cn

and Cn is not isometric.

3 The action of S1 The group of rotations about the origin in C also acts iso-
metrically and holomorphically on Cn . This action has a unique fixed point in each
n � 1 version of Cn , this the vortex .A; ˛/ with all ˛�1.0/D 0. This fixed point is
called the symmetric vortex. It corresponds to the origin in Cn via the holomorphic
identification of Cn with Cn given by the functions f�qgqD1;2:::;n depicted in (1-5).
This identification identifies the generator of the S1 action with vector field whose
type .1; 0/ component is

P
1�q�niq�q.@=@�q/.
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4 Localization I The discussion here concerns solutions to (1-4) with the following
property: Two or more zeros of ˛ are relatively far apart. To set the stage, fix a set
of positive integers fn1; : : : ; nmg that sum to n, and then choose a corresponding set
fc1; : : : ; cmg with each cj from the corresponding Cnj0 . Write cj D .Aj ; j̨ /, and
let Zj 2 Symnj .C/ denote the set of zeros of j̨ . Next, fix a set of distinct points,
z1; : : : ; zm , in C . Let Zt

j denote the set obtained from Zj by adding zj to each of
its elements and let ct

j denote the corresponding translate of cj . Write ct
j D .A

t
j ; ˛

t
j /.

Thus, .At
j ; ˛

t
j / at any given z 2C is equal to .Aj ; j̨ / at the point z� zj .

To continue, define c D .A; ˛/ to be the point in Cn whose corresponding locus in
Symn.C/ is Zt

1
[ � � � [Zt

m . Then ˛ D eu
Q

1�j�m ˛
t
j where

(2-4) jRe.u/j � c0

P
1�j¤i�me�

p
2jzi�zj j:

Here, c0 is independent of .A; ˛/. In addition, given k 2f1; 2; : : :g, then the derivatives
of the real part of u to order k obey (2-4) as well with c0 replaced by a k –dependent
but .A; ˛/ independent constant.

5 Localization II Let c D .A; ˛/ be as just described. The ensuing discussion
concerns the vector space, V , of solutions to the corresponding version of (1-7). To
this end, let V t

j denote the space of solutions to the ct
j version of (1-7). This is the

translation via the action of zj of the space of solutions to the cj version. There exists
an isomorphism, �W

L
V t

j ! V such that if & 2 V t
k

has L2 norm equal to 1, then

(2-5)
j�.&/� & j � c0

�P
1�j¤i�me�

p
2jzi�zj j

�
e�
p

2jz�zk j

Cc0

P
1�j¤k�me�

p
2jzk�zj je�

p
2jz�zj j:

In addition, given k 2 f1; 2; : : :g, then the norms of the derivatives �.&/�& to order k

obey (2-5) as well with c0 replaced by a k –dependent constant.

6 The deformation operator The tangent space to Cn at any given vortex cD .A; ˛/

is characterized in (1-7) as the L2 kernel of an operator mapping C1.CIC˚C/ to
itself. This operator is denoted by #c . Thus

(2-6) #c.q; &/D
�
@qC 2�1=2

x̨&; x@A& C 2�1=2˛q
�
:

It defines a bounded, C–linear Fredholm operator from L2
1
.CIC˚C/ to L2.C;C˚C/

with kernel dimension n (over C ) and with trivial cokernel. Let #|
c denote its formal

L2 adjoint. Note in particular that #c#
|
c sends any given pair of functions .q; &/ to

the pair whose two components are

(2-7)
1

4
d|dqC

1

2
j˛j2q and

1

2
r

|
A
rA& C

1

4
.1Cj˛j2/&:
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What with (2-2) and (2-4), this last identity has two consequences: First, the absolute val-
ues of the unit L2 norm elements in the kernel of ‚ are bounded by �0e� dist.�;˛�1.0//=�0

with �0 independent of c and n. Second, there exists � > 1 that is independent of c

and such that if � 2L2
1
.CIC˚C/ then

(2-8)

�
R

Cj#
|
c �j

2 � ��1
R

C

�
jrc�j

2Cj�j2
�
.

�
R

Cj#c�j
2 � ��1

R
C

�
jrc�j

2Cj�j2
�

if � is L2 –orthogonal to the L2–kernel
of #c .

Here, rc is defined by the rule rc.x; �/D .dx;rA�/.

7 Metric properties of Cn To say more about the metric on Cn , introduce the
distance function on Symn.C/ given by dist.Z;Z0/D inf�2P.n/

P
1�i�njzi � z�.i/

0j

with the infimum taken over the set P .n/ of permutations of f1; : : : ; ng. Suppose that
cD .A; ˛/ and c0 D .A0; ˛0/ are points in Cn and suppose that at least one zero of ˛
has distance 1 or greater from the zero locus of ˛0 . Then the metric distance between
c and c0 is such that c�1

0
dist.Zc;Zc0/ � dist.c; c0/ � c0 dist.Zc;Zc0/ where c0 � 1 is

independent of c and c0 . Note that this is a consequence of (2-4) and (2-5).

Here is another consequence of (2-4) and (2-5): There exists "0 > 0 with the following
significance: Let B � TCn denote the set of vectors with norm less than "0 . Then
the exponential map restricts to B so as to embed any given fiber by a map whose
derivatives to any given order are bounded by a constant that does not depend on the
base point.

8 Another exponential map There is a different exponential map from TCn to Cn

that is easier to describe. This map is denoted by êxp. Here are its properties: First,
there exists "0 > 0 such that êxp restricts to the radius "0 ball about the origin in the
fiber of T1;0Cn over any given c 2 Cn as an embedding, êxpc , that sends the origin to
c . The differential of êxpc at the origin is the identity and it agrees with the metric’s
exponential map to second order. To describe the map êxpc , fix � 2 T1;0Cn with norm
less than "0 . Lift c as a pair .A; ˛/ solving (1-4) so as to view � as an element in
kernel.#c/ with L2 norm bounded by "0 . Viewed in this way, then êxpc.�/ can be
written as

(2-9) êxpc.�/D
�
AC 2�1=2.q�dxz� xq�dz/; ˛C &�

�
;

where .q� ; &�/D �C êc.�/ and êc.�/ is defined as follows: First, it is L2 –orthogonal
to the kernel of #c and so can be written as #|

c v� . Meanwhile, v� 2 C1.CIC˚C/
is the unique, small normed solution to the equation

(2-10) #c#
|
c v� C 2�1=2

�
1

2
x&��� ; q���

�
D 0:
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This equation for v� guarantees that êxpc.�/ obeys the equations in (1-4). Moreover,
what is written in (2-9) is gauge invariant, so does indeed descend to define a map from
T1;0Cn to Cn .

The inequalities in (2-2) and (2-8) can be used to prove the existence of c–independent
constants � � 1 and "0 > 0 such that the equation for v� has a unique solution withP

0�k�2kr
kv�k2 < �

�1 when k�k2 � "0 . In fact, this norm is bounded by �k�k2
2

.
Here, the derivative r is defined on an ordered pair .q; &/2C1.CIC˚C/ by the rule
r.q; &/D .dq;rA&/ with d denoting the usual exterior derivative on complex valued
functions and rA denoting the covariant derivative that is defined by the connection A.

The constant "0 can be chosen so as to guarantee that the norms of the derivatives
of êc.�/ D #

|
c v� with respect to the coordinate z on C , the element � 2 kernel.#c/

and variations of c in Cn obey uniform estimates. Indeed, "0 > 0 can be chosen so
that for each k 2 f0; 1; : : :g, there is a constant �k with the following significance: Fix
c D .A; ˛/ 2 Cn and let fzj g1�j�n 2 Symn.C/ denote the point given by the zeros
of ˛ . Then

(2-11)
� jrk êc.�/

ˇ̌
� �kk�k

2
2

P
1�j�ne�

p
2jz�zj j .

�
ˇ̌
rk
�

d
ds

êc.�C s�0/
�ˇ̌

sD0
j � �kk�k2k�

0k2
P

1�j�ne�
p

2jz�zj j .

To say something about the derivatives of the map êc with respect to changes of c,
agree to trivialize T1;0Cn in a neighborhood of any given c 2 Cn using the differential
of the map êxpc . This identifies the kernel of #c with that of #c0 for c0 near to c in Cn .
With this identification understood,

(2-12)

�
ˇ̌
rk
�

d
ds

êêxpc.s�/.�
0/
�ˇ̌

sD0

ˇ̌
� �kk�k2k�

0k2
P

1�j�ne�
p

2jz�zj j .

�
ˇ̌
rk
�

d
ds

d
dt

êêxpc.s�/
�
�0C t�00

��ˇ̌
sDtD0

ˇ̌
� �kk�k2k�

0k2k�
00k2

P
1�j�ne�

p
2jz�zj j .

Here, �k is as described in the preceding paragraph.

9 Variation of the kernel of #c Fix c 2 Cn and lift c to a pair .A; ˛/ solving (1-4).
Let B � T 1;0Cnjc denote a ball on which the map êxpc is defined. When � 2 B , use
c� to denote êxpc.�/ as defined in (2-9).

Each � 2 B defines a corresponding operator #c� ; and the associated n–dimensional
complex vector subspace kernel.#c� /� C1.CIC˚C/\L2

1
.CIC˚C/. Here, the

L2
1

inner product is defined using the covariant derivative that is defined on a pair
.b; �/2C1.CIC˚C/ by (db;rA�). The point to be made here is that these subspaces
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define a smooth map from B to the Frechet manifold of n–dimensional subspaces of
C1.CIC˚C/\L2

1
.CIC˚C/. Moreover, the derivatives of this map to any given

order at any given �2B enjoy c independent upper bounds if the radius of B is less than
some c–independent, positive constant. All of this is a consequence of (2-11) and (2-12).

2.b Hamiltonian vector fields on Cn

This subsection considers solutions to (1-10). With regards to (1-10), note for future
reference that the pairing between the differential of h at a given vortex cD .A; ˛/

with a .1; 0/ tangent vector .x; �/ from (1-7) can be written in a number of ways. What
follows are two:

(2-13)

� �
1
p

2�

Z
C
.vxzC x�z/x .

�
1

�

Z
C
.vxzC x�z/

�
2�1=2.1� j˛j2/xCx@A x̨�

�
.

Both are derived via integration by parts using (1-7) and (1-4).

There may be many solutions to (1-10) for any given pair of functions .�; �/. However,
the story is quite simple in three special cases. What follows is the first.

Lemma 2.1 Suppose that .�; �/ is nondegenerate. Then the only solution c! C1 of
the nD 1 version of (1-10) is the symmetric vortex.

Proof of Lemma 2.1 Use the holomorphic isomorphism between C1 and C given
by the q D 1 version of (1-5) to identify these two spaces. Fix any pair of functions
.�; �/ on S1 . With C1 viewed as C , it follows from (2-13) that the .�; �/ version of
(1-10) asks for a map t ! z.t/ from S1 to C that obeys the equation Lz D 0, where
L is the operator in (1-2). By assumption, the kernel of L is f0g.

The next lemma describes the second simple case.

Lemma 2.2 Suppose that R2R is not of the form p=q with p 2Z and q 2f1; : : : ; ng.
Then the symmetric vortex is the unique solution in Cn to the version of (1-10) that is
defined by the pair .� D 1

2
R; �D 0/.

Proof of Lemma 2.2 It follows by using (2-13) that the Hamiltonian vector field in
this case is R times the generator of the S1 action on Cn . To see its integral curves, view
Cn as Cn using the holomorphic isomorphism provided by the functions f�qg1�q�n

that are depicted in (1-5). The integral curve of R times the generator through a point in
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Cn with coordinates f�q D aqgqD1;:::;n is given by the map from R to Cn that sends
t 2R to the point with coordinates f�q D eiRqtaqgqD1;2;:::;n . Since no q 2 f1; : : : ; ng

version of qR is an integer, the only such curve that descends to map S1 DR=2�Z
into Cn as all aq D 0.

What follows is the final case.

Lemma 2.3 Suppose that k 2 Z, that " 2 R � f0g. Set � D 1
4
k and � D i"eikt .

Then the symmetric vortex is the unique solution in C1 to the corresponding version of
(1-10). Meanwhile, there are no solutions to this version of (1-10) when n� 1.

Proof of Lemma 2.3 It follows from Lemma 2.1 that the only solution in the case
nD 1 when .� D 1

4
k; �D i"eikt / is the symmetric vortex. Indeed, such is the case

by virtue of the fact that the corresponding matrix UtD2� that appears in (1-3) is
hyperbolic.

Now consider the assertion of the lemma for n> 1. Use the functions f�qg1�q�n to
again identify Cn with Cn . Write the Kähler metric as gi xj d�idx�j . It is a consequence
of (2-13) that the 1–parameter family of diffeomorphisms that is generated by the
Hamiltonian vector field defined by the function h in (1-9) is such that the function
t ! �2.t/ obeys the equation

(2-14)
i

2

d

dt
�2C 2��2C�g2x2

D 0:

Here, g2x2 comes from the inverse to the Hermitian form that defines the Kahler metric.
Note that this is a strictly positive function on Cn . In the case at hand, (2-14) reads

(2-15)
i

2

d

dt
�2C

1

2
k�2C i"eiktg2x2

D 0:

To proceed, write the 1–parameter family of diffeomorphisms t ! f�q.t/gqD1;2;:::;n

as t ! feiqkt=2aq.t/gqD1;2:::;n . By virtue of (2-14), the function t ! a2.t/ obeys

(2-16)
d

dt
a2C 2"g2x2

D 0:

Since "g2x2 is real and nowhere zero, it follows that there are no solutions to (2-15) where
a2.2�/Da2.0/. This implies that there are no solutions to (2-15) with �2.2�/D �2.0/.
As a consequence, there are no solutions to (1-9) with domain S1 DR=2�Z.

A solution, cW S1 ! Cn , to (1-10) is deemed to be nondegenerate when (1-11) has
trivial kernel as an operator on C1.S1I c�T1;0Cn/.
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Lemma 2.4 The solutions to (1-10) that are described by Lemmas 2.1–2.3 are nonde-
generate.

Proof of Lemma 2.4 In the case n D 1, the identification of C1 with C using the
coordinate function �1 is a holomorphic isometry that makes (1-10) appear as the
equation Lz D 0 for z a map from S1 to C and with L as in (1-2). The linearized
version of (1-10) appears as the operator L . By assumption, this operator has trivial
kernel. In the case when �D 0, the functions f�qg1�q�n identify Cn with Cn and
linearize (1-10). The linearized version of (1-10) about the symmetric vortex restricts
to the q–th summand in Cn has nontrivial kernel if and only if such is the case for
.i=2/.d=dt/C .1=2/qR� . The assumptions guarantee that this operator has trivial
kernel.

2.c Lifting maps from S 1 to Cn

Focus for the moment on a given smooth map cW S1! Cn . Because Cn is contractible,
any such map lifts to a smooth map t ! .A; ˛/jt from S1 into the space of pairs
whose first component is a connection on the trivial bundle over C and whose second
component is a section of this bundle. There are innumerable lifts; but any two differ
by the action of a map from the circle into C1.CIU.1//. To constrain the lifts under
consideration, note that with c given, there exists R � 1 such that j˛j � 1

2
at all

.t; z/ 2 S1�C with jzj �R. Consider in what follows lifts where ˛ appears at points
with jzj sufficiently large as j˛jzn=jzjn .

Now suppose that a smooth map A0W S
1! C1.CI iR/ has been given. Define a pair

.x; �/ by writing

(2-17)
�

@
@t

A�x@A0dz�x@A0dxz D 2�1=2.xdxz� xxdz/.

�
@
@t
˛CA0˛ D �.

To put (2-17) in perspective, view A0dtCA as a connection, A, on the trivial complex
line bundle over S1 �C . What is written in the first line is the contraction of @=@t
with the associated curvature 2–form. What is written in the second line of (2-17) is
the associated covariant derivative of ˛ along the S1 factor of S1 �C . As explained
momentarily, there is a natural choice for A0 that has the following property: Let FA

denote A’s curvature 2–form. Then the latter does not depend on the chosen lift of c.
Meanwhile the covariant derivative rA˛ behaves in an equivariant fashion under a
change of the lift.

To motivate this choice of A0 , note that the L2 –orthogonal projection at each t 2 S1

of .x; �/ into the vector space of L2 solutions to (1-7) is insensitive to the choice
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for A0 . However, there is a unique choice of A0 for which the pair .x; �/ actually
defines an element in this vector space. This is the desired choice for A0 . To say more
about this, note that the right hand equation in (1-7) is obeyed for any choice of A0 . It
is also the case that the real part of the left hand equation is always obeyed. However,
the imaginary part of the left hand equation in (1-7) demands that A0 on each constant
t 2 S1 copy of C obey

(2-18)
�

1

4
d�d.A0jt /C

1

2
j˛j2A0

�
C

1

2
im
�
@

�
@

@t
a

�
C 2�1=2

x̨
@

@t
˛

�
D 0;

where a is obtained by writing AD 1
2
.adxz�xadz/. Given the large jzj behavior of ˛

as described in (2-1), it follows that this equation has a unique solution at each t 2 S1

that lies in L2
1
.CI iR/. This choice for A0 guarantees that the pair .x; �/ is an L2

solution to (1-7) at each t 2 S1 .

As the solution to (2-18) varies smoothly with t , so does .x; �/ in (2-17). What is said
in Part 8 of Section 2.a implies that the lift of c can be chosen so that the following is
true: Let fzj g1�j�n denote the zeros of ˛ . Then

(2-19) jA0jC jd.A0jt /j � cc
P

1�j�ne�
p

2jz�zj j

at each t 2 S1 . Here, cc is a constant that depends on the chosen lift.

The solution A0 to (2-18) depends on the chosen lift of c in the following way:
Suppose that t ! u.t/ is a map from S1 to C1.CIU.1//. This map defines a new
lift by changing .A; ˛/jt to .A0; ˛0/jt D .A� u�1du;u˛/jt . Change A0 ! A0

0
D

A0�u�1.@=@t/u. Then A0
0

obeys the .A0; ˛0/ version of (2-18) and the resulting pair
.x0; �0/ obeys the .A0; ˛0/ version of (1-7).

2.d L2
1

maps from S 1 to Cn

It is a straightforward business to define an L2
1

map from S1 to Cn because the
complex coordinates f�qg1�q�n for Cn can be used to identify Cn with Cn . With
this identification understood, an L2

1
map from S1 to Cn is simply an L2

1
map,

t ! f�q.t/g1�q�n from S1 to Cn .

Because L2
1

functions on S1 are continuous, there is an equivalent way to define
such a map: Fix "0 > 0 so that the map êxp as described in Part 8 of Section 2.a
is defined on the radius "0 ball in T1;0Cn . Let cW S1! Cn denote a given smooth
map. Fix an L2

1
section, � , of c�T1;0Cn with pointwise norm less than "0 . The map

t ! c��.t/D êxpc.t/�.t/ defines an L2
1

map from S1 to Cn .

The remaining two parts of this subsection discuss two aspects of L2
1

maps.
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Part 1 The second definition of an L2
1

map gives a cheap way to define its lift as a
map from S1 into the space of solutions to (1-4). To explain, let cW S1! Cn denote a
given smooth map, and let � denote an L2

1
section of c�T1;0Cn with norm less than "0 .

Choose a lift of c so as to give a pair, .A; ˛/, this a smooth map from S1 into the
space of solutions to (1-4). Assume, as before that ˛ is proportional to zm where jzj
is large. This lift of c defines one for c��.t/: View � as an L2

1
map from S1 into

C1.CIC˚C/ with #c�jt D 0 at each t 2S1 , and then (2-9) defines the pair .A� ; ˛�/
and the desired lift of c�� is the pair .A0dt CA� ; ˛�/.

To say more, write � as a map t ! .q�0; &�0/jt of S1 into C1.CIC˚C/. Now let
f� denote the L2 function on S1 whose square is given by

(2-20) f 2
� D

Z
C

�ˇ̌̌̌
@

@t
q�0

ˇ̌̌̌2
C

ˇ̌̌̌�
@

@t
CA0

�
&�0

ˇ̌̌̌2�
C

Z
C
.jxj2Cj�j2/

Z
C
j�j2:

Here, A0 and .x; �/ are defined from .A; ˛/ using (2-18) and (2-17). Note that a
c–independent multiple of f� bounds the L2 norm of the covariant derivative of � ’s
incarnation as a section over S1 of c�T1;0Cn . This covariant derivative is defined
using the pullback by c of the Levi-Civita connection on T1;0Cn . Meanwhile, a
c–independent multiple of the L2

1
norm of the latter incarnation bounds f� .

With the preceding as background, define .q� ; &�/ via (2-9) and (2-10); and set

(2-21) x� D xC
@

@t
q� and �� D �C

�
@

@t
CA0

�
&� ;

for the c�� versions of the functions that are defined by (2-17). It follows from (2-2),
(2-11) and (2-12) that there exists a constant, � , that is independent of c and of � , with
the following properties:

(2-22) jx� �xjC j�� � �j � �f�.t/
P

1�j�ne�
p

2jz�zj .t/j:

Here, t ! fzj .t/g1�j�n is c’s associated map from S1 to Symn.C/.

Part 2 What follows concerns two important points that play a prominent role in the
next section. To set the stage, suppose that cW S1 ! Cn is a smooth map and � is
A section of c�T1;0Cn with small L2

1
norm. Lift c as a pair, .A; ˛/ so as to define

.A� ; ˛�/. At each t 2 S1 , the pair .A� ; ˛�/ defines the associated operator #c��.t/ .
Use …c��.t/ to denote the L2.CIC˚C/–orthogonal projection onto the kernel of
#c��.t/ . As the lift of c�� defines a continuous pair of connection and complex function,
so the family f…c��.t/gt2S1 defines a continuous map from the circle into the space of
bounded operators on L2.CIC˚C/. Use K�L2.S1�CIC˚C/ for the subspace
of f 2 L2.S1 �CIC ˚C/ such that …c��.t/f D f for all t 2 S1 . This is a closed,
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linear subspace. Introduce …c�� to denote the L2 –orthogonal projection onto K. Thus,
.…c�� f/jt D…c��.t/.fjt /.

The next lemma concerns this …c�� The lemma introduces rt to denote the covariant
derivative on C1.S1 �CIC˚C/ that sends any given pair fD .q; &/ of functions
on S1 �C to the pair rt fD ..@=@t/q; .@=@t CA0/&/.

Lemma 2.5 The projection …c�� maps L2
1
.S1�CIC˚C/ to itself. Moreover, there

exists � � 1 that depends on c but not on � such that

kŒrt ;…c�� �fk
2
2 � �

�
kf�k

2
2C 1

��
krt fk2kfk2Ckfk

2
2

�
;

for all f 2L2
1
.S1 �CIC˚C/.

Proof of Lemma 2.5 The commutator Œrt ;…c��. � /� obeys

(2-23)
Z

C

ˇ̌
Œrt ;…c��. � /� f

ˇ̌2
� cc.f

2
� C 1/

Z
C
jfj2;

where cc is independent of �; � and t 2 S1 , but does depend on c. This last bound
follows using (2-21) and (2-22) with the kD0 version of (2-2). Equation (2-23) implies
the inequality that is asserted by Lemma 2.5. The latter implies that the projection …c��

maps L2
1
.S1 �CIC˚C/ to itself.

2.e Surfaces and vortices

Let C denote a compact or noncompact complex curve and let � W E! C denote a
complex, holomorphic line bundle equipped with a Hermitian metric and compatible
connection. Use SE �E to denote the unit circle bundle in E . The integer n version
of the vortex bundle associated to E is the fiber bundle SE �S1 Cn . The latter is
denoted by CE;n ; when needed, the projection to C from CE;n is also denoted by � .
This bundle CE;n is a holomorphic fiber bundle over C . Let V1;0CE;n! CE;n denote
the .1; 0/ component of the vertical tangent bundle with respect to the projection to C .
Thus V1;0 D SE �S1 T1;0Cn .

There exists in this context a version of the d –bar operator that takes a section, c, of
CE;n to a section, x@c, of the bundle c�V1;0˝ T 0;1C ! C . It is defined as follows:
With c viewed as an S1 –invariant map from SE to Cn , its differential defines a linear
map from TSE to c�T1;0Cn . Restriction of this differential to the horizontal subbundle
in TSE as defined by the given Hermitian connection gives the desired section of
c�V1;0CE;n˝T 0;1C .
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Let �C denote a section of T 0;1C and �C a section of E2 ˝ T 0;1C . With � D
�C and � D �C , what is written in (1-9) defines a section, h , over CE;n of the
bundle ��T 0;1C . This understood, use r1;0h to denote the corresponding section of
V1;0CE;n˝�

�T 0;1C . Of interest here are sections of CE;n that obey the equation

(2-24) x@cC c�r1;0h D 0:

To see something of what this looks like, note that in the case nD 1, the identification
C1 D C given by the function �1 on C1 identifies the expression on the right hand
side of (2-24) with the R–linear operator from C1.C IE/ to C1.C IE˝ T 1;0C /

that sends any given section � to

(2-25) x@�C �C �C�C
x�:

When �C D 0, the identification CnDCn identifies the right hand side of (2-24) as the
C–linear operator from C1.C I

L
1�q�n Eq/ to C1.C I .

L
1�q�n Eq/˝ T 0;1C /

that acts in a diagonal fashion as

(2-26) x@C q�C

on the q–th summand. These are the two cases of paramount interest in what follows.

2.f Banach spaces of sections of CE;n

The bundle V1;0CE;n! CE;n is a rank n, complex vector bundle. As such, it inherits
a Hermitian structure from the L2 metric on Cn and a fiberwise covariant derivative.
The latter with the given Hermitian connection on SE defines a connection on this
vector bundle. Fix a smooth section, c, of CE;n . The pullback by c of this connection
on V1;0CE;n! CE;n gives the bundle c�V1;0CE;n a covariant derivative. The latter
can be used to define Sobolev spaces of sections. Of interest here are L2

1
sections with

apriori pointwise bounds. What follows describes a convenient Banach space of such
sections. The space defined below is a version of a space used by Morrey in [3].

The definition of this Banach space requires the choice of a positive constant, v , but
with v < 1=100. Three norms on the space of smooth, compactly supported sections
over C of c�V1;0CE;n are defined in the next equation. The first is the standard L2

1

norm. Then second and third require the constant v . These norms are defined by
declaring the square of their respective values on any given section � are

(2-27)

� k�k2
K2

1

D
R

C

�
jr�j2Cj�j2

�
.

� k�k2K� D supp2C; �<1 �
�v
R

dist. � ;p/<p jr�j
2 .

� k�k2K D k�k
2

K2
1

Ck�k2K� .

Geometry & Topology, Volume 14 (2010)



2604 Clifford Henry Taubes

Here, r denotes the aforementioned covariant derivative on C1.C I c�V1;0CE;n/.
Meanwhile, the function dist. � ;p/ denotes the metric distance on C to the point p .

Use Kc� and Kc to denote the respective completions of the space of compactly
supported, smooth sections of c�V1;0CE;n with respect to the norms k � kK� and k � kK .
By definition, Kc is a subvector space of Kc� .

The norm k � kK� is somewhat stronger than the L2
1I loc norm. Indeed, as stated in the

next lemma, elements of Kc� are bounded and Hölder continuous. Moreover, if M

is a compact 3–manifold with a given contact 1–form as in Section 1, and if C is a
pseudoholomorphic subvariety in R�M of the sort described in Section 1.e, then
sections of Kc� converge uniformly to zero as jsj !1 on C .

Lemma 2.6 With v and C as just described, there is a constant � � 1 such that if
c 2 C1.C ICE;n/ and � 2Kc� then supC j�j � �k�kK� . In fact, each element in Kc�

(and hence Kc ) is Hölder continuous with exponent ��1 , and the inclusion of Kc� into
the Banach space of such Hölder continuous sections defines a continuous map. If C is
a pseudoholomorphic subvariety of the sort described in Section 1.e, then Kc� includes
into the Banach space of Hölder continuous section with exponent ��1 that have limit
zero as jsj !1; and the latter inclusion is a bounded, linear map. However, the norm
of this map depends on c.

Proof of Lemma 2.6 See Morrey [3, Theorem 3.5.2] for the proof that elements in
Kc� are Hölder continuous. In the case when C is of the sort described in Section 1.e,
the uniform decay to zero as jsj !1 follows from this fact as it implies that Kc� sits
in the C 0 closure of the space of compactly supported sections of c�V1;0CE;n .

The Banach space Kc� is introduced because it is relatively easy to work with, and
because its small normed elements can be used to define deformations of the given
section c. In particular, given Lemma 2.6 and given what is said in Part 8 of Section
2.a about the map êxp, there exists "0 > 0 with the following significance:

(2-28)
Fix c2C1.C ICE;n/. If �2Kc� obeys k�kK<"0 then c��D êxpc.�/
defines a Hölder continuous section of CE;n .

An L2 version of the Banach space Kc is needed for sections of c�V1;0CE;n˝T 0;1C .
This L2 version is denoted by Lc ; it is the completion of the space of compactly
supported sections of C1.C I c�V1;0CE;n ˝ T 0;1C / using the norm whose square
sends a section � to

(2-29)
Z

C

j�j2C sup
p2C;�<1

��v
Z

dist. � ;p/<�
j�j2:
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The Banach space Lc is used when considering the linearized version of (2-24). Thi
linearization is defined at a section c 2 C1.C ICE;n/ as a linear operator that takes
any given section of c�V1;0CE;n and gives back a section of c�V1;0CE;n˝ T 0;1C .
This operator can be written schematically as

(2-30) �!x@c�C .r�R
r

1;0h/jc;

where x@c here denotes the d –bar operator on the space of sections of c�V1;0CE;n

that is defined using the pullback via c of the Levi-Civita connection. Meanwhile, �R
denotes the section of the vertical tangent bundle of c’s pullback of the (real) vertical
tangent bundle to CE;n that is defined by � .

Lemma 2.7 The operator that is depicted in (2-30) defines a bounded operator
L2

1
.C I c�V1;0Cn/ to L2.C I c�V1;0Cn˝ T 0;1C /. Moreover, there exists � � 1 such

that if D � C is a ball of radius ��1 and if � has compact support in D , thenx@c�C .r�R
r

1;0h/
ˇ̌
c


L � c�1

0 �k�kK:

As a consequence, if the operator �!x@c�C.r�R
r1;0h/jc is Fredholm from L2

1
to L2 ,

then it is Fredholm with the same index, kernel and cokernel as a map from Kc to Lc .
In particular, if it is Fredholm from L2

1
to L2 and if its L2 cokernel is trivial, then this

operator has a bounded inverse mapping Kc to the L2 –orthogonal complement in Lc

of the kernel of its L2 adjoint.

Proof of Lemma 2.7 The claims follow from [3, Theorems 3.5.2 and 5.4.1].

The Banach spaces Kc and Kc� are used later in this article with the two special cases
that are described at the end of the preceding subsection. Recall that the first case is that
with nD 1. In this case, the isometry between C1 and C that is supplied by the k D 1

version of (1-5) identifies C1.C;CE;1/ with C1.C IE/. With this identification
understood, the Banach spaces Kc� and Kc are the respective completions of the space
of compactly supported sections of C1.C IE/ using the norm whose square is given
by the relevant version of (2-27) where � is a section of E and r denotes the covariant
derivative from the connection AE . With C1.C ICE;1/ viewed as C1.C IE/, the
operator in (2-30) is that in (2-25).

The second case is that where CDR�S1 , the bundle E is given as the trivial bundle
.R�S1/�C and the function � that appears in the equation for h is taken to equal
to zero. As remarked previously, (2-24) in this case is also linear, now a direct sum of
n operators, these acting on

L
1�q�n C1.R�S1IC ) where the operator on the q–th

summand is x@C q� . The norm for the Banach spaces Kc� and Kc now depend on the
choice for c.
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2.g Lifts of sections of CE;n

Let � W E!C denote the projection map. What follows describes how to lift a section
of CE;n so as to get a pair whose first component is a connection on ��En and whose
second component is a section of this same bundle. It then goes on to discuss various
properties of such lifts. The discussion has three parts.

Part 1 To set the stage, remark that ��E!E has a canonical section; the latter, s,
assigns to any given point � 2 E the point .�; �/ 2 E �C E . This bundle also has
a canonical connection; this is the pullback, � , of the given Hermitian connection
on E . This understood, the .��E/� valued 1–form r�xs pulls back to each fiber of E

so as to span the .0; 1/ cotangent bundle of the fiber. This 1–form annihilates the
� –horizontal subspace in TE .

With these preliminaries in hand, suppose that c is a given smooth section of CE;n .
Then c can be lifted as a pair .A; ˛/ where A a smooth, Hermitian connection on the
line bundle ��En!E and ˛ is a section of this bundle. The connection A here is
taken equal to

(2-31) AD n� CA0CA

where the notation is as follows: First, A is an i –valued 1–form on E that annihilates
the horizontal vectors in TE . Thus, A can be written as 1

2
.ar� ;xs� xar� ; s/ where

a is a section of ��E . In addition .A; ˛/ solves (1-4) along each fiber of E ; and
in doing so it defines the equivalence class of c. Finally, A0 is a section over E of
��.iT �C / that is given along each fiber as the unique, L2 solution to the equation

(2-32)
�

1

4
dV |dV .A0/C

1

2
j˛j2A0

�
C

1

2
im
�
@V .rH

� a/C 2�1=2
x̨r

H
� ˛

�
D 0:

Here, dV and @V are the respective exterior derivative and holomorphic derivative
along the fibers of � and rH

�
denotes the horizontal part of the covariant derivative

that is defined by � . By way of an example, rH
�
sD 0.

With A0 understood, introduce the pair .x; �/ by

(2-33) x D 2�1=2.rH
� a� 2x@V A0/ and �D .rH

� CA0/˛:
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Then .x; �/ restrict to each fiber of � W E! C as a solution to (1-7). Note that the lift
of .A; ˛/ can be chosen so that they, the pair .x; �/ and A0 obey

(2-34)

� AD .1=2/n
�
xs�1r�xs�s�1r�s

�
Cv and ˛D sn=jsjnCr where jvjCjr j�

cc e�
p

2jsj at points where jsj � 1.

� jxjC j�j � cc e�
p

2jsj .

� jA0j � c0c e�
p

2jsj .

Here, cc is a constant that depends on the section c. Meanwhile, c0c depends on the
chosen lift of c. A lift of the sort just described is used implicitly below.

A change in the connection � to � C� changes .x; �/ to

(2-35) .x; �/! .x; �/��
�
2�1=2.1� j˛j2/; @V

A˛
�
:

Thus, the change adds to .x; �/ a multiple of the solution to (1-7) along each fiber that
is given by (2-3).

Part 2 As is explained next, the lift of c as .A; ˛/ gives a canonical way to lift c��
when � is any given small normed element in Kc� . To begin the story, remark that
the chosen lift of c defines the rank n, complex vector bundle Kc! C whose fiber
at any given point p 2 C is the kernel of the operator #c along Ejp . Here, #c is
defined in (2-6) using .A; ˛/ along Ejp . The bundle Kc is canonically isomorphic
to c�V1;0CE;n and so any given section of the latter can be viewed as a section of Kc .
This understood, a corresponding fiberwise version of (2-9) is used to define the lift
of c�� for any given section � . Indeed, define .q� ; &�/ fiberwise by (2-9). Thus, q� is a
section of ��E and &� one of ��En . Granted this notation, the lift of c�� is given by

(2-36)
�
n� CA0CAC 2�1=2.q�r�xs� xq�r�s/; ˛C &�

�
:

In what follows .A� ; ˛�/ is used to denote .AC 2�1=2.q�r�xs� xq�r�s/; ˛C &�/.

There are analogs for c�� of (2-21) and (2-22). These are defined as follows: Introduce
the pair .x� ; ��/ by

(2-37) x� D xCr�q� and �� D �C .r� CA0/&� :

Then

(2-38) jx� �xjC j�� � �j � �f�
P

1�j�ne�
p

2js�sj j;

where the notation is as follows: First, � is a constant that is independent of c. Second,
fsj g 2 Symn.E/ is the zero locus of ˛ . Finally, f� is the function on C whose square
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at a given p 2† is

(2-39) f 2
� .p/D

Z
Ejp

�
jr�q�0j

2
C
ˇ̌
.r� CA0/&�0

ˇ̌2�
C

Z
Ejp

.jxj2Cj�j2/

Z
Ejp

j�j2:

Here, .q�0; &�0/ are the components of � . Note that

(2-40)

� c�1
0
k�k2

K2
1

�
R

C j�j
2C

R
C f

2
� � c0k�k

2

K2
1

.

� c�1
0
k�k2K� � supp2C;�<1 �

�v
� R

dist. � ;p/<� j�j
2C

R
dist. � ;p/<� f

2
�

�
� c0k�k

2
K� .

Here c0 � 1 is independent of c and � . Note with regards to the first item that the L2

norm of � as a section over C of c�V1;0CE;n , is the same, up to a fixed multiplicative
constant, as the L2 norm over E of � as a section over E of ��E˚��En .

Part 3 The final item on the agenda for this section concerns the analog of Lemma 2.5
and (2-23) for sections of CE;n . To set the stage, let c denote a given smooth section of
CE;n . Introduce r to denote the covariant derivative on C1.EI��E˚ .��E/n/ that
acts as r� C dE on the first summand and rA on the second. Here, A is defined by
(2-31) with A0 defined by (2-32). Use this covariant derivative to define the Sobolev
space L2

1
.EI��E˚��En/. To be precise, the latter is the completion of the space of

compactly supported sections over E of ��E˚��En with the norm whose square
sends a section f to

(2-41)
Z

E

.jrfj2Cjfj2/:

To finish with these preliminaries, fix a small normed section, � 2Kc� so as to define
the section c�� of CE;n . Use the associated pair .A� ; ˛�/ to define on each fiber the
operator #c��. � / as in (2-6). Let …c��. � / denote the fiberwise L2 orthogonal projection
to the kernel of this operator. Apriori, the latter defines a continuous section over C of
a vector bundle that is associated to SE and whose fiber is the vector space of bounded,
finite rank operators on L2.CIC˚C/. Let K � L2.EI��E˚ ��En/ denote the
subspace of elements f such that …c��. � /fD f. Note that K is a closed subspace of the
Hilbert space L2.EI��E˚��En/. Use …c�� to denote the L2 orthogonal projection
onto K.

With the stage now set, the following lemma plays a key role in the construction of the
map ‰r .
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Lemma 2.8 The projection …c�� maps L2
1
.EI��E˚��En/ to itself as a bounded

operator. Moreover,

kŒr;…c��. � /�fk
2
2 � �k�k

2
K�
�
krfk2Ckfk2

�2
C �kfk22:

Here, � > 1 depends only on the section c.

This lemma is proved momentarily.

The following lemma is used in the proof Lemma 2.8 and elsewhere.

Lemma 2.9 Let � W Œ0;1/ ! R denote a smooth function such that the function
z! �.jzj/ on C is square integrable. Use �E W E!R to denote the function �.jsj/.
Let f denote an element of L2

1
.EI��E˚��En/. Then function on C given byZ

��1. � /

�Ejfj

is an L2
1

function with L2
1

norm bounded by a � –dependent multiple of krfk2Ckfk2 .

Proof of Lemma 2.9 This follows using Hölder’s inequality given that the exterior
derivative of the indicated function on C is bounded by a multiple of

R
�1. � / �Ejrfj.

Proof of Lemma 2.8 The assertion that …c�� maps L2
1
.EI��E˚��En/ to itself

follows from the inequality. To prove the inequality, note first that there is an analog
here of (2-23). This analog replaces the integration domain C by any given fiber of �
and it replaces rt with r . This version of (2-23) follows using (2-2), (2-11), (2-12)
and (2-38). Granted this rt !r and C ! Ej. � / version of (2-23) use [3, Lemma
5.4.1] with Lemma 2.9 to obtain the desired inequality.

3 The proof of Theorem 1.1

The purpose of this section is to first construct the map ˆr and then prove the assertions
made in Theorem 1.1. To this end, fix a once and for all a coclosed 1–form � 2 �

with P norm less than 1.

To start the construction, fix a finite set, ‚, whose elements are pairs .;m/ where 
is a Reeb orbit and m is a positive integer. Require that distinct elements have distinct
Reeb orbits. Assign to each .;m/ 2‚ a map c W S

1! Cm that solves (1-10) and is
nondegenerate in the sense that the associated version of (1-11) has trivial kernel. This
data constitutes an element, J0 , in the set C‚� . The first task here is to construct from
J0 a solution to the large r versions of (1-13).
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The first and simplest case has ‚ D ∅. The corresponding solution in this case is
described by [7, Proposition 2.8]. This proposition is restated below. The proposition
refers to the function E given by (1-12).

Proposition 3.1 Suppose that the SpinC structure is such that SD IC˚K�1 . There
exists rI > 1 and ı 2 .0; 1

2
/ with the following significance: Fix � 2� with P norm

less than 1 and fix r � rI . Then there exists a unique gauge equivalence class of solution
to (1-13) with the norm of the spinor component nowhere less than 1� ı . Moreover, E

has an r independent upper bound on this equivalence class.

Assume henceforth that ‚ is nonempty. The spinor bundle S for the relevant SpinC

structure decomposes as E ˚EK�1 where the first Chern class of E is Poincare 0

dual to the class in H1.M IZ/ that is given by the formal sum
P
.;m/2‚ m . This

SpinC structure is used implicitly in what follows. The construction of solutions to
(1-13) from J0 uses much the same technology that is used in [7] to prove the latter’s
Proposition 2.8. The salient new input involves the solutions to (1-10). As outlined in
[8, Section 5b], the first part of the construction uses the solutions to (1-10) to construct
a pair in Conn.E/�C1.M IS/ that almost solves (1-10). The perturbation-theoretic
approach used for [7, Proposition 2.8] augmented with techniques from the article
Gr D SW in [5] are then brought to bear to prove that there is a unique solution to
(1-10) that is near to this pair in Conn.E/�C1.M IS/. Sections 3.a–3.g supply the
existence proof. The uniqueness assertion is proved in Section 2 of the fourth paper in
this series [10]. Section 3.g proves the assertions made by Theorem 1.1.

3.a Configurations that nearly solve (1-13)

Let "0 > 0 be as described in the Part 8 of Section 2.a’s discussion of exponential maps.
The purpose of this subsection is to associate a Hermitian connection on E with L2

curvature and an L2
1

section of S to the following data:

(3-1)

� A set finite set ‚ whose typical element is a pair .;m/, where  is a
Reeb orbit and m is a positive integer. There is no need to assume that 
is nondegenerate. These are constrained as follows:
(i) No two pairs share the same Reeb orbit.

(ii)
P
.;m/2‚ m is Poincaré dual to c1.E/.

� A set JD f.c ; � /g.;m/2‚ where
(i) c is a smooth map from S1 into Cm .

(ii) � is an L2
1

section over S1 of c�T1;0Cm with pointwise norm less
than "0 .

The pair of connection and spinor with the label ‚ and J is denoted below by c‚J .
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Step 1 As described in Section 1.a, each Reeb orbit  from ‚ has an associated
tubular neighborhood coordinate chart, ' , that maps S1 �D into M with D �C
a small radius disk about the origin. Such a chart can and should be chosen so that
the following is true: There is an orthonormal basis for T �M near  of the form
fe1; e2; ag such that the C–valued 1–form eD e1C ie2 annihilates v and is given by

(3-2)
�

2�

`

�1=2

e D dz� 2i.�zC�xz/dt C e;

where the dt and dz components of e are bounded by c0jzj
2 and the dxz component

by c0jzj. Fix such a chart for each Reeb orbit from ‚ so that their images are pairwise
disjoint. Such a map is used in what follows to implicitly identify a neighborhood
of given Reeb orbit from ‚ with S1 �D . In particular, this identification supplies
coordinates, t 2 S1 and z 2D , for a neighborhood of the given Reeb orbit.

The constructions that follow require a constant �� > 0 but less than 1=100 times
the radius of D . An upper bound for the constant �� is given in Lemma 3.2. This
constant can depend on r , but it is important that r�2

� > r ı for some fixed ı > 0. The
construction of instanton solutions to (1-14) takes ��D r�1=2C3� where � 2 .0; 1=100/

is an appropriately chosen constant.

When  comes from a pair in ‚, use U �M to denote the ' –image of the subset
.t; z/2S1�D with jzj�4p� . Use U 0 �U to denote the ' –image of the concentric
solid torus where jzj��� . The pair c‚J is given first over U0DM�int.

S
.;m/2‚U 0 /

and then over each U .

To specify c‚J over U0 , remark that E ’s restriction to U0 is isomorphic to the trivial
bundle. Choose an isomorphism to identify SDE˚EK�1 over U0 with C˚K�1 .
Granted this identification, take c‚J on U0 to be .AI ; .1C; 0// where AI is the trivial
connection on the bundle U0�C that is defined by the product structure and where 1C is
the constant section with value 1 2C . This pair is written as .A0;  0/ in what follows.

Step 2 This step sets the stage for the definition of c‚J over each set in fU g.;m/2‚ .
To start, remark that there are trivializations of E over any given set from fU g.;m/2‚
with the following property: The trivializing section, 1, for Step 1’s trivialization of E ’s
restriction to U0 appears in the trivialization EjU D U �C as the S1 –independent
function uD zm=jzjmW S1 � .D � 0/! S1 � C . Here, and in what follows, U is
implicitly identified by ' with its preimage in S1 �D . These transition functions
exist because E ’s first Chern class is Poincare 0 dual to � and � is the class of the
cycle

P
.;m/2‚ m in H1.M IZ/. What with the coordinate 1–forms dt and dz

giving a trivialization of T �.S1 �D/, this trivialization of E over U identifies S

over U with the C˚C product bundle. As before, the direct sum decomposition
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corresponds to the eigenspaces of Clifford multiplication by a. The identification just
described is implicit in what follows.

Required next are two rather mundane definitions. For the first, fix once and for all, a
smooth, nonincreasing, Œ0; 1�–valued function on R which is 1 on .�1; 5=16� and
equal to 0 on Œ7=16;1/. Let �W R! Œ0; 1� denote this function. Fix a Reeb orbit 
so as to define a function, � W M ! Œ0; 1� with support near  . The latter is defined
in terms of the coordinates on S1�D by X D �.jzj=��/. Here is the second: Given
r � 1, set r D .`=2�/r and let yr W C ! C denote the map that sends z to r

1=2
 z .

Step 3 Digress momentarily, and suppose that  �M is any given embedded curve.
Fix an embedding, ' , of S1 �D in M so as to identify a tubular neighborhood of
 with the solid torus S1 �D and  with S1 � 0. Assume that ' ’s differential is
isometric along  . Use ' to identify S1 �D with its image, U . Fix a trivialization
EjU D U �C as described in Step 2, and use this trivialization to identify a given
version of S over U with .S1 �D/� .C˚C/.

Let m denote a positive integer and choose some fixed R� 1. Select a smooth map
cW S1!Cm . Lift c as a pair .A; ˛/ so as to give a smooth map from S1 into the space
of solutions to (1-4). Choose such a lift so that ˛=j˛jD zm=jzjm for jzj �R. Introduce
the solution A0 , to denote the solution to the .A; ˛/ version of (2-18). Now let � denote
an L2

1
section of c�T1;0Cm with pointwise small norm. View � as an L2

1
map from

S1 into C1.CIC˚C/. Use � to define êxpc.�/ via (2-9); then use c�� D .A
� ; ˛�/ as

shorthand for this pair. For r � 1, write yr�A� DA�;r and yr� ˛
� D ˛�;r ; these viewed

as an S1 dependent pair of connection on the trivial bundle over C and section of this
bundle. Set Ar

0
D yr�A0 . Also, set um D zm=jzjm .

A pair .A ;   / of connection on EjU and section of S jU D U � .C˚C/ is given
by

(3-3) A D�Ar
0dtC�A�;r�.1�� /xur dur and  D

�
.1�� /urC�˛

�;r ; 0
�
:

Note that the large r versions of .A ;   / change with a change of the chosen lift of c
by a a corresponding gauge transformation if the new lift has ˛=j˛j D zm=jzjm where
jzj>

p
rR.

Step 4 The set J associates to each .;m/ 2 ‚ a smooth map c W S
1 ! Cm and

a small normed section, � , of c�T1;0Cm . Use this map to define .A ;   / on U
as instructed in Step 3. Then f.A0;  0/; f.A ;   /.;m/2‚gg defines a Hermitian
connection on the bundle E!M with L2 curvature and an L2

1
section of S . Any

given gauge equivalence class of this connection and the spinor is denoted in what
follows by .AJ ;  J /. This pair .AJ ;  J / constitute the promised c‚J .

Of interest in what follows is the case where each c is a solution to (1-10).
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3.b The perturbative set up

Let ‚ and J be as described in (3-1). This part of the construction sets the stage for
the perturbative techniques that are used to modify a specific version of c‚J so as to
obtain the desired solution to (1-10).

The strategy used in what follows is to find a particular set JD f.c ; � /g.;m/2‚ and
a pair .b; �/ 2L2

1
.M I iT �M ˚S/ so that the large r version of (1-13) is solved by

(3-4) .A;  /D .AJ;  J/C ..2r/1=2b; �/:

The pair .A;  / will solve the desired version of (1-13) if the triple bD .b; �; �/ 2

L2
1
.iT �M ˚S˚ iR/ solves the system of equations

(3-5)

� �db� d� � 2�1=2r1=2
�
 

|
J��C �

|� J

�
� 2�1=2r1=2�|��

D�2�1=2r�1=2
�
BAJ
� r
�
 

|
J� J� ia

�
�
�
i � d�C 1

2
BAK

��
.

� DAJ
�C 21=2r1=2

�
cl.b/ JC� J

�
C 2r1=2.cl.b/�C��/D�DAJ

 J .

� �d � b� 2�1=2r1=2
�
�| J� 

|
J�
�
D 0.

Note that solutions to this equation have � D 0. The component � of b is introduced
for the following reason: The part of the left hand side of (3-5) that is linear in b

defines a first order operator on C1.M I iT �M ˚S˚ iR/. This linearized operator
is denoted in follows as Lc‚J . This operator is elliptic with the � term present, but not
so otherwise. More is said about this operator momentarily.

With Lc‚J understood, (3-5) is written schematically as

(3-6) Lc‚JbC r1=2b� b� vD 0;

where b! b� b denotes a quadratic, fiber preserving self-map of iT �M ˚S˚ iR.
This system of equations has the same formal structure as that given in [7, (2.4)]. Even
so, this version has subtleties that are absent from [7] because Lc‚J has eigenvalues
with O.1/ norm. By way of contrast, the norms of the eigenvalues of [7]’s version of
Lc‚J have norm at least 1

2
r1=2 . The O.1/ eigenvalue norms that arise here are due to

the nontrivial behavior of .AJ;  J/ near the Reeb orbits that come from ‚.

The strategy used in what follows to deal with the O.1/ eigenvalues is much like that
used in the article Gr) SW from [5] to handle an analogous situation. The idea is to
first project (3-5) onto a subspace that is approximately orthogonal to the eigenvectors
of Lc‚J whose eigenvalues have small absolute value. This is done for a particular
choice of the data fc g, and then for each f� g2‚ given that each � has small L1

norm. A solution, b, is found that makes this projection of (3-6) equal to zero. This b
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depends smoothly on the data f� g2‚ . The remainder of (3-6) is then viewed as a
function of f� g2‚ and it is argued that there is a unique such collection that makes
this function zero. The six steps that follow set up the projected version of (3-6).

Before starting, the reader should take note of the following convention used in the
remainder of this subsection and subsequently: What is written as “c0 ” designates
a constant that is greater than 1 and whose value is independent of r; �, the data
f� g.;m/2‚ and sections of various bundles, principally iT �M ˚S˚ iR. However,
c0 is allowed to depend on fc g.;m/2‚ . In any event, its value can be assumed to
increase from appearance to appearance.

Step 1 For the moment, let A 2 Conn.E/. With A given, use H to denote the
completion of C1.M I iT �M ˚S˚ iR/ using the norm whose square is given by

(3-7) khk2H D

Z
M

jrhj2C
1

4
r

Z
M

jhj2;

where r is the covariant derivative on C1.M I iT �M ˚S˚ iR/ that acts as the met-
ric’s covariant derivative on the sections of iT �M and iR, and acts as the covariant de-
rivative defined by the connection AKC2A and the metric’s Levi-Civita connection on
the sections of S . Let L to denote the L2 completion of C1.M I iT �M ˚S˚ iR/.

Suppose next that  2 C1.M IS/. The pair cD .A;  / together define the operator
Lc on C1.M I iT �M ˚ S˚ iR/ that takes any given section b D .b; �; �/ to the
section whose respective three components are

(3-8)

� �db� d� � 2�1=2r1=2
�
 |��C �|� 

�
.

� DA�C 21=2r1=2.cl.b/ C� /.

� �d � b� 2�1=2r1=2.�| � |�/.

This operator is symmetric and it extends as an unbounded, self-adjoint operator on the
Hilbert space L with dense domain H . As such, it has discrete spectrum with finite
multiplicities and no accumulation points. The spectrum is unbounded from above and
from below.

Certain Sobolev inequalities play a central role in the subsequent analysis. In particular,
given that jrhj � jd jhk, the standard Sobolev inequalities for L2

1
.M IR/ guarantee

that k � kH dominates the Lp norms of h for p � 6. Indeed, if h!khkH is any norm
with the property that khkH � c0.kd jhj2kC r1=2khk2/, then

(3-9) khkp � c0r .p�6/=4p
khkH

for any p 2 Œ2; 6�.
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Step 2 In what follows the space H is defined by taking A to be the version of AJ

that is defined by the data J0 D f.c ; � D 0/g.;m/2‚ . What is denoted as Lc‚J in
(3-6) differs from its cD c‚J0

version of (3-8) by a degree zero operator that has the
schematic form b! h�b where h is a bounded, L2

1
section of iT �M ˚S˚ iR. As

a consequence, Lc‚J defines a bounded, linear map from H into L. The remainder of
this step and the next constitute a digression to describe Lc‚J in more detail. This is in
preparation for an upcoming step where the aforementioned projections in L and H
are defined.

To start the more detailed description of Lc‚J , note that the identification of E over U0

as U0 �C identifies the operator Lc‚J in (3-6) on U0 with the .AI ;  I / version of
the operator in (3-8). The latter version of (3-8) is denoted in what follows as LI . Let
HI denote the completion of C1.M I iT �M ˚S˚ iR/ using the ADAI version
of (3-7). Define LI to be the corresponding L2 completion. As noted in [6, Section
5.5], the operator LI defines a bounded, invertible map from HI to LI . [6, Equation
(5.22)] guarantees that

(3-10) kLIhk
2
2 � khk

2
H

when r is large.

Step 3 The identification of any given version of U with a subset of S1�C allows a
convenient rewriting of the operator Lc‚J over U . What follows describes the result.

To start, remark that the trivialization of the bundle E with the associated tubular
neighborhood map ' identifies S with the restriction to S1�D of the product C˚C
bundle .S1 �C/� .C˚C/. This trivialization is such that Clifford multiplication
by dt and by dz act on C ˚C along the z D 0 circle as constant matrices. This
identification is used implicitly to view the restriction to U of a map from S1�D to
.C˚C/ as a section of S over U .

The 1–forms dt and dz also identify T �M on U with the restriction to U of the
bundle .S1 �D/� .R�C/, this being T �.S1 �D/. The latter trivialization allows
the restriction to S1�D of a section over S1�C of iT �.S1�C/ to be viewed as a
section of iT �M over U . This is also implicit in what follows.

Introduce the C–valued 1–form e from (3-2) and use fe; xe; ag to write a given i –
valued 1–form b as q3aC 1

2
.qxe�xqe/. Given an i –valued function � , introduce p to

denote the C–valued function pD �C iq3 . Write a given spinor � in two component
form .�0; �1/ with respect to the splitting of S . Then the three components of the
first line in (3-8) and the third line in (3-8) can be combined to give the following two
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C–valued expressions:

(3-11)

� 2

�
2�

`

�1=2�
�x@pC 2�1=2r1=2


x 0�1C

i

2

�
2�

`

�1=2
@

@t
q

�
C r1 .

� 2

�
2�

`

�1=2�
@qC 2�1=2r1=2


x 0�0�

i

2

�
2�

`

�1=2
@

@t
p

�
C r2 .

Here,  0 is the first component of   from (3-2). Meanwhile @D@=@z and x@D@=@xz .
Finally, the norms of r1;2 are bounded by c0jzj.jrqjC jrpj/C c0.jqjC jpj/. After
dividing by the factor 2, the two C–valued components from the second line of the
.A ;   / version of (3-8) can be written as

(3-12)

� 2

�
2�

`

�1=2�
�@A �1C 2�1=2r1=2

  0pC
i

2

�
2�

`

�1=2

rtA �0

�
C r3 ,

� 2

�
2�

`

�1=2�
x@A �0C 2�1=2r1=2

  0q�
i

2

�
2�

`

�1=2

rtA �1

�
C r4 ,

where @A here denotes the covariant version of @ and rtA denotes the covariant
version of @=@t as defined by the connection A . Here, r3;4 indicate terms whose
norms are bounded by c0jzkrA �jC c0j�j.

What follows describes a useful way to package this. To start, write a section, f,
of iT �M ˚ S˚ iR over U as f D ..q; �0/; .p; �1// in the manner just described.
Written this way, sections of iT �M ˚ S˚ iR over U are viewed as maps from
S1�C to C4 . Now write C4DV0˚V1 where V0 and V1 are both copies of C˚C .
Then, the .q; �0/ part of f maps to V0 and the .p; �1/ part maps to V1 . This identifies
a section over U of iT �M ˚S˚ iR with a map from the relevant part of S1 �C
to V0˚V1 . With this identification understood, then Lc‚Jf on U can be written as
the map to V0˚V1 whose component in V0 is

(3-13)

� 2

�
2�

`

�1=2��
�@pC 2�1=2r1=2


x 0�1

�
C

i

2
�

�
2�

`

�1=2
@

@t
q

�
C r00 ,

� 2

�
2�

`

�1=2��
�@A �1C2�1=2r1=2

  0p

�
C

i

2

�
2�

`

�1=2

rtA �0

�
Cr01 ,
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and whose component in V1 is

(3-14)

� 2

�
2�

`

�1=2��
@qC 2�1=2r1=2


x 0�0

�
�

i

2

�
2�

`

�1=2
@

@t
p

�
C r10 .

� 2

�
2�

`

�1=2��
x@A �0C 2�1=2r1=2

  0q

�
�

i

2

�
2�

`

�1=2

rtA �1

�
C r11 .

Here, each r�� has norm bounded by c0.jzkrfj C jfj/ where r here denotes the
covariant derivative of f that acts on the .q;p/ components of f as the standard
derivative operator on C1.S1 �CIC/, and on the .�0; �1/ components of f as the
covariant derivative on C1.S1 �CIC/ that is defined by A .

Step 4 Let y#;r denote the operator with domain C1.S1 �CIV0/ and range space
L2.S1�CIV1/ that sends a given .q; �0/ to the map with respective V1 components

(3-15) @qC 2�1=2r1=2
 x̨

�;r�0 and x@A�;r �0C 2�1=2r1=2
 ˛�;r q:

Let L� � L denote the subspace of elements f D � ..q; �0/; .0; 0// such that
y#;r .q; �0/D 0 at each t 2 S1 . To elaborate, note that this subspace inclusion uses
implicitly the identification just described between iT �M ˚ S˚ iR over U and
U �.V0˚V1/. The subspace L� is closed in L. Let …� denote the L2 –orthogonal
projection from L to L� .

Use …� D
L
.;m/2‚…� . Let L?

�
� L denote the L2 orthogonal complement ofL

.;m/2‚ L� , thus the kernel of …� . The kernel of …� W H!
L
.;m/2‚ L� is

denoted by H?
�

.

It follows from Lemma 2.5 that the projection …� maps H to itself as a bounded
operator; thus H?

�
D .1�…�/H .

The next lemma refers to constants "0 and �� . The former is defined in Part 8 of
Section 2.a, the latter is defined in Step 1 of Section 3.a.

Lemma 3.2 Fix � 2 .0; 1=2/ and smooth maps fc W S1! Cmg.;m/2‚ . There exists
a constant, � > 1C "�1

0
with following significance: Suppose that r � � and that

the constant �� , obeys r < �� < �
�1 . Fix sections f� 2L2

1
.S1I c�T1;0Cm/g.;m/2‚

with L1 norm less than ��1 so as to define J. Then

��1
kfkH �

.1�…�/Lc‚Jf


2
� �kfkH

for all f 2H?
�

. In addition, if each � has L2
1

norm less than ��1 , then .1�…�/Lc‚J

maps H?
�

onto L?
�

. Thus, .1�…�/Lc‚J W H
?
�
! L?

�
is invertible and its inverse has

norm bounded by � .
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The proof is given momentarily.

Step 5 To motivate all of this, return now (3-6). It follows from (3-9) that the map
b! b�b defines a smooth map from H to L. Thus, what is written on the right hand
side of (3-6) defines a smooth map from H to L. Restrict this map to H?

�
; then view

(3-16) .1�…�/
�
Lc‚JbC r1=2b� b� r�1=2v

�
D 0

as an equation for b 2H?
�

. This is the promised projected version of (3-6). Lemma
3.2 is used to write the latter equation as a fixed point equation for a self-map on H?

�
;

this the map

(3-17) b! T .b/D .L?/�1.1�…�/
�
�r1=2b� bC r�1=2v

�
;

where L?W H?
�
! L?

�
is the restriction to H?

�
of .1�…�/Lc‚J . The norm bounds

given by Lemma 3.2 are used to prove that T maps a certain ball in H?
�

to itself as a
contraction mapping. This is explained in the next subsection.

Proof of Lemma 3.2 The upper bound asserted by the lemma is straightforward to
prove and so the proof is left to the reader.

The proof of the lower bound starts with a local form of Lemma 3.2. To set the stage
for the local version, fix  2‚. In what follows, H is used to denote the completion
of C1.S1�CIV0˚V1/ using the version of (3-7) that replaces M with S1�C and
has the covariant derivative, r , acting as follows on any given ..q; �0/; .p; �1//: It
acts as the exterior derivative d on q and p , and acts as the covariant derivative given
by the � D 0 version of A on �0 and �1 . In this regard, the norms on V0 and V1

are their vector space norms as C˚C ; and integration is defined using the Euclidean
volume for dt ^ .i=2/.dz^dxz/. Use L to denote the analogous L2 completion. Use
L to denote the operator on C1.S1 �CIV0˚V1/ whose respective V0 and V1

components are given by the versions of (3-13) and (3-14) that have r�� set equal to
zero. This operator defines a bounded, linear map from H to L .

Let y#;r denote for the moment the � D 0 version of what is defined in (3-15). Define
L� � L to be the subspace spanned by elements f D ..q; �0/; .0; 0// that obey
y# �r .q; �0/D 0 at each t 2 S1 . This is a closed subspace. Let …� denote the L2 –
orthogonal projection from L to L� . Use L?� � L to denote the L2 orthogonal
complement of L� . The kernel of …�W H ! L� is denoted by H?� . According
to Lemma 2.5, the projection …� maps H to itself as a bounded operator; this
implies that H?� D .1�…�/H .

What follows is the promised local version of Lemma 3.2.
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Lemma 3.3 Given a smooth map c W S
1! Cm , there exists � � 1 with the follow-

ing significance: Suppose that r � � . Use c to construct the pair .A ;   /, the
operator L and the projection …� . Then .1�…�/L maps H?� onto L?� . In
addition,

��1
kfkH �

.1�…�/L f2
� �kfkH

for all f 2H?� . As a consequence, .1�…�/L W H?�! L?� is invertible and its
inverse has norm bounded by � .

This lemma is proved momentarily. What follows directly explains how it is used to
prove Lemma 3.2.

Consider first the claimed lower bound. To this end, write L0 and …0 for the versions
of Lc‚. � / and …� that are defined by the data f.c ; � D 0/g2‚ . Here are three key
facts:

Fact 1 If � has L1 norm less than ", then k.Lc‚J �L0/fk2 � c0"r
1=2kfk2 for all

f 2 H . Likewise, k.…� �…0/fk2 � c0"kfk2 for all f 2 L. Thus, if f 2 H?
�

then
k…0fk2 � c0"kfk2 .

Fact 2 If � has L1 norm less than ", then Fact 1 with Lemma 3.2’s upper bound
imply that k.1�…�/Lc‚Jfk2 � c�1

0
k.1�…0/L0fk2� c0"kfkH for all f 2H .

Fact 3 Write f 2H as f?C…0f. Use the � D 0 version of the inequality in (2-23) to
see that k.1�…0/L0…0fk2 � c0kfk2 .

The preceding three facts have the following consequence: If � has L1 norm less than
", and if f 2H?

�
, then k.1�…�/Lc‚Jfk2 � c�1

0
k.1�…0/L0.1�…0/fk2� c0"kfkH .

This understood, it is enough to establish the lemma’s lower bound for the case where
J is the set f.c ; � D 0/g2‚ .

To consider the lemma’s asserted lower bound in the case f.c ; � D 0/g2‚ , note
first that Fact 3 above has the counterpart k.1 �…0/L0fk2 � c�1

0
kL0fk2 � c0kfk2

if …0f D 0. Keeping this in mind, write f 2 H as �0fC
P
.;m/2‚ � f where

�0 D 1�
P
.;m/2‚ � . This done, then

(3-18)
kL0fk

2
2 D kL0.�0f0/k

2
2C

P
2‚kL0.� f/k

2
2

C2
P
2‚hL0.�0f/;L0.� f/i2:

Introduce f0 to denote �0f and f to denote � f. It follows from (2-1), (2-2) and
(2-12) that

(3-19) .1C c0/kL0fk
2
2 � kL0f0k

2
2C

P
2‚kL0fk

2
2� c0�

�2
� kfk

2
2:
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Now note that L0 D LI on the support of f0 , and with the identifications given above,
it is very nearly L on the support of f . In particular, (3-13), (3-14) and (3-19) imply
that

(3-20) c0kL0fk
2
2 � kLI f0k

2
2C

P
2‚kL fk

2
2� c0

�
��2
� kfk

2
2C �

2
�kfk

2
H

�
:

To continue, write f D f? C…�f , where f? 2 H?� . A first point to note is
that k…�fk2 � c0r�1=2kfk2 since the Hermitian metric on the product bundle
U � .V0˚V1/ is very close to that induced from M . This L2 inequality also uses
(2-1), (2-2) and (2-12), and assumes that r > c0 . These same facts with Lemma 2.5
imply a similar inequality for the respective derivatives of …�f and f ; and thus
that k…�fkH � c0r�1=2kfkH .

With the preceding understood, it follows from Lemma 2.5 and Lemma 3.3 that

(3-21) kL fk
2
2 � c�1

0 kfk
2
H

provided that r > c0 . Meanwhile, (3-10) asserts that kLI f0k
2
2
� kf0k

2
H . Thus, (3-20)

and (3-21) imply the lower bound k.1�…0/L0fk2� c�1
0
kfkH if r > c0 and if …0fD 0.

Now consider the assertion that .1�…�/Lc‚J maps H?
�

onto L?
�

. As is explained
directly, such is the case if both the L2

1
norm and the L1 norm of � is bounded by

c�1
0

, and if .1�…0/L0 maps H?
�D0

onto L?
�D0

. To see why such is the case, suppose
that " > 0 and that each � now has both L1 and L2

1
norm less than "0 . Suppose

that v 2L?
�

is orthogonal to the image via .1�…�/Lc‚J of H?
�

, but assume that there
exists g 2H?

�D0
such that .1�…0/L0gD .1�…0/v. Granted this last assumption, it

follows from Fact 1 above that

(3-22) hLc‚Jg; vi2 � c�1
0 kvk

2
2� c0"kgkHkvk2

if the L1 norm of � is bounded by ". Given what has been proved so far of Lemma
3.2, it follows from the equation .1�…0/L0gD .1�…0/v that kgkH� c0kvk2 . Thus,
(3-22) implies that hLc‚Jg; vi2 � c�1

0
kvk2

2
if " � c�1

0
. Meanwhile, it follows from

Lemma 2.5 that k…�gkH � c0"kgkH if the L2
1

norm of � is less than " also. If such
is the case, then (3-22) implies that hLc‚J.1�…�/g; vi2 � c�1

0
kvk2

2
when " � c�1

0
.

Given that v is orthogonal to the image of H?
�

via .1�…�/Lc‚J , this implies that
vD 0.

Granted all of this it is sufficient to prove that .1�…0/L0 maps H?
�D0

onto L?
�D0

. To
do so, let x denote the characteristic function for the support of � . Let v be as in
the preceding paragraph. Interpret xv as an element in L . This done, then Lemma
3.3 finds an element f 2H?� with .1�…�/L f D .1�…�/xv. Let x0 denote
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the characteristic function for the support of �0 . As LI is self-adjoint, it follows from
(3-10) that there exists f0 2H0 with LI f0 D x0v.

Let fD �0f0C
P
.;m/2‚ � f . Given (3-13) and (3-14), it follows that

(3-23) hLc‚Jf; vi2 � c�1
0 kvk

2
2� c0

�
��2
� kfk

2
2C �

2
�kfk

2
H

�
:

Meanwhile, kfkH � c0.kf0kHC
P
.;m/2‚kfkH/ and so the norm lower bounds

given by (3-10) and by Lemma 3.3 imply that kfkH � c�1
0
kvk2 when r � c0 . Thus

(3-23) implies that

(3-24) hLc‚Jf; vi2 � c�1
0 kvk

2
2

when r � c0 .

Now (3-24) does not quite finish things because f is not apriori in H?
�

. Even so, it is a
consequence of (2-1), (2-2), (2-12) and Lemma 2.5 that there exists f0 2H?

�
such that

kf� f0kH � c0r�1=2kfkH when r � c0 . Since kfkH � c0kvk2 , it follows from (3-24)
that hLc‚Jf

0; vi2 � c�1
0
kvk2

2
. This last inequality can hold only if vD 0.

Proof of Lemma 3.3 The upper bound for k.1�…�/L fk2 is straightforward to
prove and left to the reader. Consider the existence of a constant � for which the
asserted lower bound inequality is obeyed. To find � , look first at the inequality for
fD ..0; 0/; .p; �1//. Use � to denote the pair .p; �1/. The square of the L2 norm of
L f obeys

(3-25)
.1�…�/L f2

2
D

2�

`

�
krt�k

2
2C 4ky#|

;r�k
2
2

�
:

A rescaling of the coordinate along the C factor of S1�C and an appeal to (2-8) find
that

(3-26) ky#|
;r�k

2
2 � c�1

0

�
kr

C
 �k

2
2C rk�k

2
2

�
here rC

 denotes the covariant derivative in directions tangent to the C factor of S1�C .
The lemma’s norm inequality for fD ..0; 0/; .p; �1// with a suitable � follows from
these last two inequalities.

Consider next the asserted norm inequality when fD ..q; �0/; .0; 0//. To this end, set
�D .q; �0/ and note that

(3-27)
.1�…�/L f2

2
�

2�

`

�.1�…�/rt�
2

2
C 4ky#;r�k

2
2

�
:

Geometry & Topology, Volume 14 (2010)



2622 Clifford Henry Taubes

Now suppose that � is L2 –orthogonal on each constant t 2 S1 slice of S1�C to the
kernel of y#;r . Then (2-8) guarantees that ky#;r�k22 is also larger than what is written
on the right hand side of (3-26). Meanwhile, it follows from Lemma 2.5 that

(3-28)
.1�…�/rt�


2
�

1

2
krt�k2� c0k�k2;

where c0 depends only on c . Granted these facts, the lemma’s norm inequality also
holds for a suitable � when fD ..q; �0/; .0; 0//.

Finally, consider fD f0C f1 where f0 is of the form ..q; �0/; .0; 0// and f1 is of the
form ..0; 0/; .p; �1//. An integration by parts finds that

(3-29)

.1�…�/L .f0C f1/
2

2
�

1

2

�.1�…�/L f02

2

C
.1�…�/L f12

2

�
� c0kfk

2
2;

where c0 again depends only on c . Given that there exists � that makes the norm
inequality true separately for f0 and f1 , this last inequality implies � can be found to
make the lemma’s claim true in the general case.

What follows explains why � can be chosen so as to guarantee that .1�…�/L is
onto. To start, note that …�L W H?�! L� extends as a bounded operator from
L?� to L� . This understood, suppose that f2L?� is in the cokernel of .1�…�/L .
If such is the case, then hLp; fi2 D h…�Lp; fi2 for all p 2H� . From what was
just said, this implies that jhLp; fi2j � c0kpk2kfk2 for all p 2H� . Since H� is
dense in L2 , this implies that f is in the domain of the formal, L2 adjoint of L .
Since this version of L is symmetric, so f is in H?� . Granted that such is the case,
the lemma’s norm inequality implies that fD 0.

3.c The right hand side of (3-5)

The perturbative scheme use here to solve (3-16) and then (3-17) requires that what is
written as v in the latter have suitably small norm. This understood, this subsection
provides bounds on the norms of BAJ

� r. 
|
J
� J� ia/ and DAJ

 J .

By construction, BAJ
� r. 

|
J� J� ia/D 0 and DAJ

 J D 0 on U0 . The next lemma
describes their behavior on a given  2 ‚ version of U . The lemma refers to the
C–valued functions xr

� and �r� on S1 �C . These are the respective pullbacks via the
map yr of the functions x� and �� as defined in (2-21). The lemma also refers to the
function f� whose square is given in (2-20). In addition, the lemma reintroduces the
complex 1–form e from (3-2). Recall that the real and imaginary parts of e with the
contact form a define an orthonormal basis for T �M near  .
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Lemma 3.4 Given a smooth map c W S
1!Cm , there is a constant � � 1 with the fol-

lowing significance: Take r � � . Fix a section � of c�T1;0Cm with L2
1

and pointwise
norm less than � . Use .c ; � / to define .A ;   /. Then r�1=2

�
BA�r. 

|
 � �ia/

�
and the two components of DA  can be written as

�
2�

`

��
i2�1=2xr

� � r1=2
 .�zC�xz/.1� j˛�;r j2/

�
xe ,

C.i2�1=2
xxr
� C r1=2

 .�xzC x�z/.1� j˛�;r j2//eC z
�
,

�
2�

`
.i �r� � 2.�zC�xz/@A�;r ˛

�;r
C z0; z1/,

where jzjC jz0jC jz1j � �r�1=2.1Cf�/e
�
p

r jzj=2 .

The pair .A ;   / can be constructed as directed above when  is an embedded
curve and not a Reeb orbit. In this case, the terms indicated by z and .z0; z1/ in a
corresponding version of Lemma 3.4 would have contributions with norm bounded
below by ��1

c r1=2e�
p

r jzj=2 and bounded above by �cr1=2e�
p

r jzj=2 . The fact that
these larger contributions are zero if and only if  is a Reeb orbit gives some indication
as to how the Seiberg–Witten equations distinguish the Reeb orbits from embedded
curves.

Proof of Lemma 3.4 An appeal to (2-1), (2-19) and (2-22) bounds the pointwise
norms of BA � r. 

|
 �  � ia/ and DA  where d� ¤ 0 by ccr

�1=2.1Cf�/

� exp.�1
2
r1=2jzj/. Thus, what is claimed by the lemma holds on the support of d�

given that �2
�r > r ı with ı > 0.

Consider next BA � r. 
|
 �  � ia/ where � D 1. The curvature 2–form of the

connection A is 1
2
r .1�j˛

�;r j2/dz^dxz�2�1=2r
1=2
 .xr

� dxz�xxr
� dz/^dt . Write this 2–

form in terms of the orthonormal basis given by a and the real and imaginary parts of e .
Given (2-19), it follows that BA differs by less than cc.r jzj

2.1�j˛�;r j2/Cr1=2jzjjxr
� j/

from

(3-30)
�i r.1� j˛�;r j2/yaC

2�

`
r1=2

�
i2�1=2xr

� � r1=2
 .�zC�xz/.1� j˛��r j2/

�
xe

C
2�

`
r1=2

�
i2�1=2

xxr
� C r1=2

 .�xzC x�z/.1� j˛��r j2/
�
e:

Meanwhile, r. 
|
 �  � ia/ is equal to �i r.1� j˛r j2/a. This last point with (3-30)

gives the first bullet point of the lemma. The verification of the assertion about DA 

is proved by writing out the Dirac operator using the coordinates .t; z/ for S1�C and
invoking (3-30). This task is straightforward and so left to the reader.
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3.d Solving (3-16)

The purpose of this subsection is to describe a solution to (3-16). As noted above, the
strategy is to view (3-16) as the equation for a fixed point in H?

�
of the map T given

in (3-17).

Lemma 3.5 Fix � 2 .0; 1=2/, a set ‚ as in (3-1) and a set fc 2C1.S1ICm/g.;m/2‚ .
There exists a constant � � 1 with the following significance: For each .;m/ 2‚, fix
� 2L2

1
.S1; c�T1;0Cm/ such that j� j � ��1 . Fix r � � and �� 2 .r�� ; ��1/. Use

J D f.c ; � /g.;m/2‚ to define the space H?
�

and the operator L? that appears in
(3-16) and (3-17). Suppose that v is a given element L with kvk2 � ��1

c r�1=4 . Then
the map T as depicted in (3-17) has a unique fixed point in H?

�
with norm less than

��1
c r�1=4 . The norm of this fixed point is, in, less than �ckvk2 .

Proof of Lemma 3.5 The operation � that appears in (3-17) obeys

(3-31) kh� h0k2 � c0khkL4kh0kL4 � c0r�1=4
khkHkh

0
kH:

This follows from (3-9). Meanwhile, Lemma 3.2 finds an r –independent constant
c0 � 1 with the property that if r � c0 then k.L?/�1wkH � c0kwk2 for any w 2L? .
Granted these last three observations, it follows that

(3-32) kT .h/kH � c0

�
kvk2C r1=4

khk2H
�
:

In addition,

(3-33) kT .h� h0/kH � c0r1=4
�
khkHCkh

0
kH
�
kh� h0kH:

The inequality in (3-32) implies the existence of a constant, c1 > 1 such that T maps
the ball in H?

�
of radius c�1

1
r�1=4 to itself provided that r � c1 , that kvk2 � c�2

1
r1=4 .

The inequality in (3-33) implies that such a constant can be chosen as to insure that T
is a contraction mapping on the radius c�1

1
r�1=4 ball in H?

�
.

Granted the preceding, the contraction mapping theorem asserts that T has a unique
fixed point in the radius c0r�1=4 ball in H?

�
, and that the norm of this fixed point is

bounded by c0kvk2 if kvk2 is smaller than c�1
0

r�1=4 .

With Lemma 3.5 in hand, consider now the term that is designated by v when (3-17)
comes from (3-5). By construction, any fixed point of T is a solution in H?

�
to the

Equation (3-16).
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Lemma 3.6 Fix � 2 .0;1=2/, a set ‚ as in (3-1), and a set fc2C1.S1ICm/g.;m/2‚ .
There exists a constant � � 1 with the following significance: For each .;m/ 2 ‚,
fix � 2 L2

1
.S1; c�T1;0Cm/ with L2

1
norm is bounded by ��1 . Fix r � � and �� 2

.r�� ; ��1/. Use JD f.c ; � /g.;m/2‚ to define the space H?
�

and the operator L?

that appears in (3-16) and (3-17). Take the term v in (3-16) and(3-17) to correspond
to what appears on the right hand side of (3-5). Then kvk2 � �r�1=2 and so the fixed
point, b , given by Lemma 3.5 has norm kbkH � �r�1=2 .

Proof of Lemma 3.6 The part of v that comes from r�1=2.i � d�C 1
2
BAK

/ has L2

norm bounded by c0r�1=2 . Lemma 3.4 with (2-1), (2-2) and (2-22) guarantee a point-
wise bound by c1e�

p
r jzj=2 on the contribution to v from both BA � r. 

|
 �  � ia/

and DA  . Here, c1 depends only on the set fc g.;m/2‚ . Therefore, the L2 norms
of these contributions are bounded by c2r�1=2 where c2 depends only on the set
fc g.;m/2‚ .

The next lemma considers how Lemma 3.6’s fixed point varies with a variation in the
choice of the sections f� 2L2

1
.S1I c�T1;0Cmg.;m/2‚ .

Lemma 3.7 The constant � in Lemma 3.6 can be chosen so that the following is true:
The assignment to a data set f� g.;m/2‚ 2 �.;m/2‚L2

1
.S1I c�T1;0Cm/ of Lemma

3.6’s solution of (3-16) varies smoothly in H as f� g.;m/2‚ varies subject to (3-1).
Moreover, the directional derivative of the solution in the direction of any unit length
vector in any given .;m/ 2‚ version of the space L2

1
.S1I c�T 1;0Cm/ has H norm

bounded by �r�1=2 .

Proof of Lemma 3.7 The smooth variation of the solution with varying input is a
standard consequence of the contraction mapping construction and the smooth depen-
dence of everything on the data set f� g. This can be seen using (2-11), (2-12) and
the constructions in Section 3.a. This understood, the issue is that of a bound on the
derivative. What with (2-11) and (2-12), these bounds are obtained with arguments much
like those used to prove Lemma 3.5 and Lemma 3.6. The details are straightforward
and are left to the reader.

What follows is a parenthetical remark with regards to Proposition 3.1. The arguments
given by Lemma 3.5 and Lemma 3.6 are, of course, much simpler for the equation

(3-34) LIb0C r1=2b0 � b0 D v;

where v now contains just the �r�1=2.i � d�C 1
2
BAK

/ term on the right side of
(3-4). These arguments find a unique, small normed solution, this denoted by b0 . This
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solution has H norm kb0kH � c0r�1=2 ; as explained in Lemma 3.10, it also obeys
jb0j � c0r�1 . This solution to (3-34) gives the gauge equivalence class that is alluded
to by Proposition 3.1.

3.e Solving (3-6)

Let "0 denote the constant that appears in (3-1). Fix "1 > 0 but much less than "0 .
Some additional upper bounds for "1 are described in what follows. With "1 chosen,
introduce B �

L
.;m/2‚ L2

1
.S1I c�T 1;0Cm/ denote the ball of radius "1 . Here is

the first constraint on "1 : Any given � 2 B has pointwise norm bounded "0 . This
understood, Lemmas 3.5–3.7 describe a smooth map bW B!H such that b.�/ 2H?

�

solves � ’s version of (3-16). With � D .� 2L2
1
.S1I c�T1;0Cm//.;m/2‚ 2 B chosen,

then b.�/ is a solution to (3-6) if and only if

(3-35) …� �
�
Lc‚JbC r1=2b� b� v

�
D 0

for each .;m/ 2‚. The task now is to find "1 so that (3-35) holds for one and only
one choice of � 2 B . The pair depicted by (3-4) solves (1-13) when (3-35) holds.

The first step in this task is to rewrite (3-35) in a more suggestive fashion. To this end,
note that the subspace L� 2 L is canonically isomorphic to the space of L2 sections
over S1 of c;��T1;0Cm . This isomorphism arises as follows: At any given t 2 S1 ,
the kernel of the c D c;�.t/ version of the operator #c is isomorphic to T1;0Cm at
c;�.t/. Meanwhile, the operator y#;r jt is obtained from this same version of #c by
rescaling C by the factor r

1=2
 . In particular, the kernel of the one is obtained from

the kernel of the other by rescaling. Introduce the function �� on C given by the rule
��.z/D �.jzj=2��/. Multiplying the kernel of y#;r jt by the factor �� defines a linear
injection from the kernel into C1.CIV0/. Meanwhile, the differential at � of the
map êxpc from Part 8 of Section 2.a identifies c;��T1;0Cm with c�T1;0Cm . Granted
these identifications, then (3-35) defines a smooth map

(3-36) F W B!
L
.;m/2‚L2.S1

I c�T 1;0Cm/:

The assigned task is to find "1 so that F has a unique zero in the radius "1 version
of B .

Lemma 3.8 Let ‚ be as in (3-1), but now choose the data fc W S1! Cmg.;m/ so
that each c is a nondegenerate solution to (1-10). Fix � 2 .0; 1=2/. Then there
exists � � 1 with the following significance: Take r � � , "1 D �

�1 and �� obeying
r�� � �� � �

�1 . There is a unique solution in B to the equation F D 0. This solution
has L2

1
norm bounded by �r�1=4 .
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Here is a parenthetical remark: The key estimate in the proof of Lemma 3.8 fails
when the assumption about (1-10) is dropped. Indeed, (1-10) enters the Seiberg–
Witten/embedded contact homology story solely for its use in Lemma 3.8.

Proof of Lemma 3.8 The proof of this lemma also uses perturbation theoretic con-
structions. The proof has five steps. The first four focus attention on a given .;m/2‚
component of F . Denote the latter by F .

Step 1 The section F of c�T1;0Cm is defined by first rescaling via r
1=2
 a certain

L2 map from S1 �C to V0˚V1 , then projecting to the kernel of #c;�. � / , and then
using the inverse of the differential of the map êxpc at � . This operation can be
performed on any given L2 map from S1 �C to V0˚V1 . Let fD .f0; f1/ denote
such a map. What follows describes the resulting section of c�T1;0Cm .

Fix a trivializing, orthonormal basis f�j0g1�j�m for c�T1;0Cm . At any given t 2 S1 ,
the differential of êxpc .t/ at � jt identifies f�j0jtg1�j�m with a basis f�j g1�j�m

for the kernel the operator #c;�.t/ . Each �j is a map from C to C˚C that obeys the
.A� ; ˛�/ version of (1-7). The map f defines the section of c�T1;0Cm whose value at
t 2 S1 has the form

(3-37)
P

1�j�n�j0r
1

�

Z
C

�
.yr� �j /

|f0
�
��.1C e/d2z;

where .yr� �j /.z/D �j .r
1=2
 z/ and where jej � c0jzj

2 . Here, ��.z/D �.jzj=��/. The
section F is defined by (3-37) with f given by the expression that appears in the
brackets on the left side of (3-35).

Step 2 Do not assume yet that the map c is a solution to (1-10). Working from
left to right, consider the size of the various terms from (3-35) that make up the
map F . The term …�.Lc‚Jb/ involves solely the V0 component of Lc‚J , this
given by (3-13). To bound this contribution to F , write b as a pair .�0; �1/ with
�0 and �1 respective maps to V0 and V1 . The component �1 appears in (3-13) as
y#

|
;r�1 plus terms with norm bounded by cc.jzjjr�1jCj�1j/. Here, r is the covariant

derivative defined by A . Meanwhile, y#|
;r�1 is orthogonal on C to yr� �j as can

be seen with an integration by parts. Thus, (3-37) with Hölder’s inequality and (2-2)
imply that the component �1 contributes at most c0kbkH to the L2 norm of F ; and
this is at most c0r�1=2 since kbkH � ccr�1=2 . The component �0 D .q; �0/ of b

contributes to …�.Lc‚Jb / as rt;�.q; �0/D ..@=@t/q; .@=@tCA0/�0/ plus terms that
are bounded by c0.jzjjr�0jC j�0j/. As just noted, terms of the latter sort contribute
at most c0r�1=2 to the L2 norm of F . Meanwhile, the former contributes at most
c0.kf� k2r�1=4C r�1=2/, this a consequence of Lemma 2.5.
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It follows from (3-37) and (2-2) that the term r1=2b� b contributes at most r3=4kbk2H
to the L2 norm of F , and is this bounded by c0r�1=4 .

The term designated by …�.v/ in (3-35) has one contribution that comes from the
term r�1=2.i �d�C 1

2
BAK

/ in (3-5). Given (2-2), it follows that the size of the latter’s
contribution to the L2 norm of F is bounded by c0r�1=2 . The remainder of …�.v /
is considered in the next step.

Step 3 The portion of …�.v/ left to consider comes from BA �r. 
|
 �  �ia/ and

DA  . As is explained next, their contributions to F is the projection to kernel.#c /
of what can be written as

(3-38)
i

2
c0;� Cr

1;0h
ˇ̌
c;�
Ce;

where jej � c0r�1=2 . Here, h is the function that is depicted in (1-9).

To see how (3-38) arises, use Lemma 3.4 to see that the contribution to the section F
from BA � r. 

|
 �  � ia/ and DA  can be written as .i=2/c0

;�
� vjc;� C e,

where jej � c0r�1=2 and where the inner product between v and any given � D

.q; &/ 2 #c is

(3-39) h�; vi D
1

�

Z
C
.vzC�xz/

�
x&@A˛C

1
p

2
xq.1� j˛j2/

�
:

What with (2-13), this implies that vDr1;0h .

Step 4 Given what is said in the preceding steps, it follows that F can be written
now as

(3-40) F D
i

2
c0 Cr

1;0h
ˇ̌
c
C

i

2
rt� C .r�r

1;0h/
ˇ̌
c
CR

where R is an L2 section of c�T1;0Cm that obeys (3-40)

(3-41) kRk2 � cc
�
r�1=4

Ckrt� j
2
2Ck�k

2
2

�
:

Here, the rt is the covariant derivative on L2
1
.S1I c�T1;0Cm/ that is defined by

the pullback via c of the Levi-Civita connection on T1;0Cm . The constant cc is
independent of r and � , though not of c .

The small size of R suggests a perturbative approach to finding � 2B that makes each
.;m/ 2‚ version of F equal to zero. This requires, first of all, that c obey (1-10)
so that the �–independent term i

2
c0 Cr

1;0h jc contributes zero to (3-40). The most
straightforward sort of perturbation theory also requires that c define a nondegenerate
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solution to (1-10). This says neither more nor less than the following: The operator, L ,
on C1.S1I c�T1;0Cm/ that sends a section � to L�D .i=2/rt�C .r�r

1;0h/jc has
trivial kernel. The operator L has a bounded inverse mapping L2.S1I c�T1;0Cm/ to
L2

1
.S1I c�T1;0Cm/ when its kernel is trivial.

Step 5 Assume now that each element in the set fc g.;m/2‚ is a nondegenerate
solution to (1-10). Define a map P W B!

L
.;m/2‚ L2

1
.S1I c�T1;0Cm/ by setting its

component in a given .;m/ summand to be P D �L�1
 R . A point � 2 B is a

solution to the equation F D 0 if and only if it is a fixed point of P .

Lemma 3.9 Fix � 2 .0; 1=2/. Given that each element in the set fc g.;m/2‚ is a
nondegenerate solution to (1-10), there exists a constant � � 1 such that if r � �; "1 D

��1 , and r�� � �� � �
�1 , then the following is true: The map P sends B to itself as

a contraction mapping. Thus, it has a unique fixed point in B . Moreover, any given
.;m/ 2 ‚ component of this fixed point is a smooth section over S1 of c�T1;0Cm

with L2
1

norm bounded by �r�1=4 .

Proof of Lemma 3.9 Since L is invertible, it follows that the L2
1

norm of P is
bounded by an r and � independent constant times kRk2 . Thus, (3-41) guarantees
a bound by c0."

2
1
C r�1=4/ on the L2

1
norm of P . As a consequence, there exists

c0 > 1 such that P maps B to itself if r � c0 and "1 � 1=c0 .

It remains yet to prove that � can be chosen so as to guarantee that P is a contraction
mapping on B . This follows with a proof that

(3-42) kR .�/�R .�
0/k2 � c0

�
k�kL2

1
Ck�0kL2

1
C r�1=4

�
k� � �0kL2

1
:

The existence of such a bound follows from the bounds given in (2-11), (2-12) and
Lemma 3.7 after differentiating the various terms that appear in (3-35). The derivation
of (3-42) from these bounds is straightforward; it involves arguments that are, but
for minor cosmetic changes, the same as those used in the proof of Lemma 3.4 and
Steps 1–4 in this subsection. This said, the proof of (3-42) is left to the reader.

Given that P is a contraction mapping, the bound by c0r�1=4 on the L2
1

norm of its
fixed point in B follows from the bound in (3-41). The fact that any given .;m/ 2‚
component of this fixed point is smooth can be established using standard boot strapping
techniques for first order differential equations. This is can be done in an iterative
fashion by alternately using (3-5) to incrementally increase the differentiability of b
via techniques from [3, Chapter 6] and then using the equations fF g.;m/2‚ D 0 with
F as in (3-40) to increase the differentiability of f� g.;m/2‚ using the fact that the
latter can be viewed as an elliptic system of first order, ordinary differential equations.
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There is a somewhat more direct way to see why the pair .A;  / given in (3-4) is
smooth. To elaborate, write .A;  / as .A� C ya;  � C �/ where .A�;  �/ is the
version of .AJ;  J/ that is defined by taking J D f.c ; � D 0/g.;m/2‚ . The pair
.A�;  �/ is smooth. Let � denote the iR component of b. What with (2-9), (2-10)
and (3-4), it follows that the triple .ya; �; �/ obeys an elliptic, first order, nonlinear
equation with quadratic nonlinearities. Apriori, this triple lies in the Sobolev space
L2

1
.M I iT �M ˚S˚ iR/. Elliptic bootstrapping techniques (see, for example, Mor-

rey [3, Chapter 6]) can be used to prove directly that .ya; �; �/ are smooth. Of course,
it is known that any L2

1
solution of (1-13) is apriori gauge equivalent to a smooth

solution (see, eg Kronheimer and Mrowka [2].)

3.f Other properties of the solution

The next lemma says more about the zero � 2B of F and the corresponding point b.�/.
It is used in a subsequent section.

Lemma 3.10 There exists a constant � > 1 with the following significance: Fix r � �

and let � 2 B denote the zero of F that is provided by Lemma 3.8. Then the L2
1

norm
of � is bounded by �r�1=2 . Meanwhile, let b.�/ 2 H?

�
denote the solution to the

corresponding version of (3-16) that is provided by Lemma 3.6. Then b.�/D b�� C e�
where

� jb�� j � �.r
�1C r�1=2

P
.;m/2‚ e�

p
r dist. � ; /=�/.

� ke�kH � �r�1 .

� jb.�/j � �r�1=2 .

� The small solution b0 to (3-34) obeys jb0j � c0r�1 .

Proof of Lemma 3.10 The proof has six steps. Steps 1–4 allow � to denote any given
element in B .

Step 1 Fix .;m/ 2‚. According to Lemma 3.4,the � version of v on U can be
viewed as a map to the vector space V0˚V1 that can be written as v� C z0 , where
jz0j � c0r�1=2e�

p
r jzj=2 and where v;� maps to V0 and is given by

(3-43) v� D
�
xr
� � r1=2

 .�zC�xz/2�1=2.1� j˛�;r j2/; �r� � .�zC�xz/@A�;r ˛
�;r
�
:

Note that v;� is defined over the whole of S1 �C . Granted the preceding, let …0

denote the L2 –orthogonal projection on C to the kernel of (3-15) at any given t 2 S1 .
The latter operator is denoted by y#;r . Let p� denote the L2 map from S1�C to V1
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that obeys the equation .2�=` /1=2y#
|
;rp� D .1�…

0/v� D 0 at each t 2 S1 . The
bounds in (2-1), (2-2) and the formula in (2-7) can be used to prove that

(3-44) jp� jC jrtp� jC r�1=2
jrA�;r p� j � c0r�1=2e�

p
r jzj=2:

Define p� as above and view b� D .0; p�/W S
1 �C! V0˚V1 over the U part

of S1 �C as a section of the vector bundle iT �M ˚S˚ iR.

Step 2 Introduce the operator LI as in (3-10). Let b0 denote the small normed
solution to (3-34); this the solution with kb0kH � c0r�1=2 that is provided by the
analog of Lemma 3.5 and Lemma 3.6 when ‚D∅ (see [7, Proposition 2.8]). This b0

obeys the equation L2
I
b0 D�r1=2LI .b0 � b0/CLIv. The operator L2

I
is depicted in

[6, (5.22)]. Given the latter, it follows that jb0j obeys the differential inequality

(3-45) d|d jb0jC 2r jb0j � c0r jb0j
2
C c0:

Fix p 2 M and let g. � ;p/ denote the Green’s function for d|d C 2r with pole
at p . The latter is a nonnegative function on M � p and it obeys jg. � ;p/j �
c0 dist. � ;p/�1e�

p
r dist. � ;p/=c0 . In particular, its L1 norm is bounded by c0r�1 and

its L2 norm is bounded by c0r�1=2 . Note also that g.x;p/D g.p;x/. Fix x 2M

where jb0j is maximal, multiply both sides of (3-45) by g.x; � /, and then integrate
over M . The resulting equation implies that

(3-46) kb0k1 � c0rkb0k1kb0k2kg.x; � /k2C c0kg.x; � /k1:

Given what was said just now about the L2 and L1 norms of g. � ;p/, the right hand
side of (3-49) is bounded by c0.kb0kHkb0k1C r�1/. Since kb0kH � c0r�1=2 , this
last fact implies that kb0k1 � c0r�1 .

Step 3 Fix R � 1 in the following way: For each .;m/ 2 ‚, view the map c as
a map from S1 into Symm.C/. Let R denote the maximum as t varies in S1 of
the norms of the points in C that define c . Set RD

P
.;m/2‚ R C 100. Let ��

denote the function on C given by z! �.r
1=2
 jzj=R/. View this as a function on M

with support on U . Set �0� to denote the function 1�
P
.;m/�� .

By virtue of the choice for R, the identifications in Steps 1 and 2 of Section 3.a that
define E over each U and E over U0 extend to identify E as the trivial bundle over
the support of �0 . Thus they identify iT �M˚S˚iR with the bundle iT �M˚SI˚iR
over the support of �0 . With these identifications understood, then �0�b

0
0

defines
a section of iT �M ˚ S˚ iR over the whole of M . Meanwhile, each .;m/ 2 ‚
version of �b� also defines a section of iT �M ˚ S˚ iR over the whole of M .
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Granted these identifications, set

(3-47) b�� D .1�…�/
�
�0�b0C

P
.;m/2‚�b�

�
:

Step 4 It is a consequence of (2-1), (3-47), (3-46) and (3-13)–(3-14) with Lemma 3.4
that

(3-48) .1�…�/
�
Lc‚Jb�� C r1=2b�� � b�� � r�1=2v

�
has L2 norm bounded by c0r�1 . Note as well that kb��kH � c0r�1=2 . Denote what
is written in (3-48) by v�� . Write the section b 2H?

�
that is supplied by Lemma 3.6

as bD b�� C e� . As b obeys (3-16), so e� must obey the equation

(3-49) .1�…�/
�
Lc‚Je� C r1=2e� � e� C 2r1=2b�� � e� � v��

�
D 0:

As ke�kH�kbkHCkb��kH� c0r�1=2 , (3-31) and Lemma 3.2 imply ke�kH � c0r�1 .

Step 5 Take � 2B to be the element that is supplied by Lemma 3.8. To refine the upper
bound for the L2

1
norms � D .� /.;m/2‚ , return to Step 2 of the proof of Lemma 3.8.

The latter derived a bound of c0r�1=4 for the contribution to the L2 norm of F from
the term …�.r

1=2b� b/ that appears in (3-35). As is argued next the latter contributes
at most c0r�1=2 to the L2 norm of F . Granted that such is the case, it then follows
that the left hand side of (3-41) can be replaced by c0.r

�1=2Ckrt�k
2
2
Ck�k

2
2
/. The

contraction mapping theorem used to find � now gives a bound of c0r�1=2 on its L2
1

norm.

To bound the contribution of …�.r1=2b� b/ to the L2 norm of F , write bD b��C e� .
Given (3-37), it follows using Hölder’s inequality that the contribution to the L2

norm of F from this term is bounded by r1=2.jb�� jL1/
2C r3=4ke�k

2
H . The latter is

bounded by c0r�1=2 .

Step 6 Introduce J0 D f.c ; 0/g.;m/2‚ and let Lc‚J0
denote the .AJ0

;  J0
/ ver-

sion of the operator that appears in (3-8). This operator differs from the opera-
tor Lc‚J that appears in (3-6) by zero–th order terms that are bounded pointwise by
c0r1=2j�j

P
.;�/2‚e�

p
r dist.;� /=c0 . Note that the coefficients of the derivatives appear-

ing in Lc‚J0
are determined by the metric and are independent of ‚ and r . Meanwhile,

on any given ball in M of radius c�1
0

, there is a trivialization of E such that the follow-
ing is true: When Lc‚J0

is written with respect to this trivialization, its zero–th order
coefficients are bounded by c0.1Cr1=2

P
.;�/2‚e�

p
r dist.;� /=c0/. In addition their der-

ivatives to a given order k are bounded by ck.1C r .kC1/=2
P
.;m/2‚ e�

p
r dist.;� /=c0 .
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Granted these last remarks, it then follows using a standard parametrix expansion that
if f and w are sections of iT �M ˚S˚ iR and Lc‚J0

fDw, then

(3-50) kfk1 � c0 sup
x2M

Z
dist.x;� /�1=

p
r

1

dist.x; � /2
jfjC c0r3=2 sup

x2M

Z
dist.x;� /�1=

p
r

jfj:

Step 7 This step proves the asserted bound on jb.�/j. To this end, remark that bDb.�/

obeys an equation of the form Lc‚J0
b D w where jwj � c0r1=2.j�jjbjC jbj2/ C

r�1=2jvj. This understood, it follows that (3-53) holds with fD b and with jwj just
described. References are to this version of (3-53) in what follows.

Write bD b�� C e� . The b�� contributions from r1=2j�kbj to the left most integral on
the right hand side of (3-53) is bounded by c0r�1=2kb��k1 and that from r1=2jbj2

is bounded by c0kb��k
2
1 . The former bound uses the bound by c0r�1=2 on the L2

1

norm of � from Step 5, and the consequent bound by c0r�1=2 on j�j. Granted the first
bullet of Lemma 3.10, it follows that the b�� contribution to the left most integral on
the right in (3-53) is bounded by c0r�1 . Meanwhile, the contribution of b�� to the
right most integral on the right hand side of (3-53) is bounded by c0r�1=2 .

To bound the contribution from e� to the left most integral on the right in (3-50),
note first that if f 2H , then kdist.x; � /�1fk2 is bounded by c0kfkH using a standard
Sobolev inequality. This understood, it follows that the contribution of r1=2j�jje� j to
the left most integral on the right hand side of (3-50) is no greater than c0r1=4ke�kH ,
and that the contribution of r1=2je� j

2 to this same integral is no greater than r1=2ke�k
2
H .

Meanwhile, the contribution to the far right integral on the right hand side of (3-53) from
e� is no more than r1=4ke�kH . Thus, the e� contributions are no greater than c0r�3=4 .

To bound the contribution to the right most integral on the right hand side of (3-50) from
r�1=2jvj, use Step 1 to see that r�1=2jvj� c0.r

�1=2Cjr�j/
P
.;m/2‚ e�

p
r dist.;� /=c0 .

It follows as a consequence that r�1=2jvj contributes at most c0.r
�1C r�1=2 lnr k�kL2

1
/

to the right most integral on the right hand side of (3-50). In particular, this is less
than c0r�3=4 .

Putting all of the above together gives the bound that is claimed by the lemma.

3.g Proof of Theorem 1.1

An element in X consists of the following: First, a finite set ‚ whose typical element
is a pair .;m/ with  a Reeb orbit and with m a positive integer. As always, distinct
pairs from ‚ have distinct Reeb orbit components. Second, an assignment to each pair
.;m/ 2‚ of a nondegenerate solution c W S

1! Cm of  ’s version of (1-10). Fix
x 2 X. The preceding parts of this section find a �x > 1 and then construct a solution

Geometry & Topology, Volume 14 (2010)



2634 Clifford Henry Taubes

to (1-13) for any given r > �x > 1. The gauge equivalence of this solution is defined to
by ˆr .x /. Given that X is finite, the assignment x !ˆr .x / is defined for all x 2 X
if r � c0 .

Consider now the claim that E < 2�L on the image of ˆr when r is large. For this
purpose, fix x 2 X. Write �� D r�1=2C3� with � > 0. Write x D .‚; Oc/ where
OcD fc g.;m/2‚ are the solutions to (1-10). Let � D f� g.;m/2‚ denote the zero of
the map F that is provided by Lemma 3.8. Let b.�/ 2H?

�
denote the solution to the

corresponding version of (3-16) that is provided by Lemma 3.6. Thus ˆr maps .‚; Oc/ to
the equivalence class of the pair .A;  / that is obtained by using JDf.c ; � /g.;m/2‚
and b.�/ in (3-3). This understood, write the iT �M component of b as b. Thus,
ADAJC 21=2r1=2b.

To continue, write

(3-51) BA D
�
1�

P
.;m/2‚�

�
BAC

P
.;m/2‚�BA:

The integral that defines E.A/ thus has a contribution from each of the terms on the
right hand side of (3-51). The contribution from the left most term on the right hand
side of (3-51) can be bounded via an integration by parts by

(3-52) c0r1=2

Z
M

jbj
�
1C

P
.;m/2‚jd� j

�
C c0r�1:

Note in this regard that AJ is flat where all � are zero. It follows from Lemma 3.10
that what is written in (3-52) is bounded by c0r�3� .

This last estimate implies that any significant contribution to E comes from the
radius �� neighborhoods of the Reeb orbits that appear in ‚. To see about this
contribution, fix .;m/ 2‚. An analogous integration by parts writes the contribution
to E from �BA as

(3-53) i

Z
U

a^�BA C e;

where A is defined in (3-3) and where jej is bounded by what is written in (3-51). In
particular, it again follows from Lemma 3.10 that jej � c0r�3� . Given (1-1)’s depiction
of a on U , it follows from (1-4) and (3-3) that the integral in (3-53) differs from
2�m` by a number with absolute value less than c0r�1=2 . Given the bound on (3-52)
by c0r�3� , this last conclusion implies that

(3-54) ED 2�
X

.;m/2‚

m` C e0;

where je0j � c0r�3� . This last bound implies that E < 2�L when r � c0 .
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Consider next the claim that ˆr is injective. To start, remark that what was said in
the preceding paragraphs has the following additional implication: The map ˆr maps
pairs .‚; Oc/ and .‚0; Oc0/ to the same gauge equivalence class if and only if ‚D‚0 .

Suppose that .‚; Oc/ and .‚; Oc0/ are distinct elements in CZL� and that .;m/ 2 ‚
is given distinct maps from S1 to Cm by Oc and Oc. Let cD .A; ˛/ and c0 D .A0; ˛0/

denote these two maps. Since c¤ c0 , there is a point t 2 S1 and a zero z 2C of ˛jt
that is not a zero of ˛0jt . More to the point, because X is a finite set, there exists
a constant TL > 1 with the following two properties: First, TL depends only on L.
Second, there exists a point t 2 S1 and a point p� �C such that j˛j< .1=100/T �1

L

and j˛0j � T �1
L

at .t;p/.

Keeping this in mind, let � and �0 denote the elements that are provided by Lemma
3.8 using Oc and Oc0 respectively. Let .AJ;  J D .˛J; ˇJ// and .AJ0 ; .˛J0 ; ˇJ0// denote
the corresponding versions of the data given in Step 4 of Section 3.a. It follows from
what is said in Lemma 3.10 about the size of � and �0 that j˛J j < .1=64/T �1

L
and

j˛J 0 j � .1=2/T
�1

L
at the point .t;p/ if r � c0 .

Write the E �E˚EK summand of the spinor component of ˆr .‚; Oc/ as ˛JC� and
that of ˆr .‚; Oc0/ as ˛J0 ;C�0 . Use the bounds jb.�/j � c0r�1=2 and jb.�0/j � c0r�1=2

with what was said in the previous paragraph to see that j˛J C �j is bounded by
.1=32/T �1

L
at .t;p/ when r � c0 , while r � c0 version of j˛J0 C �0j � .1=4/T �1

L
at

.t;p/. This implies that ˆr maps .‚; Oc/ and .‚; Oc0/ to distinct gauge equivalence
classes.

4 From pseudoholomorphic curves to Seiberg–Witten instan-
tons

This section with Section 5–7 explain how certain pseudoholomorphic subvarieties in
R�M can be used to construct instanton solutions to the large r versions of (1-14).
These constructions are used in Section 7.k to prove Theorem 1.2. The construction
given in what follows of instanton solutions can be viewed as a more complicated
version of what was done in the previous section. In particular, all of the steps in
Section 3 have their analogs here, but each step is more complicated than its Section 3
analog.

What follows is also much like the construction that is used in the article Gr) SW
from [5] to construct solutions to the Seiberg–Witten equations from pseudoholomorphic
curves in compact, symplectic 4–manifolds. Even as most steps in the construction
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here have their [5] analog, the steps here do differ. This understood, what follows
defers to Gr) SW in [5] only for the more mundane derivations.

In this section and subsequently, † denotes a pseudoholomorphic submanifold in
R�M together with an assigned positive integer weight to each component that has
the form R� with  �M a Reeb orbit. This integer assignment is ignored when †
is viewed as a submanifold in M . It is relevant when viewing † as a current, however.
The purpose of what follows is to construct an instanton solution to any sufficiently
large r version of (1-14) from suitably constrained versions of †. These constraints
are listed in Section 4.b.

This section mostly sets the stage for the construction. The next two sections complete
the construction.

4.a A digression about pseudoholomorphic curves

Let C �R�M denote an embedded pseudoholomorphic curve. This section summa-
rizes some of the salient features of C that are used in the subsequent sections. The
section has four parts.

Part 1 What with C being a pseudoholomorphic submanifold, there exists s0 > 1

such that the jsj> s0 portion of C is a disjoint union of embedded cylinders on which
the function s restricts without critical points. Each such cylinder is said to be an end
of C . This constant s0 can be chosen so that the following is true: Suppose first that
E � C is an end where s��1. There is a Reeb orbit, E , such that the constant s

slices of E converge uniformly to E as s!�1.

To say more about this, remark that the tubular neighborhood map 'W S1 �D!M

for E as depicted in (2-1) can be chosen so that the contact form a with the real and
imaginary parts of the C–valued 1–form depicted in (3-2) define an orthonormal basis
for T �M near E . Use ' to identify S1 �D with a neighborhood of  in M . The
map ' is extended in what is a nonobvious way to identify a neighborhood of R� E
in R�M with R�S1 �D . This extended version of ' is the map given by

(4-1) .w ; t; z/!
�

s D
`

2�

�
w C

1

2
jzj2

�
; '.t; z/

�
:

The latter map is also denoted by ' in what follows. The coordinate w is preferred
over s because dw C idt is closer than dsC idt where z ¤ 0 to T 1;0.R�M /.

Suppose that E is not R–invariant. There exists a positive integer qE and a map,
zE W .�1;�s0��R=.2�qE Z/!C such that E appears in these coordinates as the im-
age of the map from .�1;�s0C1��R=.2�qE Z/ that sends .w ; t/ to .w ; t; zE .w ; t//.
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This function zE can be written as

(4-2) zE .w ; t/D
P

q2divE
.&q.t/C rq/e

�2�qw ;

where the notation is explained next. To start, introduce �qE to denote the least negative
of the eigenvalues of the set of 2�qE periodic eigenvectors of (2-3). With �qE so
defined, then divE �f1; 2; : : : ; qEg is the subset with the following two properties: First,
any given q0 2 divE is a divisor of qE . Second, there is a 2�q0 periodic eigenvector of
(2-3) with eigenvalue �q0 such that 0> �q0 � �qE . What is denoted by &q in (4-2) is
a C–valued function on R with minimal period 2�q . Moreover, &q is a real multiple
(perhaps by 0) of an eigenvector of the operator L in (1-2) with �q its eigenvalue.
What is denoted by rq is a function on .�1;�s0C 1��R with period 2�q in the R
factor. In addition,

(4-3) jrqj � "e
�"jw j;

where " > 0 is a constant.

There is a very much analogous picture of an end E that lies where s� 1. Here are
the salient differences: First, zE is now defined on Œs0;1/�R=.2�qE Z/. Second,
�qE > 0. Finally, a proper divisor q of qE is in divE if and only if the corresponding
eigenvector �q obeys 0< �q < �qE .

Part 2 This part describes some geometric features of a tubular neighborhood of C .
To start, let � W N !C denote the normal bundle to C . This bundle has the structure of
a holomorphic line bundle with compatible Hermitian structure. The complex structure
is determined by J and then the holomorphic and Hermitian structures are induced
by the Riemannian metric. An exponential map can be used to identify a tubular
neighborhood of any given compact subset of C with small radius disk subbundle
in N .

It proves convenient to fix an exponential map with certain special features. In particular,
there is a constant radius disk subbundle N1 �N and a smooth map ec W N1!R�M

with five special properties. Here are the first two:

Property 1 The map eC restricts to the zero section as the identity and the differential
at the zero section of eC is the identity homomorphism.

Property 2 The map eC is an immersion on N1 . Moreover, the image via eC of any
fiber disk in N1 is a pseudoholomorphic disk in R�M .

Properties 1 and 2 are proved with techniques in [5, Section 5d]’s article SW) Gr.
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The third property refers to the tautological section, s, of the pullback bundle ��N !
N . It also refers to a Hermitian connection, � , on ��N . This is the pullback of the
induced Hermitian connection on N ! C that is defined by the Riemannian metric.
The latter is also denoted as � .

Property 3 The pullback via eC of ds ^ aC 1
2
da to any given fiber of N1 agrees

with the pullback of .i=2/r�s^r�xs up to an error that has size O.jsj2/.

Property 3 is verified using the arguments that are used to prove Lemma 2.2 in the
article Gr) SW from [5].

The fourth property concerns the behavior of ec on the ends of C . To state this property,
let E � C denote any given end. As can be seen from (4-2), the vector field vector
field @=@z along C trivializes the normal bundle N jE . This trivialization defines the
canonical product structure for N jE . Use (4-1) and the canonical product structure for
N jE to write a point in N jE as .w ; t; zI �/ with .w ; t; z/ 2 E and � 2 C .

Property 4 The map eC sends any given point .w ; t; zI �/ in N1jE to

(4-4)
�

w C rw ; t C rt ; zC .1C rz/

�
`

2�

��1=2

�

�
;

where jrwj C jrt j � c0.jzjj�j C j�j
3/ and jrzj � c0jzj

2 . In addition, the derivative of
rw; rt and rz are uniformly bounded, the former by c0.jzj C j�j/ and the latter by
c0jzj.

Given Property 5 below, this property can also be arranged with the help of the
techniques from Section 5d of the article SW) Gr in [5].

The fifth property is relevant only to the R–invariant cylinders. This fifth property
implies the first four for such a component. To state this property, let  �M denote
a Reeb orbit and let C D R�  . Use the identification given in (4-1) to identify a
neighborhood of C in R�M with the z D 0 locus in R�S1�D . This identifies the
normal bundle of C with C . It also gives C a canonical identification with R�S1 via
the coordinates .w ; t/. This identification is implicit in what follows. Granted these
identifications, here is the fifth property:

Property 5 The exponential map along R�  intertwines translation along the re-
spective R factors of R�  and R�M . In addition it sends .w ; t; �/ 2 N1jR� �

.R�S1/�C to a point of the form .w C rw ; t C rt ; .`=2�/
�1=2�/ 2 R�S1 �D

where jrwjC jrt j � c0j�j
3 .
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The existence of an exponential map that obeys Property 5 follows from the fact that
the 1–form dw C idt differs from an element in T 1;0.R�M / by c0jzj

2 .

With regards to Property 5: If aD .`=2�/..1� Rjzj2/dt C .i=2/.zdxz�xzdz/ in the
tubular neighborhood of  with R constant, and if dz� i Rdt is in T 1;0.R�M / on
this neighborhood, it follows from what is said in [8, Section 2.e] that the exponential
map for R�  can be chosen so that both rw and rt are zero.

Part 3 The composition of ec with a section of N1 maps C into R�M . The image
is a pseudoholomorphic subvariety if and only if the section obeys a certain nonlinear
differential equation. The linearization of this equation along the zero section defines
an R–linear, first order differential operator, DC , that extends as a bounded, Fredholm
map from L2

1
.C IN / to L2.C IN ˝ T 0;1C /. This DC sends any given section, � ,

of N to

(4-5) DC � D x@�C vC �C�C
x�;

where �C is a section of T 0;1C0 and where �C is one of N 2˝T 0;1C0 . Note that
the parametrization given in (4-1) for any given end of C induces a trivialization of
T C0 on such an end with the following property: When written using this trivialization
and the canonical trivialization of N , the pair .�C ; �C / converges as jwj !1 on
the end to the pair .�; �/ that appears in the associated version of (1-1).

4.b Constraints on †

Let † denote a pseudoholomorphic submanifold in R�M together with an assigned
positive integer weight to each component that has the form R�  with  �M a
Reeb orbit. Various constraints are enforced on † and on the integral curves of v that
are obtained as large jsj limits of the constant s slices of †. These are described in
what follows.

The statement of the first four constraints refers to nonnegative integers m� and mC

that are associated to a given Reeb orbit  �M . The integer m� is the sum of the
integers from the set fqE W E is an s��1 end of † and E D  g. The integer mC

is the sum of the integer from fqE W E is a positive end of † and E D  g. Here, qE
in the case where E is an end of R�E is the integer that is assigned to R�E as an
element of †.

The following five constraints on † are assumed in what follows.

Constraint 1 Let  � M denote a Reeb orbit with either m� or mC greater
than 1. There is a tubular neighborhood map for  of the sort described in Section 1.a
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and Section 6.a for which the functions .�; �/ are .� D 1
2

R; �D 0/ with R 2 R an
irrational constant.

The construction of an instanton solution to (1-14) from † can be made when this
constraint is absent, but at considerable cost. [8, Proposition 2.5] can be used to find
contact structures all of whose Reeb orbits with any given apriori length bound satisfy
this last constraint.

Constraint 2 Let E denote an end of † that is not an end of an R–invariant cylinder.
Let q D qE and divE denote the data that appears in E ’s version of (4-1). Then
divE D fqEg and &qE ¤ 0.

It is also the case that an instant on can be constructed without this constraint, but also
at some cost.

Constraint 3 Let E and E 0 denote distinct pairs of either s��1 or s� 1 ends of
† that are not part of R–invariant cylinders and are such that E D E 0 and qE D qE 0 .
Let q D qE D qE 0 and let &q and & 0q denote the 2�q–periodic eigenvector that appears
in the respective E and E 0 versions of (4-1). Then &q ¤ �&

0
q for any � such that

�q D 1.

The next constraint concerns the operator DC that is appears in (4-5) for any given
component C �†.

Constraint 4 Let C denote any given component of †. Then DC is a Fredholm
map from L2

1
.C IN / to L2.C IN ˝T 0;1C /. And, viewed in this light, DC has trivial

cokernel.

Constraints 2–4 hold for any pseudoholomorphic subvariety that is used in the embedded
contact homology differential if the contact 1–form a is in the residual set from [8,
Lemma 2.1] and if J 2 Ja . Note that Constraint 4 enters only in Section 7. It is not
required for the constructions in Section 5 and Section 6.

The group R acts on R �M as the constant translations along the R factor. This
being the case, it is convenient to do constructions in an R–equivariant fashion. This
is accomplished by first translating † so that half of the integral of da over † is
contributed by the s>0 part of R�M and half by the s<0 part. A pseudoholomorphic
submanifold with this property is said to be centered. This understood, here is the fifth
constraint:

Constraint 5 The submanifold † is centered.
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The constructions below are done with † centered. The constructions for a noncentered
version of † are obtained from those that follow by doing the appropriate translation
along the R factor.

4.c Constants

Fix a pseudoholomorphic subvariety † with the properties that are listed in Section
4.b. The constructions that follow introduce two r –independent constants that are
determined by †. The first is denoted by R. The constant R should be larger than 1;
it has a lower bound that is determined by †. This lower bound is chosen, in part, so
that the part of † where jsj � .1=100/R lies far out on the ends †’s. Propositions 7.1
and 7.2 give an additional constraint on the lower bound for R.

The second constant is denoted by � ; it must be less than the smaller of 1=100 and a
constant that is determined apriori by † as follows: Let E denote the set of ends of †.
Let "†1 denote the smallest of the versions of the constant " that appear in (4-3) for
the case when E 2 E is not part of an R–invariant cylinder. If E 2 E , let �qE denote
the eigenvalue that appears in E ’s version of (4-2). Set "†2 to denote the smallest of
those versions of j�qE ��qE0 j for the cases where E and E 0 have the following four
properties:

(4-6)

� Both are either negative ends of †, or both are positive ends of †.

� The points on the large jsj slices of both converge as jsj!1 to the same
closed integral curve of v .

� Neither is part of an R–invariant cylinder.

� qE ¤ qE 0 .

Use "† to denote the minimum of "†1 and "†2 . The constant � is further con-
strained by

(4-7) � �
1

1000
"† inf

E2E
j�qE j

�1:

Positive constants �� , �† , R� and a collection fRE W E 2 Eg are defined in terms of
� and R as follows:

(4-8)

� �� D r�1=2C3� .

� �† D r�1=2C� .

� R� D 100
�
1C supE2E j�qE j

�1
�

lnr.

� RE D
1
4
.1� 4�/j�qE j

�1 lnr if E is not part of an R–invariant cylinder.

� RE D 2R if E is part of an R–invariant cylinder.
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Note for future reference that these constants are such that when r is large and E is
not part of an R–invariant cylinder, then

(4-9)

� �†� r��† D e�2j�qE jRE D r����� �� .

� e�.2j�qE jC"†/RE � r�1=2�� � r�1=2 D r���† .

� R� > 200 supE2E RE and e�2j�qE jR� � r�4 .

� Suppose that E and E 0 obey (4-6) and �qE < �qE0 < 0. Then
e�2j�qE0 jRE � r�1=2�� .

There is one more “constant” used in what follows, this denoted by c0 . As in previous
sections, it obeys c0 � 1, and its value increases from appearance to appearance. This
constant c0 is allowed to depend on the choice for †. However, it is independent of r .
It also lacks dependence on such data as sections of given vector bundles over parts
of † or of parts of R�S1 .

5 The construction of instantons: Part I

Fix † as described in Section 4.b, but do not demand Constraint 4. The purpose of
this section is to construct from † a certain family of pairs consisting of a connection
on E! R�M and a section of S DE˚EK�1! R�M . The curvature of this
connection is flat and the E–component of the spinor is covariantly constant except
very near †.

5.a A connection on E !R�M and a section of S !R�M

The constructions that follow use the following notation: The symbols C and E denote
the respective sets of components of † and ends of †. When C 2 C , then EC � E
denotes the set of ends of C . The symbols „†� and „†C are used to denote the
respective sets of distinct Reeb orbits that are approached as s!�1 and as s!C1

by the constant s slices of †. Thus,  2„†� if and only if  D E for some s��1

end of †. When  2„†� , the symbol E� is used to denote the set of ends E 2 E
with E D  . There is the analogous definition of EC for each  2„†C .

There are two parts to what follows. The first part describes a relatively simple
construction that can be used only in very special circumstances. It is offered as an
introduction of sorts to give an indication of what is in store. Part 2 describes the
construction that works in the generic situation. Part 2’s construction is used in the
subsequent sections.

The respective connection and spinor that are constructed below are denoted by A�

and  � .
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Part 1 This part describes a construction of .A�;  �/ that can be used in lieu of the
construction from Part 2 when the following condition holds:

Let E denote any given end of †, and let  D E . If s��1 on E ,
then m� D 1; and if s� 1 on E then mC D 1.

This warm up avoids the complications that arise when the exponential map
S

C2CeC

does not embed any fixed radius disk bundle in
S

C2CN jC . This warm up also
introduces notation that is used in Part 2 and subsequently. There are two steps to the
construction.

Step 1 The bundle E is given by specifying isomorphisms with bundles that are
defined over certain sets that comprise an open cover of R�M . This specification
requires one auxiliary parameter, �† . In this special case, �† can either be as depicted
in (4-8) or independent of r . In any event, the parameter �† is positive and is chosen
so that vectors in N with norm less than 100�† lie in each C 2 C version of the bundle
N1 . One additional requirement is needed: Given (4-6), there is no generality lost in
assuming that the eC and eC 0 images of the respective 100�† radius disk bundles in
N jC and N jC 0 are disjoint when C ¤ C 0 .

When k > 0 is given, let NkC denote the radius k�† subbundle in N1 . The cover
of E used here has open sets fUC D eC .N4C /gC2C and U0 DM �

S
C2CeC .NlC /.

Given that (4-6) is assumed, it follows that UC \UC 0 D∅ when C ¤ C 0 .

The bundle E restricts to U0 as the trivial complex line bundle. Choose an isomorphism
EjU0

D U0 �C . To describe E over UC use the exponential map to identify UC

with N1C . This done, E over N1C is isomorphic to ��N !N1C where � W N ! C

denotes the projection map.

The transition functions for this cover are as follows: Let sW N1C ! ��N denote the
tautological section that sends any given point � 2 N1C to .�; �/ 2 ��N . Let 1C

denote the constant section of U0 �C with value 1 2 C . Viewed as a section of E

over U0 , the latter appears over UC DN1C as the section s=jsj.

Step 2 The pair .A�;  �/ is specified with respect to the identifications of E given
above on the two sets of the open cover of R �M . Here is the story on U0 : The
connection A� here is the flat connection from the product structure on EDU0�C . The
latter connection is denoted by AI . The section  � on U0 is given by  I D .1C; 0/.

To define .A�;  �/ over UC DN1C , it is necessary to reintroduce the function � from
Step 2 in Section 3.a. Recall that �W R! Œ0; 1� equals 1 on .�1; 5=16� and equals 0

on Œ7=16;1/. Set �C to denote the function on N1C given by �.jsj=�†/ where s

again denotes the tautological section of the bundle ��N !N .
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It is also necessary to review some of the geometry of the normal bundle. To this
end, reintroduce � to denote the pullback to ��N of the Hermitian connection on N

that comes from the Riemannian metric on R�M . As s is nonzero off of the zero
section of N , there exists a unique connection on ��N over N �0 for which s=jsj is
covariantly constant; this is the connection

(5-1) �s D � C
1

2

�
xs�1
r�xs� s�1

r�s
�
:

Introduce the map yr W N!N that is defined by setting yr.�/D r1=2�. As �.r�/D�.�/,
there is a canonical isomorphism between yr���N and ��N . With this isomorphism
understood, yr�� D � .

To end these preliminaries, introduce the EDN version of the fiber bundle CE;1!C

that is introduced in Section 2.e. The latter is denoted as CN;1 . Let c 2 C1.C ICN;1/

denote the section that assigns the unique symmetric vortex to each point in C . Lift c
as a pair .AC ; ˛C / where AC is a connection on the bundle ��N !N and ˛C is
a section, this as described in Section 2.g. In particular, choose this lift that ˛C D

j˛C js=jsj. Note that this lift insures that the unique solution A0 to (2-32) is zero. Thus,
AC D �sCAC where AC annihilates the horizontal vectors in N . Use .AC;r ; ˛C;r /

to denote yr�.AC ; ˛C /. Granted all of this notation, define .A�;  �/ on UC by

(5-2)
� A� D .1��C /�sC�C AC;r .

�  � D .˛; ˇ/ with ˛ D �C˛
C;r C .1��C /s=jsj and ˇ D 0.

Part 2 This part gives the construction that is ultimately used in what follows. Note
that even in the case when Part 1’s assumption holds, the resulting .A�;  �/ differs
somewhat from that in (5-2).

The construction here requires the parameters R; ��; �† and the collection fREgE2E as
given in (4-8). When k is a positive integer and C 2 C , use NkC !C to again denote
the radius k�† subbundle in N . When k is a nonnegative integer and E is an end of †,
use: EkR � E to denote the part of E where jsj �RE CkR. It is assumed implicitly
that

S
C2CeC embeds the restriction of

S
C2CN100C to

S
C2C.C �.

S
E2EC

E100R//.
Note that such is the case when r is large. What with Constraints 2 and 3 in Section
4.b, this follows directly using (4-8), (4-9) and (4-2).

There are two steps to the construction of the desired pair .A�;  �/.

Step 1 The bundle E is again given by specifying isomorphisms with bundles that
are defined over sets that comprise an open cover of R�M . The cover of R�M
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used here consists of the following:

(5-3)

� A collection fUC gC2C where any given UC is the image via eC of the
restriction of N4C to C �

�S
E2EC

E2R

�
.

� A set U� for each  2 „†� and a set UC for each  2 „†C . The
set U� consists of the portion of  ’s version of R � S1 �D where
both w < �2R and the distance to  along M at constant w 2 R is
less than 4�� . The set UC consists of the portion of  ’s version of
R � S1 �D where both w > 2R and the distance to  along M at
constant w 2R is less than 4�� .

� A set U0 . This is the complement in R�M of the closure of a union of
sets, one labeled by †, one labeled by each  2 „†� and one labeled
by each  2 „†C . The set labeled by † is the image via e† of the
restriction of N† to †� .

S
E2E E4R/. The set labeled by  2„†� is

the portion of  ’s version of R�S1 �D where both w < �4R and the
distance to  along M at constant w 2R is less than �� . The set UC
is the portion of  ’s version of R�S1 �D where both w > 4R and the
distance along M at constant w 2R is less than �� .

Note that UC \ UC 0 D ∅ when C ¤ C 0 . By the same token, U� \ U 0� and
UC\U 0C D∅ when  ¤  0 . Finally, U�\U 0C D∅ in all cases.

The bundle E!M is given below as a product bundle over U0 and over each set
from fU�g2„†� and fUCg2„†C . Over any given UC , it is given as follows: Let
C � † denote a non–R–invariant component. The bundle E over UC is given as
��N . In the case where C is an R–invariant cylinder, the bundle E is formally ��N q

where q is C ’s associated integer. However, the normal bundle of any given version of
R–invariant cylinder has the trivialization described by Property 5 in Section 4.a; this
trivialization canonically identifies E over C ’s component of UC with the product
bundle. The next three paragraphs describe the transition functions that relate the
respective incarnations of E over the intersection of distinct sets from the open cover.

The transition function for the intersection between U0 and UC is as follows: In
the case where C is not R–invariant, the constant section 1C over U0 appears as
the section s=jsj on UC . In the case where C D R �  , the constant section 1C

over U0 appears as zq=jzjq on UC where q is the integer assigned to C . Here, the
neighborhood of C DR�  is identified with R� .S1 �D/ using  ’s version of the
tubular neighborhood map ' as described in (4-1).

What follows describes the transition function for U0\U� . The transition function
for any U0\UC has a completely analogous description and is not given. To start
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the description, remark that the s��1 part of † intersects the image of any constant
.w ; t/ disk in .�1;�R/ � S1 �D as a set of distinct points. This follows from
(4-2). To elaborate, each end E � E� that is not part of an R–invariant cylinder
contributes qE points to this intersection, and then there is one additional point with
z D 0 if † contains the cylinder R�  . The z D 0 point should be viewed as a point
with multiplicity q , where q is the integer that is assigned to this cylinder. In this
way, † defines a set of m� points in each constant .w ; t/ slice of .�1;�R/�D ,
with all but possibly the point z D 0 distinct. As w and t vary, this set of weighted
points varies and so defines a map .w ; t/! Z†�.w ; t/ 2 Symm�.C/. Granted this
notation, the transition function is such that the trivializing section of E ’s restriction
to U0 appears as the function on .�1;�R/�S1 �D given by

(5-4) .w ; t; z/!
Y

z02Z†�.w ;t/

.z� z0/

jz� z0j

with respect to the trivializing section for E ’s restriction to U� . This map is smooth
on the domain .R�S1�D/\U0 by virtue of the fact that distinct z¤ 0 points remain
distinct (and nonzero) as .w ; t/ vary.

Consider next the intersection between U� and UC . The normal bundle to C in U�
is isomorphic to the trivial bundle, C �C . Use the coordinates .w ; t; z/ for U� . As
noted in Section 4.a, there is a trivialization of N over C \U� with the property that
the exponential map eC sends any given point .w ; t; z/2C and �2N1 to what is writ-
ten in (4-4). This gives a trivialization of E over the part of UC in U� since E over
any given component of UC is an appropriate tensor power of ��N . With respect to this
trivialization of E over UC\U��UC , the trivializing section of E over U� appears
on UC as the function that sends a point with coordinates .w ; t; z/ 2C and � 2N1 to

(5-5)

 Y
z00¤yz;

z002Z†�.w 0;t 0/

�
z0� z00

�
jz0� z00j

!�1�
z0�yz

jz0�yzj

��1
�

j�j
:

Here the notation is as follows: First, the triple .w 0; t 0; z0/ is .w C rw ; t C rt ; z C

.1C rz/.`=2/
�1=2�/ with rw ; rt and rz as given in (4-4). Second, yz is the point that

is closest to z in the .w 0; t 0/ slice of C . Note that there is a unique such point when
� 2N1 and that the assignment of this point to the point .w ; t; z/ 2 C varies smoothly.

There is a similar picture of the transition functions for fUC\UC g2„†C .

Step 2 This step describes .A�;  �/ on the sets given in (5-2). Start with U0 . Given
that the bundle E here has the product structure U0�C , set .A�;  �/D .AI ; .1C; 0//
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where AI is the flat connection given by the product structure. This pair .AI ; .1C; 0//

is sometimes denoted by .A0;  0/.

The pair .A�;  �/ on UC is given by (5-2) on C ’s component of UC when C 2 C is
not R–invariant. Suppose next that C DR� with associated integer q . The definition
here is that given in (3-2) save that �C should be used in place of �� . To elaborate,
let c 2 C1.R�S1ICq/ denote the constant map to the unique symmetric vortex. Lift
c as a pair .AC ; ˛C / where AC is a connection on the trivial bundle over C and
˛C is a section. There is a unique lift for which ˛C D j˛C jzq=jzjq . Reintroduce
r D .`=.2�//r and also the rescaling map yr W R � S1 � C ! R � S1 � C to
denote the map that rescales the C factor via z! r

1=2
 z . Use .AC;r ; ˛C;r / to denote

yr� .A
C ; ˛C /. Let � denote the connection on the product bundle over .R�S1 �C/

that is induced by the product structure. With this notation understood, A� on UC

is given by A� D .1��C /.� C
1
2
q.xz�1dxz � z�1dz//C�C AC;r , and  � on UC is

given by .˛; ˇ/ with ˛ D �C˛
C;r C .1��C /z

q=jzjq and ˇ D 0.

Now consider .A�;  �/ on a given set from the collection fU�g2„†� . Note that the
description on a given set from fUCg2„†C is identical save for some sign changes.
To start the description on U� , remark that the points that comprise r

1=2
 Z†� define

a map from .�1;�R/�S1 to Symm�.C/ and thus a map, c�W .�1;�R/�S1!

Cm� . This is a smooth map since the nonzero points that comprise Z†� are distinct
and constant in number for all .w ; t/ 2 .�1;�R/ � S1 . The map c� has a lift,
.A�; ˛�/, as a pair that consists of a connection and section for the trivial bundle
over .�1;�R/�S1 �C , these pulling-back on each constant .w ; t/ slice so as to
solve (1-4). In particular, there is a lift with the following properties:

(5-6)

� ˛� D j˛�j
Q

z02Z†�

�
.z� r

1=2
 z0/=jz� r

1=2
 z0j

�
at points with jzj � 1C 2 supfr1=2

 jz
0j W z0 2 Z†�j.w ;t/g

� ˛� D eu˛0
0

Q
0¤z02Z†�

˛t
z0 , at points with w � �4R. Here,

(a) ˛t
z0 D j˛

t
z0 j.z� r

1=2
 z0/=jz� r

1=2
 z0j is the nD l vortex with center

at z0 if z0 ¤ 0.
(b) ˛0

0
D j˛0

0
jzq=jzjq is the nD q symmetric vortex if R�  is a com-

ponent of † with q here the associated integer. Otherwise, ˛0
0
D 1.

(c) jRe.u/j � c0

P
z0¤z00Iz0;z002Z†�

e�
p

r jz
0�z00j=2 .

� A� D �0CA
�
0
CA� , where �0 is the connection from the product

structure A is an i –valued 1–form that annihilates the tangent vectors
to theR� S1 factor and A

�
0

annihilates the tangent vectors to the C
factor and is given by (2-32).
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Use .A�;r ; ˛�;r / to denote the pullback via yr of the pair .A�; ˛�/. With the
latter in hand, the definition of .A�;  �/ is a relatively straightforward operation.
Over the part of U� where both jzj < 1

4
�� and w < �4R, the pair .A�;  �/ D

.A�;r ; .˛�;r ; 0//. The definition where either of these two constraints are violated
uses bump functions and the relevant transition functions to patch the latter with what
has been defined previously.

To say more about this patching business, it is first necessary to specify the bump
functions that are involved. The first, �� , is the function on the C factor in R�S1�C
that sends z to �.jzj��/. The second is a function �R� on R� .S1�D/ that depends
only on the R factor; it is given by �R�.w/D�..3RCw/=R/. An analogous function
w ! �RC.w /D �..3R�w /=R/ is used for the UC versions of the formulae that
follow.

Consider first the patching on the part of U� that lies where jzj � 1
4
�� or w ��4R,

but in either case where the distance to † is �† or greater. Introduce for this purpose
the S1 valued function

(5-7) .w ; t; z/! u� D
Y

z02Z�j.w;t/

.z� z0/

jz� z0j
:

Define .A�;  �/ on the part of U� under consideration by

(5-8)
� A� D .1����R�/.�0�u�1

�du�/C���R�A�;r .

�  � D
�
.1����R�/u�C���R�˛

�;r ; 0
�
.

Here, du� denotes the exterior derivative on R�S1 �D .

Consider next the patching business for the points in U� with distance less than �†
from †. To start, let E �† denote an end where s��1 and with E D  . Use the
transition function that is depicted in (5-5) to write the U† version of the pair .A�;  �/
with respect to the trivialization of E over the part of U† in U� as the product
bundle. Write the result using the coordinates .w ; t; z/ as .AE ; .˛E ; 0//. Another
cut-off function on R� .S1 �D/ is required for the upcoming formula. It is denoted
by �E and it is defined to be �..RE C 3R� jw j/=R/. With these preliminaries set,
define .A�;  �/ where U� intersects U† near E by

(5-9)
� A� D �E

�
.1���/.�0�u�1

�du�/C��A�;r
�
C .1��E /AE .

�  � D .˛; ˇ/ with ˛ D �E
�
.1� ��/u�C ��˛

�;r
�
C .1� �E /˛

E

and ˇ� 0.
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5.b A family of deformations of .A�;  �/

The desired family is parametrized by elements from a certain subset of a Banach
space to be defined momentarily. The pair of connection and spinor labeled by a given
element � from this ball is denoted here by .A� ;  �/. The construction of .A� ;  �/
has seven steps.

Step 1 Let ‚�Df.;m�/g2„†� and let ‚CDf.;mC/g2„†C . The construc-
tions in Section 3 can be carried out using the chosen coordinate charts for the relevant
Reeb orbits, the constant �� and ‚D‚� . Lemma 3.8 supplies �� D f��g2„†� .
Lemma 3.8 likewise supplies �C D f�Cg2„†C .

Step 2 This step serves as a warm up to describe the desired family when the assump-
tion in Part 1 of Section 5.a holds and .A�;  �/ is given by (5-2) using the construction
from Part 1 of Section 5.a. The Banach space is

L
C2C Kc� with c here denotes the

section that assigns the symmetric vortex to each point in C and with the Kc� defined
subsequent to (2-27). This is to say that it is the completion of the space of smooth,
compactly supported sections of c�V1;0CN;1 using the norm whose square is depicted
by the middle item in (2-27). Note that the identification between C1 and C given by
the function �1 in (1-5) gives the following equivalent definition: The space Kc� is the
completion of the space of smooth, compactly supported sections of the normal bundle
to C using the norm whose square is depicted in the middle item of (2-27) with r
taken to be the connection that is induced by the Levi-Civita connection of the metric
on R�M . Viewed this way, an element � 2

L
C2C Kc� has components .�C /C2C

where �C is a section of N ! C .

The relevant subset in
L

C2C Kc� is denoted in what follows by K� ; it is the subspace
with the property that each component of any given � 2K� has pointwise norm less
than a constant "0 with "0 > 0 chosen so that the map êxp from Part 8 of Section 2.a
embeds the radius 106"0 disk in each fiber of T1;0C1 . A second Banach space also
plays a role here, this being KD

L
C2C Kc . Here, Kc �Kc� is the set of elements on

which the norm in the third item of (2-27) has a finite value.

Some further preliminaries are needed to define the pair .A� ;  �/ of connection on E

and section of S . To start, keep in mind that N on any given end E � † has a
trivialization that is supplied by the coordinate chart associated to the Reeb orbit E .
Indeed, E is transversal to the constant .w ; t/ disks in the neighborhood R�S1 �D

of E , and so the vector field @=@z tangent to the D factor trivializes N . This
trivialization allows a section of N on E to be viewed as a smooth map from E to C .
Moreover, since the projection from R�S1�D to R�S1 restricts to E as a 1–1 map,

Geometry & Topology, Volume 14 (2010)



2650 Clifford Henry Taubes

so a section of N on E can be viewed as a map from R�S1 to C . With the preceding
understood, if E is an end where s��1, then the R–independent map given by the
 D E version of �� defines a section over E of N . Likewise, if E is a positive
end, then the map given by the  D E version of �C defines a section over E of N .
In either case, these are to be viewed as sections over E of c�V1;0CN;1 . In either case,
these sections have norm bounded by c0r�1=2 .

Fix a section, �� , of the bundle
L

C2C c
�V1;0CN;1 with the following properties: First,

it is equal where s��1 on any given negative end: E to the  D E version of ��
and equal where s� 1 on any given positive end E to the  D E version of �C .
Second, it has support where jsj � R on the ends of †. Note that there exist such
sections with L2

1
and supremum norm bounded by 2c0r�1=2 . Fix �� with this last

property also. It is a consequence of Lemma 3.10 that �� can be chosen so that

(5-10) sup
p2†;�<1

��v
Z

dist. � ;p/<�
jr��j

2
� c0r�1=2:

Here, r is defined by the pullback via c of the Levi-Civita connection. With regards to
(5-10), note that this bound holds with vD 1 for �� because the integral in question is
over a 4–dimensional ball and �� depends only on the coordinates of a 3–dimensional
slice. The bound in (5-10) is assumed in what follows.

With these preliminaries set, fix � D .�C /C2C 2 K� . Let C 2 C and define the pair
.AC � ; ˛C �/ of connection on E D ��N ! N and section of E over N by using
(2-36) with .AC ; ˛C / in lieu of .A; ˛/ and �� C �C in lieu of what is called � in
(2-36). Rescale with the map yr and denote the result as .AC �;r ; ˛C �;r /. Write the
pair .AC �;r ;  D .˛C �;r ; 0// of connection on E!UC and section of S over UC as
.A�;  �/C tC � where tC � is a section over UC of iT �M ˚S with zero component
in the EK�1 summand of S . The desired pair of connection on E and section of S
in this case is

(5-11) .A� ;  �/D .A�;  �/C
P

C2C�C tC � :

Step 3 This step starts the story in the general case by setting the stage and notation.

If C 2 C is a not R–invariant, let c 2 C1.C ICN;1/ denote the section that assigns to
each point the symmetric vortex and set VC D c�V1;0CN;1 . If C 2 C is R–invariant,
let q denote its associated integer and use VC to denote the product bundle C �Cq .

Let  2 „†� and reintroduce the map c�W .�1;�R� � S1 ! Cm� from the
preceding subsection. What is said in Part 5 of Section 2.a can be used to define a ho-
momorphism from �C2CC1.C jjw j<R� IVC / to C1..�R�;�R/�S1 ; c��T1;0Cm /.
This homomorphism is obtained as follows: Write c� as .A�; ˛�/ and write ˛�
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as in the second bullet of (5-6). Let C 2 C denote a component that is not R–invariant
and let E � C denote an end that intersects U� . A point .w ; t; z0/ 2 E defines the
zero at r

1=2
 z0 of the function ˛� ; this is the zero of the factor ˛t

z0 that appears in
the second bullet of (5-6). The function ˛t

z0 is defined by an element, ct
z0 j.w ;t/ 2 C1 .

The identification of C1 with C D Sym1.C/ identifies T1;0C1 at ct
z0 j.w ;t/ with C .

Meanwhile, the bundle VC j.w ;t;z0/ is isomorphic to the normal bundle of E at .w ; t; z0/.
The latter is trivialized by the exponential map ec using Property 4 in Section 4.a.
This identification of VC j.w ;t;z0/ with C and the identification of T1;0C1 at ct

z0 j.w ;t/
with C identifies VC j.w ;t;z0/ with the latter. This understood, the homomorphism � in
Part 5 of Section 2.a maps the complex line VC j.w ;t;z0/ to .c��T1;0Cm�/j.w ;t/ .

To continue, suppose next that R �  is a component of †, and let q denote the
corresponding integer. Let E denote the end .�1;�1�� of †. The point .w ; t; 0/2
E corresponds to a zero of ˛�j.w ;t/ of order q at the origin. This corresponds
to the factor ˛0

0
that appears in the second point of (5-6). The latter is defined by

the symmetric vortex c0 2 Cq . Note in this regard that T1;0Cq at c0 is canonically
isomorphic to Cq ; this isomorphism given by the coordinates in (1-5). Meanwhile,
VR� is the product of R� with Cq and so VR� j.w ;t;0/ is canonically isomorphic
to T1;0Cq at c0 . This understood, the homomorphism � from Part 5 of Section 2.a
also maps VR� j.w ;t;0/ to c��T1;0Cm .

These homomorphisms define a homomorphism from �C2CC1.C jjw j<R� IVC / to the
space C1..�R�;�R/�S1I c��T1;0Cm�/. The latter is denoted by �� . There is
an analogous �C for each  2„†C with the same domain and image in the space
C1..R;R�/�S1I c�CT1;0CmC/.

Step 4 With the stage now set, a Banach space K is obtained by completing a set
of “smooth” elements with respect to a certain norm. A smooth element � can be
written as a vector � D ..�C /C2C ; .��/2„†� ; .�C/2„†C/ whose components are
characterized as follows:

(5-12)

� Each C 2 C version of �C is a smooth section of VC over the jsj � R

part of C .

� The  2„†� component �� is a smooth section over .�1;�R��S1 of
c��T1;0Cm with compact support and such that �� D ��

�
.�C /C2C

�
on .�R�;�R/�S1 .

� The  2„†C component �C is a smooth section over ŒR;1/�S1 of
c�CT1;0CmC with compact support and such that �CD�C

�
.�C /C2C

�
on .R;R�/�S1 .
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The set of smooth elements is denoted by Ksmooth . The square of the norm that defines
the Banach space assigns to any given smooth element � the numberP

C2C
�1�PE2EC

�E
�
�C
2

K

C
P
2„†�

�R�

�
�����

���
1�

P
E2EC

�E
�
�C
�
C2C

��2

K

C
P
2„†C

�RC

�
�C��C

���
1�

P
E2EC

�E
�
�C
�
C2C

��2

K
;

(5-13)

where the notation is as follows: First, �E is defined just prior to (5-9) and �R˙

are defined just prior to (5-7). The left most version of k � kK when C 2 C is not
R–invariant is given in (2-27) with EDN , nD1 and c the section of CN 1 that assigns
the symmetric vortex to each point. If C is R–invariant with associated integer q , then
the corresponding version of k � kK is given by (2-27) with data E D C �C , nD q

and c the constant section of CE;q that assigns to each point the symmetric vortex.
Each  2„†� version of k � kK is given by (2-27) using C D .�1;�R/�S1 , c�
in lieu of c, and m� in lieu of n. The  2„†C version has an analogous definition.
It follows from (2-4), (2-5), (4-4) and (4-9) that (5-13) defines a bonafide norm. The
norm defined by (5-13) is also denoted by k � kK .

When � 2K , use k�k1 to denote the norm that is obtained by replacing each version
of k � kK in (5-13) by the corresponding L1 norm. Likewise, use k�kK2

1
and k�kK�

to denote the respective norms that are obtained by replacing each version of k � kK in
(5-13) by the corresponding versions of (2-27)’s norms k � kK2

1
and k � kK� .

Fix "0 > 0 such that the map êxp from Part 8 of Section 2.a embeds the radius 106"0

ball in each fiber of T Cm for each m from 1 through the maximum of fm�g2„†�[

fmCg2„†C . With "0 fixed, let K� denote the completion using the norm k�kK�
of the subspace in Ksmooth with k�k1 < "0 . Note that the function � ! k�k1 is
continuous on K� and, of course, bounded by "0 . By construction, the function
� ! k�kK� is also continuous on K� , but this function has no upper bound on K� .
Meanwhile, k � kK need not be finite on any given element in K� .

Step 5 Fix � D ..�C /C2C ; .��/2„†� ; .�C/2„†C/ 2K� . Suppose that C 2 C is
not R–invariant, and let � W N !C denote the projection. Define the pair .AC � ; ˛C �/

of connection on E D ��N !N and section of E over N by using (2-36) with the
constant section of CN;1 given by the symmetric vortex used to define .A; ˛/, and with
�C in place of �C . Rescale with the map yr and denote the result as .AC �r ; ˛C �r /.
The latter defines the pair .AC �r ;  D .˛C �r ; 0// of connection on E over UC , and
section of S over UC . Write this pair as .A�;  �/C tC � , where tC � is a section of
iT �M ˚S over UC .
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Suppose next that C DR�  2 C and let q denote the associated integer. With C ’s
normal bundle trivialized as in Property 5 of Section 4.a, use the constant map from
C to the symmetric vortex and �C to define .AC � ; ˛C �/ on C �C as instructed by
(2-36). Rescale the result using the map yr and again use .AC �r ; ˛C �r / to denote
the result. View the appropriate restriction of the pair ..AC �r ;  D .˛C �r ; 0// as a
connection on E over Uc , and section of S over UC . Write this pair of connection
and section as .A�;  �/C tC � so as to define tC � as a section of iT �M ˚S over UC .

Step 6 Suppose that  2„†� . The map êxpc from the symmetric vortex in Cm�

gives local coordinates for Cm� on a neighborhood of this vortex; thus it identifies
T1;0Cm� on this neighborhood as a trivial bundle. As the w��1 part of c� is
very close to the constant map from S1 to the symmetric vortex in Cm� , this local
trivialization of T1;0Cm� allows �� to be viewed as a section of c��T1;0Cm�

on the w � �1 part of R� S1 . Extend this section to a smooth section, �� , over
the whole of c��T1;0Cm� so as to vanish where w � �2R� . There exists such an
extension which obeys the R� S1 version of (5-10). Such an extension should be
selected.

With � 2 K� chosen, define the pair .A��; ˛��/ of connection on, and section of
the product bundle over .�1;�R/�S1 �C by

(5-14) A��D �0CA
�
0
CA�C2�1=2.q�dxz�xq�dz/ and ˛��D ˛�C&� :

The notation used here is as follows: First, �0 is the flat connection given by the product
bundle. Meanwhile, .q� ; &�/ are defined at each point in R� S1 by the version of
(2-9) that uses � D ��C �� with �� coming from � .

To continue, let .A��;r ; ˛��;r / denote the pullback of .A��; ˛��/ via the map yr .
View .A��;r ;  D .˛��;r ; 0// as a pair of connection on E over U� and section
of S over U� . Write the latter as .A�;  �/C t�� where t�� is a section over U�

of iT �M ˚S with zero component in the EK�1 summand of S .

Make the analogous construction for those  2„C to define from � the section t�C

over UC of iT �M ˚S .

Step 7 With ..tC �/C 02C ; .t
��/2„†� ; .t

�C/2„†C/ in hand, define .A� ;  �/ to
denote the pair of connection on E and section of S given by

(5-15)

.A�;  �/C
P

C2C�C

�
1�

P
E2EC

�EC

�
tC �

C
P

E2E
P
2„†�

�EC
��t

��

C
P

E2E
P
2†C

�EC
�Ct

�C:
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Here, �EC
is defined as follows: Let C 2 C denote the component that contains E .

Then �EC
is the function on R�M with support on eC .N4†jE / where it is given by

the rule �EC
D �.4jsj=�†/�..RE C 3R� jsj/=R/.

5.c Another way to view the construction

This subsection describes a somewhat different way to view (5-9) and (5-15). What is
written in (5-9) and (5-15) interpolate between one construction that takes place on an
embedded disk bundle neighborhood of † and another that takes place on the jsj �R

part of R�M where a given exponential map is many to one. Thus, where two or
more points in the large ˙s slices of † are very close to a single point on an integral
curve of v .

To say more, fix attention on some  2„†� . Here is how to think of .A� ;  �/ on U� :
Any given constant .w ; t/ slice has two regions where A� is not almost flat and  �

is not almost covariantly constant. The first region consists of the �† neighborhood
of the part of †\U� where jzj is O.1/r�1=2C2� or larger. Here, the pair .A� ;  �/
comes from some suitably rescaled C1 vortex in †’s normal bundle. The second region
lies where jzj � r�1=2C2� . The z ! r

1=2
 rescaling of these points in † define a

solution on C to the vortex equations in (1-4). The inverse scaling of this vortex gives
.A� ;  �/ where jzj � r�1=2C2� .

For a more precise discussion, recall how the map c� is defined: Let E denote
an end from E� ; thus an end of † in U� . If E is not part of R �  , introduce
qE 2 f1; 2; : : :g to denote the multiplicity of the projection from any given constant s

slice of E to S1 . It follows from (4-2) that E appears in U� as the image of a map,
.w ; t/! .w ; t; zE .w ; t//, of a map from .�1;�R�� .R=2�qE Z/ to R�S1 �D .
The map zE is used to define
(5-16)

ZE j.w ;t/ D
˚
zE .w; t C 2�/; zE .w; t C 4�/; : : : ; zE .w; t C 2�qE /

	
2 SymqE .C/:

If E is the w � �1 part of R �  , set qE to equal the integer that is paired with
R�  as a member of †. Define ZE as above with zE set to 0. Introduce the set
Z†�j.w ;t/ D

S
E2E�ZE j.w ;t/ where E� denotes the set of ends of † that lie in

U� . The rescaled set r
1=2
 Z†� defines a map from .�1;�R��S1 to Symm�.C/

and as such, a map from .�1;�R��S1 to Cm� . This last map is c� .

With the preceding understood, let N DN� denote the number of distinct elements
in the set f�qE W E 2 E�g. Here, �qE < 0 is the eigenvalue that appears in E ’s version
of (4-2) if E is not in R�  . If E � R�  , then �qE is the symbol �1. Partition
E†� into N subsets E1; E2; : : : ; EN using the equivalence relation E � E 0 if and
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only if �qE D �qE0 . Use the ordering that is defined by the absolute values of the �qE

to label these partition subsets; thus �qE > �qE0 when E � Ek�1 and E 0 � Ek . Given
k 2 f1; : : : ;N g, define the integer mk D

P
k�j�N

P
E2Ej qE , and then define

(5-17) Zk j.w ;t/ D
S

k�j�N

�S
E2EjZE j.w ;t/

�
2 Symmk .C/:

For example, Z1 D Z†� . Here is a second example: If R�  �† and has assigned
integer q , then ZN j.w ;t/ consists of q copies of the origin in C .

Recall for what follows that RE D
1
4
j�qE j

�1.1�4�/ lnr when E is not in R� . The
set Z1 is of interest where w is less than the E 2 E1 version of �RE �R. Meanwhile,
the set Z2 is of interest where w is greater than the E 2 E1 version of �RE � 4R but
less than the E 2 E3 version of �RE �R. In general, the 1< k �N version of Zk is
of interest where w is greater than the E 2 Ek�1 version of �RE � 4R but less than
�RE �R as defined by an end E 2 Ek . This w interval of interest for Ek is denoted
by Ik in what follows.

The rescaled map r
1=2
 Zk maps Ik�S1 into Symmk .C/ and thus into Cmk

. Use ck to
denote the latter. With regards to ck , suppose that k¤N , or if so, that ZN ¤ .0; : : : ; 0/.
The fourth point in (4-9) implies that all z 2 r

1=2
 Zk j.w ;t/ have norm O.r�� / except

those that come from Ek . The latter have size O.r�� / near the left endpoint of Ik ,
but size O.r� / near the right end point.

It follows from (2-4) and (4-9) that what is written in (5-9) on the jzj < r�1=2C�

part of Ik �S1 �C is almost entirely determined by the rescaling via the map yr of
the vortex ck except very near to the left endpoint of Ik where the ends from Ek�1

contribute. Except for very near this left endpoint, the pullback of .A�;  �/ to a
constant .w ; t/ 2 Ik �S1 plane is almost entirely given where jzj < c0r�1=2C� by
the pullback via yr of a suitable lift of ck as a connection on and section of the trivial
bundle over C . In particular the difference between the two pairs is bounded in a
suitable gauge by an inverse power of r when r is large. Meanwhile, .A�;  �/ where
jzj has size c0r�1=2C3�=2 or greater is very close to what is written in (5-2).

Now consider .A� ;  �/. What is written in (2-4) and (2-5) can be used to construct an
injective homomorphism �k W c

�
k
T1;0Cmk

! c��T1;0Cm� over Ik �S1 that differs
from an isometry by less than c0e�r�=4

� c0r�10 . Use �|
k

to denote the adjoint of
this homomorphism. The kernel of �|

k
over Ik �S1 is isomorphic to the pushforward

of †’s normal bundle by the projection map

(5-18) � W
�S

E2E��Ek
E jIk�S1

�
! Ik �S1:

Said differently, there is an isomorphism and near isometry over Ik � S1 between
the bundles c��T1;0Cm� and c�

k
T1;0Cmk

˚ .
L

E2E��Ek
��.N jE //. This is to say
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that if � D ..�C /C2C ; .��/2„†� ; .�C/2„†C/ 2 K , then �� can be viewed via
this isomorphism as pair .�k ; ��.�†k// where the notation is as follows: First, �k is
a section over Ik �S1 of c�

k
T1;0Cmk

. Second, �†k is shorthand for the element inL
E2E��Ek

N jE whose component in the N jE summand is the restriction to E of
the relevant �C .

From this perspective, the contribution to �� from a point in Ik�S1 with w not very
near the left endpoint of Ik can be thought of as having two parts: The first, �k , comes
from those components of †\U� with distance less than or equal to c0r�1=2C� from
R� . The second, ��.�†k/, comes from those components of †\U� with distance
at least c0r�1=2C� from R� . It follows from (2-4) and (2-5) that the �k part of ��
determines very much the balance of the difference between .A� ;  �/ and .A�;  �/
on the jzj< r�1=2C� part of U� if w 2 Ik is not very near the left endpoint. Indeed,
the map from Ik �S1 to Cmk

given by êxpck
.�k/ defines a deformation of ck and the

yr rescaling of this deformation is very close to .A� ;  �/ where jzj< r�1=2C� for the
stated values of w . Meanwhile, the ��.�†k/ part of �� supplies the preponderance
of the difference between the pairs .A� ;  �/ and .A�;  �/ on the part of U� where
w 2 Ik is not very near the left endpoint and where jzj � c0r�1=2C3�=2 . But for
corrections that are much less than r�1 , this difference is supported on the e† image
of the bundle N !

S
E2E��Ek

E jIk�S1 where it is given by the tC � sum in (5-11).

5.d The perturbative set up

The plan now is to look for a solution to the large r version of (1-14) that is gauge
equivalent over R�M to a pair of connection on, and section of the respective pullbacks
of E and S over R�M given by

(5-19) ADA� C .2r/1=2.�dsC b/ and  D  � C �

for a particular � 2K�\K and section bD .b; �; �/ of iT �M ˚S˚ iR over R�M .
The pair � and b are chosen so as to have two properties.

Property 1 The following equation is obeyed on R�M :

(5-20)

�
@
@s

bC�db� d� � 2�1=2r1=2. �|��C �|� �/� 2�1=2r1=2�|��

D�2�1=2r�1=2
�
@
@s

A� CBA� � r
�
 �|� � � ia

�
�
�
i � d�C 1

2
BAK

��
,

� .rA� /s�CDA��C 21=2r1=2.cl.b/ � C� �/C 2r1=2.cl.b/�C��/
D�.rA� /s 

� �DA� 
� ,

�
@
@s
�C�d � b� 2�1=2r1=2.�| � � �|�/D 0.
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Here, .rA� /s denotes the covariant derivative along the R factor of R�M as defined
using the connection A� . Meanwhile, d here denotes the exterior derivative along the
M factor in R�M .

Property 2 The s!�1 limit of b is the solution to (3-4) that is supplied by the
‚D‚� version of the constructions in Section 3. Meanwhile, the s!1 limit of b
is the solution to (3-4) that is supplied by the ‚D‚C version of the constructions in
Section 3.

Section 6 and Section 7 describe a pair .�; b/ that has Properties 1 and 2. Use .�; b/
in (5-19) to define the pair .A;  /. It is argued in Section 7.h that .A;  / is smooth.
Section 7.h also establishes the following: Let c� denote the solution to (1-13) that
is given in Section 3 using ‚D‚� and let cC denote the solution to (1-13) that is
given in Section 3 using ‚D‚C . There exists a smooth map uW R�M ! S1 such
that the assignment s ! d.s/ D .A� u�1du;u /js is a smooth map from R into
Conn.E/�C1.M IS/ that defines an instanton solution to (1-14) whose s!�1

limit is c� and whose s!1 limit is smoothly gauge equivalent to cC .

6 The construction of instantons: Part II

The two properties required of the pair � and b in Section 5.d are written schemati-
cally as

(6-1)

� DbC r1=2b� b� vD 0.

� lims!˙1 bD b˙ where b˙ are the respective solutions Section 3 to the
‚D‚˙ versions of (3-5) as defined using �˙ .

Here, D and v are defined by � . As done with (3-5), the plan for what follows is to
project the top equation in (6-1) onto a certain subspace and then solve the latter with
� 2K�\K fixed. The solution, bD b.�/, will depend smoothly on � . The remaining
part of the top equation in (6-1) is subsequently viewed as an equation for � which is
seen to have a unique, small normed solution.

The results of this section are summarized by Proposition 6.4 in Section 6.e.

6.a The projection for (6-1)

This first subsection is devoted to setting up the projected version of (6-1). There are
eight parts to this. In what follows, � denotes a given section of K� .
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Part 1 Fix for the moment a connection, A, on E!R�M . With A given, define
the Hilbert space H to be the completion of the space of compactly supported sections
over R�M of iT �M ˚S˚ iR using the norm whose square is given by

(6-2) kqk2H D

Z
R�M

jr
�qj2C

1

4
r

Z
R�M

jqj2;

where the covariant derivative r� acts on sections of iT �M as the Levi-Civita covari-
ant derivative; on sections of S as the covariant derivative that is defined by Levi-Civita
connection and AKC2A; and on any given i –valued function as the exterior derivative.
Note in what follows that a dimension 4 Sobolev inequality provides an r independent
constant c0 such that

(6-3) kqk4 � c0kqkH

for all q 2 H . Here, k � k4 denotes the R�M version of the L4 norm. Use L to
denote the space of L2 sections over R�M of iT �M ˚S˚ iR.

Suppose next that  is a section of S!R�M . The pair .A;  / together define the
operator, D, on C1.R�M I iT �M ˚S˚ iR/ that sends a given section .b; �; �/ to
the section with the respective iT �M;S and iR components

(6-4)

�
@
@s

bC�db� d� � 2�1=2r1=2. |��C �|� /.

� .rA/s�CDA�C 21=2r1=2.cl.b/ C� /.

�
@
@s
�C�d � b� 2�1=2r1=2.�| � |�/.

Here, .rA/s denotes the covariant derivative along the R factor of R�M as defined
using the connection A. If the section  is bounded, then D extends to give a bounded
operator from H to L.

Let ya denote a bounded section of iT �.R�M /. Then the ACya and A versions of
the norm k � kH are commensurate. Thus, the corresponding versions of H contain the
same elements. This has the following consequence; Suppose in addition that & is a
bounded section of S!R�M . Then the .ACya;  C &/ version of (6-4) defines a
bounded operator from the A version of H to L.

In what follows, the connection A� from Section 5 is used to define H . The operator D
in (6-1) is the version of (6-4) that is defined using .A� ;  �/ from (5-15).

Part 2 This part with Parts 3 and 4 constitute a digression to describe in more detail
the operator D as defined using the given element � 2K� to construct .A� ;  �/. What
follows describes the .A� ;  �/ version of D on U0 . To this end, the identification
of S with SI on U0 identifies D over U0 with the restriction to U0 of the version
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of (6-4) on C1.R�M I iT �M ˚SI ˚ iR/ that is defined using (ADAI ;  D  I ).
The latter operator is denoted in what follows by DI .

Part 3 Suppose that C 2 C is not R–invariant. This part describes D on UC . The
description starts by saying more about the bundle iT �M ˚ S˚ iR on UC . The
summand i.T �M˚R/ is identified with T �.R�M / and is thus identified via pullback
by eC with T �N . The latter splits as ��.T �C /˚V� , where V� , denotes the subspace
that annihilates the � –horizontal vectors in TN . Thus, V� is canonically isomorphic
as a real bundle ��.N �/. This splitting is orthogonal along C for the metric that
is pulled back by eC from R�M . The almost complex structure J defines via eC

an almost complex structure on T �N over e�1
C
.UC /. The .0; 1/ part of this bundle

has a C–linear orthogonal splitting along C as T 0;1C ˚N jC . This understood, an
isomorphism between .��T 0;1C ˚��N /je�1

C
.UC / and T 0;1.R�M /jUC

is defined
as follows: Any given vector q 2 ��N is mapped to the 1–form q.r�xsC&/ where &
has the following properties: It vanishes on C and it can be written as &0r�sC&1 with
j&0j � c0jsj and with &1 differing from a section of ��T C by c0jsj

2 . Meanwhile,
any given vector, p , in ��T 0;1C is mapped to a vector of the form pC L.p/ where
LW ��T 0;1C ! ��T 1;0C vanishes along C .

Write the bundle S as E˚EK�1 . On UC , the bundle E is the pull back via eC as
��N , and the identifications in the preceding paragraph define an isomorphism over
UC between K�1 and ��.N ˝ T 0;1C /. Let IC denote the product complex line
bundle over C . The preceding identifications of S and T �M ˚R over UC identify
the eC –pull back of .iT �M ˚S˚ iR/ with the direct sum VC 0˚VC 1! C where

(6-5) VC 0 D �
�N ˚��N and VC 1 D �

�.IC˚N 2/˝��.T 0;1C /:

Here, the left hand summands from VC 0 and VC 1 make up e�
C
.iT �M ˚ iR/; and

the right hand summands make up e�
C

S . Use these same splittings of VC 0 and VC 1

to write a section of VC 0 as .q; �0/ and one of VC 1 as .p; �1/.

Granted the preceding, the operator D on UC can be written as a linear differential
operator that takes a section of VC 0˚VC 1 over e�1

C
.UC / and spits out a section of

the bundle .VC 0˝�
�T 0;1C /˚ .VC 1˝�

�T 1;0C /. The operator is defined so as to
send a section fD ..q; �0/; .p; �1// to one whose component in VC 0˝�

�T 0;1C can
be written as

(6-6)
� 2

�
�x@V pC 2�1=2r1=2 x 

�
0
�1

�
C 2x@H

�
qC r00 ,

� 2
�
�@V

A�
�1C 2�1=2r1=2 

�
0
p
�
C 2x@H

A�
�0C r01 ,
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and whose component in VC 1˝�
�T 1;0C can be written as

(6-7)
� 2

�
@V qC 2�1=2r1=2 x 

�
0
�0

�
C 2@H

�
pC r10 .

� 2
�
x@V

A�
�0C 2�1=2r1=2 

�
0
q
�
C 2@H

A�
�1C r11 .

To explain the notation, first,  �
0

denotes the component of  � in the e�
C

E D ��N

summand of e�
C

S . Second, the r�� terms all obey jr��j � c0.jsjjrfjC jfj/ where
r denotes the covariant derivative that is defined using the connection � for the left
most summands in (6-5) while using the connection � with A� for the right most
summands. The operator @V and its A� analog denote the holomorphic covariant
derivative along the fibers of � as defined by r . Meanwhile, @H

�
and its A� analog

denote the .1; 0/ horizontal part of r . The barred versions with V and H denote
the respective vertical and horizontal .0; 1/ parts of r . Here, the notion of .1; 0/ and
.0; 1/ is defined using J jC . Note that (6-6) and (6-7) implicitly use the volume form
on C to identify T 0;1C ˝T 1;0C with the product bundle IC .

Since D is defined originally so as to take a section of iT �M ˚S˚ iR and return
a section of this same bundle, a few words of explanation are in order to describe
the implicit isomorphism used in (6-6) and (6-7) between the latter bundle and the
vector bundle .VC 0˝�

�T 0;1C /˚ .VC 1˝�
�T 1;0C /. This implicit isomorphism is

constructed as follows: First, use the exterior product with the 1–form ds to identify
T �M with the bundle, ƒ2C , of self-dual 2–forms on R�M . This identifies T �M˚R
with ƒ2C˚R. Meanwhile, let T 0;2 � ƒ2C

C
denote the subspace of forms of type

.0; 2/, and let IC denote the product complex line bundle over R�M . Then ƒ2C˚R
can be viewed as the underlying real bundle of the C2 bundle IC ˚ T 0;2 . Here,
the IC summand corresponds to the R! ˚R summand in ƒ2C ˚R. Given that
T 0;2 DK�1 , the top line in (6-6) defines a section of K�1 over UC , thus a section of
T 0;2 . Meanwhile, the top line in (6-7) defines a section of the product bundle over UC

and so a section of IC . Thus, the top lines in (6-6) and (6-7) together define a section
of ƒ2C˚ iR and so account for the i.T �M ˚R/ required identification between
.VC 0˝�

�T 0;1C /˚ .VC 1˝�
�T 1;0C / and iT �M ˚S˚ iR.

To finish the identification, introduce SC and S� to denote the respective self-dual and
anti-self-dual parts of the SpinC bundle of spinors over R�M . Clifford multiplication
by self-dual 2–forms annihilates S� and Clifford multiplication by anti-self-dual 2–
forms annihilates SC . The ˙i eigenspaces for Clifford multiplication by the self-dual
2–form ! D .1=

p
2/.ds ^ aC .1=2/da/ split SC as E ˚EK�1 and so identifies

the latter with S . Meanwhile, the restriction of Clifford multiplication by forms in
T 0;1.R�M / to the E summand in SC identifies S� with T 0;1.R�M /˝E . At
the same time, Clifford multiplication by ds identifies SC with S� and thus S�
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with S . The upshot of all this is the identification of T 0;1.R �M /˝ E with S .
Granted the preceding, observe that the bottom lines in (6-6) and (6-7) define a section
of .��N ˝ ��T 0;1C /˚ ��N 2 . Writing the latter as .��T 0;1C ˚ ��N /˝ ��N

identifies it with T 0;1.R �M /˝E . This how the bottom lines in (6-6) and (6-7)
define a section in the S summand of iT �M ˚S˚ iR.

Part 4 This part describes D on U� when  2„†� , on UC when  2„†C , and
on UC when C DR�  .

With  fixed, reintroduce the vector spaces V0 and V1 that appear in (3-13) and
(3-14). The starting point is a rewriting of the operator D on the relevant open
set as an operator that maps C1..�1;�R/ � S1 �CIV0 ˚ V1/ to itself. To this
end, write the components of an element f 2 V0 ˚ V1 as ..q; �0/; .p; �1/. Then
the V0 and V1 components of D are given respectively by (6-6) and (6-7) with
the following reinterpretation of the notation: First, @V D .2�=` /

1=2.@=@z/ and
@H
�
� .1=2/.@=@w � i.@=@t//. Of course, the covariant versions of these operators

are similarly reinterpreted, as are their barred counterparts. In this case, the terms
designated by r�� obey jr��j � c0.jzjjrfjC jfj/.

Part 5 Suppose that C 2 C is not R–invariant. Use the component �C from � to
define the pair .AC �;r ; ˛C �;r / as done in Step 5 of Section 5.b. This is a pair that
consists of a connection on ��N !N jC and a section of this bundle. Define a rank 1,
complex line bundle KC � ! C whose fiber is the span in L2.N IVC 0˚VC 1/ of the
vector ..q; �0/; .0; 0// where q D .2�1=2r1=2.1� j˛C �;r j2/ and �0 D @

V
AC�;r ˛C �;r .

Here, @V
AC�;r denotes the .1; 0/ part of the covariant derivative along the fiber of N as

defined by the connection AC �;r and the complex structure J jC .

Now suppose that C DR� is a component of †. Define .AC �;r ; ˛C �;r / on C�C as
done in Step 5 of Section 5.b. Identify C with R�S1 using Property 5 of Section 4.a.
Let qC be the integer associated to C , and let KC �!R�S1 be the qC –dimensional
complex vector bundle whose fiber at .w ; t/2R�S1 is the subspace in L2.C IV0˚V1/

spanned by the elements of the form ..q; �0/; .0; 0// where .q; �0/ are such that

(6-8) @qC 2�1=2r1=2
 x̨�0 D 0 and x@A�0C 2�1=2r1=2

 ˛q D 0;

where ˛ D ˛C �;r and where A is pullback to .s; t/�C of AC �;r .

Fix  2„†� and use �� from � with �� from �� to define the pair .A��;r ; ˛��;t /
as done just after (5-14). Let K��! .�1;�R/�S1 denote the rank m� com-
plex vector bundle whose fiber at any given .w ; t/ 2 .�1;�R/ is the subspace in
L2.CIV0˚V1/ spanned by the elements of the form ..q; �0/; .0; 0// where .q; �0/

obey the version of (6-8) with ˛ D ˛��;r and with A the pullback of A��;r to
.s; t/�C .
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An analogous definition assigns a bundle K�C! .R;1/�S1 to each  2„C .

Part 6 Define K2 to be the completion of K using the norm given by the analog of
(5-13) that has each version of k � kK replaced by the corresponding L2 norm. Fix
� D ..�C /C2C ; .��/2„†� ; .�C/2„†C// 2K2 .

Suppose that C 2 C is not R–invariant. The component �C is an L2 section of
c�V1;0CN;1 over the part of C where jsj �R� . Here, c is the section that sends each
point to the symmetric vortex. The component �C from � 2K� is also a section of this
bundle, but one with small k � k1–norm. Let cC � denote êxpc.�C /. The differential of
êxpc at �C identifies �C as an L2 section of c�

C �
V1;0CN;1 over the jsj �R� part of C .

Thus, it can be viewed as an L2 section of the bundle KC �!C as defined in Part 5. As
such, it defines a section over C ’s component of e�1

C
.UC / of VC 0˚VC 1 ; at any given

point, the latter section is a multiple of the section that has VC 1 component zero and
VC 0 component given by the pair .2�1=2r1=2.1� j˛C �;r j2/; @V

AC�;r ˛C �;r /. Interpret
this section of VC 0˚VC 1 defined by �C as a section, y�C � , of iT �M ˚S˚ iR.

Suppose next that C DR� is from C , and let q denote the associated integer. Let c
denote the constant map from C to the symmetric vortex in Cq . Let cC � again denote
êxpc.�C /. The differential of êxpc at �C identifies �C as an L2 section of c�T1;0Cq

and thus an L2 section of the bundle KC �! C . The latter can again be interpreted as
an L2 section, y�C � , of iT �M ˚S˚ iR whose restriction to the fiber over any given
point in C is a multiple of a solution to the relevant .A; ˛/ version of (6-8).

By the same token, each �� defines an L2 section of the corresponding bundle K�� ,
thus a map from .�1;�R/�S1�C to V0˚V1 . Interpret the latter as an L2 section,
y��� , of iT �M ˚ S˚ iR over U� . Likewise, each �C defines an L2 section,
y��C , of iT �M ˚S˚ iR over UC .

A map t � W K2! L is defined as follows: Let � 2K2 . Then t �.�/ has support only
on .

S
C2CUC /[ .

S
2„†�

U�/[ .
S
2„†C

UC/. Here it is given by

(6-9)

� t �.�/D �C .1=
p
�/y�C � on UC .

� t �.�/D .1��E /�C .1=
p
�/y�C �

C
�
�C�E C .1��C /

�
�R˙�˙.1=

p
�/y��˙

at points in U˙ with distance �† or less from an end E in any given
component C of †.

� t �.�/ D �R˙�˙.1=
p
�/y��˙ at points in U˙ with distance �† or

more from each component C of †.
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By way of reminder: The functions �R˙ and �˙ are defined just prior to (5-7), and
�E is defined just prior to (5-9). This map t � is a bounded linear injection. Given
(2-4), (2-5) and (4-9), the injectivity of t � when r � c0 and R � c0 can be proved
using the perspective taken in Section 5.c. In fact, the map t � is nearly isometric.

Let …� denote the L2 orthogonal projection onto the image of t � and let H?
�
�H

denote the kernel of the homomorphism …� W H! L. It is a consequence of what is
said at the end of Lemma 2.9 that …� maps H to H , and so H?

�
is equal to .1�…�/H .

Part 7 What follows describes a somewhat different version of K2 . This version is
also a completion of a set of “smooth elements”. The typical smooth element is given
by the analog of (5-12) where the following modification is understood: If C 2 C is
not R–invariant, then �C is a section of the bundle c�V1;0CN;1 ˝ T 0;1C over the
jsj �R� part of C . The identifications given by �˙ are as before with it understood
that T �C is trivialized over any given end by the pullbacks of dw and dt . The norm
that defines this space is given by the analog of (5-12) that replaces each k � kK norm
with the corresponding L2 norm. The resulting Banach space is denoted by L2 .

The formula in (6-9) defines a bounded, linear injection from L2 into L. The L2

dual of this injection gives the desired map, …� W L! L2 . Use L?
�
� L to denote the

orthogonal complement of the kernel of …� . This is a closed, linear subspace of L.
Although sloppy notation, .1�…�/W L! L?

�
is used to denote the associated L2

orthogonal projection.

Part 8 The promised projection of (6-1) asks for a solution to the equation

(6-10) .1�…�/
�
DbC r1=2b� b� r�1=2v

�
D 0

subject to the constraint lims!˙1 bD b˙ .

6.b Operator norms

The next lemma is central to the approach taken here to solve (6-10).

Lemma 6.1 Fix † as described in Section 4.b, but do not assume Constraint 4. There
exists a constant � > 1 with the following significance: Take r � � . Fix � 2K� with
k�k1 � �

�1 so as to define D, H?
�

and L?
�

. Then

��1
kqkH �

.1�…�/Dq


2
� �kqkH for all q 2H?� :

Moreover, if � 2K� has norm k�kK� � ��1 the corresponding .1�…�/D maps H?
�

onto L?
�

. In particular, .1�…�/DW H?� !L?
�

is invertible and the norm of its inverse
is bounded by ��1 .
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Proof of Lemma 6.1 The asserted upper bound is straightforward to prove and so
omitted. What follows next proves the assertion about lower bound for k.1�…�/Dqk2
when q 2H?

�
. To start, write q D q0C

P
C2CqC C

P
2„†�

q�C
P
2„†C

qC ,
where

(6-11)

� q0 D
�
1�

P
C2C�C

��
1��R�

P
2�†C

����RC

P
2„†C

�C
�
q.

� qC D �C

�
1��R�

P
2„†C

����RC

P
2„†C

�C
�
q.

� q� D ���R�q.

� qC D �C�RCq.

The section q0 has support where .A� ;  �/D .AI ;  I /. This being the case, it follows
from these equations and from [7, (5.23)] that there exists c0 > 1 such that if r > c0 ,
then

(6-12) kDq0k2 � c�1
0 kq0kH:

But for two items, the arguments that are used to prove the left most inequality in
Lemma 3.2 and Lemma 3.3 can be employed here with purely notational changes to
find a constant c0 � 1 such that when r � c0 then

(6-13)
.1�…�/DqC


2
� c�1

0 kqkH and
.1�…�/Dq˙


2
� c�1

0 kq˙kH:

The first substantive item concerns the reference to Lemma 2.5 in the Lemma 3.2
argument: The reference is replaced in the new argument by a reference to Lemma
2.8. The second item to be noted when applying the arguments for Lemma 3.2 and
Lemma 3.3 is the following: Let C denote a component of † and let E denote an
s��1 end of C . The constant s slices of E converge as s!�1 to the Reeb orbit
E . Given (2-4), (2-5), and (4-9), a section over E of the bundle KC � looks like a
section over .�R�;�R/�S1 of the bundle K�� when viewed from the perspective
of Section 6.c. Conversely, a section of K�� defines a section of KC � over the ends
of C in U� . There is, of course, a similar remark concerning C ’s positive ends.

Granted (6-12) and (6-13), a direct analog of (3-20) implies the lower bound inequality
given here.

Consider next the assertion that .1 �…�/D is onto when k�kK� is small. To this
end, let � denote the constant that gives the lower bound inequality in the lemma.
Now fix " 2 .0; 1

2
��1/ and suppose that x W H! L is a bounded operator such that

kx qk2 � "kqkH for all q 2H . Then

(6-14)
.1�…�/.DC x /q


2
�

1

2
��1
kqkH
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for all q 2 H?
�

. Suppose that .1 �…�/.DC x /W H?
�
! L?

�
is invertible. Then it

follows from (6-14) that its inverse has norm bounded by 2� . This uniform norm bound
implies that the operator .1�…�/DW H?� ! L?

�
is invertible if " < .1=100/��1 .

It follows from (2-11) and (2-12) that both H?
�

and L?
�

vary in H and L in a uniformly
continuous fashion as � varies in K� . This understood, the argument from the preceding
paragraph implies the following: If the � D 0 version of .1�…�/D is invertible as a
map from H?

�D0
to L?

�D0
, then there exists � > 1 such that .1�…�/D is invertible

from H?
�

to L?
�

if k�kK� � ��1 .

In the case where � D 0, or is smooth, there is a straightforward analog of (2-23) that
can be applied here in conjunction with the formula in (6-7) and (6-8) that finds

(6-15) .1�…�/D…� D .1�…�/R…� � .1�…�/x…� ;

where kRqk2 � ckqk2 with c a constant, and with x a first order operator that obeys

(6-16) kx qk2 � c0r�1=2��1
† kqkH:

Indeed, x has two contributions. The first comes from the terms that are indicated by
r�� in (6-6) and (6-7) and the second from the fact that the exponential map eC on any
given end of any component C �† does not quite map the fibers of N1!C to constant
.s; t/ slices of R�S1�C unless C DR� . In any event, given "> 0, it follows from
(6-16) that there exists � > 1 such that kx qk2 � "kqkH when r � � . In light of the
preceding paragraph, it is thus sufficient to prove that .1�…�D0/.DC x /W H?

0
!L?

0

is invertible when r is large.

To this end, remark that the norm bound in (6-14) implies that .1�…0/.DC x / has
closed range in L?

0
and so its cokernel is isomorphic to the kernel of its adjoint. Note

that this adjoint is not the formal L2 adjoint; it is the adjoint that maps from L?
0

to
H?

0
. The formal L2 adjoint of .1�…0/.DC x / is .1�…0/.D

|C x |/ where D|

and x| denotes the respective formal L2 adjoints of D and x , and where .1�…0/

here denotes the L2 orthogonal projection onto H?
0
�H . The maximal domain of

this formal L2 adjoint consists of the elements in L?
0
\H .

Suppose for the sake of argument that f 2 L?
0
\H and f is also in the kernel of the

adjoint of .1�…0/.DCx /. Then .1�…0/.D
|Cx |/f D 0. In this case, the argument

used above to prove (6-14) can be repeated to prove that fD 0. This understood, it is
sufficient now to prove that the kernel of the adjoint of .1�…0/.DC x / is in H . To
do so, suppose that z 2H . By virtue of (6-15) and (6-16),

(6-17)
.1�…0/.DC x /…0z


2
� ckzk2:
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Thus, if f 2 L?
0

is in the kernel of the adjoint of .1�…0/.DC x /W H?
0
! L?

0
, then

(6-18)
ˇ̌
hf; .DC x /zi2 � ckfk2kzk2

for all z 2H . This implies that f is in the domain of the formal L2 adjoint of DC x ,
and hence f 2H . Given what was said earlier, fD 0.

6.c Solving (6-10)

A solution to (6-10) when � is in a small radius ball in B 2K is described below. It
has the form bD hC q where q 2H?

�
has small norm. Here, h serves two purposes:

(6-19)
� It supplies the desired s!˙1 limits. In particular, lims!˙1 hD b˙ .

� It facilitates the use of Lemma 6.1.

What follows elaborates on the second point. The plan is to find this particular element
q 2H?

�
as the fixed point of a map from H?

�
to itself that sends any given q to

(6-20) T .q/DD�1.1�…�/
�
.v� vh/� r1=2q� q� 2r1=2h� q

�
;

where D is shorthand for .1�…�/DW H?� ! L?
�

and where

(6-21) vh DDhC r1=2h� h:

Granted Lemma 6.1, then (6-20) gives a well defined self map of H?
�

provided that

(6-22)
� The map q! h� q defines a bounded map from H?

�
to L.

� v� vh 2 L.

In what follows, (6-22) will be required to hold such that h� . � /W H?
�
!L has small

operator norm and such that .1�…�/.v� vh/ has small L2 norm. These last two
constraints are responsible for certain parts of h.

To quantify this small norm business, remark that the existence of a fixed point to T is
proved below with the help of the contraction mapping theorem. The use of the latter
requires that T map some ball in H?

�
to itself. Consider, in light of this constraint, the

term on the far right in (6-20) that is linear in q: According to Lemma 6.1, the H–norm
of the contribution to T from the linear term is no greater than � r1=2kh� qk2 . Thus,
the linear contribution to T is norm decreasing provided that

(6-23) kh� qk2 �
1

4
c�1

0 r�1=2
kqkH for all q 2H:

The fact that T must map a ball to itself also makes demands on the term in (6-20)
that is quadratic in q. As it turns out, these demands can be met when kv� vhk2 has
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small L2 norm. Indeed, an appeal first to Lemma 6.1 and then to (6-3) finds that

(6-24)
D�1.1�…�/.r

1=2q� q/


H � c0r1=2
kqk24 � c0r1=2

kqk2H:

Granted only (6-23) and (6-24), then T can map a ball in H?
�

about the origin to itself if
the ball has radius less than 1

4
c�1

0
r�1=2 . This is insured only if the q–independent term

in (6-20) lies well inside this ball. Given Lemma 6.1, it is in the radius r�1=2ı ball when

(6-25)
.1�…�/.v� vh/


2
� c�1

0 r�1=2ı:

This last bound quantifies the small L2 norm constraint on v� vh .

The preceding discussion is summarized by the following lemma.

Lemma 6.2 The constant � from Lemma 6.1 can be chosen so as to guarantee the
following: Fix r � � and an element � 2K�\K with k�kK < ��1 . Use � to define T
as in (6-20) with h obeying (6-23) and such that k.1�…�/.v� vh/k2 � �

�1r�1=2 .
Then T is a contraction mapping on the ball of radius ��1r�1=2 in H?

�
. Thus, the

map T has a unique fixed point in this ball, and the latter has H–norm bounded by
�k.1�…�/.v� vh/k2 .

Proof of Lemma 6.2 Given what is said above, it suffices to verify that � can be
found so as to guarantee that T is a contraction on the radius ��1r�1=2 ball in H?

�
.

Granted (6-23), this follows from the bilinear version of (6-24):

(6-26)

D�1.1�…�/.r
1=2q0 � q0� r1=2q� q/


H

� c0r1=2
kq0� qk4

�
kq0k4Ckqk4

�
� c0r1=2

kq0� qkH
�
kq0kHCkq

0
kH
�
:

6.d The description of h

The lemma that follows asserts that a section h of iT �M ˚S˚ iR can be found with
all of the desired properties. The lemma refers to the norm k � kK2

1
that is obtained by

replacing each version of k � kK in (6-20) by the norm defined by the top line of (2-27).

Lemma 6.3 The constant � that appears in Lemma 6.1 can be chosen so as to guaran-
tee the following: Fix r � � and suppose that � 2 K� has k�k1 � ��1 . Then there
exists h such that
� lims!˙1 hD b˙ .
� kh� qk2 � r�9=16kqkH for all q 2H .

Moreover, if k�kK2
1

is finite, then

� k.1�…�/.v� vh/k2 � � r�1=2.r�1=2C8� Ck�kK2
1
/.

Geometry & Topology, Volume 14 (2010)



2668 Clifford Henry Taubes

Proof of Lemma 6.3 The proof that follows has six parts.

Part 1 This part of the proof addresses the jsj !1 limits of h. To this end, reintro-
duce R� from (4-8) and introduce the functions ��D�.sCR�/ and �CD�.s�R�/.
The required behavior as jsj !1 is met if h has the form

(6-27) hD ��b�C�CbCC h1;

where h1 at this point is constrained only by the requirement that its norm should limit
to zero as jsj !1. With (6-23) in mind, note that

(6-28) kb˙ � qk2 � c0r�3=4
kqkH

for all q 2H? . Indeed, Lemma 3.10 with (3-8) implies that the L4 norms on M of
bC and b� are bounded by c0r�3=4 . Meanwhile, the latter bound on each constant s

slice of R�M implies the bound that is asserted by (6-28). Lemma 3.10 also implies
that

(6-29) r1=2
 jd��j jb�j 2

C r
��.1���/b� � b�2

� c0r�1=2:

A similar inequality holds using �C and bC . These inequalities have the following
pleasant consequence: Neither the ��b� nor the �CbC contribution to h will foul the
second and third requirements stated by the lemma if r is sufficiently large.

Part 2 As it happens, h1 can not, in general, be taken equal to zero. To elaborate,
remark that what is written as v in (6-10) has a component from the term .i � d�C
1
2
BAK

/ on the right hand side of the top equation in (5-20). With h1 D 0, this term
contributes something of size O.R�/r

�1=2 to the L2 norm of v�vh . This understood,
let b0 denote the small solution to (3-34) and write

(6-30) hD ��b�C�CbCC�0b0C h2;

where

�0D .1���/.1��C/.1�
P

C2C�C /
�
1��R�

P
2„†�

����RC

P
2„†C

�C
�
:

Note that (6-28) holds with h0 replacing h˙ and for the same reason: The H norm
of b0 on M is no greater than c0r�1=2 and its L1 norm is no greater than c0r�1 .
These facts about b0 imply that

(6-31)

� r1=2
 jd�0j jb0j


2
� c0R

1=2
� r�1=2 � c0r�1=2C8� .

� r
�0.1��0/b0 � b0


2
� c0r�1C8� .

� r�
�˙�0b0 � b˙


2
� c0r�1C8� .
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By construction, the b0 contribution to h takes care of the contribution to v from
the part of r�1=2.i � d�C 1

2
BAK

/ that lies where jsj � R� and has distance �� or
more from † in that the L2 norm of .v� vh/ from this part of R�M is bounded
by c0r�1C8� . Meanwhile, the rest of the contribution of r�1=2.i � d�C 1

2
BAK

/ to
v� vh is supported at points with distance c0�� or less from the jsj< 4R� part of †.
Given that the volume of this region is bounded by c0�

2
� lnr, it follows that the L2

norm of this contribution to v� vh is bounded by c0r�1C8� also.

Part 3 It is not possible to take h2 D 0 in (6-30) because of contributions to v

from points with distance �� or less from †. In particular, there are relatively large
contributions to v from each C 2 C version of UC that come from .AC;r ; ˛C;r / and
tC � . To say more about these contribution, suppose first that C is not R–invariant.
Use .x� ; ��/ to denote the version of (2-37) that is defined using � D �C and using
the section of CN;1! C that assigns the symmetric vortex to each point for c. (Note
that (2-33)’s pair .x; �/ is zero in this case.) Let .x0;1

� ; �0;1� / denote the part of .x� ; ��/
that involves ��T 0;1C . Both x0;1

� and �0;1� are sections over N of ��.N ˝T 0;1C /.
Introduce .x0;1

�;r ; �
0;1
�;r / to denote the pullback via yr of .x0;1

� ; �0;1� /.

As in Part 3 of Section 6.a, identify the bundle iT �M ˚S˚ iR over UC with the
bundle .VC 0 ˚ VC 1/˝ �

�T 0;1C . The parts of v not previously discussed can be
written on Uc using a calculation like that in Section 2 of the article Gr) SW from [5].
In particular, they can be written as vC �C�mf z where vC � 2 VC 0˝�

�T 0;1C and z

obey

(6-32)

� vC � D
�
x0;1
�;r � r1=22�1=2.�C sC�Cxs/.1� j˛

C;r j2/;

�0;1�;r � .�C sC�Cxs/@
V
AC;r ˛

C;r
�
.

� jzj � c0r�1=2
�
1Cjr�C jC j�C j

�
e�
p

r jsj=c0 .

Here, AC;r is the pullback of AC;r to the fibers of N . The norm and covariant
derivative of �C that appear in (6-32) are defined by viewing �C as a section over C of
the pullback of the bundle V1;0CN;1! CN;1 via the section that assigns the symmetric
vortex to each point.

Suppose next that C DR�  is a component of † with associated integer q. Then
the parts of v on UC not already accounted for can also be written as vC �C z with jzj
satisfying the inequality in the second bullet of (6-32) and with vC � viewed as a map
to the summand V0 � V0˚V1 that is given by the following modification to what
appears in the top bullet of (6-32): First, r replaces r , the coordinate z replaces s, and
 ’s version of .�; �/ replaces the pair .�C ; �C /. Second, .AC;r ; ˛C;r / are defined in
Step 2 of Part 2 in Section 5.a from the map cW C ! Cq that assigns the symmetric
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vortex to each point. Third, .x0;1
�;r ; �

0;1
�;r / are defined using the data supplied by �C .

Indeed, given the identification EjC with C �C as described in Step 2 of Part 2 in
Section 5.a, there is a corresponding version of .x� ; ��/, this as defined by (2-37) using
�C for � and using the constant map from C to Cq that assigns the symmetric vortex
to each point for c. (Note that .x; �/D 0 in this case as well.) Introduce .x0;1

� ; �0;1� / to
denote the part of .x� ; ��/ that involves ��T 0;1C . Both x0;1

� and �0;1� map R�S1�C
to C . Now use .x0;1

�;r ; �
0;1
�;r / to denote yr� .x

0;1
� ; �0;1� /.

The L2 norm of vC � over UC has size O..supE2E RE /
1=2/r�1=2 . This is trouble for

the lemma’s third item. Meanwhile, the L2 norm of r�1=2.1Cjr�C jC j�C j/e
�
p

r jsj=2

over any given component of UC is no greater than c0r�1..supE2E RE /
1=2Ck�kK2

1
/;

thus the contribution of z to the L2 norm v over UC does not foul the third item in
the lemma.

What follows describes how to construct h2 so that h has a term which cancels most
of the vC � contribution to v. The construction involves a section, bC , of the bundle
iT �M ˚S˚ iR over UC . Suppose that C 2 C is not R–invariant. Then bC is given
as a section, .0; pC / of VC 0˚VC 1 . If C DR� , view a section of iT �M ˚S˚ iR
over UC as a map to V0˚V1 and the map bC again has the form .0; pC /.

If C is not R–invariant, pC is defined on the whole of each fiber of N over C \UC

as the unique section that obeys on each fiber the equation

(6-33) 2#
|
C;r

pC � .1�…
0/vC �D0 D 0;

where the notation is as follows: First, the operator #|
C;r

maps sections of VC 1 to
those of VC 0˝�

�T 0;1C so as to send any given section .p; �1/ of VC 1 to that of
VC 0˝�

�T 0;1C with components

(6-34) �x@V pC 2�1=2r1=2
x̨

C;r�1 and � @V
AC;r �1C 2�1=2r1=2˛C;r p:

Second, …0 denotes the L2 orthogonal projection along each fiber of N to the L2

kernel of the adjoint, #C;r . Note in this regard that the kernel of #C;r is spanned on
each fiber by the pair .q; �0/D .2

�1=2r1=2.1� j˛C;r j2/; @V
AC;r ˛C;r /.

If C DR�  , then pC is defined on the whole of C over each point in C \UC . It
is defined on each such copy of C as the unique solution to the analog of (6-33) that
takes #|

C;r
to be the operator on C1.CIC˚C/ that is given by the version of (6-34)

that uses .2�=` /1=2.d=dz/ in lieu of @V and r in lieu of r .

In either case, the existence of pC follows using (2-7) to solve (6-33) fiberwise along C .
Moreover, (2-1), (2-2) and (2-7) imply that

(6-35) jpcjC jr
H pC jC r�1=2

jr
V pC j � c0r�1=2e�

p
r jsj=c0 ;
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where rH is the horizontal part of the covariant derivative as defined by AC;r and
rV the vertical part.

With pC and thus bC in hand, write

(6-36) hD ��b�C�CbCC�0b0C
�P

C2C�C…E2EC
.1��E /

�
bC C h3:

With h3 zero on UC , (6-33) and (6-35) have the following consequence: The L2 norm
on UC of v�vh is now bounded by c0r�1 supE2E RE when �D 0. Take h as in (6-36)
with h3 zero on UC . If � ¤ 0, then the L2 norm of v� vh over UC is bounded by

(6-37) c0

�
r�1 sup

E2E
RE C r�1=2

k�kK2
1

�
� c0

�
r1C8�

C r�1=2
k�kK2

1

�
:

This follows using (2-7) with (2-11), (2-12) and (2-38).

Note that (6-35) also implies that kbc �qk2� c0r�1=2kqk2� c0r�1kqkH when q2H .
Thus, the contribution to h from bC does not cause problems with regards to the second
item in the lemma if r is large.

Part 4 It is not in general possible to take h3D 0 in (6-36) because (6-32) has analogs
in each U˙ . To say more about this, focus attention on some  2„†� . There are
three regions in R� S1 �C to consider with regards to the L2 norm of v. These
are denoted in what follows by X1;X2 and X3 . The first region, X1 , consists of the
points in U��R�S1�C where w ��R� and jzj � 4�� . The second region is the
complement in U� of the first region and the third. What follows describes the third
region, X3 : This is the subset of U� with the following property: The coordinates
.w ; t; z/ are such that z has distance �† or less from the constant .w ; t/ slice of an
end E �†\U� . Meanwhile, the coordinate w obeys w > �RE � 8R.

Here is a summary of the story for X1 : What is written as v in (6-1) and (6-10) is all
but cancelled by the contribution of ��b� to vh . Indeed, it follows from Constraint 2
in Section 4.b that there is a positive constant, �� c�1

0
with the following significance:

Suppose that h3 D 0 at points in U� where w � �R� . Then v� vh at any given
.w ; t; z/ 2X1 is bounded by

(6-38) c0

�
r�2e�w

C
�
jr��jC j��j

��
e�
p

r jzj=c0 :

Here, and in what follows, the covariant derivative and the norm for �� are defined
by viewing the latter as a section of the pullback of T1;0Cm

Given the preceding, it follows using (4-9) that the contribution to the L2 norm of
v� vh from X1 � U� is bounded by c0r�1=2.r�1=2Ck�kK2

1
/.
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Part 5 This part considers the L2 norm of v in X2 . There is, first of all, a contribution
to this norm from the term i r�1=2.�d�C 1

2
BAK

/. The L2 norm of this contribution
on X2 is bounded by c0��r

�1=2.R��R/1=2 . In particular, it is too small to bother
the third item of the lemma given (4-8). The size of this contribution is bounded
by c0r�1C4� .

There is also a contribution to the L2 norm of v on X2 that comes directly from
.A��;r ; ˛��;r /, this the analog of (6-32). This pair is defined in the paragraph that
follows (5-14). This contribution can be written as .v��C z/. Here, v�� on X2

maps to V0 and has the form

(6-39) v�� D
�
x0;1
�;r ; �

0;1
�;r

�
� .�zC�xz/

�
2�1=2r1=2

 .1� j˛�;r j2/; @A��;r ˛
��;r

�
;

where the notation is as follows: First, .x0;1
�;r ; �

0;1
�;r / are defined in terms of .A��; ˛��/

with the latter given in (5-14). To elaborate, introduce the .A��; ˛��/ versions of
what is written in (2-37) and let .x0;1

� ; �0;1� / denote the resulting expression. View
.x0;1
� ; �0;1� / as functions on .�1;�R/ � S1 �C . Then .x0;1

�;r ; �
0;1
�;r / designates the

pullback of .x0;1
� ; �0;1� / via yr . Second, the pair .A��;r ; ˛��;r / is defined in

the paragraph that follows (5-14). Third, @A�;r denotes the covariant version of
.2�=` /

1=2.@=@z/.

What is written as z accounts for the various cut-off functions and for the fact that the
metric from R�M on U� has z and t dependence. In any event,

(6-40) jzj � c0r�1=2
 .1C r jzj2/

�
1Cjr��jC j��j

�P
z02Z�j.w;t/

e�
p

r jz�z0j=c0 :

The contribution to the L2 norm on X2 of v from z does not foul the third item in
the lemma because the L2 norm on X2 of what is written in (6-40) is bounded by

(6-41) c0.r
�1
C �2
�/.R

1=2
� Ck�kK2

1
/� c0r�1C8� .1Ck�kK2

1
/:

On the other hand, the L2 norm on X2 of .1�…�/v�� is O.��R
1=2
� /. This relatively

large norm comes from the right most terms in (6-39). Indeed, the L2 norm on X2

of the term .1 �…�/.x
0;1
�;r ; �

0;1
�;r / is bounded by c0.1Ck�kK2

1
/��R

1=2
� because the

� D 0 version of .x0;1
�;r ; �

0;1
�;r / is annihilated by the � D 0 version of .1�…�/ modulo

terms whose L2 norm on each constant .w ; t/ slice in X2 is bounded by c0�� . This
understood, let v0

�
denote the troublesome term, v0

�
D v��� .x

0;1
�;r ; �

0;1
�;r /.

What is written as h3 in (6-36) supplies a term in vh that cancels the dominant part
of .1�…�/v0� . This term in h3 is defined as follows: Introduce #��;r to denote the
operator on each constant .w ; t/ slice of .�R�;�R/�S1�C that is defined by what
is written in (6-7). View this operator on each constant .w ; t/ slice as an operator from
C1.CIV1/ to C1.CIV0/.
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The identities in (2-7) can be used to prove the following: There exists a smooth map
p� W .�R�;�R/ � S1 �C ! V1 that obeys 2#

|
��;r

p� � .1�…
0
�
/v0
�
D 0 on every

constant .w ; t/ slice of .�R�;�R/�S1 �C . Here, …0
�

denotes the L2 –orthogonal
projection on each constant .w ; t/ slice to the L2 kernel of #��;r . Equations (2-1),
(2-2) and (2-11), (2-12) with (2-7) imply that this map p� obeys

(6-42)
� jp� jC r�1=2jrvp� j � c†��.1Cj��j/

P
z02Z�j.w;t/

e�
p

r jz�z0j=c0 .

� jrH p� j � c†��
�
1Cjr��jC j��j

�P
z02Z�j.w;t/

e�
p

r jz�z0j=c0 .

Here rH denotes the dw and dt parts of the covariant derivative on maps to
V1DC˚C that act as the usual derivative on the first factor and as the derivative that
is defined by the connection A�;r on the second factor.

With p� understood, introduce the section b� of iT �M ˚S˚ iR over the w >�R�

part of U� that is defined by the map from .�R�;�R/�S1 �C to V0˚V1 given
by the pair .0; p�/. The contribution to h3 from  2„†� given by

(6-43) .1���/�R���b�:

With h3 defined by (6-43) over X2 , the L2 norm of .1�…�/.v� vh/ over X2 is
bounded by what is written on the right hand side of (6-41). In addition, kb� � qk2 �
c0��kqk2 � c†r�1C3�kqkH and so the contribution from (6-43) to h does not cause
problems with regards to the second item in the lemma when r is large.

Part 6 Let E denote an end that intersects U of a component C � †. Set XE
to denote the component of X3 where the coordinates .w ; t; z/ are such that z has
distance �† or less from the constant .w ; t/ slice of E and the coordinate w obeys
w > �RE � 8R. Extend h3 to XE as

(6-44)
�
�C�E C .1��C /�R���

�
b�:

Consider now the L2 norm of v�vh on XE . To this end, consider first the case where
� D 0. In this case, .A� ;  �/ is given by .A�;  �/ with the latter defined on XE in
(5-9). An evident new issue here concerns the fact that .AE ; ˛E / is not identical in XE
to .A;r ; ˛;r / when C is not R–invariant. Even so, they almost agree. To quantify
this, focus on a disk in E where the coordinates .w ; t/ are single valued. Coordinates
for the fiber of N4C over this disk are written as .w ; t; �/. Here, the bundle N is
trivialized by the restriction along C of the vector field @=@z . Then .AE ; ˛E / can be
written using these coordinates and the trivialization of N as

(6-45) AE
D�0Cu0r.�dx��x�d�/C

�
u0r j�j2�

1

2

�
.xw�w/ and ˛E

D r1=2e�u�;
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where the notation is as follows: First, �0 is the product connection for this trivialization.
Meanwhile, w has only ds and dt components and its coefficients depend only on
w and t . Moreover jwj � c† . The 1–form w comes from writing r��D d�Cw�.
Finally, u and u0 are defined in terms of a certain real valued function, yu, on Œ0;1/; at
any given .w ; t; �/, they have respective values yu.r j�j2/ and ..d=dy/yu/.r j�j2/. Note
that yu.y/D 1

2
lnyCO.e�y=2/ at points y � 1.

In order to compare (6-45) with .A;r ; ˛;r /, it is necessary to pull back the latter via
the map that is depicted in (4-4). To this end, use (2-31) to write

A;r D �0CA0C u0j.z�w/r
�
.z�w/dxz� .xz� xw/dz

�
C r

˛;r D r1=2e�u.z�w/C r 0;
(6-46)

where the notation here is as follows: First, wDw.w ; t/ gives the z–coordinate of the
constant .w ; t/ slice of the disk in † under consideration. Second, uD yu.r jz�wj2/
and u0 D ..d=dy/yu/.r jz�wj2/. Third, both r and r 0 have absolute values bounded
by c†e�

p
r�†=2 . Meanwhile, it follows from (2-3) and (2-5) that A0 here is

(6-47) A0 D�u
0
j.z�w/r

�
.z�w/d xw� .xz� xw/dw

�
C r00;

where jr00j � e�
p

r�†=2 also. Write the pullback of A;r as �0Cgdx�� xgd�Cxz� z

where z has only ds and dt components. Granted (6-46) and (6-47), it follows that

(6-48)

� jg�u0r�j � c0r1=2jzj2e�
p

r j�j=c0 .

� jzj � c0e�
p

r j�j=c0 .

� j˛;r �˛E j � c0jzj
2e�
p

r j�j=c0 .

To see what this implies, use vE to denote the version of v on XE that would result
were .A� ;  �/ defined by taking � D 0 and the �E D 0 in (5-9). Set v� to denote
the version of v that would result were .A� ;  �/ defined by taking � D 0 and �E D 1

in (5-9). By virtue of (6-48),

(6-49)
ˇ̌
v� .1��E /vE ��Ev�

ˇ̌
� c0r�1=2.1C r jzj4/e�

p
r j�j=c0 :

This last inequality is derived with the help of the following identity: Suppose that
pairs of numbers .bE ; b�/ and .cE ; c�/ are given and a number �E . Then

(6-50)

�
�E b�C .1��E /bE

��
�E c�C .1��E /cE

�
D .1��E /bE cE C�E b�c���E .1��E /.bE � b�/.cE � c�/:

Given (6-49), it then follows from (6-35), (6-37) and (6-42) that the L2 norm on XE
of .1�…�/.v� vh/ on XE is no greater than what is written in (6-41) with � D 0.
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In the case when � ¤ 0, the almost identical arguments prove that the L2 norm of
.1�…�/.v� vh/ is also bounded by what is written in (6-41).

If R�  �† and E is its w ��1 part, it is also the case that .1�…�/.v� vh/ has
its L2 norm bounded by what is written in (6-41). The argument for this is much like
that just given and left to the reader.

6.e Summary

The proposition that follows summarizes Lemmas 6.2 and 6.3, and then says a bit more.
To set the stage, suppose that some small v > 0 has been given for use in (2-27) and
(2-29). Let f 2 C1.M I iT �M ˚S˚ iR/ denote an element with compact support.
Define kfk� by setting

(6-51) kfk2� D sup
p2R�M

sup
�2.0;1/

��v
Z

dist.p;� /<�

�
jr
�fj2C ��2

jfj2
�
:

Here, as before, r� is the Levi-Civita covariant derivative on sections of iT �M ,
the covariant derivative that is defined by A� on the sections of S , and the exterior
derivative on the sections of iR.

Proposition 6.4 Fix † as in Section 4.b, but do not require Constraint 4. The con-
stant � in Lemmas 6.1–6.3 can be chosen so as to guarantee the following: Fix r � �

and let B � K denote the ball of radius ��1 . Then B � K� . Given � 2 B , define
hD h.�/ as instructed by Section 6.d. There exists a unique qD q.�/ 2H?

�
such that

� bD hC q obeys (6-10).

� kqkH � r�1=2��1 .

Moreover,

� kqkH � �r�1=2.r�1=2C8� Ck�kK2
1
/.

� The assignment � ! q.�/ defines a smooth map from B to H and the k � kH
norm of the directional derivative of the map �! q.�/ at any � 2 B along any
given vector � 0 is bounded by �r�1=2k� 0kK .

Finally,

� kqk� � �r�1=2.r�1=2C8� Ck�kK/.

� The k � k� norm of the directional derivative of the map �! q.�/ at any � 2 B
along any given vector � 0 is bounded by �r�1=2k� 0kK .
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Proof of Proposition 6.4 The existence of q and the first three items follow directly
from Lemma 6.2 and Lemma 6.3. The fact that the assignment �! q.�/ is smooth as
a map from B to H is a standard consequence of the contraction mapping construction
given the manner in which .A� ;  �/ varies with � , and given (2-11) and (2-12) to
describe the variation of the projection …� .

To say something about the derivative of this map, fix � 2 B and let � 0 denote an
element in K with norm 1. Use q0 to denote the directional derivative of q in the direc-
tion � 0 . Write q0 D .1�…�/q

0C…�q
0 . Note that …�q0 D�…0�q where …0� denotes

the derivative of the projection in the direction of � 0 . Use q? to denote .1�…�/q0 .

Properties of …0� can be deduced using (2-11) and (2-12). In particular, the third bullet in
Proposition 6.4 guarantees k…0�qkH � c0r�1=2.r�1=2C8� Ck�kK/. To obtain a bound
on the norm of q? , note that the latter obeys an equation that has the schematic form

(6-52)
.1�…�/Dq?C .1�…�/

�
2r1=2q� q?C 2r1=2h� q?

CD0qC 2r1=2h0 � q� .v0� v0h/
�
D 0;

where D0; h0; v0 and v0h denote the respective derivatives of D; h; v and vh in that
direction � 0 . Given (6-3), Lemma 6.1, the second bullet in Lemma 6.3 and the bound
on q given by the second bullet in the proposition, it follows from (6-52) that

(6-53) kq0kH � c0

�
kD0qk2C r1=2

kh0 � qk2Ckv
0
� v0hk2

�
;

when r � c0 and when k�kK � c�1
0

. A bound by c0r�1=2 on the right hand side of
(6-53) is derived using much the same sorts of arguments that are used to obtain the
second two bullets in Lemma 6.3. The details of these arguments are left to the reader.

What follows is a derivation of the bounds on kqk� and kq0k� that are asserted by the
last two bullets of Proposition 6.4. To start, fix p 2R�M and � > 0. Suppose that
f is, for the moment any given element of H . Define

(6-54) mf.p; �/D

Z
dist.p;� /<�

�
jr
�fj2C ��2

jfj2
�
:

The last two bullets of Proposition 6.4 assert that mq.p; �/ and mq0.p; �/ are respec-
tively bounded by c0r�1.r�1=2C8� Ck�kK/

2�v and c0r�1�v . The proof that this is
so requires that v is small; an upper bound is derived in the proof of the forthcoming
Lemma 6.5.

To set the stage for Lemma 6.5, suppose for the moment that q2H?
�

is not the element
given by Proposition 6.4, but that it does obey the equation

(6-55) DqD wq D…�Dq� .1�…�/
�
r1=2f� qC 2r1=2h� q

�
C u;
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where f 2H and where u 2 L?
�

. Here, and in the rest of this proof, …� is viewed as
a map from L to itself, rather than as a map from L to L2 .

Lemma 6.5 The constant � from Lemmas 6.1–6.3 can be chosen so as to guarantee
the following: Suppose that v < ��1 , that r � � , and that � 2 K� and k�k1 � ��1 .
Suppose in addition that the element f 2H has kfkH � ��1r�1=2 . Finally, suppose
that u 2 L?

�
and that there exist constants mL and m� such that kuk2

2
�mL and

(6-56)
Z

dist.p;� /<�
juj2 �m��

v

for each p 2 R �M and � > 0. If q 2 H?
�

obeys (6-55), then kqk2H � �mL and
kqk2� � �.m�C .r

�1=4Ck�k2K�/mL/.

This lemma is proved momentarily.

The proofs of the asserted bounds on kqk� and kq0k� , and of Lemma 6.5 use the fol-
lowing three part digression. This digression supplies what are needed to bound the L2

norm of the projection …�. � / or its directional derivative over any given ball in R�M .

Part 1 Fix an element C 2 C that is not R–invariant and consider what …� does to a
smooth section of iT �M ˚S˚ iR with compact support where jsj � 2R on C . To
this end, write the restriction as fD .f0; f1/ with f0;1 a section of VC 0;1 . Then …� f
is equal to t �.�Œf�/ where �Œf�D ..�C /C2C ; .��/2„†�/; .�C/2„†C/ has only the
nonzero component �C Œf � with the latter defined at p 2 C � .

S
E2EC

E2R/ from an
integral over the jsj � �C part of fiber of N at p . This integral can be written as

(6-57) �C Œf�jp D .1C zp/

Z
N jp

�C �
|
1�;r

f0;

where �1�;r D .1=
p
�/..2�1=2r1=2.1 � j˛C �;r j2/; @V

AC�;r ˛C �;r / and where jzpj �

c0r�1=2 . The integration is defined using the metric that is pulled back from R�M

by the exponential map eC . Analogous integrals define the components of �Œf� in the
generic case.

Part 2 This part of the digression introduces notation that is used subsequently in this
and the next subsection. To start, D� for �> 0 denotes a disk of radius � that lies either
in some C 2 C version of C � .

S
E2EC

E2R/, or in some U� version of .�1;�R��

S1 , or in some UC version of ŒR;1/�S1 . With D� specified, use � to denote the
projection from eC�1.UC / to D� when D� � C , the projection to .�1;�R��S1

when D� is in some U� , or the projection to ŒR;1/�S1 when D� is in some UC .
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As a final piece of notation, use �r to denote the function y�r1=2e�
p

r dist.†;� /=100 where
y� here denotes �C or �� or �C depending on whether D� is in a component C of †,
or in some U� version of .�1;�R��S1 or some UC version of ŒR;1/�S1 .

Part 3 Let D� be as above and let D2� denote the concentric disk of radius 2� . If
C 2 C is not R–invariant and D� � C , let y� denote a section of V0C ˚V1C over
��1.D2�/. If C 2 C is R–invariant and D� � C , let y� denote a map from D2� �C
to V0˚V1 . If D� is in any U˙ version of R�S1 , let y� again denote a map from
D2� �C to V0˚V1 . In all cases, assume that jy� j � f �r where f is an L2 function
with compact support on D2� .

Granted that such is the case, then y� can be viewed as an element in L.

Now suppose that f 2 L. Fix p 2R�M and � > 0. Define …� f 2 L by

(6-58) …� fD y�

Z
�1. � /

y�|f:

The integral of …� f over the radius � ball centered at p is zero unless this ball intersects
the support of y� in which case

(6-59)
Z

dist.p;� /<�
j…� fj2 � c0 min.1; r�2/

Z
z2D2p

 
f 2

 Z
��1.z/

�r jfj

!2!
;

where D� is a disk as described above.

Consider as an example …� f. The square of the L2 norm of …� f over a ball of radius
� in R�M is zero unless said ball intersects some C 2 C version of UC or some
 2„� version of U� or some  2„C version of UC . If so, then

(6-60)
Z

dist.p;� /<�
j…� fj

2
� c0 min.1; r�2

� Z
z2D2p

 Z
��1.z/

�r jfj

!2

:

To use Lemma 6.5 for the proof of the fifth bullet of Proposition 6.4, note that q from
Proposition 6.4 obeys (6-55) with fD q and with uD r�1=2.1�…�/.v� vh//. Given
what is said in the digression, and given the definition in (2-27) of k � kK� , arguments
much like those that were used to prove the third bullet of Lemma 6.3 bound the integral
in (6-56) by c0r�1=2.r�1=2C8� Ck�kK/�

v . The details involve nothing new and are
left to the reader.

Lemma 6.5 can also be used to derive the bound for the k � k� norm of the directional
derivative of q that is asserted in the sixth bullet of Proposition 6.4. To this end, fix �
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and let � 0 2 K denote a vector with unit norm. Let q0 again denote the derivative of
q in the direction of � 0 ; and again write q0 D q?�…0�q.

The square of the L2 norm of …0�q over the ball of radius � centered at p is bounded
by c0 times the fD q version of the right hand side of (6-58). As a consequence, ��2

times its L2 norm is bounded by c0kqk
2
��
v . Meanwhile, the square of the L2 norm of

r�.…0�q/ over such a ball can be written as the sum of two terms. The first involves …0�
acting on derivatives of q, and the second involves derivatives of …0� acting on q. The
square of the L2 norm of the former is bounded by c0 times the fDr�q version of the
right hand side of (6-58); thus it is also bounded by c0kqk

2
��
v . Given (2-11) and (2-12),

it follows from (6-59) that the square of the L2 norm of the latter term is bounded by

(6-61) c0 min.1; r�2/

Z
z2D2�

 �
jr�j2Cjr� 0j2C 1

� Z
��1.z/

�r jqj

!2!
:

It follows using [3, Lemmas 2.9 and 5.4.1] that what is written in (6-61) is also bounded
by c0kqk

2
��
v .

To say something about the k �k� norm of q? , note first that the latter obeys (6-52) and
that (6-52) is the version of (6-55) with uD .1�…�/.D

0qC 2r1=2h0 � q� .v0� v0h//.
The constructions that are used to prove the last two bullets of Lemma 6.3 can be
differentiated, so to speak, and thus used to establish that this version of u obeys (6-56)
with m� � c0r�1=2 . The details are straightforward and left to the reader.

6.f Proof of Lemma 6.5

It follows from Lemma 6.1, the second bullet of Lemma 6.3 and (6-3) that kqk2H �
c0.r

1=2kfkHkqkHCmL/. As a consequence, kqk2H � c0mL if kfk2H � c�1
0

r�1 . To
bound kqk2� digress momentarily so as to define for each " > 0,

(6-62) kqk2�" D sup
p2R�M

sup
�2.";1/

��v
Z

dist.p;� /<�

�
jr
�qj2C ��2

jqj2
�
:

Note that kqk� D lim"!0 kqk�" . Since kqk�" < "�v=2kqkH , what is at issue is the
existence of a suitable r and " independent bound for each kqk�" . The derivation of
such a bound has eight steps.

Step 1 It follows using a Sobolev inequality that

(6-63) r

Z
dist.p;� /<�

jf� qj2 � c0rkfk2Hkqk
2
�"�

v:
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Here is the Sobolev inequality: Let q denote any given element in H . Then

(6-64)
�Z

dist.p;� /<�
jqj4

�1=2

� c0

Z
dist.p;� /<�

�
jr
�qj2C ��2

jqj2
�
;

where c0 is independent of p , � and the connection that defines r� .

Meanwhile,

(6-65) r

Z
dist.p;� /<�

jh�qj2� c0R

�Z
dist.p;� /<�

jhj4
�1=2

kqk2�"�
v
� c0r��=4kqk2�"�

v:

Indeed, this follows by first using Hölder’s inequality, and then using the properties of
the various contributions to h that are described in the proof of Lemma 6.3 to bound
the square of the L4 norm of h over any radius � ball by c0r�1��=4 .

Step 2 This step considers

(6-66)
Z

dist.p;� /<�
j…�Dqj2:

To begin the analysis, write …�DDD…�C Œ…� ;D�. This done, it follows from (6-59)
that this integral can be bounded by c0 min.1; r�2/.A1CA2/ with

A1 D

Z
z2D2�

��
jr�j2Cj�j2

��Z
��1.z/

�r jqj

�2�
:

A2 D �
2
�

Z
z2D2�

�Z
��1.z/

�r .jrqjC jqj/
2

�
:

(6-67)

Indeed, as …�qD 0, the integrand in (6-66) is jŒ…� ;D�qj2 . The commutator has zero–
th order parts which arise when derivatives in D act on � . The latter are accounted
by A1 . The other parts to the commutator arise from the terms in (6-6) and (6-7) that
are denoted by r00 , r01 , r10 and r11 . These are accounted for by A2 .

It follows from [3, Lemmas 2.9 and 5.4.1] that A1 is bounded by

(6-68) c0�
v
k�k2Kkqk

2
H � c0k�k

2
KmL�

v:

Meanwhile, A2 is bounded by c0�
2
�kqk

2
H � c0r�3=4mL . Thus, in the case when

� � r�1=2�v ,

(6-69) A2 � A2.�r1=2Cv/v � c0mLr�1=2�v:

When � � r�1=2�v , then min.1; r�2/ � �v and so min.1; r�2/A2 is again bounded
by what is written on the right hand side of (6-69). Thus if v� �=4, then the integral
in (6-66) is bounded by c0.r

�1=2Ck�k2K/mL�
v .

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology II 2681

Step 3 This step considers r
R

dist.p;� /<� j…�.h� q/j
2 . According to (6-60), this inte-

gral is bounded by c0 min.1; r�2/A3 where

(6-70) A3 D r

Z
z2D2p

�Z
��1.z/

�r jh� qj

�2

:

The contribution to A3 from b˙;0 is bounded by

(6-71) c0r

Z
js�sp j<4�

Z
M

jb˙;0j
2
jqj2� c0r

Z
js�sp j<4�

�Z
M

jb˙;0j
4

�1=2�Z
M

jqj4
�1=2

:

Here, sp denotes the value of s at the point p . As the L4 norm of b˙;0 over S1�M

is bounded by r�5=8 , the right hand side of (6-71) is bounded by

(6-72) c0r�1=4

Z
js�sp j<4�

�Z
M

jqj4
�1=2

� c0r�1=4�1=2
kqk2H:

The expression on the right side of (6-72) is bounded by c0mLr�1=4�v . Meanwhile,
the remaining contributions to A3 are bounded using (6-35) and (6-42) by

(6-73)
Z

z2D2�

Z
��1.z/

r�1=2�r jqj
2
� �r�1=2

kqk2H:

This is also bounded by c0mLr�1=4�v .

Step 4 This step discusses the term r
R

dist.p;� /<� j…�.f� q/j
2 . According to (6-60),

the latter is bounded by c0 min.1; r�2/A4 where

(6-74) A4 D r

Z
z2D2�

�Z
��1.z/

�r jfj
2

Z
��1.z/

�r jqj
2

�
:

There are two cases to consider. In the first, � � r�1=2 . In this case, the arguments
from Step 1 can be repeated to find that A4 is bounded by the right hand side of (6-63).

The second case is that where � < r�1=2 . To deal with this case, fix an identification
of ��1.D2�/ with D2� �C . Let ƒ�C denote the square lattice 1

2
�Z2 . It follows

now that

A4 � rc0

P
u2ƒ

�
e�
p

r juj=c0

Z
D2��D2�.u/

jfj2jqj2
�

� rc0

�P
u2ƒe�

p
r juj=c0

�
kfk2Hkqk

2
�"�

v:

(6-75)

Here, D2�.u/�C denotes the disk of radius 2� with center at the point u. The key ob-
servation here is that sum that appears on the far right in (6-75) is bounded by c0.r�

2/�1 .
Thus, min.1; r�2/A4 is bounded by the right hand side of (6-63) in the case � < r�1=2 .
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Step 5 Set z D .r��=4C r1=2kfkH/
2 and m� Dm�C .r

�1=4Ck�k2K/mL . With the
equation for q written as DqDwq , it has now been established that

(6-76) ��v
Z

dist.p;� /<�

ˇ̌
wq

ˇ̌2
� c0

�
zkqk2�"Cm�

�
for each � > " and point p 2R�M .

To proceed from here, fix T > 1 and consider first the case where � < T �1r�1=2 .
Let x denote the function on R�M with compact support in the ball of radius 2�

centered at p that equals 1 on the concentric ball of radius � and otherwise equals
.2� ��1 dist.p; � //. The section q� D x q of iT �M ˚S˚ iR obeys

(6-77) Dq� D sqC x wq;

where s is supported where � � dist.p; � /� 2� and obeys js j � c0�
�1 . It follows as

a consequence of what has been derived in Steps 1–3 that

(6-78)
Z
jDq�j

2
� c0

Z
�<dist.p;� /<2�

dist.p; � /�2
jqj2C c0

�
zkqk2�"Cm�

�
�v:

Use D� to denote the version of the operator D that is defined using � D 0. Write
DDD�C

p
ry� and then use the Bochner–Weitzenboch formula for D� to prove that

(6-79)
Z
jDq�j

2
� c�1

0

Z
jr
�q�j

2
� c0

Z �
1C re�

p
r dist.†;� /=100

�
jq�j

2:

As the smallest Dirichlet eigenvalue of r�|r� on the radius � ball is no less than
c�1

0
��2 , this last inequality implies that

(6-80)
Z
jDq�j

2
� c�1

0

Z
jr
�q�j

2

when T � c0 . What is written in (6-78) and (6-80) imply the following: If r � c0 ,
T > c0 and k�kK � c�1

0
, then

(6-81)
Z
jr
�q�j

2
� c0

Z
�<dist.p;� /<2�

dist.p; � /�2
jqj2C c0

�
zkqk2�"Cm�

�
�v:

Meanwhile, a standard Sobolev inequality (proved by integrating by parts in spherical
coordinates) finds

(6-82)
Z
jr
�q�j

2
�

Z
dist.p;� /<�

dist.p; � /�2
jqj2:

As a consequence, (6-81) and (6-82) imply that the function mq.p; �/ obeys

(6-83) mq.p; �/� �mq.p; 2�/C c0

�
zkqk2�"Cm�

�
�v for " < � <K�1r�1=2;

where � < 1 is independent of f, u, v , � , p and r .
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The fact that � is independent of v has the following consequence: If v < c�1
0

, then
2v� < 1=.1C c�1

0
/. Granted that v obeys this last constraint, iterate (6-83) some N

times where N is such that 2N � 2 Œ1
2
T �1r�1=2;T �1r�1=2�. This iteration process

finds that mq.p; �/ is bounded by c0.zkqk2�"Cm�/�
vCc0�

Nmq.p;T
�1r�1=2/. This

is to say that

(6-84) mq.p; �/� c0.pr1=2/ımq.p; 2T r�1=2/C c0

�
zkqk2�"Cm�

�
�v;

where the exponent ı that appears in the right most term is positive and independent
of f, u, v , � , p and r if v � 1=c0 . Note the replacement of T �1 by 2T in the right
most term. This is done for the following reason: Since there are on the order of T 8

balls of radius T �1r�1=2 inside the ball of radius T r�1=2 , any � � T r�1=2 version
of mq.p; �/ is bounded by c0T 8 times what is written on the right hand side of (6-84).

The discussion returns to (6-84) in Step 7.

Step 6 Suppose now that � > T r�1=2 . Introduce x as before and write q� D x q.
Write q� D .1�…�/q�C…�q� . Use first order Taylor’s approximations for x near
† to see that

(6-85) k…�q�k
2
2 < c0.r�/

�2

Z
��dist.p;� /�2�

jqj2C c0e�
p

r�=c0kq�k
2
2:

This uses (2-1) and (2-2) plus (2-4) and (2-5) when p 2 U˙ . By the same token,
kr�.…�q�/k

2
2

is bounded by

(6-86)
c0

�
p�2

Z
��dist.p;� /�2�

jqj2C .r1=2�/�2

Z
��dist.p;� /�2�

jr
�qj2

�
Cc0e�

p
r�=c0

�
rkq�k

2
2Ckr

�q�k
2
2

�
:

Meanwhile, Lemma 6.1 applied to .1�…�/q� finds

(6-87)
D�.1�…�/q��2

2
� c�1

0

�r��.1�…�/q��2

HCr
.1�…�/q�2

2

�
:

The preceding two inequalities imply that

(6-88)
kDq�k

2
2C �

�2

Z
��dist.p;� /�2�

jqj2CT �2

Z
��dist.p;� /�2�

jr
�qj2

� c�1
0

�
kr
�q�k

2
2C rkq�k

2
2

�
:

Equations (6-88) with (6-76) and (6-77) imply that (6-83) holds with � < 1 a constant
that is independent of f, u, v , � , p and r if v < 1=c0 and � < 1=c0 .
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As before, the inequality in (6-83) can be iterated if v < 1=c0 . Iterated N times with
N chosen so that 2N � is O.1/; which is to say greater than 1=c0 . Doing so finds that

(6-89) mq.p; �/� c0

�
zkqk2�"Cm�

�
�vC�Nmq.p; 1=c0/:

As mq.p; 1=c0/� c0kqk
2
H � c0mL , what is written in (6-89) implies that

(6-90) mq.p; �/� c0

�
zkqk2�"Cm�

�
.�vC �ı

0

/;

where ı0 > 0 is independent of v , � , p and r .

Step 7 Given that v < 1=c0 , what is written in (6-90) asserts that mq.p; �/ <

c0.zkqk2�"Cm�/�
v for � � T r�1=2 . This understood, return to (6-84) to see that

(6-91) mq.p; �/� c0.�r1=2/ım�r
�v=2
C
�
zkqk2�"Cm�

�
�v

for � such that " < � < T r�1=2 . Here it is important to note that ı is independent
of v (as well as f, u, � , p and r ). Thus, if v < ı , the (6-91) has mq.p; �/ �

c0.zkqk2�"Cm�/�
v for all " < p � 1=c0 .

Step 8 The preceding implies that kqk2�" � c0m�=.1� c0z/. It follows as a conse-
quence that kqk2�" � c0m� when r � c0 and r1=2kfkH is bounded by 1=c0 . If such
is the case, then kqk2� D lim">0 kqk

2
�" � c0.m�C .r

�1=4Ck�k2K/mL/ also.

7 The construction of instantons: Part III

The assumptions of Proposition 6.4 are taken as given in what follows; and thus its
conclusions hold. View Proposition 6.4’s vector b as a function on B . The task for
this subsection is to find a point � 2 B where

(7-1) …�
�
DqC r1=2q� qC 2r1=2h� q� .v� vh/

�
D 0:

Here, …� is viewed as a map from L to L2 .

The next proposition says what is needed about solutions to (7-1).

Proposition 7.1 Fix † as in Section 4.b satisfying all constraints. There exists ��100

and a finite dimensional, normed vector space V0 which have the following properties:
Make the constructions that lead to (7-1) with R� � , with r � � , and with the radius
of Proposition 6.4’s ball B less than ��1 . There is a linear map qW K! V0 such that

� jq.�/j � �k�kL2 .

� If � 2 V0 , then there is an element � 2 q�1.�/ with k�kK � �j�j.
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� If � 2 q.B/, then there is a unique element in B\ q�1.�/ where (7-1) holds.

� This element, �� , obeys k��kK � �.r�1=2C16� Cj�j/.

� The assignment �! �� defines a smooth map from q.B/ to B .

The vector space V0 is determined by †. It is described in Section 7.f.

Sections 7.a–7.i supply the proof of Proposition 7.1. Together, Propositions 6.4 and 7.1
supply a pair .�; b/ that have Properties 1 and 2 as described in Section 5.d. As is argued
in Section 7.j, the .�; b/ version of .A;  / given in (5-19) is gauge equivalent to an
instanton solution of (1-14) with the following large jsj asymptotics: The s!�1 limit
is the solution of (1-13) that is constructed in Section 3 from the data ‚D‚� . Mean-
while, the s!1 limit is gauge equivalent to the solution of (1-13) that is constructed
in Section 3 using the data ‚D‚C . Section 7.k gives the proof of Theorem 1.2.

7.a Proof of Proposition 7.1

The proof this proposition uses perturbative techniques. What follows gives the details.
To start, view …� in (7-1) as a map from L to the Banach space L2 . This understood,
it follows from the fourth point of Proposition 6.4 that the left hand side of (7-1) defines
a smooth map from B to L2 . As it turns out, the norm that defines L2 is not strong
enough for the purposes at hand. Here is a suitable replacement: Define L to be the
Banach space that is obtained by completing the set of smooth elements in L2 using
the norm that is defined by analog of (5-12) that has each k � kK norm replaced by the
corresponding version of (2-29). Denote this norm by k � kL .

As explained momentarily, the left hand side of (7-1) defines a smooth map from B
to L. This map is written as � ! r�1=2T .�/. Meanwhile what is denoted by T is
decomposed as T .�/ D T0 C T1� C T2.�/ where T0 D T .0/, where T1 is a linear
map from K to L and where T2 is, by definition, the rest of T . Suppose that T1 is
invertible on the kernel of the map q. Use T �1

1
to denote the inverse of the restriction

of T1 to the kernel of q. Then a solution to (7-1) in the kernel of q is neither more nor
less than a fixed point to a map from the ball B\ kernel.q/ to itself that has the form

(7-2) �!�.T1/
�1.T0C T2.�//:

The contraction mapping theorem can be used to find a unique small normed fixed point
to this map given suitable bounds on the norm of T0 , the operator norm of .T �1

1
/, and

the size of both T2 and its differential. A slight generalization of this sort of contraction
mapping argument gives a unique solution to (7-1) that maps via q to any given small
normed element in V0 . The next proposition describes the salient features of T0 , T1 ,
T2 , and q.
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Proposition 7.2 There is a constant � > 100 and a finite dimensional, normed vector
space, V0 , with the following significance: Make the constructions that lead to the
equation in (7-1) using R� � , r � � , and with the radius of Proposition 6.4’s ball B
less than ��1 . Then the left hand side of (7-1) defines a smooth map from B to L.
Write this map as r�1=2T . There is a decomposition of T as T0C T1C T2 where T0 ,
T1 and T2 obey the following:

� T0 D T .0/ obeys kT0kL � �r�1=2C8� .

� There is a surjective map q W K! V0 with jq.�/j � �k�kL2 and such that
(a) T1 maps the kernel of q isomorphically to L.
(b) kT1.�/kLCjq.�/j � ��1k�kK .

In addition,
(c) T1.�/kL2 Cjq.�/j � ��1k�kK2

1
.

� kT2.�/kL � �.r
�1=4C8� Ck�kK/k�kK .

� In addition, kT2.�/� T2.�
0/k2 � �.r

�1=4C8� Ck�kKCk�
0kK/k� � �

0kK .

By way of a reminder, k � kK2
1

is defined by replacing each occurrence of k � kK in
(5-13) by the (2-27)’s norm k � kK2

1
. Note that (c) of the second bullet is not used below

in the proof of Proposition 7.1. Proposition 7.2 is proved in Sections 7.b–7.i.

Note for reference later that Constraint 4 in Section 4.b enters only in the proof of the
second bullet; in particular, it is invoked only in Section 7.g and Section 7.h to establish
that T1 is surjective.

Proposition 7.1 is a corollary to Proposition 7.2. To elaborate, fix " > 0 such that (7-1)
is defined on the ball B �K centered at the origin of radius 1

4
". Use F to denote the

linear map .T1; q/W K! L�V0 . It is a consequence of the second bullet that F is
invertible, and that the norm of its inverse is bounded by c0 . In this regard, the norm
is defined using the norm k � kK on K and the product norm on L�V0 .

Fix �2V0 and let X�W B!K denote the map �!�.F /�1.T0CT2.�/;��/. The map
X� obeys kX�.�/kK � c0.r

�1=2C16� Ck�k2KCj�j/. It is a consequence of the third
and fourth bullets of Proposition 7.2 that there exists c0 > 4C "�1 with the following
significance: If r � c0 and if j�j � c�3

0
, then X� maps the radius c�1

0
ball in B to itself

as a contraction mapping. Thus, it has a unique fixed point in this ball. By construction,
the fixed point, �� , obeys the equations T .��/D 0 and q.��/D �. Moreover, its norm
is bounded by c0.r

�1=2C8� C j�j/. The fact that the assignment of �� to � defines
a smooth map follows in a standard manner by differentiating the fixed point equation.
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7.b Proof of Proposition 7.2: Part 1

This subsection proves that left hand side of (7-1) is in L when � 2 B and explains
why the resulting map is Lipschitz. The existence of the higher derivatives of the map
use the same sort of arguments that are used to prove that the map is Lipschitz. This
understood, no more will be said about these higher derivatives.

As noted above, it follows from the fourth point in Proposition 6.4 that the left hand
side defines a smooth map from B to L2 . This understood, there are two outstanding
questions:

Question 1 Is the contribution to the L norm from the far right term in (2-29) finite
on the left hand side of (7-1) as defined by any given � 2 B ; and if so, does this
contribution have a �–independent upper bound?

Question 2 Is this same contribution to the L norm finite on the derivative of the left
hand side of (7-1) at � 2 B along any unit length vector � 0 2 K ; and if so, does this
contribution have an upper bound that is independent of � and � 0?

Both these questions are answered affirmatively in what follows.

The subsequent arguments require a lemma that strengthens the fifth point in Proposition
6.4. To set the stage, fix � > 0 and let D� denote a disk of radius � as described in
Part 2 of the digression that follows Lemma 6.5. Define y� as done in this same part
of the digression. When f 2H , set

(7-3) nf.�/D

Z
z2D�

Z
��1.z/

y�2e�
p

r dist.†;� /=200
jrfj2:

Here is the promised lemma.

Lemma 7.3 There exists � > 1 with the following significance: Assume that R� �

that r � � , that v < ��1 and that the norm that defines Proposition 6.4’s ball B is less
than ��1 . Fix � 2B and define q from � as instructed by Proposition 6.4. If �� r�1=2

then any D� version of nq.�/ is bounded by �r�1.r�1=2C8� Ck�kK/
2�v . Let � 0 2K

have unit norm and define q0 to be the derivative of q at � in the direction of � 0 . If
� � r�1=2 , then any D� version of nq0.�/ is bounded by �r�1�v .

This lemma is proved in the next subsection. Assume it for the moment. Given Lemma
7.3, the proof that Question 1 and Question 2 have affirmative answers has seven steps.
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Step 1 To review what is involved keep in mind that the left hand side of (7-1) defines
an element in L2 and so can be written as �D..�C /C2C ; .��/2„†�/; .�C/2„†C/.
The L norm of � is defined using the L2 norm of �C over C � .

S
E2EC

E2R/, the
L2 norm of each �� over various regions in .�1;�R��S1 , and the L2 norm of
each �C over various regions in ŒR;1/�S1 . A given disk D� from Part 2 of the
digression subsequent to Lemma 6.5 is assumed implicitly to lie in either some C 2 C
version of C � .

S
E2EC

E2R/, or in some  2„†� version of .�1;�R��S1 , or in
some  2„†C version of ŒR;1/�S1 .

Step 2 Fix � 2 .0; 1=100/ and let D� be as described above. Define A1 and A2

as in (6-67). The contribution to the square of k…�DqkL2 from D� is bounded by
c0.A1CA2/. It follows as a consequence that

(7-4) k…�DqkL2 � c0r�1=2
�
r�1=2C8�

Ck�kK
�2
:

The norm that defines L also requires a � independent bound for ��v
R

D�
j…�Dqj2 .

Such a bound follows from the assertion that

(7-5)
Z

D�

j…�Dqj2 � c0r�1
�
r�1=2C8�

Ck�kK2
1

�2�
r�1=2C8�

Ck�kK
�2
�v:

To derive (7-5), use Step 2 of the proof of Lemma 6.5 to see that the left hand side is
bounded by c0.A1CA2/. A bound for A1 is given in (6-68) with

mL D r�1.r�1=2C8�
Ck�kK2

1
/2:

A bound for A2 is given in (6-69) using this same mL for the case � � r�1=2�v . A
bound for A2 in the case � < r�1=2 that implies (7-5) follows from Lemma 7.3.

Step 3 This step bounds the L–norms of r1=2…�.h � q/ and r1=2…�.q � q/. To
this end, note that the square of the L2 norm of r1=2…�.h � q/ over the disk D� is
bounded by c0A3 with the latter defined as in (6-70). Granted this, it follows from the
conclusions of Step 3 in the proof of Lemma 6.5 that

(7-6) r1=2
k…�.h� q/kL � c0r�1=2

�
r�1=2C8�

Ck�kK
�
r�1=16:

Meanwhile, the square of the L2 norm of r1=2k…�.q � q/kL over D� is bounded
by c0A4 with the latter given by the fD q version of (6-74). There are two cases to
consider. The first is when �> r�1=2 . As explained momentarily, the Sobolev inequality
depicted in (6-64) bounds A4 by c0r�vkqk2Hkqk

2
� . As a consequence, Points 3 and 4

of Proposition 6.4 find that A4 � c0r�1.r�1=2C8� Ck�kK2
1
/2.r�1=2C8� Ck�kK/

2�v

when � > r�1=2 .
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To say more about the derivation of this � > r�1=2 bound for A4 , note that Hölder’s in-
equality bounds A4 by c0 times the integral of r y�2jqj4e�

p
r dist.†;� /=c0 over ��1.D2�/.

To bound the latter, fix an identification of ��1.D�/ with D��C . Let ƒ�C denote
the square lattice 1

2
�Z2 . Given u2ƒ, let D.u/ denote the disk with radius 2� centered

on u. Introduce �.u/ D infx2D�D.u/ dist.x; †/. Let ƒ0 � ƒ denote the set of ele-
ments u such that D��D.u/ intersects the support of y�. Fix u2ƒ0 and use the Sobolev
inequalities in (6-3) and (6-64) to bound the integral of r y�2jqj4e�

p
r dist.†;� /=c0 over

D2��D.u/ by r�vkqk2Hkqk
2
�e
�
p

r�.u/=c0 . As a consequence, the � > r�1=2 version
of A4 is no greater than c0r�vkqk2Hkqk

2
�

P
u2ƒ0e

�
p

r�.u/=c0 . The sum here converges
with bound c0 , so the � > r�1=2 version of A4 is no greater than r�vkqk2Hkqk

2
� .

To obtain a bound for when � � r�1=2 let D now denote the disk of radius 2r�1=2

that is concentric with D� . Now write A4 as c0r
R

D2�
f 2 where f is the function on

D given by f . � /D
R
��1. � / �r jqj

2 . As it turns out, this function is in L
4=3
1

on D with
norm bounded by c0r1=4r�v=4kqkHkqk� . To see why this is, use Hölder’s inequality
to see that

(7-7) jdf j � c0f
1=2

�Z
��1.z/

�r jr
�qj2

�1=2

;

and then use Hölder’s inequality a second time to obtain

(7-8)
Z

D

jdf j4=3 �

�Z
D

f 2

�1=3�Z
D

Z
��1.z/

�r jr
�qj2

�2=3

:

Meanwhile, Hölder’s inequality also bounds the square of the L2 norm over D of f by

(7-9) c0

Z
D

Z
��1.z/

y�2e�
p

r dist.†;� /=c0 jqj4:

To bound the latter, fix an identification of ��1.D/ with D �C . Let ƒ�C denote
the square lattice 1

2
r�1=2Z2 . Let D.u/ for u 2ƒ denote the disk with radius 2r�1=2

centered on u. It follows now that (7-9) is bounded by

(7-10)

c0

X
u2ƒ

�
e
p

r dist.u;†/=c0

Z
.D�D.u//

jqj4
�

� c0

�X
u2ƒ

e�
p

r dist.u;†/=c0

�
kqk2Hkqk

2
�r
�v=2:

Note that the sum that appears is bounded by c0 . A similar use of the lattice ƒ
bounds the L2 norm of r�q over the domain of the right most integral in (7-8)
by .r�v=4kqkHkqk�/1=2 . All together, this bounds the right hand side of (7-8) by
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c0r1=3.r�v=4kqkHkqk�/
4=3 . (The factor r1=3 here accounts for the factor �r that

appears in the right most integral of (7-8); this is because j�r j � c0r1=2 .) To continue,
note that there is a borderline Sobolev embedding that sends L

4=3
1
.D/ into L4.D/.

Use this Sobolev inequality after Hölder’s inequality to obtain the chainZ
D2�

f 2
� c0�kfk

2
4

� c0�kfk
2

L
4=3

1

� c0�r1=2r�v=2kqk2Hkqk
2
�:

(7-11)

As an aside for use in the proof of the upcoming Lemma 7.4, remark that almost the
same arguments bound the �� r�1=2 versions of

R
D2�

f 2 by c0�r1=2rvkqk4� . Indeed,
such a bound arises by using c0r�v=4kqk� in lieu of c0.r

�v=4kqk�kqkH/
1=2 to bound

the L4 norm of q and the L2 norm of r�q over D �D.u/.

To continue, note that (7-11) together with Points 3 and 4 in Proposition 6.4 imply
that the � � r�1=2 version of A4 is no greater than c0r�1.r�1=2C8� Ck�kK2

1
/2

� .r�1=2C8� Ck�kK/
2�v . Given these � > r�1=2 and � < r�1=2 bounds on A4 , it

follows that

(7-12) r1=2
k…�.q� q/kL � c0r�1=2

�
r�1=2C8�

Ck�kK2
1

��
r�1=2C8�

Ck�kK
�
:

Step 4 The L norm of …�.v� vh/ is finite apriori given that � 2K and given what
is said about b0 , b˙ , fbC gC2C , fb�g2„†� , fbCg2„†C in the proof of Lemma
6.3. More is said in the upcoming Section 7.d about …�.v� vh/.

Step 5 View T momentarily as a map to the space L2 . As such, it is smooth; this
a consequence of the fourth bullet of Proposition 6.4. To see if T is a Lipschitz map
to L, fix � 2 B and let � 0 2K denote a unit length vector. The directional derivative
of T (viewed as a map to L2 ) in the direction of � 0 has two parts. To describe these
two parts, write the components of T as ..TC /C2C ; .T�/2„†� ; .TC/2„†C/. The
component TC on the jsj �R part of C has the same form as what is written on the
left hand side of (6-57) with f0 defined by fDDqC r1=2q�qC2r1=2h�q� .v�vh/.
This understood, the differential of TC here has two contributions. The first is from
the differential of f, and the second comes from the differential of what is written
as .1C zp/�

|
1�;r

in (6-57). The differentials of the other components of T have the
analogous two contributions. The contribution to the differential of T that comes from
the change in DqC r1=2q� qC 2r1=2h� q� .v� vh/ can be written as

(7-13) T 0 D r1=2…�
�
Dq0C 2r1=2q� q0C 2r1=2h� q0C 2r1=2h0 � q� .v0� v0h/

�
;
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where the primes denote the directional derivative of the indicated term in the � 0 direc-
tion. The second contribution to T ’s differential has finite L norm with bound c0kT kL .

Granted the preceding, it follows that T defines a Lipschitz map to L provided that
the contribution to its directional derivative from T 0 has finite L norm. To see that
such is the case, write q0 D…�q

0C q? . Noting that …�q0D�…0�q, write T 0 as a sum
of two terms. The first is �r1=2…�D…

0
�q and the second is

(7-14) T� D r1=2…�
�
Dq?C 2r1=2q� q0C 2r1=2h� q0C h0 � q� .v0� v0h/

�
:

Step 6 This step considers the L norm of �…�D…0�q. The L2 norm of this term
over a disk D� is bounded by

(7-15)

c0

Z
z2D2�

��
jr�j2Cjr� 0j2C 1

��Z
��1.z/

�r jqj

�2�
Cc0

Z
z2D2�

�Z
��1.z/

�r jrqj

�2

:

This follows using (2-11) and (2-12).

It follows from [3, Lemmas 2.9 and 5.4.1] that the left most integral in (7-15) is bounded
by c0�

vkqk2H � c0r�1.r�1=2C8� Ck�kK/
2�v . To bound the right most integral when

� > r�1=2 , fix an identification of ��1.D2�/ with D2� �C . Let ƒ�C denote the
square lattice 1

2
�Z2 . Let D2�.u/ for u 2ƒ denote the disk with radius 2� centered

on u. It follows now that the right most integral in (7-15) is bounded when �� r�1=2 by

(7-16)

c0

X
u2ƒ

�
e�
p

r dist.†;u/=c0

Z
.D2��D2�.u//\support.y�/

jrqj2
�

� c0

�X
u2ƒ

e�
p

r dist.†;u/=c0

�
kqk2��

v:

Since �� r�1=2 , the sum on the far right in (7-16) is bounded by c0 . Thus the far right
hand integral in (7-15) is bounded by c0r�1.r�1=2C8� Ck�kK/

2�v when � � r�1=2 .

When � � r�1=2 , the integral on the far right in (7-15) is bounded by nq.�/ and thus
guaranteed by Lemma 7.3 to be less than c0r�1.r�1=2C8� Ck�kK/

2�v .

Step 7 This step considers the L norms of the various terms that contribute to T� .
Consider first the square of the L2 norm of …�Dq0? over D� . The corresponding
integral is bounded by c0.A 01 C A 0

2
/ where A 0

1
and A 0

2
are defined by replacing q
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with q0 in (6-67). This understood, the analysis done in Step 2 can be repeated with
only notational modifications to see that

(7-17) k…�Dq0kL � c0r�1=2
�
r�1=4C8�

Ck�kK
�
:

The square of the L2 norm of r1=2…�.h� q
0/ over the disk D� is bounded by c0A 0

3

where A 0
3

is defined by replacing q with q0 in (6-70). This understood, the arguments
that lead to (6-72) and (6-73) can be repeated with only notational modifications to see
that r1=2kh� q0kL is also bounded by what is written on the right hand side of (7-17).

The square of the L2 norm of r1=2…�.q � q
0/ over D� is bounded by c0A 0

4
where

A 0
4

is the fD q0 version of (6-74). Granted this, the arguments in Step 3 that lead to
(7-12) can be repeated with only cosmetic changes to prove that r1=2kq� q0kL is also
bounded by the expression on the right hand side of (7-17).

Consider next the L norm of r1=2h0 � q. The square of the L2 norm of the latter over
the disk D� is bounded by c0A 00

3
where A 00

3
is defined by replacing h in (6-70) with h0 .

As can be seen in the proof of Lemma 6.3, h depends on � only through the various
b˙ that are defined in the Part 5 of this same proof. In particular, what is defined
there as p� can be differentiated, and its derivative along � 0 also obeys (6-42). As a
consequence, A 00

3
is bounded by what is written in (6-73) and so r1=k…�.h

0 � q/kL is
also bounded by what is written on the right hand side of (7-17).

The fact that …�.v0� v0h/ has finite L norm is a consequence of the inclusion of the
k � kK2

1
norm in (2-27)’s definition of k � kK . More is said about this term in Section 7.e.

7.c Proof of Lemma 7.3

The desired bounds on nq.�/ and nq0.�/ in this case are seen to follow from the next
lemma. To set the stage for the lemma, suppose that f 2 H and u 2 L? have been
given. It is assumed in what follows that there exists m� such that

(7-18)
Z

z2D�

Z
��1.z/

y�e�
p

r dist.†;� /=200
juj2 �m��

v

for each � � T �1r�1=2 and for each disk D� as described in Part 2 of the digression
subsequent to Lemma 6.5.

Lemma 7.4 There exists � � 1 with the following significance: Suppose that r � � ,
that v � 1=� and that � 2 K� has k�k1 � ��1 . Suppose that f 2 H obeys kfkH �
��1r�1=2 and that u 2 L obeys (6-56). Let q 2 H?

�
denote a solution to (6-55)

with kqk� finite. Then any � � r�1=2 and D� version of nq.�/ is bounded by
�.m�Ckqk

2
�C nq.r

�1=2/rv=2/�v .
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This lemma is proved momentarily.

To see how to obtain Lemma 7.3, consider first the asserted bound on nq.�/. In this
case, q obeys the version of (6-55) with fD q and uD .1�…�/.v�vh/. The required
bound on kfkH follows from Proposition 6.4 if r � c0 and k�kK � 1=c0 . Given that
k � kK as given in (2-27) contains the k � kK� norm, it follows from Parts 3–6 of the
proof of Lemma 6.3 that u obeys (7-18) with m� D c0r�1.r�1=2C8� Ck�kK/

2 . This
the case, the assertion about nq.�/ made in Lemma 7.3 follows from Lemma 7.4 if
nq.r

�1=2/� c0r�1.r�1=2C8� Ck�kK/
2r�v=2 . To see that such is the case, note that

nq.r
�1=2/ is bounded by the �D r�1=2 version of what is written on the far right hand

side of (7-16). Given that the sum that appears there is bounded by c0 , the asserted
bound on nq.r

�1=2/ follows from Proposition 6.4’s fifth bullet.

Consider next Lemma 7.3’s assertion about nq0.�/. To this end, again write q0 D

q? �…0�q. The fD…0�q version of nf.�/ is bounded by c0 times the sum of nq.�/

and what is written in (7-15). As noted in Step 6 in the previous subsection, the left
most integral in (7-15) is bounded by c0r�1.r�1=2C8� Ck�kK/

2�v . Meanwhile, the
right most integral is bounded by c0nq.�/. As a consequence, the fD…0�q version
of nf.�/ is in no case greater than c0r�1.r�1=2C8� Ck�kK/

2�v .

To say something about the fD q? version of nf.�/, recall that q? obeys the version
of (6-55) that takes fD 2q and uD�r1=2.1�…�/.h

0 � q/C r�1=2.1�…�/.v
0� v0h/.

Thus, the bounds on kfkH are again obeyed when r � c0 and k�kK � 1=c0 . An upper
bound on m� by c0r�1 is obtained by considering how the formula for h and v that
are give in the proof of Lemma 6.3 vary as � varies in B . The details of this derivation
are straightforward and left to the reader. A bound by c0r�1r�v=2 on the f D q?

version of nf.r
�1=2/ is obtained from the bound on kqk� given by the last bullet of

Proposition 6.4. The details of the derivation of such a bound are very similar to those
given two paragraphs back that established the bound for nq.r�1=2/.

Proof of Lemma 7.4 There are seven steps to the proof. (The version below of Step 1
was suggested by the referee to replace an older version that required more of an
explanation.)

Step 1 Note first that nq.�/ � nq.r
�1=2/ when � � r�1=2 . Keeping this in mind,

suppose that T > 1 is given and that T �1r�1=2 � � � r�1=2 . As �T r1=2 � 1, so
it follows that nq.�/� �vT vnq.r

�1=2/rv=2 . This understood, the lemma follows for
suitable � if its claim holds with a given T > 1 and all � � T �1r�1=2 . A choice
for T is made in the next step.
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Step 2 Let D again denote the disk of radius 2r�1=2 that is concentric with D� .
Use Gaussian coordinates on D so as to identify it with the radius 2r�1=2 disk in C .
Use the parallel transport from the center of D via the Hermitian connection on N

to write N over D as D �C . Let ƒ� C denote the square lattice 1
2
r�1=2Z2 . Let

D.u/ for u 2ƒ denote the disk with radius 2r�1=2 centered on u.

Fix u 2ƒ. Identify q over D �D.u/ as a section of the product V0 �V1 bundle as
follows: Use parallel transport via the connection A� and the Levi-Civita connection
along the radial arcs in D � fug from the point .0;u/ 2D �D.u/ to define a product
structure over D � fug. Then use parallel transport along the radial arcs in any given
z 2D version of fsg �D.u/ to complete the construction the product structure over
the whole of D �D.u/.

With this product structure understood, write D as the sum DH
0
CDV

0
C r where DV

0

and DH
0

have no zero–th order term, and are such that DH
0

takes derivatives solely in
the direction along the C factor of D �D.u/ while DV

0
takes only derivatives along

D.u/ factor. Meanwhile, r is the zero–th order part of D with respect to the given
coordinates and trivialization. Note that jrj � c0r1=2 .

Step 3 Let qu denote the V0�V1 valued function on D.u/ whose value at any given
u0 2D.u/ is the average of q over the part of D � fu0g where the coordinate z 2D

obeys � � jzj � 2� . As just noted, DH
0

has no zero–th order part and it differentiates
solely along the D factor of D �D.u/. As a consequence, DH

0
annihilates V0˚V1

valued functions on D �D.u/ that depend only on the coordinate for the D.u/ factor.
This understood, it follows that DqDDH

0
.q� qu/CDV

0
qC rq.

Let x H denote the function on D given by �.j � j=4�/ and let x V denote the function
D.u/ given by x V D �.j. � /�uj=4r�1=2/. Thus, x H is equal to 1 on D� and equal
to 0 on the complement of D2� . Meanwhile, x V has compact support in D.u/ and
is equal to 1 where the distance to u is less than r�1=2 .

Write

(7-19)
x H x V DqDDH

0

�
x H x V .q� qu/

�
CDV

0 .x H x V q/C r.x H x V q/

CsH x V .q� qu/C x H sV q;

where jsH j � c0jdx H j � c0�
�1 and jsV j � c0jdx V j � c0r1=2 . Let dH denote the

exterior derivative along the D factor of D�D.u/ but viewed here as acting on V0�V1

valued functions. Given that DH
0

is elliptic on D , and given that the smallest Dirichlet
eigenvalue of dH |dH on D� is no less than c�1

0
��2 , it follows from (6-79) that

(7-20)
DH

0

�
x H x V .q�q

u/
�2

2
� c�1

0

�dH .x H x V q/
2

2
C��2

x H x V .q�q
u/
2

2

�
:
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By the same token, kDV
0
.x H x V q/k2

2
� c�1

0
.kdV .x H x V q/k2

2
C rkx H x V qk2

2
/ where

dV denotes the exterior derivative along the D.u/ factor of D �D.u/, viewed as
acting on V0˚V1 valued functions.

Step 4 As argued momentarily, it follows from (7-20) and its DV
0

analog that

(7-21)

DH
0

�
x H x V .q� qu/

�
CDV

0 .x H x V q/
2

2

� c�1
0

r�.x H x V q/
2

2
� c0W � c0R ;

where

(7-22) R D r

Z
D2��D.u/

jqj2 and W D ��2

Z
D2��D�

Z
D.u/

ˇ̌
x V .q� qu/j2

ˇ̌
:

Indeed, such an inequality follows from a suitable rewriting of the inner product between
DH

0
.x H x V .q�q

u// and DV
0
.x H x V q/. In particular, were q smooth, one could write

twice this inner product as

(7-23)
˝
x H x V .q�q

u/;DH |
0

DV
0 .x H x V q/

˛
2
C
˝
x H x V q;DV |

0
DH

0

�
x H x V .q�q

u/
�˛

2
:

Here, h ; i2 denotes the L2 inner product. What is written in (7-23) differs from terms
that are bounded by uniform multiples of R and W by

(7-24)
˝
x V q;DH |

0
DV

0 .x
2
H x V q/

˛
2
C
˝
x V q;DV |

0
DH

0

�
x 2

H x V .q� qu/
�˛

2
:

Note in particular that this last expression would be bounded by uniform multiples of R
and W but for the appearance of qu in the far right hand term. However, the part that
involves qu can be written as �hx V .q� qu/;DV |

0
DH

0
.x 2

H
x V qu/i2 up to terms that

are again bounded by uniform multiples of R and W . This is because the derivatives
in DH |

0
annihilate qu , so it can be added at an acceptable cost. With this rewriting

understood, use the fact that the DH
0
qu vanishes to see that this term is no greater

c0W 1=2kdV .x H x V q/k2 . This then establishes (7-21) for the case when q is smooth.
The general case follows by taking limits.

Step 5 Hölder’s inequality and the Sobolev inequality from (6-64) bound the term
R by c0r1=2�r�v=2kqk2� ; and this is no greater than c0�

vkqk2� . The square of the L2

norm of both the term x H sV q and r.x H x V q/ that appear in (7-19) are bounded by
a uniform multiple of R , and thus also by c0�

vkqk2� .

Meanwhile, the square of the L2 norm of the term sH x V .q�q
u/ that appears in (7-19)

is no greater than c0W . To bound the latter term, fix u0 2D.u/ and note that

(7-25) ��2

Z
D2��D�

jx V .q� qu/j2 � c0

Z
D2��D�

Z
D.u/

jdH .x V q/j2:
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Indeed, this follows from the fact that qu at any given u0 is the average of qju0 on
D2� �D� .

What with (7-19) and (7-21), these last observations imply that
(7-26)

c�1
0

r�.x H x V q/
2

2
�

Z
D2��D�

Z
D.u/

jdH .x V q/j2C �vkqk2�Ckx H x V Dqk22:

Step 6 The analysis of kx H x V Dqk2 starts with the contribution from r1=2x H x V f�q.
Hölder’s inequality with (7-20) and the Sobolev inequality from (6-64) finds that

(7-27)
r1=2f� .x H x V q/

2

2
� c0rkfk2H

r�.x H x V q/
2

2
:

Note that if rkfk2H � c�1
0

, then the right hand side of (7-27) will be less than 1=100

of the left hand side of (7-24). Such a bound on rkfk2H is assumed in what fol-
lows. Arguments much like those that lead to (7-27) find kr1=2h� .xH xV q/k2

2
�

c0r��=4kr�.xH xV q/k2
2

. Given what is assumed, kx H x V uk2
2
� c0m��

v .

To continue the analysis of kx H xvDqk2
2

, remark that the square of the L2 norm of
xH xV…�Dq is bounded by c0.A1 C A2/ with A1 and A2 as defined in (6-67). It
follows from [3, Lemmas 2.9 and 5.4.1] that A1 is bounded by c0kqk

2
��
v . Meanwhile,

A2 is bounded by c0r�3=4nq.2�/.

The square of the L2 norm of x H xV r1=2…�.h� q/ is bounded by c0A3 with the latter
defined as in (6-70). Arguments much like those used in Step 3 of the proof of Lemma
6.5 bound this by c0r�1=2kqk2��

v .

The final term to consider is x H x V r1=2…�.f� q/. The square of the L2 norm of this
term is bounded by c0A4 where A4 is given in (6-74). Meanwhile, what is written in
(6-74) is bounded c0rkfk2H.

R
D2�

f 2/1=2 where f . � /D
R
��1. � / �r jqj

2 . In particular,
it follows from what is said directly after (7-11) that the square of the L2 norm of
x H x V r1=2…�.f� q/ is bounded by c0rkfk2Hkqk

2
��
v .

Step 7 Multiply both sides of each u 2ƒ version of (7-24) by e�
p

r dist.†;u/=200 and
then sum over ƒ. Given that the square of the L2 norm of x H jdx V jq is bounded by
R , and given that x V D 1 on D� , the inequality that results from this sum over ƒ
implies that

(7-28) c�1
0 nq.�/� .1C r�1=2/nq.2�/� nq.�/C

�
m�Ckqk

2
�

�
�v:

Given that r � c0 , this last inequality finds

(7-29) nq.�/� �nq.2�/C c0

�
m�Ckqk

2
�

�
�v;
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where �� 1� c�1
0

if r � c0 . Provided v < c�1
0

, this last equation can be iterated by
successively N times where N is such that 2N � is between T �1r�1=2 and r�1=2 .
The resulting bound on nq.�/ implies the assertion of Lemma 7.4.

7.d Proof of Proposition 7.2: Part 2

This part of the proof says more about …�.v� vh/. To this end, write r1=2…�.v� vh/

as � with � D ..�C /C2C ; .��/2„†�/; .�C/2„†C/ 2 L. The various components
of � are described in the five steps that follow.

Step 1 This step considers �C for the cases when C 2 C is not R–invariant. To start,
let c denote the section of CN;1! C that assigns to each point the symmetric vortex.
The component �C of � is a section of .c�V1;0CN;1/˝T 0;1C over C � .

S
E2EC

E2R/.
As such, it can be viewed equivalently as a section of N ˝T 0;1C over this same part
of C . It follows from (6-32), (6-35) and what is said in Part 3 of Section 6.d with (2-4)
and (2-5) that this section of N is given by

(7-30) x@�C C �C �C C�C
x�C C e;

where jej � c0r�1=2.jr�C jC j�C jC 1/.

Step 2 Suppose that C D R�  is a component of † and that q is its associated
integer. Let c denote the constant map from C to the symmetric vortex in Cq . In this
case, �C can be viewed as a section over C \UC of c�T1;0Cq . Given the first bullet
of (6-32) and what is said in Step 3 of the proof of Lemma 3.8, it follows (again using
(2-4), (2-5) and Part 3 of Section 6.d) that �C can be written as

(7-31) �k D
x@c� Cr

1;0h jc� C e;

where jej � c0r�1=2.jr�C j C j�C j C 1/. Here, c� D êxpc.�C / and h is defined as in
(1-9) using  ’s version of .�; �/.

Step 3 Fix  2„†� so as to consider the component �� from � . The discussion
for any given  2„†C version of �C is very much the same as what follows and so
is not presented. Note that �� is a section over .�1;�R��S1 over c��T1;0Cm� .
Consider first �� on .�1;�R��� S1 . It follows from (6-38) that this section is
bounded here by

(7-32) c0

�
r�2e�wC

�
jr��jC j��j

��
;

where �� c�1
0

.
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Step 4 This step with Step 5 describe �� on Œ�R�;�R�� S1 . To start the story,
reintroduce the subsets X2 and X3 of U� as defined in Part 4 of the proof of Lemma
6.3. Part 5 of the proof of Lemma 6.3 describes v�vh on X2 as a map from R�S1�C
to the vector space V0˚V1 that can be written as v��C z0 where v�� maps to V0

and is given by (6-39). Meanwhile, it follows from (6-40)–(6-42) that

(7-33) jz0j � c0r�1=2
 .1C r�2

�/
�
1Cjr��jC j��j

�P
z02Z�j.w;t/

e�
p

r jz�z0j=2:

Given what is said about v� vh on X3 in Part 6 of the proof of Lemma 6.3 and given
(2-4) and (2-5), it follows that v�vh can be written here as r

1=2
 v��C z0 where v��

is also given by (6-39), and where (7-33) describes z0

Step 5 Reintroduce the notation from Section 5.c. View c��T1;0Cm� over Ik �S1

as isomorphic to c�
k
T1;0Cmk

˚ .
L

E2E��Ek
��.N jE // where � is the map in (5-18)

and N is the normal bundle to E . This isomorphism writes �� as .�k ; ��.�†k//. It
follows using (2-4), (2-5), (6-9), (6-39) and what was said in the preceding step that
�k can be written

(7-34) �k D
x@ck;� Cr

1;0h jck;�
C e

and where jej� r�1=2C6� .1Cjr��jCj��j/. Here, the notation uses ck;� W Ik�S1!

C to denote êxpck
.�|

k
.��C ��// with �� as described in Step 5 of Section 3.d.

Meanwhile, x@ denotes .1=2/.@=@w C i.@=@t//. Finally, h denotes the function on
Cmk

that is given by the version of (1-9) that is defined by  ’s pair .�; �/. The argument
from Step 3 of the proof of Lemma 3.8 can be used to prove this assertion about �k .

Meanwhile, (2-4), (2-5), (5-12) and (6-9) imply that �†k here is also given on any
given end: E 2 E�� Ek by the relevant version of (7-30).

7.e Proof of Proposition 7.2: Part 3

This part of the proof describes the terms T0 , T1 and T2 that appear in (7-2). The
discussion has three parts.

Part 1 This part discusses T0 D T .0/. As an element in the Banach space L, it can
be written as T0 D ..T0C /C2C ; .T0�/2„†� ; .T0C/2„†C/. It follows from (7-4)–
(7-6), (7-12) and by (7-30) that kT0C kL � c0r�1=2C8� if C 2 C is not R–invariant.
Suppose next that C D R�  with associated integer q . As the constant map from
c to the symmetric vortex obeys the equation x@cC c�r1;0h D 0, it follows from (7-31)
with (7-5), (7-6) and (7-12) that kT0C kL is again bounded by c0r�1=2C8� .

Consider next a given  2„†� version of T0� . Introduce the notation from Section
5.c to view c��T1;0Cm� over Ik � S1 as c�

k
T1;0Cmk

˚ .
L

E2E��Ek
��.N jE //
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where � is the map in (5-18). Viewed in this way, T0�D .T0k ; ��.T0†k//. It follows
from (7-4)–(7-6) and (7-12) with (7-30), (7-31) and the formula in Step 4 in Section 5.b
that kT0†kkL is again bounded by c0r�1=2C8� . Meanwhile, it follows from (7-4)–(7-6)
and (7-12) with (7-32)–(7-34) that T0k has the same form as the �D 0 version of (7-34).
What is written as e in this new, T0k version of (7-34) obeys kekL � c0r�1=2C8� . At
the same time, (4-2), Constraint 2 in Section 4.b and (4-9) imply that

(7-35)
ˇ̌
x@ck Cr

1;0h jck

ˇ̌
� c0r�1=2C5�e2�s;

where � > c�1
0

. As a consequence, kT0kkL � c0r�1=2C8� also. Thus, kT0�kL �

c0r�1=2C8� .

An analogous argument proves that T0CkL � c0r�1=2C8� for each  2„†C . As a
consequence, kT0kL � c0r�1=2C8� . This gives the first bullet in Proposition 7.2.

Part 2 What is written as T1 in (7-2) and Proposition 7.2 is defined as follows: Let � 0

denote a section of K . Then T1.�
0/ is the derivative ln the direction of � 0 at � D 0 of

the map that sends � 2B to r1=2…�.v�vh/. The map that sends � to r1=2…�.v�vh/

is denoted in what follows by P . Note that P is a smooth map from B to L.

The second bullet of Proposition 7.2 asserts that T1 is an isomorphism when restricted
to the kernel of the map q , as yet to be define. It also asserts an upper bound for
T �1

1
. These two assertions about T1 are proved in the next subsection. What follows

provides a description of T1 for use in these proofs.

To start, write T1.�/D ..T1C /C2C ; .T1�/2„†� ; .T1C/2„†C/ and consider first
T1C when C 2 C is not R–invariant. It follows from (7-30) with (6-32) and (6-35) that

(7-36) T1C D
x@�C C �C �C C�C

x�C C e;

where kekL2 � c0r�1=2C8�k�kK2
1

and kekL � c0r�1=2C8�k�kK .

Suppose next that C DR� is a component of †. Let q denote its associated integer.
Let c denote the constant map to the symmetric vortex in Cq . Identify T1;0Cqjc DCq

using the coordinates in (1-5). This identification makes T1C a map from the relevant
part of C to Cq . If q D 1, then (7-31) with (6-32) and (6-35) can be used to prove
that this map is given by (7-36). If q > 1, then (7-31) with (6-32) and (6-35) can be
used to prove that the q–th component of T1C is

(7-37) x@�C qC
1

2
qR�C qC e;

where �C q is the q–th component of �C and where R is the rotation number as-
signed to  . Meanwhile, e again obeys kekL2 � c0r�1=2C8�k�kK2

1
and kekL �

c0r�1=2C8�k�kK .
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Consider next T1� . With c��T1;0Cm� over Ik �S1 again viewed as the bundle
c�
k
T1;0Cmk

˚ .
L

E2��Ek
��.N jE /, write T1� D .T1k ; ��.T1†k//. In this regard,

T1†k is also given by the relevant version of (7-36); the arguments alluded to in the
previous paragraph can be used if augmented with (2-4), (2-5), (2-11), (2-12) and (4-9).
Meanwhile, T1k can be written as

(7-38) T1k D
x@ck
�k C .r�R

r
1;0h/jck

C e;

where the notation is as follows: First, x@ck
denotes the d –bar operator on the space

of sections of c�
k
T1;0Cmk

that is defined using the pullback via ck of the Levi-Civita
connection. Second, �R denotes the section of T Cmk

that is defined by the section
� of T1;0Cmk

. Third, the term e obeys kekL2 � c0r�1=2C8�k�kK2
1

and kekL �
c0r�1=2C8�k�kK . The identification of T1k in (7-38) follows from (7-32)–(7-34).

There is an analogous description of T1C .

Part 3 This part considers T2 in Proposition 7.2. This term is equal to

(7-39) r1=2…. � /
�
DqC r1=2q� qC 2r1=2h� q

�
� T0CP � T1:

To say more about (7-39), write T0 D P j0CR 0 , and introduce P2 D�P �P j0� T1 .
Arguments much like those that imply (7-30)–(7-34) can be employed to prove that

(7-40) kP2.�/kL � c0k�k
2
K and kP2.�/�P2.�

0/kK � c0

�
k�kKCk�

0
kK
�
k� � � 0kK:

Now let R D r1=2…. � /.DqCr1=2q�qC2r1=2h�q/�R 0 . By construction R .0/D 0.
Let � 2 B and let � 0 denote a unit length element in K . The derivative of R in the
direction � 0 has two contributions, these precise analogs of the two contributions to the
differential of T that are described in Step 5 of Section 7.b. The first contribution is

(7-41) �r1=2…�D…� 0qC r1=2…�
�
Dq?C 2r1=2q� q0C 2r1=2h� q0C h0 � q

�
;

where the primes denote directional derivatives, and where q0 is written as q?�…0�q

with q? 2H? . Meanwhile, the L norm of the second contribution is bounded by c0

times the L norm of r1=2…. � /.DqC r1=2q� qC 2r1=2h� q/.

Consider first the L norm of r1=2…. � /.DqC r1=2q � qC 2r1=2h � q/. It follows
from (7-4)–(7-6) that its L norm is bounded by c0.r

�1=2C8� C k�kK/
2 . Mean-

while, Step 6 in Section 7.c argues that the L norm of r1=2…�D…
0
�q is bounded

by c0.r
�1=2C8� C k�kK/. Step 7 in Section 7.c explains why the L norm of what

remains in (7-41) is never greater than .r�1=4C8� Ck�kK/.
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The bounds just derived for the differential of R imply that

(7-42)
� kR .�/kL � c0

�
r�1=4C8� Ck�kK

�
k�kK .

� kR .�/�R .� 0/kK � c0

�
r�1=4C8� Ck�kKCk�

0kK
�
k� � � 0kK .

Taken together, (7-40) and (7-41) imply the last two bullets in Proposition 7.2.

7.f Proof of Proposition 7.2: Part 4

This subsection defines the vector space V0 and the map qW K !V0 that are mentioned
in Proposition 7.1 and Proposition 7.2. To start, V0 can be written as the direct sum
of spaces, these indexed by the elements in C , the elements in „� and the elements
in „C . In this regard, any given C 2 C contributes as follows to V0 : If C DR�  ,
then C contributes nothing. If C is not R–invariant, then C contributes the summand
kernel.DC /, where DC is the operator that appears in (4-5). Here, and below, kernel. � /
refers to the L2 kernel.

Consider next the summand in V0 that is labeled by any given .;m/ 2„� . If mD 1,
then this pair contributes nothing to „� . To set the stage for the description of .;m/’s
summand when m> 1, digress momentarily and suppose that E � E� . In the case
when E is not the s��1 part of R� , assign to E the configuration ZE0

2SymqE .C/
that is obtained by replacing zE in (5-16) with &qE e�2�qE w . Here, &qE is the eigenvec-
tor that appears in E ’s version of (4-2) and �qE denotes the corresponding eigenvalue.
If E is the s��1 part of R� , assign to E the point in SymqE .C/ with all entries 0.

With these preliminaries out of the way, introduce the notation from Section 5.c. As
in Section 5.c, let N DN� denote the number of distinct elements f�qE W E 2 E�g.
The .;m/ contribution to V0 is itself a direct sum, with the summands labeled by the
integers k 2 f1; : : : ;N g. To describe the k –th summand, introduce the partition subset
Ek � E†� as defined in Section 5.c. Define Zk0j.w ;t/ 2 Symmk .C/ by replacing
each E 2 Ek version of ZE in (5-17) by ZE0

and by replacing each E 2
S

j>kEj

version of ZE by the point in SymqE .C/ with all entries equal to 0. When k < N ,
the configuration Zk0j.w ;t/ consists of mk �mkC1 nonzero points and mkC1 points
at the origin. Meanwhile, ZN 0j.w ;t/ has either all points distinct and nonzero or all
points at the origin.

Use the configuration r
1=2
 Zk0 to define a map ck0W R� S1! Cmk

. Note that the
domain of this map is the whole of R�S1 to Cmk

. There is, as usual, an analogous
map ck0W R!Cmk

for any given k 2f1; : : : ;NCg if .;m/2„†C . The next lemma
refers to the version of ck0 that is defined either with .;m/ 2„†� and k 2N� or
with .;m/ 2„†C and k 2NC . The lemma also refers to the function h on Cmk

that is defined in (1-9) by taking �D 0 and � to be half of  ’s rotation number.
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Lemma 7.5 If all but Constraint 4 in Section 4.b are satisfied, then

�!x@ck0
�C .r�R

r
1;0h/

ˇ̌
ck0

is Fredholm from L2
1
.R�S1I c�

k0
T1;0Cmk

/ to L2.R�S1I c�
k0

T1;0Cmk
/ with trivial

cokernel.

This lemma is proved in Section 7.i. Assume it for the time being.

As any given version of Lemma 7.5’s operator is Fredholm, it has finite dimensional
L2 kernel. The .;m/ 2„†� and k 2 f1; : : : ;N�g version of this kernel is denoted
by V�;k ; the .;m/ 2 „†C and k 2 f1; : : : ;NCg version is denoted by VC;k .
Granted this notation, V0 can be written as

(7-43)
V0 D

�L
C2C kernel.DC /

�
˚
�L

2„†�

�L
1�k�N�

V�;k
��

˚
�L

2„†C

�L
1�k�NC

VC;k
��
:

The norm on V0 is the direct sum of the L2 inner products for each of the various
summands.

The next order of business is to define the map q W K!V0 . This requires a digression in
order to describe a certain useful decomposition of any given element � 2K as a sum

(7-44) � D
P

C2C�
C
C
P
2„†�

��C
P
2„†C

�C

that are determined by their namesake components of

� D ..�C /C2C ; .��/2„†� ; .�C/2†C/:

Consider first �C . As �C 2K , it has components

�C
D ..�C

C 0/C 02C ; .�
C
�/2„†� ; .�

C
C/2„†C/:

These are as follows: First, �C
C 0
D0 unless CDC 0 . In this case, �C

C
D.1�

P
E2EC

�E /�C
where the sum is indexed by the ends in C . By way of a reminder, the cut-off func-
tion �E is zero on the complement of E and defined on E by �..REC3R�jw j/=R/.
Meanwhile, any given �C

˙ is determined by .�C
C 0
/C 02C through the homomorphism

�˙ given in (5-12).

As an element of K , the term �� from (7-44) has only nonzero components ��� and
�
�
C

for those C with C\U�¤∅. In particular, �� 0�D0 if  0¤ , and also �� 0CD0

for all  0 2„†C . The component ��� is set equal to ��� �C
� . The component

�
�
C

is determined from �
�
� by the identifications in (5-12). Note in particular that

�
�
� has support where w < �3R. Any given �C has a similar description.
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Now fix .;m/ 2 „†� so as to describe a further decomposition of �� . To this
end, reintroduce again the notation from Section 5.c. With this notation understood,
fix k and write �� on Ik � S1 as .��

k
; ��.�

�

†k
//. Note that the term �

�

†k
is

given by ��
†k
D
P

E2E��Ek and E�C�E�C . This means, in particular, that ��
†k
¤ 0

only at values of w with distance 2R or less from the left endpoint of Ik ; this where
Ik�1\Ik¤0 and where the ends in Ek�1 have �E ¤0. With the preceding understood,
agree now to decompose �� as

(7-45) �� D ��1
C ��2

C � � �C ��N :

Here ��k has compact support on Ik �S1 and is given by

(7-46) ��k
D .x k�

�

k
; 0/

with x k W Ik ! Œ0; 1� defined as follows: Let Rk denote the value of RE for the ends
E 2 Ek . Then x k D �..Rk C 2R� jw j/=R/.1� �..Rk�1C 2R� jw j/=R/. There
is, as usual, the analogous decomposition of any given .;m/ 2„†C version of �C .

With these preliminaries set, what follows describes the map q W K ! V0 . To start,
fix C 2 C . Then the image of q.�/ in the summand kernel.DC / � V0 is the L2

orthogonal projection of �C
C

onto the kernel of DC . In order to define the image
of q.�/ in any given k 2 f1; : : : ;N�g and .;m/ 2 „†� version of the summand
V�;k , it is necessary to first note that the maps ck0 and ck are very close where both
are defined, on Ik � S1 � R� S1 . Indeed, it follows from Constraint 2 in Section
4.b that the distance in Cmk

between ck j.w ;t/ and ck0j.w ;t/ is bounded by c0r��=4

at each .w ; t/ 2 Ik � S1 . This implies that the map êxpck0
from Part 8 of Section

2.a can be used to identify the ck0 and ck pullbacks over Ik �S1 of T1;0Cmk
when

r � c0 . This identification is used to view xk�
�

k
as a section of c�

k0
T1;0Cmk

. Granted
this identification, the image of q.�/ in the summand V�;k is defined to be the L2

orthogonal projection of x k�
�

k
onto V�;k . There is an analogous definition for the

image of q.�/ in any given k 2 f1; : : : ;NCg and .;m/ 2„†C version of VC;k .

The upper bound asserted by Proposition 7.2 for jq.�/j follows from the definition of
any given component of q as an L2 projection.

The final task for this subsection is to explain why q W K! V0 is surjective when R

and r are large. To this end, fix C 2 C . Let o 2 kernel.DC / and use o to define an
element �o D ..�o

C 0
/C 02C .�

o
�/2„†� ; .�

o
C/2„†C/ 2 K as follows: Set �o

C 0
D 0

unless C D C 0 and set �o
C
D .1�

P
E2EC

�0E /o where �0E is the function on C with
compact support in E and given on E by the restriction of �..RE C 3:5R� jw j/=R/.
Define �o

� for  2„� to equal zero unless C intersects U� . In the latter case, use
(6-18) to define �o

� . Make the analogous definitions of .�o
C/2„†C . Let oV 2 V0
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denote the element whose kernel.DC / summand is o and whose other summands
are zero. Given that any element o 2 kernel.DC / obeys joj � c0e�jsj=c0kokL2 , it
follows that kq.�o/� oV kL2 � c0r�1=c0kokL2 . A similar construction starting with an
element o from any of the other summands in V0 and using a suitably cut-off function
defines an element �o 2K with kq.�o/� oV kL2 obeying this same bound.

The assignment o ! �o can be viewed as defining a linear map from V0 to K .
This map is denoted in what follows by q� . It follows from what was just said that
kqq�.o/� okL2 � c0r�1=c0kokL2 and that kq�.o/kK � c0kokL2 for all o 2 V0 .

7.g Proof of Proposition 7.2: Part 5

This subsection and the next justify the claims that are made about T1 in items (a), (b)
and (c) of the proposition’s second bullet. This subsection proves items (b) and (c). The
next subsection proves that T1 maps q ’s kernel onto L. These next two subsections
assume implicitly Constraint 4 of Section 4.b.

Consider to start the L2 norm of T1.�/ when � 2K . Given the description of T1 in
the previous subsection, it follows that

(7-47)

c0kT1.�/k
2
L2 �

P
C2C

�
kT1.�

C /k2L2 �R�2c0k�
C
k

2
L2

�
C
P
2„†�

�
kT1.�

�/k2L2 �R�2c0k�
�
k

2
L2

�
C
P
2„†C

�
kT1.�

C/k2L2 �R�2c0k�
C
k

2
L2

�
:

To argue for (7-47), digress for the moment and suppose that f and g are func-
tions on a manifold with jgj C Rjdgj � c0 . Write f D gf C .1 � g/f and set
f1 D gf and f2 D .1� g/f . The analog of (7-47) in this context is the claim that
jdf j2 � c�1

0
.jdf1j

2C jdf2j
2/� c0R�2jf j2 . To see why the latter inequality holds,

use the fact that df1 D dgf Cgdf to see that jhdf1; df2ij � c0jdf2j.jdf jCR�1jf j/.
This last inequality with the equality jdf j2 D jdf1j

2C jdf2j
2C 2hdf1; df2i implies

the desired bound on jdf j2 . The inequality (7-47) follows using a straightforward,
multicomponent version of the inequality jdf j2 � c�1

0
.jdf1j

2Cjdf2j
2/� c0R�2jf j2 .

Equation (7-47) is used first to obtain a lower bound for the L2 norm of T1

(7-48) kT1.�/kL2 � c�1
0 k�kK2

1
when q.�/D 0:

Note that the assertion made by item (c) in the second bullet of Proposition 7.2 follows
directly from (7-48) given what is said about q� in the final paragraph of Section 7.f.

The lower bound (7-48) for the L2 norm of T1 on the kernel of q will be seen to
follow from (7-47) given suitable lower bounds for each kT1.�

C /kL2 when q.�/D 0,
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and on each kT1.�
˙/kL2 for any � 2K . The desired lower bounds are obtained in

Part 1 of what follows. Part 2 of what follows explains how to get a lower bound for
both parts of the norm that defines L.

Part 1 This part of the subsection derives lower bounds for each kT1.�
C /kL2 when

q.�/D 0, and on each kT1.�
˙/kL2 for any � 2K . These lower bounds make (7-48)

a direct consequence of (7-47). There are two steps in what follows.

Step 1 Suppose that C 2 C is not R–invariant. It follows from the description of T1

given in the previous subsection that

kT1.�
C /kL2 � c�1

0 kDC �
C
C kL2 � c0r�1=2C8�

k�C
C kK2

1
:

Meanwhile, the fourth constraint in Section 4.b implies that kDC �
C
C
kL2 � c�1

0
k�C

C
kK2

1

when the component of q.�/ in kernel.DC / is zero. For such � ,

(7-49) kT1.�
C /k2L2 �R�1c0k�

C
k

2
L2 � c�1

0 k�
C
k

2

K2
1

if R� c�1
0

.

As an aside, suppose that o 2 kernel.DC / and define q�.o/ as done at the end of the
previous subsection. Very much the same argument that leads to (7-47) and (7-49)
finds kT1.q�.o//kL2 � c0r�1=c0kokL2 .

Suppose next that C DR�  is a component of † with associated integer q . Given
what is said in Lemma 2.4, it follows from (7-36) in the case q D 1 and from (7-37)
in the case q > 1 that (7-49) also holds in this case.

Step 2 This step proves a �� version of (7-49). To this end, introduce once again
the notation from Section 5.c. Decompose �� as in (7-45) and it then follows that

(7-50) kT1.�
�/k2L2 � c�1

0

P
1�k�N

�
kT1.�

�k/k2L2 �R�1c0k�
�k
k

2
L2

�
:

As is explained next,

(7-51) kT1.�
�k/kL2 � c�1

0 k�
�k
kK2

1
when q.�/D 0:

This last inequality, (7-50), their C analogs and (7-49) imply, via (7-47), the desired
inequality that is asserted by (7-48).

To start the proof of (7-51), reintroduce the map ck0W R�S1!Cmk
from the previous

subsection. Keep in mind that the distance in Cmk
between ck j.w ;t/ and ck0j.w ;t/

is bounded by c0r��=4 at each .w ; t/ 2 Ik � S1 . This last remark plus (7-38) im-
ply the following: Suppose that � is a compactly supported, smooth section over
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Ik �S1 of c�
k
T1;0Cmk

. Use êxpck0
from Section 4.b to view � and the c�

k
T1;0Cmk

component of T1.�/ as a section of c�
k0

T1;0Cmk
over Ik �S1 . Meanwhile, the pair

.�; 0/ 2 c�
k
T1;0Cmk

˚ .
L

E2E��Ek
��.N jE // defines an element in K . Use � to

denote the latter also. Then

(7-52) T1.�/D x@ck0
�C .r�R

r
1;0h/

ˇ̌
ck0
C e0;

where ke0.�/kL2 � c0r��=4k�kK2
1

.

Granted (7-52), then (7-51) follows as a corollary to Lemma 7.5. Indeed, trivial cokernel
or not, the fact that Lemma 7.5’s operator is Fredholm has the following implication:
Let � denote an L2

1
section over R�S1 of c�

k0
T 1;0Cmk

(7-53)
x@ck0

�C .r�R
r

1;0h/
ˇ̌
ck0


L2 � c�1

0 k�kL2
1

when � is L2 orthogonal to kernel of the operator �!x@ck0
�C .r�R

r1;0h/jck0
.

Part 2 This part uses (7-48) to prove that kT1.�/kL � c�1
0
k�kK when q.�/D 0. This

bound with the remarks in the final paragraph of Section 7.f imply item (b) of the
second bullet of Proposition 7.2.

Start the proof that kT1.�/kL � c�1
0
k�kK when q.�/ D 0 by writing � as in (7-44).

The description of T1 in Section 7.e implies that

kT1.�
C /kL � c�1

0 kD†�
C
C kL� c0r�1=2C8�

k�C
C kK;

and so an appeal to Lemma 2.7 finds that kT1.�
C /kL � c�1

0
k�C

C
kK � c�1

0
k�C kK if

q.�/D 0. Meanwhile, decompose each  2„†� version of �� as in (7-47). Given
(7-52) and (7-53), it again follows using Lemma 2.7 that kT1.�k/kL� c�1

0
k�kkK when

q.�/D 0. Granted these bounds and (7-48), the argument that led to (7-47) finds that
kT1.�

�/kL � c�1
0
k��kK when q.�/D 0. One more application of the argument for

(7-47) and (7-48) finds that kT1.�/kL � c�1
0
k�kK� c0r�1=2C8�k�kK when q.�/D 0.

This implies the desired inequality kT1.�/kL � c�1
0
k�kK if q.�/ D 0 when R > c0

and r > c0 .

7.h Proof of Proposition 7.2: Part 6

This last part of the proof explains why T1 maps the kernel of q surjectively to L. By
way of an overview: The surjectivity is ultimately a consequence of the fact that each
C 2 C version of DC , and each  2„†˙ and k 2 f1; : : : ;N˙g version of Lemma
7.5’s operator have trivial cokernel. The details are presented in three steps.

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology II 2707

Step 1 Write a given � 2 L as

(7-54) �D
P

C2C�
C
C
P
2„†�

��C
P
2„†C

�C;

where the decomposition here is analogous to that given in (7-44). Meanwhile, each
 2„†� version of �� is further decomposed as

(7-55) �� D ��1
C ��2

C � � �C ��N ;

with this one analogous to that given in (7-45). Each y 2„†C version of �C has
an analogous decomposition.

Step 2 It follows from Lemma 2.7 and Constraint 4 of Section 4.b that the com-
ponent �C

C
of the term �C can be written as DC ��C with ��C an element in C ’s

version of the Banach space KC . This is because DC has trivial cokernel. More-
over, there exists a unique such element with the property that .1�

P
E2EC

�E /��C
is L2 orthogonal to the kernel of DC . Let �C denote the element in K whose
components ..�C

C 0
/C 02C ; .�

C
�/2„†�/, .�

C
C/2„†C/ are as follows: First, �C

C
D

.1�
P

E2EC
�0E /��C where �0E is the function on C with compact support in E and

given on E by the restriction of �..REC3:5R�jw j/=R/. Note in particular that �0ED1

where d�E ¤ 0. The remaining components of �C are determined by �C
C

using (5-12).

Lemma 2.7 and Lemma 7.5 have the following implication concerning any given ��k :
This section of c�

k0
T1;0Cmk

can be written as x@k0�k C .r�kRr
1;0h/jck0

where �k has
finite K–norm. Define

��k
D ..�

�k
C

/C2C ; .�
�k
 0� / 02„†� ; .�

�k
 0C / 02„†C/ 2K

as follows: First, only the components ��k
� and f��k

C
gC2C are nonzero, and ��k

C
¤ 0

only if C intersects U� . Second, ��k
� has support on the subcylinder Ik�S1 where it

is given in the notation from Section 5.c as ��k
� D .x 0k �k ; 0/, with x 0

k
W Ik! Œ0; 1� de-

fined as follows: As in (7-46), let Rk denote the value of RE for the ends E 2Ek . Then

(7-56) x 0k D �
�
.Rk C 1:5R� jw j/=R

��
1��

�
.Rk�1C 2:5R� jw j/=R

�
:

Note in this regard that x0
k
D 1 where the differential of the (7-46)’s function x k is

nonzero. The component ��k
C

of ��k is determined from �
�k
 0 , using (5-12).

Define �� D
P

1�k�N �
�k . Make the analogous construction of �C for each  2

„†C . Then define �D �.�/ to be the sum �D
P

C2C�
CC

P
2„†�

��C
P
2„†C

�C .
Note that q.�/D 0; this is a consequence of the fact that any given version of 1��E
has support where 1��0E D 1, and any given version of x k has support where the
corresponding x 0

k
D 1.
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Step 3 It follows from what just said and from the assertions in Lemma 2.7 and
Lemma 7.5 that the assignment �! �.�/ defines a bounded, linear map from L to the
kernel of q with norm bound k�.�/kK � c0k�kL . This understood, it is a consequence
of the descriptions of T1 in preceding subsections, and from (2-4)–(2-5), that

(7-57) kT1.�.�//� �kL � c0.R
�1
C r�1=2C8� /k�kL:

This equation says that � is nearly an inverse on the kernel of q to the map T1 when
R and r are large.

Fix �� 2 L. To obtain �� 2 kernel.q/ with T1.��/D �� , define a map F W L! L by
setting

(7-58) F .�0/D�
�
T1

�
�.��C �

0/
�
� ��� �

0
�
:

A fixed point, �, of this linear map obeys T1.�.��C�//D �� and so ��D �.��C�/ 2
kernel.q/ is mapped to �� by T1 . It follows from (7-57) that the map F is a contraction
mapping when R and r are greater than some constant c0 . When such is the case, the
map F has a unique fixed point in L.

7.i Proof of Lemma 7.5

The arguments below treat the case when .;m/ 2„†� . Except for changing some
signs and changing “greatest lower” to “least upper”, the same arguments will prove the
lemma for the cases when .;m/ 2„†C . The details for the latter cases are omitted.
This understood, fix .;m/ 2 „†� and k 2 f1; : : : ;N�g. The proof that Lemma
7.5’s operator is Fredholm with trivial cokernel has four steps.

Step 1 The operator in question has a relatively simple form in the cases at hand when
written in terms of the coordinates in (1-5). If mk D 1, these coordinates identify this
operator with that on C1.R�S1IC/ that sends a given function � to x@�C ��C�x� .
The mk D 1 version of Lemma 7.5 follows directly from this identification given that
(1-2) lacks a zero eigenvalue.

In the case mk > 1, the operator in question is best viewed by using the functions in
(1-5) to identify Cmk

with Cmk and so use the basis f@=@�qg1�q�mk
to view a section

of c�
k0

T1;0Cmk
as an element in C1.R� S1ICmk /. Viewed in this light, Lemma

7.5’s operator acts diagonally with the q–th diagonal entry given by x@C .q=2/R where
R is the rotation number of  . The constraints in Section 4.b guarantee that 0 is not
an eigenvalue of the operator .i=2/.d=dt/C .q=2/R on L2.S1IC/. This implies that
x@C .q=2/R is Fredholm as a map from L2

1
.R�S1IC/ to L2.R�S1IC/. Even so,

the claim asserted in Lemma 7.5 does not immediately follow because the metric on
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Cmk
is not the induced metric from Cmk unless k D N and the one end in U� is

the w��1 part of R�  . Thus, more work need be done.

Step 2 The simplest case to analyze is that where E� D fEg and so m� D qE .
Assume that E is not the w��1 part of R�  . In this case, k D 1 and mk D qE .
The norm that is induced on the trivial bundle .R�S1/�CqE by the isomorphism
with the pullback via c10 of T1;0CqE is diagonal. This follows by virtue of the fact
that the Riemannian metric on CqE is invariant with respect to the S1 action that is
induced by the standard action of S1 on C . Meanwhile, it follows from (2-1) and
(2-2) that the inner product between the dual basis elements fd�qg1�q�qE for the c10

pullback of T 1;0CqE has the form

(7-59) hd�q; d�qi D c��
2q�2q2

juE j
2
Cmq;

where the notation is as follows: First, c� > 0 is a constant that depends only on qE .
Second, �D �.w / is shorthand for r

1=2
 e�.R�kE=qE /w where kE is the smallest integer

such that kE=qE > R . Note here that the eigenvalue �qE is equal to 1
2
.R� kE=qE /.

Third, uE 2C� 0 is a constant. Third, jmqj � c0 and mq is asymptotic as w !�1
to a positive constant.

With it understood that .R�S1/�CqE is the c10 the pullback of T1;0CqE , write an
element in the q–th summand of .R�S1/�CqE as �.1C �/q�1.@=@�q/. It follows
from (7-59) that this element has norm nqj�j where c�1

0
� nq � c0 and where nq has

constant limits as s !˙1. Meanwhile, the operator x@C .q=2/R acts on such an
element so as to send � to

(7-60) x@�C
1

2

�
qRC .q� 1/�=.1C �/.kE=qE � R/

�
�:

This operator looks like

(7-61)
� x@C q

2
R for w��1.

� x@C 1
2

�
RC .q� 1/kE=qE

�
for w� 1.

Given the Constraint 1 in Section 6.a, what is written in (7-61) implies that (7-60) is
Fredholm from L2

1
.R�S1IC/ to L2.R�S1IC/ when the norm on C sends � to

nqj�j. Indeed, this is so because neither of the operators

(7-62)
i

2

d

dt
C

1

2
R or

i

2

d

dt
C

1

2

�
RC .q� 1/kE=qE

�
on L2.S1IC/ have eigenvalue 0. Moreover the fact that kE=qE > R implies that the
spectral flow from the left most to the right most operator in (7-62) is positive. This
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implies that (7-60) has nonnegative index. The fact that kE=qE > R also implies that
the cokernel is trivial. To see this, note first that the L2 adjoint of (7-60) annihilates
only linear combinations of functions that have the form .w ; t/! eu.w/�k.w�it/ where
k 2 Z, and where the function u. � / obeys

(7-63)
� u.w /D qRCo.1/ as w !�1.

� u.w /D
�

RC .q� 1/kE=qE
�
w C o.1/ as w !1.

These asymptotics for u follow from (7-61). Meanwhile, it follows from (7-63) that
the function .w ; t/! eu.w/�k.w�it/ is an L2 function if and only if k < qR and
k > RC .q� 1/kE=qE . As there are no such integers, (7-60) has trivial cokernel.

Step 3 The second case to consider is that when all of the ends in E� have the same
degree. Thus, qE D qE 0 for any pair E and E 0 from E� and m�D nqE with E any
end from E� . Assume that n>1. In this case, E�DE1 and the metric that is induced
on the vector bundle .R�S1/�CnqE D c�

10
T1;0CnqE is not diagonal. The configuration

ZE0
that is labeled by any given E 2 E� is determined by a function of the form

(7-64) zE0 D uE e�.R�kE=qE /wCi.kE=qE /t ;

where uE 2C-f0g. Moreover, Constraint 3 in Section 4.b asserts that uE ¤ �uE 0 with
� a qE –th root of unity if E ¤W E 0 . It follows from (7-64) and (2-1)–(2-2) that the
inner product between the c10 pullbacks of the dual basis elements fd�qg1�q�nqE for
T 1;0CnqE are such that hd�q; d�q0i D 0 when q¤ q0mod .qE /. Meanwhile, the inner
product of d�q with d�q0 when q D q0mod .qE / can be written as

(7-65) hd�q; d�q0i D c��
qCq0�2qq0ei.q0�q/.kE=qE /t

P
E ;E 02E�xu

q�1
E uq0�1

E 0 Cmqq0 :

Here, jmqq0 j � c0 . Furthermore, mqq0 limits as w !�1 to zero unless q D q0 . In
the latter case, it limits to a positive constant. Identify the pullback by c10 of the .1; 0/
tangent bundle as .R�S1/�CnqE and define �.w / as before so as to write the q–th
summand of this bundle as �q.1C�/

q�1.@=@�q/. By virtue of (7-65), the induced inner
product between vectors nD .�q/1�q�nqE and n0 D .�0q/1�q�nqE can be written as

(7-66) hn; n0i D
P

1�q;q0�nqE
gq;q0x�q�

0
q0 ;

where the matrix g with .q; q0/ entry gq;q0 has constant, positive definite limits as
w!�1 and also as w!1. Indeed, the w!�1 limit of g is diagonal with q–th
entry mq;q . Meanwhile, the w!1 limit has .q; q0/ entry zero unless qDq0mod .qE /

in which case the entry is
P

E ;E 02E�xu
q�1
E uq0�1

E 0 . These entries define a nondegenerate,
positive definite matrix by virtue of the constraint that uE ¤�uE 0 if E¤E 0 and �qE D1.
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In terms of �q , the operator x@C .q=2/R acts as depicted in (7-60) and so (7-61) still
holds. The latter implies that Lemma 7.5’s operator is Fredholm with nonnegative index
and trivial cokernel. The argument is that used for Step 2’s version of this assertion.

Step 4 Consider now the general case. Let n denote the number of ends of † in Ek ,
and write mk D nqECmk�1 where qE is the integer degree that is defined by the ends
from Ek . Introduce the complex number uE for E 2 Ek as defined in (7-64). These
are nonzero numbers, and they are such that uE ¤ �uE 0 if E ¤W E 0 and �qE D 1.

As before, the inner product hd�q; d�q0i is asymptotic as w !�1 to zero if q ¤ q0

and to a positive constant if q D q0 . It is a consequence of (2-1) and (2-2) that the
w � 1 version of this inner product has the form

(7-67) hd�q; d�q0i D c��
qCq0�2qq0ei.q0�q/.kE=qE /t

P
E ;E 02Ek

xuq�1
E uq0�1

E 0 Cmqq0

where c�D 0 when q¤ q0mod .qE / and is a positive constant when qD q0mod .qE /.
Meanwhile, mq;q0 has bounded norm and it is asymptotic as w !1 to zero unless
q D q0 . In the latter case, it has a positive w!1 limit. There is one other crucial
point to make here: The matrix mk�1�mk�1 matrix with .q; q0/ 2 �2f1; : : : ;mk�1g

entry mq;q0 is positive definite at large w . This is because the w !1 limit of this
matrix gives the inner product on the fiber of T 1;0Cmk�1

at the symmetric vortex for
the basis fd�qg1�q�mk�1

.

Fix m 2 f1; : : : ; qEg. The n� n matrix gm whose .p;p0/ entry is

(7-68)
P

E ;E 02E�.xuEuE 0/
m�1
xu
.p�1/qE
E u

.p0�1/qE
E 0

is nondegenerate by virtue of the fact that there are n ends in Ek and no uE can be
written as �uE 0 where E 0 is also in Ek and where �qE D 1. This understood, let mk;m

denote the number of integers in f1; : : : ;mkg that equal m mod .qE /. It follows from
what was just said about gm that the mk;m �mk;m matrix whose .p;p0/ entry is

(7-69)
P

E ;E 02E�.xuEuE 0/
m�1
xu
.p�1/qE
E u

.p0�1/qE
E 0

has kernel dimension mk;m�n. Moreover, this kernel has a basis whose k –th element
has k –th entry in Cmk;n equal to 1 and all k 0 < k entries equal to zero.

Granted this last point, write mk Dmk�1C nqE and then identify c�
k0

T1;0Cmk
with

.R � S1/ � Cmk�1CnqE in the usual way. Then the vector space Cmk�1CnqE has
a basis of the following sort: The q–th basis vector in the case that q � mk�1 is
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�q D @=@�q . Meanwhile, the q–th basis vector when q >mk�1 has the form

(7-70)

�q D .1C �/
q�1

�

�
@

@�q
C

X
q0Wq0<q;

q0Dq mod .qE /

cqq0
�
1C �.q

0�q/
��2

�.q
0�q/e�i.q0�q/.kE=qE /t

@

@�q0

�
;

where cqq0 is independent of w and t . This basis is such that the numbers

(7-71) h�q; �q0i D gqq0

are the components of a matrix whose w!˙1 limits define a positive definite matrix.

The operator in Lemma 7.5 does not act diagonally with respect to this basis; it acts
as a lower triangular matrix whose entries on the diagonal are such as to send ��q to
what is written in (7-60) in the case q >mk�1 , and to x@�C .q=2/R� in the case when
q �mk�1 . This understood, it again follows directly from (7-61) using the arguments
from Step 2 that Lemma 7.5’s is Fredholm with trivial cokernel.

7.j Loose ends

Proposition 6.4 and Proposition 7.1 describe a pair .�; bD .b; �; �// that has Properties 1
and 2 from Section 5.d. Thus .�; b/ obeys (5-20). Define .A;  / using (5-19). The next
proposition asserts that .A;  / is gauge equivalent to an instanton solution of (1-13).

Proposition 7.6 There exists � � 1 with the following significance: If r � � , then
Propositions 6.4 and 7.1 can be invoked using any given element from the radius ��1

ball in Proposition 7.1’s vector space V0 to define a pair .�; bD b.�// that solves (5-20).
Use this pair to define the pair .A;  / in (5-19). The latter is smooth, and there is a
smooth map uW R�M !S1 such that the assignment s! d.s/D .A�u�1du;u /js
defines an instanton solution to (1-14) whose s!�1 limit is the solution to (1-13)
that is obtained from the data ‚D‚� using the constructions in Section 3. Meanwhile,
the s!1 limit is gauge equivalent to the solution to (1-13) that is obtained using the
constructions in Section 5 from the data ‚D‚C .

Proof of Proposition 7.6 To see why .A;  / is smooth, write .A;  / as .A�Cya;
 � C �/. Note that .A�;  �/ is smooth. Let � denote the iR component of b.
Equations (2-9), (2-10) and (5-20) imply that kD .ya; �; �/ obey a first order, elliptic
equation with quadratic nonlinearities. Furthermore, k restricts to any given radius 1 or
less ball in R�M as an L2

1
configuration whose L2

1
norm is bounded by a constant

that is independent of the chosen ball. This understood, the bootstrapping techniques
from [3, Chapter 6] can be employed to prove that k is smooth.
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The proof that .A;  / is gauge equivalent to an instanton solution to (1-14) invokes
a result, Theorem 1.1, from Paper III of this series [9]. To start the proof, introduce
c� D .A

�;  �/ to denote the solution to (1-13) that is constructed in Section 3 using
‚D‚� . Write .A;  / where s��1 as .A�Cya�;  �C��/. Set k�D .ya�; ��; �/.
Suppose that the cD c� versions of the operator in (3-8) has trivial kernel. Granted that
such is the case, arguments that are cosmetic variations of those used for [7, Lemma 4.6]
can be employed to prove the following: There is a constant " > 0 with the following
significance: Take r � c0 and that k 2 f0; 1; 2; : : :g. Then

(7-72) jr
k
�k
�
j � ck e�"jsj

at points where s��1. Here, ck is a constant and r� denotes the covariant derivative
on sections of iT �M ˚ S ˚ iR that is defined by the Levi-Civita connection on
T .R�M / and the connection A� . Let cC D .AC;  C/ denote the solution to (1-13)
that is constructed in Section 3 using ‚D‚C . The same sort of argument proves the
s� 1 analog of (7-72) if the cD cC version of (3-8) has trivial kernel.

Theorem 1.1 in the third paper [9] of this series asserts that both the cD c˙ versions
of (3-8) do indeed have trivial kernel. This understood, (7-72) and its s� 1 analog
imply that the function � and all of its derivatives converge to zero as jsj !1 on
R�M at an exponential rate. This implies that

(7-73) w.s; � /D .2r/1=2
Z s

�1

�.�; � / d�

converges to zero with all of its derivatives as s!�1 and converges as do all of
its derivatives as s!1. Set uW R�M ! S1 to equal ew . Then .A�u�1du;u /

defines an instanton solution to (1-13) whose s!�1 limit is c� and whose s!1

limit is gauge equivalent to cC .

7.k Proof of Theorem 1.2

The space M1.‚�; ‚C/ has finite set of components, and each component is a smooth,
1–dimensional manifold, with any given element obtained from a unique centered
element by translating a suitable constant amount along the R factor of R�M . Let †�
M1.‚�; ‚C/ denote a centered element. If r � c0 , then the constructions described in
Sections 4–7.j assign to † a solution, ‰r .†/ in M .c�; cC/. This is the element that is
obtained from Proposition 7.1 by taking �D 0. Let †0 denote the result of translating
† by a given amount along the R factor of R�M . Define ‰r .†0/ to be the translate
of ‰r .†/ by the same factor. Given that there are but a finite number of components
of M1.‚�; ‚C/, the map ‰r is defined on the whole of this space for r � c0 .
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A brief digression is needed to prove that ‰r is 1–1. To start the digression, fix a
centered element † �M1.‚�; ‚C/ and write ‰r .†/ as in (5-19). The curvature
2–form, FA , of A has the following two properties:

(7-74)

� The L2 norm of FA over the jsj �R portion (5-3)’s set U0 is bounded
by c0 .

� Fix C 2 C and let s0 2 Œ�RC 1;R� 1�. The L2 norm of FA over the
s 2 Œs0� 1; s0C 1� part of (5-3)’s set UC is greater than c�1

0
r1=2 .

These points follow from the second item of Proposition 6.4.

Now suppose that † and †0 are distinct, centered elements in M1.‚�; ‚C/. To
see that ‰r separates these two element, note first that if r � c0 , then there exists a
component, C 0 , of †0 and s0 2 Œ�RC 1;R� 1� such that the s 2 Œs0� 1; s0C 1� part
of UC 0 lies in †’s version of U0 . This understood, it follows from (7-74) that the
‰r .†/¤‰r .†0/. Given that each component of M1.‚�; ‚C/ is an orbit of the R
action, this last observation implies that the ‰r image of †’s component is disjoint
from the component of †0 .

The observations in (7-74) also imply that ‰r separates the points in any given
component. Indeed, if this is not the case for †’s component, then ‰r .†/ must
be R–invariant. However, this is precluded by (7-74) unless † is R–invariant.

Index to the notation
v: the Reeb vector field Part 1 of Section 1.a
a: the contact 1–form Part 1 of Section 1.a
` : the integral of the contact form a along the
Reeb orbit 

Part 1 of Section 1.a

.�; �/ Equation (1-1)
L Equation (1-2)
hyperbolic, elliptic, n–elliptic Part 2 of Section 1.a
2�k–periodic Part 2 of Section 1.a
Cn Part 1 of Section 1.b
�q Equation (1-5)
h Equation (1-9)
C.;m/ Part 4 of Section 1.b
cl; yc;  |� : Clifford multiplication maps Part 1 of Section 1.c
S: the spinor bundle Part 1 of Section 1.c
K�1: the inverse of the canonical bundle Part 1 of Section 1.c
r: the covariant derivative for the spinor bundle Part 2 of Section 1.c
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AK : a chosen connection on K�1 Part 2 of Section 1.c
E Equation (1-12)
DA: the Dirac operator Part 2 of Section 1.c
BA: the Hodge dual of the curvature 2–form a
connection A

Part 3 of Section 1.c

�: a given 1–form with small C k norms Part 5 of Section 1.c
BAK

: the Hodge dual of the curvature 2–form
of the connection AK

Equation (1-13)

gauge equivalence Part 5 of Section 1.c
‚ Section 1.d
C‚;C‚� Section 1.d
ZL;CZL;CZL� Section 1.d
M1.‚�; ‚C/ Section 1.e
instanton Section 1.f
d: an instanton Section 1.f
M .c�; cC/ Section 1.f
‚ is simple Equation (1-15)
c0: a constant greater than 1 that is independent
of all relevant parameters. It increases between
subsequent appearances.
#c Equation (2-6)
#c#

|
c Equation (2-7)

"0 Part 8 of Section 2.a
êxpc.�/ Equation (2-9)
v� Equation (2-10)
r1;0h Equation (2-13)
A0 in the context of a Reeb orbit Section 2.c, Equation (2-18).
A0 in the context of a surface Part 1 of Section 2.g, Equation

(2-32)
f� in the context of a Reeb orbit Equation (2-20)
f� in the context of a surface Equation (2-39)
.x� ; ��/ in the context of a Reeb orbit Equation (2-21)
.x� ; ��/ in the context of a surface Equation (2-37)
…c��. � / in the context of a Reeb orbit Part 2 of Section 2.d
…c��. � / in the context of a surface Part 3 of Section 2.g
CE;n Section 2.e
V1;0 Section 2.e
k�k2

K2
1

, k�k2K�, k�k
2
K Equation (2-27)
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Kc�; Kc Section 2.f
Lc with its norm defined Equation (2-29)
s: the canonical section on the pullback Section 2.g
��E!E

s when E is the normal bundle to a curve Part 2 of Section 4.a
� : the canonical connection on ��E Section 2.g
� when E is the normal bundle to a curve Part 2 of Section 4.a
dV ; @V ;rH

�
Part 1 of Section 2.g

.A� ; ˛�/ Part 2 of Section 2.g
JD f.c ; � /g.;m/ 2‚ Equation (3-1)
�� Step 1 of Section 3.a. See also

Equation (4-8).
U0 in the context of Theorem 1.1 Step 1 of Section 3.a
U0 in the context of Theorem 1.2 Step 1 of Section 5.a
.A0;  0/ in the context of Theorem 1.1 Part 1 of Section 3.a.
.A0;  0/ in the context of Theorem 1.2 Step 2 in Part 2 of Section 5.a
U Step 2 of Section 3.a
�: a cut-off function chosen for eternity Step 2 of Section 3.a
� Step 2 of Section 3.a
r D .`=.2�//r Step 2 of Section 3.a
yr Step 2 of Section 3.a
.A ;   / Equation (3-3)
c‚J Step 4 of Section 3.a
Lc‚J Equations (3-5), (3-6) and the as-

sociated discussion
b� b in the context of Theorem 1.1 Equation (3-6)
b� b in the context of Theorem 1.2 Equation (6-1)
k � k2H in the context of Theorem 1.1 Equation (3-7)
k � k2H in the context of Theorem 1.2 Equation (6-2)
H, L in the context of Theorem 1.1 Step 1 of Section 3.b
H, L in the context of Theorem 1.2 Part 1 of Section 6.a
Lc Equation (3-8)
J0 Step 2 of Section 3.b
LI Step 2 of Section 3.b
@A ;
x@A Equation (3-12)

V0, V1 Step 3 of Section 3.b
y#;r Equation (3-15)
…� Step 4 of Section 3.b
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L� ;H?� Step 4 of Section 3.b
T Equation (3-17)
H ; H?�; L ; L� Step 5 of Section 3.b
…� Step 5 of Section 3.b
L Step 5 of Section 3.b
L0 Step 5 of Section 3.b
B Section 3.e
F Equation (3-36), Section 3.e
b.�/; b�� ; e� Lemma 3.10 in Section 3.f
w Equation (4-1)
E Part 1 of Section 4.a
qE Part 1 of Section 4.a
zE Equation (4-2)
divE Part 1 of Section 4.a
N : the normal bundle to C Part 2 of Section 4.a
eC : the exponential map defined on N Part 2 of Section 4.a
DC Equation (4-5)
m� ;mC Section 4.b
&qE Equation (4-2), Constraint 2 in

Section 4.b
�� Equation (4-8)
�† Equation (4-8)
R� Equation (4-8)
RE Equation (4-8)
C Introduction to Section 5.a
E Introduction to Section 5.a
E˙ Introduction to Section 5.a
„†˙ Section 5.a
.A�;  �/ Equations (5-2), (5-8) and (5-9)
N1;N1C Step 1 in Part 1 of Section 5.a
�C Step 1 in Part 1 of Section 5.a
.AC;r ; ˛C;r / Step 2 in Part 1 of Section 5.a
E kR Part 2 of Section 5.a
UC ; U0; U� ; UC Equation (5-3)
Z†˙ Step 1 in Part 2 of Section 5.b
.AC;r ; ˛C;r / Step 2 in Part 2 of Section 5.a
˛
˙

Equation (5-6)
.A

˙;r

; ˛
˙;r

/ Step 2 in Part 2 of Section 5.a

Geometry & Topology, Volume 14 (2010)



2718 Clifford Henry Taubes

�˙ Step 2 in Part 2 of Section 5.a
�R˙ Step 2 in Part 2 of Section 5.a
�E Step 2 in Part 2 of Section 5.a
�˙ Step 3 of Section 5.b
�C ; �˙ Equation (5-12)
K; Ksmooth; K� Step 4 in Section 5.b
k � kK Equation (5-13)
k � k1, k � kK2

1
, k � kK The paragraph following Equa-

tion (5-13)
.AC �r ; ˛C �r / Step 5 of Section 5.b
tC � Step 5 of Section 5.b
�� Step 6 of Section 5.b
.A�˙; ˛�˙/ Step 6 of Section 5.b
.A�˙;r ; ˛�˙;r / Step 6 of Section 5.b
t�˙ Step 6 of Section 5.b
.A� ;  �/ Equation (5-15)
ZE Equation (5-16)
Zk Equation (5-17)
Ik Section 5.c
�k Section 5.c
�k ; �†k Section 5.c
.rA� /s Section 5.d
b˙ Equation (6-1)
D Equation (6-2)
VC 0, VC 1 Equation (6-5)
KC� , K�˙ Part 5 of Section 6.a
K2 Part 6 of Section 6.a
y�C� , y��C Part 6 of Section 6.a
t � Equation (6-9)
…� Part 6 of Section 6.a
H?
�

Part 6 of Section 6.a
L?
�

Part 7 of Section 6.a
h.�/ Section 6.d, Lemma 6.3
vh Equation (6-21)
�˙ Part 1 of Section 6.d
b0 Part 2 of Section 6.d
�0 Part 2 of Section 6.d
vC� Equation (6-32)
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pC Equation (6-33)
#

|
C;r

Equation (6-34)
bC Equation (6-36)
v�˙ Equation (6-39)
#��;r Part 5 of Section 6.d
b˙ Part 5 of Section 6.d
k � k� Equation (6-51)
B Proposition 6.4
q.�/ Proposition 6.4
mf.p; �/ Equation (6-54)
�r Part 2 of Section 6.e
y� Part 3 of Section 6.e
A1, A2 Equation (6-67)
A3 Equation (6-70)
A4 Equation (6-74)
�� Proposition 7.1
k � kL Section 7.a
L Section 7.a
T Section 7.a
nf Equation (7-3)
T0 Section 7.a, Part 1 of Section 7.e
T1 Section 7.a, Part 2 of Section 7.e
T2 Section 7.a, Part 3 of Section 7.e
V0 Proposition 7.1, Section 7.f
q Proposition 7.1, Section 7.f
q� Section 7.f
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