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Embedded contact homology and
Seiberg—Witten Floer cohomology 11

CLIFFORD HENRY TAUBES

This is the second of five papers that construct an isomorphism between the embedded
contact homology and Seiberg—Witten Floer cohomology of a compact 3—manifold
with a given contact 1—form.

57TR17; 57R57

1 Introduction

This is the second of a five part series whose purpose is to prove that the embedded
contact homology of a compact, oriented 3—dimensional manifold with contact 1—form
is isomorphic to the manifold’s Seiberg—Witten Floer cohomology. This isomorphism
theorem is stated formally in the first paper of this series [8]. This part constructs a
map between generators of the corresponding complexes that gives the isomorphism,
and a map that is used to compare the corresponding differentials. The former map
is denoted in [8, Theorem 4.2] by ®” and the latter is denoted in [8, Theorem 4.3]
by W”.

The main theorem here about ®” is Theorem 1.1 in Section 1.d. Theorem 1.1 brings
together ideas from three distinct parts of geometry. The first part concerns the closed
orbits of the Reeb vector field for a given contact structure, the second concerns the
moduli spaces of solutions to the vortex equations on C, and the third concerns the
moduli spaces of solutions to certain versions of the Seiberg—Witten equations on M .
Sections 1.a—1.c introduce the necessary background for each of these three topics.
The main theorem on W is Theorem 1.2 in Section 1.g. This theorem brings into play
two additional geometric notions. The first is that of a pseudoholomorphic curve in
R x M, and the second is that of a Seiberg—Witten instant on R x M . Sections 1.e—1.f
provide the background material for these last two subjects.

1.a Contact 3—manifolds and Reeb orbits

This subsection reintroduces from [8] the contact geometry notions that are needed for
Theorem 1.1. There are three parts to this reintroduction.

Published: 15 December 2010 DOI: 10.2140/gt.2010.14.2583



2584 Clifford Henry Taubes

Part1 Let M denote the 3—manifold in question and let a denote the contact 1—form.
The manifold M is oriented using as volume form a A da. Use v in what follows to
denote the Reeb vector field for a; this the vector field on M that generates the kernel
of da and pairs with a so as to equal 1. The integral curves of v are deemed to be
Reeb orbits. They are oriented implicitly by v. The integral of the contact 1—form
along a Reeb orbit y is denoted by £, .

Fix an almost complex structure, J, on the kernel of a so that da(-, J(-)) defines a
Riemannian metric on the kernel of a. Let y denote a Reeb orbit. This loop in M has
a neighborhood that is parameterized by the product of S! and a disk D C C about
the origin by an embedding ¢: S! x D — M which makes @, da and the Reeb vector
field v appear as

2 .
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Here, v and p are respectively real and complex valued functions on S'!. The unwritten
terms in the top equation are O(|z|?) and those in the lower two equations are O(|z|?).
Here and in what follows, the circle S! is implicitly identified with R/(27Z) and
t e R/(2nZ) is used to denote its affine coordinate. These coordinates are such that the
vector field d/dz at z = 0 pushes forward via ¢ so as to generate the +i eigenspace
of J on kernel(a).

Part 2 Define a first order, R-linear symmetric operator on C°°(R;C), this the
operator that takes a function ¢ — z(¢) to

' d
(1-2) Lz= %EZ—H)Z%—ME.

Such an operator is defined given any pair (v, ) € C®(S!'; R@C). When z is written
in terms of real functions x and y as z = x + iy, then any function in the kernel of
(1-2) can be written as

(1-3) (;8) =U (;Eg;) where U |; € SL(2; R) for each ¢ € R.

As t varies in [0, 2], the map t — U|; defines a path in SL(2; R) from the identity.

A pair of functions (v, () is said to be nondegenerate when the corresponding matrix U
has trace(U |, ) # 2. The pair is deemed to be elliptic when |trace(U|,;)| < 2 and

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology I1 2585

hyperbolic when |trace(U |5, )| > 2. Note that when (v, ) is hyperbolic, then the
k—th power of U|,, does not have eigenvalue 1 for any k. Such is the case because
U |, in this case has two real eigenvalues, one with absolute value greater than 1 and
the other with absolute value less than 1. When elliptic, the pair (v, ) is said to be
n—elliptic when the k—th power of U|,, does not have eigenvalue 1 for all k <n.
Note here that a matrix in SL(2; R) whose trace has absolute value less than 2 has two
complex eigenvalues, these are on the unit circle and one is the conjugate of the other.
A Reeb orbit y is said to be respectively nondegenerate, hyperbolic or n—elliptic when
such is the case for the functions (v, i) that come from (1-1). This notion of being
hyperbolic or elliptic is intrinsic to y; it depends neither on the map ¢ or the almost
complex structure J .

Let k denote a positive integer. A map from R to C is said to be 2wk —periodic if it is
invariant under the shift  — ¢ + 27k but is not invariant under any shift t — ¢ 4+ 27k’
for k' € {1,...,k}. With S! viewed as R/(27Z), a map from S! to C is neither
more nor less than a 27 —periodic map from R to C. The operator £ has trivial kernel
on the space of maps from S to C if and only if (v, 1) is nondegenerate. If (v, ) is
hyperbolic, then £ has trivial kernel on the space of 27k —periodic maps from R to C
for any positive integer k. Meanwhile, if (v, u) is n—elliptic, then L has trivial kernel
on the space of 2k —periodic maps from R to C forall k € {1,2,...,n}.

1.b Vortices and Reeb orbits

This subsection reintroduces from [8] the spaces of solutions of the vortex equations on
C and discusses some of their relevant features. There are four parts to this subsection.

Part 1 The vortex moduli spaces are labeled by a nonnegative integer, with the
integer n version of the vortex moduli space denoted by €. The latter consists of
certain equivalence classes of pairs (4, «), where A is a Hermitian connection on the
trivial complex line bundle over C, and where « is a section of this bundle. A pair
¢= (A4, a) isin €, if and only if the curvature of A and the A—covariant derivative of
o satisfy

o xFy=—i(1—|a|?).

. 5Aa =0.
(1-4)

e |u|<1I.

e The function (1 — |«|?) is integrable on C and Je(1— la|?) =27,
Here, 04 denotes the d—bar operator that is defined by the connection 4. The equiv-

alence relation that defines a point in €, identifies pairs (4, «) and (A4’,@’) when
A'=A—u""du and &’ = ua where u is a smooth map from C to S'.
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Part 2 The vortex moduli space &, is a smooth complex manifold, in fact C”. The
identification is given by functions {04 }1<4<n given by

1
(1-5) 0g = E[sz —|af?).

Note that o4 = lekﬁnzj’] where {z1,...,z,} denote the set of zeros of o where it
is understood that a zero with multiplicity k& contributes & identical copies of itself to
this set. The function depicted in (1-5) is well defined because

2 —/2|z—z;
(1-6) 1 — o] <COZ]§j§me V2l Zfl,
where ¢ is a constant that is independent of #n and (4, «) € €,.

Note that proofs of these and subsequent assertions in this subsection about the solutions
to (1-4) either follow directly from what is done by the author in [4; 1], or can be
established in a straightforward fashion using the techniques in these references. This
being the case, the proofs are not given.

The holomorphic tangent space to €, at any given ¢ = (4, ) is isomorphic to the vector
space of square integral pairs, (x,t), of complex functions that obey the equations

(1-7) x+22@ =0 and 94 +2"Y2ax=0.

A Hermitian metric on €, is defined by declaring the square of the norm of (x,¢) to be

l 2 2
(1-8) n/@(lxl + 1t]?).

As it turns out this is a complete, Kahler metric. Only in the case n = 1 is this the
metric that is pulled back from C” using the functions in (1-5). The metric defined
by (1-8) and the associated symplectic form are used implicitly in what follows.

Part 3 Let (v, 1) denote a pair consisting of a real number and a complex number.
Any such pair defines a function, £, on &, given by

(1-9) ﬁ:i/ (2vlz]* + (uZ> + Ez?)) (1 — | ).
4 Jc

As with any function on &, this one defines a Hamiltonian vector field as defined by
the symplectic form from the Kahler metric.

Now suppose that v and j are respectively, a real valued function on S! and a C—
valued function on S!. Then (1-9) defines a 1—parameter family of Hamiltonian vector
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fields on &,. Of interest are the closed, integral curves of this now time dependent
vector field. These are maps ¢: S! — &, that obey at each € S! the equation

(1-10) %c/ + V@054 —o,

where ¢’ is shorthand for the (1,0) part of ¢x(d/dt), and where V(19 £ denotes the
(1,0) part of the gradient of f.

A map ¢: S! — €, defines the symmetric operator
i
(1-11) ¢ = SVil+ (Ve VR

on C®(S1;¢*Ty ¢¢,). Here, V; is the covariant derivative on C*®°(S!;¢* T ¢€,)
as defined by the pull back of the Levi-Civita connection on 77 ¢€,. Meanwhile,
(Ver V1:0£)|. denotes the covariant derivative at ¢ along the vector defined by ¢ in
T¢,|. of the vector field V1:°4 € C®(¢,; T1,0¢,). The operator depicted in (1-11)
can rightly be said to be the linearization of (1-10) at the given map ¢. A solution to
(1-10) is deemed to be nondegenerate when the corresponding version of (1-11) has
trivial kernel.

Part4 Let y denote a Reeb orbit. Fix a tubular neighborhood map for y of the sort
described in Section 1.a. Then y has an associated pair (v, i) for use in (1-9), this the
pair that appears in (1-1) and (1-3). Given y and a positive integer m, use €, ;) to
denote the set of maps ¢: S! — ¢, that obey (1-10).

1.c The Seiberg—Witten equations on M

Fix a metric on TM for which *da = 2a and |a| = 1. Such a metric induces one on
kernel(a) that can be written as da(-, J(-)) with J an almost complex structure on
kernel(a). Conversely, an almost complex structure J on kernel(a) with da(-, J(-))
a metric defines a metric on TM with |a| =1 and xda = 2a. If J is given, then the
metric on 7'M will be assumed to be defined in this manner.

Let F — M denote a Sping structure. This is a principal U(2) bundle lift of the
oriented, orthonormal frame bundle of M . Use S to denote the associated C2 bundle
F xy) C?2. As done in [8, Section 3.a], introduce the Clifford multiplication homo-
morphism cl: 7* M — End(S). This homomorphism is such that cl(b) = —cl() and
cl(b)cl(d’) = —cl(x(bAD"))—(b,b"). Here, (, ) denotes the metric inner product and *
denotes the associated Hodge star. The endomorphism cl(a) on S has square —1 and so
its eigenspaces in each fiber define a splitting of S as the orthogonal, direct sum of two
complex, Hermitian line bundles. This direct sum is written here as £ @ EK~! where
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E — M and K — M are complex line bundles. The convention has cl(a) act as i on
the first summand and —i on the second. The bundle K~! — M is isomorphic as an
SO(2) bundle to the kernel of @ in T M with the orientation defined by da. The Seiberg—
Witten equations constitute a system of first order, nonlinear partial differential equations
for a pair consisting of a connection on E and a section of S = E @ EK~!. The
versions used here are written below in Part 5 of what follows. Parts 1-4 set the stage.

Part 1 Introduce two related endomorphisms. The first, ¢: SQ T*M — S, is defined
so as to send any given decomposable element n ® b to cl(b)n. The second is a
quadratic, bundle preserving map from S to i T* M . The image of any given n € S
under the latter map is written in what follows as nftn. It is defined by the rule

(b,nTtn) = nicl(d)n.

Part2 The choice of a connection on det(S) determines, with the metric’s Levi-Civita
connection, a covariant derivative, V: C®(M;S) - C*®(M;S® T* M ). Composing
with ¢ gives the Dirac operator. The contact form, a, determines an associated canonical
Sping structure, this with S = Sy = Ic @ K~! where Ic — M denotes the trivial
complex line bundle. Fix a unit norm section 1¢ of I¢. This section defines a
canonical connection on K~! = det(Sy). This is the unique connection for which the
section ;7 = (1¢,0) of Sy is annihilated by the corresponding Dirac operator. This
canonical connection is written as Ag .

Let S = E ® EK™! now denote the spinor bundle for some other Spine structure.
Any given connection on det(S) = EZK~! can be written as Ag +2A4 where A4 is a
connection on E. The space of smooth connections on E is denoted by Conn(E).

The symbol D4 is used to denote the Dirac operator on C°° (M ;S) that is defined
by using the connection Ag + 2A4 on the line bundle det(S). This operator sends a
given section ¥ to D4y = ¢(V4y¥) where V4 denotes the version of V defined by
connection Ag +2A4.

Part 3 Use B4 € C°°(M; T*M) in what follows to denote the Hodge star of the
curvature of 4. This enters in the story through both the Seiberg—Witten equations,
and via the functional E on Conn(£E) that is given by

(1-12) E(A) = i/ an*By.
M

Part 4 [8, Section 3.d] discusses a certain dense, Banach subspace, €2, of the Frechet
space of smooth, coclosed and exact 1—forms on M . The norm on 2 is called the
“P norm” This P norm can be assumed to dominate any given C k norm. The versions
below of the Seiberg—Witten equations require the choice of a 1 —form from €2.
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Part5 Any given (r, u) with r €[1, 00) and p € Q determines a certain version of the
Seiberg—Witten equations. These equations require (4, ) € Conn(E) x C*®°(M;S)
to obey

o By—r(Yley —ia)—i*xdu+ 1B, =0.
1-13

(1-13) Dy =0.

The group C*° (M ; U(1)) acts on Conn(E) x C°(M;S) as follows: If ¢ = (4, )
and u € C®(M;U(1)), then uc = (A—u"'du,uy). Pairs ¢ and ¢’ from Conn(E) x
C®(M;S) are said to be gauge equivalent when ¢/ = uc for some u € C®°(M;U(1)).
The condition that ¢ obey (1-13) is preserved by this action of C°°(M; U(1)). Thus, if
(A, ) solves (1-13), then so does (A4 —u~'du, uyr). With p fixed, the set of gauge
equivalence classes of solutions to (1-12) is denoted by M " .

1.d The map ®"

Let ® denote a finite set whose typical element is a pair (), m) whereby y is a Reeb
orbit and m is a positive integer. Require in addition that distinct pairs from ® have
distinct Reeb orbit components, and that the formal sum } _,, ,)c@ 7y defines a chain
that represents the Poincare’ dual of ¢;(E) in H{(M;Z). Let Z denote the set of
such ©. Given L > 1, use 2L C Z to denote the subset © with > (y.myee Mly. An
element ® € Z is said to be nondegenerate when the following is true: If (y,m) € ©,
then y is nondegenerate, and if elliptic, then also m—nondegenerate.

Given O € Z, let €O to denote X(y m)e0&(y,m)- An element in €O associates to
each (y,m) € © a solution to the corresponding version of (1-10). Use €0* C €O
to denote the subset with the property that each c¢,, is nondegenerate. Fix L > 1 and
introduce €ZL to denote {€O* : ® € ZL} and ¢Z2L* c ¢ZL to denote {€O* : O
ZL is nondegenerate} .

Theorem 1.1 Suppose that a is a contact form on M and that J is an almost complex
structure on the kernel of a such that da(-, J(-)) defines a Riemannian metric on the
kernel of a. Fix L > 1 and a finite subset X C ¢ZL* . There exists k > 1 with the
following significance: Fix j € 2 with P norm less than 1, and fix r > k. Use r and
W to define M" . There is an injective map ®": X — M" whose image lies where
E<2nL.

The map ®” is constructed in Section 3. The assertions about ®” are proved in
Section 3.g.
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1l.e Pseudoholomorphic subvarieties

Assume now that the contact form a is such that all elements in Z are nondegenerate.
Such is the case for a residual set in the space contact forms. Fix an almost complex
structure, J, on R x M in the set J, that is described in [8, Section 2c]. Keep in
mind that J(d/ds) = v, that J preserves the kernel of a, and that da(-, J(-)) is the
induced metric from M on the kernel of a. Furthermore, J is translation invariant. A
2—dimensional submanifold C C R x M is said to be pseudoholomorphic if J maps
T C to itself, and if the integral over C of da is finite.

Let ® denote a finite set whose typical element is a pair (y, m) with y a Reeb orbit
and with m a positive integer. Assume, as before, that distinct pairs in ® have distinct
Reeb orbit components. A set such as ® appears as a generator of the embedded
contact homology chain complex if each hyperbolic Reeb orbit has partner m = 1.
Let ®_ and ®4 denote a given pair of generators of the embedded contact homology
chain complex. [8, Section 2.c] assigns to this ordered pair a set M{(®_, ®4) whose
typical element, X, is a finite set of the following sort: An element in ¥ consists of a
pair (C,m) where C is a pseudoholomorphic subvariety and where m is a positive
integer. In this regard, m = 1 if C is not an R—invariant cylinder. [8, Section 2.c]
describes additional constraints on the elements in M{(®_, ®4).

As noted in [8], the set M(®_, ®4) has the structure of a smooth, 1-dimensional
manifold. As such, it has a finite set of components, each diffeomorphic to R. In
fact, each component is an orbit of the action of R on the set of pseudoholomorphic
subvarieties; this is the action that translates a given subvariety a constant amount
along the R factor of R x M . Moreover, the identification of a given component with
R can be chosen so as to intertwine the R action on the set of pseudoholomorphic
subvarieties with R’s action on itself via translation.

1.f Instantons

A smooth map 0: R — Conn(E) & C*°(M;S) is deemed to be an instant on when
the following conditions are met: Write 0 = (A4, ¥ ). Then

o 2A+Byi-r(Wiey —ia)—ixdu+ 1By, =0.

(-1 2y + Dy =0.

In addition, both the s — —oo and s — oo limits of {0|s}ser exist, and both limits
are solutions to (1-13). Given solutions ¢— and ¢4 to (1-14), use M (c—, c+) to denote
the set of instantons with s — —oo equal to c— and with s — oo limit equal to uct
with u € C*°(M; U(1)). Recall that this set depends only on the gauge equivalence
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classes of ¢_ and c4 in the following sense: Suppose that u € C*°(M;U(1)). If
0= (A,Y%) € M(c—,cq), then ud = (A —u~'du,uy) € M(uc—,cy). The set
M (c—, c4+) enjoys an action of R that is induced by that of R on R x M via translation
along the R factor.

1.g The map V"

Let ® denote a finite set whose typical element is a pair (y, m) with y a Reeb orbit
and with m a positive integer. Assume, as always, that distinct pairs in ® have distinct
Reeb orbit components. Say that ® is simple if the following condition is met:

If y is elliptic and paired with an integer m > 1, then there is a tubular
neighborhood of y of the sort described in Section 1.a for which

1
(1-15) (v, )= (ER, 0) with R € R an irrational constant.

As it turns out, this last assumption implies that €®* = €®; and that this set consists
of a single element. This fact is proved in Section 2.b.

Theorem 1.2 Assume that a is such that all elements in Z are nondegenerate, and
that J € J,. Suppose that both ®_ and ® 4 are simple. There exists k > 1 with the
following properties: Fix @ €  with P norm less than 1. Fix r > k large enough
to define ®" (€®_) and ®" (€O ) via Theorem 1.1. Fix c— and ¢4 in the respective
gauge equivalence classes ®" (€0_) and ®" (€O, ). There exists an R —equivariant
injective map W": M{(O_,04) —> M(c—,c4).

As an addendum to this theorem, note that the construction of W” given below is suitably
equivariant with respect to the action of C°°(M; U(1)). This means the following: Let
u € C®(M;U(1)). Then the version of W that maps into M (uc_, c4+) is obtained
from the version that maps to M (c—, ¢4 ) by acting by u on the latter map’s image.

The construction of W" occupies Sections 4-7 of this article. The assertions about W”
are proved in Section 7.k.

1.h Table of contents

What follows is a table of contents for the remainder of this paper.

Section 2 discusses the vortex equations on C. Solutions to the latter play a prominent
role in the construction of both ®” and W". The section presents what is needed for
these constructions.
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Section 3 constructs the map ®”. It then proves that ®” obeys the assertions that are
made by Theorem 1.1.

Section 4 sets the stage for the construction of W”. It starts by summarizing what
is needed about pseudoholomorphic curves. The constraints on the allowed curves
are presented. The section ends with a definition of the parameters that enter the
construction.

Section 5 uses the solutions of the vortex equations to construct a set of approximations
to the map W’ . This set is parameterized by a ball in a certain Banach space.

Section 6 explains how each approximate version of W” can be deformed so as to solve
most of (1-14).

Section 7 proves that the deformation given in Section 6 solves the whole of (1-14) for
one and only one element in Section 5’s Banach space. The latter element is used to
define the map W" . The final subsection here proves Theorem 1.2.

After Section 7 is an index to the notation and then the references. The index to the
notation lists the commonly used symbols with the equation number or subsection that
contains the definition.

1.i A note on conventions

What is written below as cq in all cases denotes a constant greater than 1. The value of
this constant can be assumed to increase from appearance to appearance. Unless said
otherwise, it should be assumed to be independent of any other constants such as the
parameter r, or a particular solution to a given equation.

Acknowledgements This work was supported in part by the National Science Foun-
dation.

2 Vortices on C

As noted in Section 1.b, the constructions of both ®” and " make use of the solutions
to the vortex equations on C. This section constitutes a digression to summarize
the salient properties of these solutions. Subsections 2.e—2.g discuss properties that
are solely used in the construction of W’ ; the latter can be read just prior to starting
Section 4.
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2.a Properties of solutions

What follows describes the properties of the solutions to (1-4) that are explicitly used in
later constructions. The proofs for the properties asserted below either follow directly
from [4] and what the author does in [1], and/or are obtained from straightforward
modifications of these arguments. This the case, no proofs are given here.

1 Exponential decay There exists for each k£ >0 a constant ¢; > 1 with the following
significance: Let ¢ = (A4, «) € €, and let 3 ={zy,..., z,} € Sym”(C) denote the zero
locus of «. Then

-1 o + Yoo, 7 VA = X< cpe 275,

at each point z € C. Here, V4 denotes the covariant derivative that is defined by 4.
The following is also true: With ¢ and 3 as above, let (x,t) denote a solution to (1-7).
Then

22 Yicora.d (VX + VEPR) < 0 < cpe V2] [C (x> + 1)

2 The action of C The action of the group C on C by translations induces a
holomorphic and isometric action of C on &, because the equations in (1-4) are
translationally invariant. This is a free action; its generating vector field at any given
¢ = (A4, @) is the solution (x, () to (1-7) given by

(2-3) x=2_1/2(1—|a|2) and (= d40.

Note that this fact has the following two implications: First, the holomorphic identifi-
cation between €; and C given by the ¢ = 1 version of (1-5) is, up to a constant, an
isometry. Second, the n > 1 versions of this holomorphic identification between €,
and C" is not isometric.

3 The action of S' The group of rotations about the origin in C also acts iso-
metrically and holomorphically on &, . This action has a unique fixed point in each
n > 1 version of €, this the vortex (4, ) with all &~!(0) = 0. This fixed point is
called the symmetric vortex. It corresponds to the origin in C” via the holomorphic

This identification identifies the generator of the S! action with vector field whose
type (1,0) component is ZISaniqoq(B/aoq).
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4 Localization I The discussion here concerns solutions to (1-4) with the following
property: Two or more zeros of « are relatively far apart. To set the stage, fix a set
of positive integers {ny,...,n,} that sum to n, and then choose a corresponding set
{c1,..., cm} with each ¢; from the corresponding &, ¢. Write ¢; = (4, a;), and
let 3; € Sym™ (C) denote the set of zeros of «;. Next, fix a set of distinct points,
Zi,...,Zm,in C. Let 35. denote the set obtained from 3; by adding z; to each of
its elements and let cj. denote the corresponding translate of ¢;. Write cj. = (At.,cx]’.).
Thus, (A’.,ozjt.) at any given z € C is equal to (4, «;) at the point z —z;.

To continue, define ¢ = (A4, @) to be the point in €, whose corresponding locus in
Sym"(C) is 3’1 U---U3,. Then o = e" Hlsjsm ozjt. where

(2-4) [Re()| < coX <) pime V2.

Here, ¢g is independent of (A4, ). In addition, given k €{1, 2, ...}, then the derivatives
of the real part of u to order k obey (2-4) as well with ¢ replaced by a k—dependent
but (A, @) independent constant.

5 Localization II Let ¢ = (4, ) be as just described. The ensuing discussion
concerns the vector space, V, of solutions to the corresponding version of (1-7). To
this end, let V]? denote the space of solutions to the c} version of (1-7). This is the
translation via the action of z; of the space of solutions to the ¢; version. There exists
an isomorphism, ¢: P Vjt — V such that if ¢ € Vli has L? norm equal to 1, then

lp(c) —gl| = CO(lejyéisme_ﬁ'Zi_zj|)€_ﬁ|z_zk|

+¢0X 1<jtk<m

2-5
2-5) e_ﬁ|zk_zj|e_“/§|z_zj|‘

In addition, given k € {1, 2, ...}, then the norms of the derivatives ¢(¢)—¢ to order k
obey (2-5) as well with ¢g replaced by a k—dependent constant.

6 The deformation operator The tangent space to €, at any given vortex ¢ = (4, «)
is characterized in (1-7) as the L? kernel of an operator mapping C*°(C; C®C) to
itself. This operator is denoted by ¢.. Thus

(2-6) 9e(q.¢) = (3q +272ac, 94 + 27" 2ag).

It defines a bounded, C —linear Fredholm operator from L% (C;Ca@C) to L*(C,CaC)
with kernel dimension n (over C) and with trivial cokernel. Let ¢, denote its formal
L? adjoint. Note in particular that ﬁcﬁ: sends any given pair of functions (¢, ¢) to
the pair whose two components are

1 1 1 1
2-7) Zdeq + E|oe|2q and EVLVAg +40+ le|?)c.
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What with (2-2) and (2-4), this last identity has two consequences: First, the absolute val-
ues of the unit L2 norm elements in the kernel of ® are bounded by xge™ dist(e =1 (0)) /0
with k¢ independent of ¢ and 7. Second, there exists « > 1 that is independent of ¢
and such that if ¢ € L%((C; C ¢ C) then

o Jelolel? =i IV PHIER).
(2-8) o [oI9LI* = k7 (VL2 +¢1?) if ¢ is L?~orthogonal to the L?—kernel
of v,.

Here, V. is defined by the rule V.(x,t) = (dx, V4t).

7 Metric properties of ¢, To say more about the metric on &,, introduce the
distance function on Sym”(C) given by dist(3, 3’) = infsep(n) D 1<j<nlZi — Zo ()’
with the infimum taken over the set P(n) of permutations of {1,...,n}. Suppose that
¢c=(A4,a) and ¢/ = (A’,a’) are points in €, and suppose that at least one zero of «
has distance 1 or greater from the zero locus of «’. Then the metric distance between
¢ and ¢’ is such that co_1 dist(3¢, 3¢) < dist(c, /) < ¢o dist(3,, 3¢) where ¢ > 1 is
independent of ¢ and ¢’. Note that this is a consequence of (2-4) and (2-5).

Here is another consequence of (2-4) and (2-5): There exists gy > 0 with the following
significance: Let B C T¢,, denote the set of vectors with norm less than &y. Then
the exponential map restricts to B so as to embed any given fiber by a map whose
derivatives to any given order are bounded by a constant that does not depend on the
base point.

8 Another exponential map There is a different exponential map from 7¢, to &,
that is easier to describe. This map is denoted by éxp. Here are its properties: First,
there exists g9 > 0 such that &xp restricts to the radius ¢¢ ball about the origin in the
fiber of 77 ,0¢, over any given ¢ € €, as an embedding, €xp., that sends the origin to
c. The differential of éxp. at the origin is the identity and it agrees with the metric’s
exponential map to second order. To describe the map éxp., fix { € T} o€, with norm
less than gq. Lift ¢ as a pair (4, «) solving (1-4) so as to view ¢ as an element in
kernel(d%.) with L? norm bounded by gy. Viewed in this way, then éxp.({) can be
written as

(2-9) &xp.(§) = (A +27Y2(qedZ — Gedz), a + G¢),

where (g¢,Ge) = ¢ +&:(¢) and &.(¢) is defined as follows: First, it is L2 —orthogonal
to the kernel of ¥ and so can be written as 7 ve. Meanwhile, vg € C*°(C; C @ C)
is the unique, small normed solution to the equation

1
(2-10) ﬂcﬁjv; +271/2 (EE;U;, 61&0;) =0.
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This equation for v¢ guarantees that éxp.({) obeys the equations in (1-4). Moreover,
what is written in (2-9) is gauge invariant, so does indeed descend to define a map from
leOQ:n tO Q:n .

The inequalities in (2-2) and (2-8) can be used to prove the existence of c—independent
constants k > 1 and &o > 0 such that the equation for v¢ has a unique solution with
Zoskszuvk'}{”Z <k~ when ||¢|2 < . In fact, this norm is bounded by K||§||§.
Here, the derivative V is defined on an ordered pair (¢,c) € C°°(C; C dC) by the rule
V(g,¢) = (dg,V4¢) with d denoting the usual exterior derivative on complex valued
functions and V4 denoting the covariant derivative that is defined by the connection A.

The constant gy can be chosen so as to guarantee that the norms of the derivatives
of &.(¢) = z?j ve with respect to the coordinate z on C, the element { € kernel(%,)
and variations of ¢ in &, obey uniform estimates. Indeed, g9 > 0 can be chosen so
that for each k € {0, 1, ...}, there is a constant x; with the following significance: Fix
¢ =(4,a) € ¢, and let {zj};<j<, € Sym"(C) denote the point given by the zeros
of «. Then

o [VR(O)] S krlIEIZY < jpe VR

(2-11) A ’ ’ —/2|z—z;
o |VE(&ed+50)]sZol S kklEl 1250 <jpe™ V25

To say something about the derivatives of the map €. with respect to changes of ¢,
agree to trivialize 7 o€, in a neighborhood of any given ¢ € €, using the differential
of the map éxp.. This identifies the kernel of ¥, with that of ¢ for ¢’ near to ¢ in &,.
With this identification understood,

o V(o (0 (E) o |2 NN 12T g2
k(d da
(2-12) = ‘V (ﬁﬁeéxpc(sﬁ)(gl‘HC//))‘szt:o}
< I I 1 12 ne™ 21

Here, «j, is as described in the preceding paragraph.

9 Variation of the kernel of ¥, Fix ¢ € €, and lift ¢ to a pair (A, @) solving (1-4).
Let B C T19¢,|. denote a ball on which the map éxp, is defined. When ¢ € B, use
c¢ to denote €xp.(¢) as defined in (2-9).

Each ¢ € B defines a corresponding operator 1., ; and the associated n—dimensional
complex vector subspace kernel(d,) C C*(C;C @ C)N L%((C; C ¢ C). Here, the
L% inner product is defined using the covariant derivative that is defined on a pair
(b,n) e C®°(C; CapC) by (db, V4n). The point to be made here is that these subspaces
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define a smooth map from B to the Frechet manifold of n—dimensional subspaces of
C®(C.;CapC)Nn Lf((C ; C @ C). Moreover, the derivatives of this map to any given
order at any given { € B enjoy ¢ independent upper bounds if the radius of B is less than
some c—independent, positive constant. All of this is a consequence of (2-11) and (2-12).

2.b Hamiltonian vector fields on &,

This subsection considers solutions to (1-10). With regards to (1-10), note for future
reference that the pairing between the differential of £ at a given vortex ¢ = (A4, )
with a (1, 0) tangent vector (x,t) from (1-7) can be written in a number of ways. What
follows are two:

1 -
. _E[;(vz+uz)x.

(2-13) : _
o [ aEE - e + D).
C

Both are derived via integration by parts using (1-7) and (1-4).

There may be many solutions to (1-10) for any given pair of functions (v, ;). However,
the story is quite simple in three special cases. What follows is the first.

Lemma 2.1 Suppose that (v, i) is nondegenerate. Then the only solution ¢ — €1 of
the n =1 version of (1-10) is the symmetric vortex.

Proof of Lemma 2.1 Use the holomorphic isomorphism between €; and C given
by the ¢ = 1 version of (1-5) to identify these two spaces. Fix any pair of functions
(v, ) on S'. With &; viewed as C, it follows from (2-13) that the (v, ) version of
(1-10) asks for a map ¢ — z(¢) from S! to C that obeys the equation Lz = 0, where
L is the operator in (1-2). By assumption, the kernel of £ is {0}. |

The next lemma describes the second simple case.

Lemma 2.2 Suppose that R € R is not of the form p/q with p € Z and g €{1,...,n}.
Then the symmetric vortex is the unique solution in &, to the version of (1-10) that is
defined by the pair (v = %R, u=0).

Proof of Lemma 2.2 It follows by using (2-13) that the Hamiltonian vector field in
this case is R times the generator of the S! action on €. To see its integral curves, view
¢, as C" using the holomorphic isomorphism provided by the functions {og}1<4<n
that are depicted in (1-5). The integral curve of R times the generator through a point in
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C™" with coordinates {04 = ag}g=1,...,n is given by the map from R to C” that sends

t € R to the point with coordinates {0, = e"thaq}q=1,2,m,n. Since no ¢ € {1, ...,n}
version of ¢R is an integer, the only such curve that descends to map S' =R /277
into &, as all a; =0. |

What follows is the final case.

Lemma 2.3 Suppose that k € 7, that ¢ € R — {0}. Set v = %k and p = igetk?
Then the symmetric vortex is the unique solution in €; to the corresponding version of
(1-10). Meanwhile, there are no solutions to this version of (1-10) when n > 1.

Proof of Lemma 2.3 It follows from Lemma 2.1 that the only solution in the case
n =1 when (v = %k, n= ieeik’) is the symmetric vortex. Indeed, such is the case
by virtue of the fact that the corresponding matrix U;=,, that appears in (1-3) is
hyperbolic.

Now consider the assertion of the lemma for n > 1. Use the functions {04 }1<4<n to
again identify €, with C”. Write the Kéhler metric as g; dea,-d o0j. Itis a consequence
of (2-13) that the 1—parameter family of diffeomorphisms that is generated by the
Hamiltonian vector field defined by the function £ in (1-9) is such that the function
t — 0,(t) obeys the equation

id 25
(2-14) EEO‘Z +2voy, +pg®c =0.

Here, g%% comes from the inverse to the Hermitian form that defines the Kahler metric.
Note that this is a strictly positive function on C”. In the case at hand, (2-14) reads
id 1 ; 5
2-15 ~—03+ -koy +ige* g2 = 0.
(2-15) 57,02 T 5ko2 g

To proceed, write the 1—parameter family of diffeomorphisms ¢ — {04 (¢)}4=1,2,....n
as t — {eiqkt/zaq (t)}g=1,2....n- By virtue of (2-14), the function ¢t — a, () obeys

d —
(2-16) a2t 2eg%% = 0.

Since € g22 is real and nowhere zero, it follows that there are no solutions to (2-15) where
a,(2m) =a,(0). This implies that there are no solutions to (2-15) with 0, (27) = 7,(0).
As a consequence, there are no solutions to (1-9) with domain S' =R /27 Z. a

A solution, ¢: ST — ¢, to (1-10) is deemed to be nondegenerate when (1-11) has
trivial kernel as an operator on C®(S!; ¢* T1,0Cn).
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Lemma 2.4 The solutions to (1-10) that are described by Lemmas 2.1-2.3 are nonde-
generate.

Proof of Lemma 2.4 In the case n = 1, the identification of €; with C using the
coordinate function o; is a holomorphic isometry that makes (1-10) appear as the
equation £z = 0 for z a map from S! to C and with £ as in (1-2). The linearized
version of (1-10) appears as the operator £. By assumption, this operator has trivial
kernel. In the case when p = 0, the functions {oy}1<4<, identify &, with C" and
linearize (1-10). The linearized version of (1-10) about the symmetric vortex restricts
to the ¢g—th summand in C” has nontrivial kernel if and only if such is the case for
(i/2)(d/dt) + (1/2)grv. The assumptions guarantee that this operator has trivial
kernel. |

2.c Lifting maps from S! to ¢,

Focus for the moment on a given smooth map ¢: S! — ¢,. Because ¢, is contractible,
any such map lifts to a smooth map ¢ — (A4, )|, from S! into the space of pairs
whose first component is a connection on the trivial bundle over C and whose second
component is a section of this bundle. There are innumerable lifts; but any two differ
by the action of a map from the circle into C°°(C; U(1)). To constrain the lifts under
consideration, note that with ¢ given, there exists R > 1 such that |¢| > % at all
(t,z) € S x C with |z| > R. Consider in what follows lifts where o appears at points
with |z| sufficiently large as |« |z"/|z|".

Now suppose that a smooth map Ag: S! — C*(C;iR) has been given. Define a pair
(x,t) by writing

o 2A-0Agdz—0A9dZ =272 (xdZ - Xdz).

2-17
( ) %a-l—AOa:L.

To put (2-17) in perspective, view Agdt + A as a connection, A4, on the trivial complex
line bundle over S! x C. What is written in the first line is the contraction of /9t
with the associated curvature 2—form. What is written in the second line of (2-17) is
the associated covariant derivative of o along the S factor of S! x C. As explained
momentarily, there is a natural choice for A that has the following property: Let F4
denote A’s curvature 2—form. Then the latter does not depend on the chosen lift of «¢.
Meanwhile the covariant derivative V4o behaves in an equivariant fashion under a
change of the lift.

To motivate this choice of A, note that the L?—orthogonal projection at each ¢ € S'!
of (x,t) into the vector space of L2 solutions to (1-7) is insensitive to the choice
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for Ag. However, there is a unique choice of A for which the pair (x, () actually
defines an element in this vector space. This is the desired choice for 4y. To say more
about this, note that the right hand equation in (1-7) is obeyed for any choice of Ag. It
is also the case that the real part of the left hand equation is always obeyed. However,
the imaginary part of the left hand equation in (1-7) demands that Ay on each constant
t € S! copy of C obey

(2-18) (%d*d(th) + %|a|2Ao) + %im(&(%a) + 2*”&%0() =0,
where a is obtained by writing A = %(ad?— adz). Given the large |z| behavior of «
as described in (2-1), it follows that this equation has a unique solution at each 7 € S'!
that lies in L%((C; iR). This choice for A, guarantees that the pair (x,() is an L2
solution to (1-7) at each r € S!.

As the solution to (2-18) varies smoothly with #, so does (x,¢) in (2-17). What is said
in Part 8 of Section 2.a implies that the lift of ¢ can be chosen so that the following is
true: Let {zj }1 << denote the zeros of «. Then

(2-19) Aol + 1d(Aol0)] < e X 1< jape™ V77!

at each t € S'. Here, c, is a constant that depends on the chosen lift.

The solution Ag to (2-18) depends on the chosen lift of ¢ in the following way:
Suppose that # — u(¢) is a map from S! to C%°(C; U(1)). This map defines a new
lift by changing (4,a)|; to (4",a')|; = (A —u~'du,ua)|;. Change A9 — A} =
Ao —u~1(3/dt)u. Then Ay obeys the (A’,a’) version of (2-18) and the resulting pair
(x’, (") obeys the (A, «’) version of (1-7).

2d Lf maps from S! to &,

It is a straightforward business to define an L% map from S! to €, because the
complex coordinates {04}1<4<n for €, can be used to identify &, with C". With
this identification understood, an L% map from S' to @, is simply an L% map,
t = {0q(t)}1<g<n from St to C".

Because Lf functions on S! are continuous, there is an equivalent way to define
such a map: Fix gy > 0 so that the map €éxp as described in Part 8 of Section 2.a
is defined on the radius &g ball in 77 oC,. Let c: S! - ¢, denote a given smooth
map. Fix an L% section, ¢, of ¢*Ty (€, with pointwise norm less than &y. The map
1 — 4 (1) = €xp ()¢ (1) defines an L% map from S'! to @,.

The remaining two parts of this subsection discuss two aspects of Lf maps.
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Part 1 The second definition of an L% map gives a cheap way to define its lift as a
map from S! into the space of solutions to (1-4). To explain, let ¢: S — ¢, denote a
given smooth map, and let { denote an L% section of ¢*T7j (€, with norm less than &¢.
Choose a lift of ¢ so as to give a pair, (4, ), this a smooth map from S into the
space of solutions to (1-4). Assume, as before that « is proportional to z™™ where |z|
is large. This lift of ¢ defines one for c4¢(7): View ¢ as an L% map from S! into
C®(C;C®C) with 9.¢]; =0 ateach 7 € S, and then (2-9) defines the pair (4%, «f)
and the desired lift of cy¢ is the pair (4od? + A%, ab).

To say more, write { as a map ¢ — (q¢o.Geo)ls of ST into C®(C;C & C). Now let
J¢ denote the L? function on S whose square is given by

a P [0 2
@20 2= [ (|| +|(5+ 0 )sso| )+ Lot uy [

EQCO
Here, Ag and (x,t) are defined from (A4, «) using (2-18) and (2-17). Note that a
c—independent multiple of f; bounds the L? norm of the covariant derivative of {’s
incarnation as a section over S' of ¢* T1,0¢,. This covariant derivative is defined
using the pullback by ¢ of the Levi-Civita connection on 77 ¢¢,. Meanwhile, a
c—independent multiple of the L% norm of the latter incarnation bounds f¢.

With the preceding as background, define (g¢, G¢) via (2-9) and (2-10); and set

at

for the c,¢ versions of the functions that are defined by (2-17). It follows from (2-2),
(2-11) and (2-12) that there exists a constant, «, that is independent of ¢ and of ¢, with
the following properties:

0 0
(2-21) X¢ :x—i—Eq; and ¢ =1+ (——i—Ao)g;,

(2-22) |xe — x|+ |te —t] < Kf;(t)zlfjfne_ﬁlz_zf I

Here, t — {zj(f)}1<j<n is ¢’s associated map from S! to Sym™(C).

Part 2 What follows concerns two important points that play a prominent role in the
next section. To set the stage, suppose that ¢: S' — ¢, is a smooth map and ¢ is
A section of ¢*T o€, with small L% norm. Lift ¢ as a pair, (4, «) so as to define
(A%, a%). Ateach t € S1, the pair (4%, &%) defines the associated operator Dere () -
Use I, () to denote the L?(C;C @ C)-orthogonal projection onto the kernel of
Ve, (t)- As the lift of c,¢ defines a continuous pair of connection and complex function,
so the family {I1,,(r)};es: defines a continuous map from the circle into the space of
bounded operators on L?(C;C & C). Use K ¢ L2(S!' x C;C @ C) for the subspace
of f € L?(S' x C;C @ C) such that I, )f = f for all 7 € S'. This is a closed,
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linear subspace. Introduce I1.,, to denote the L?—orthogonal projection onto K. Thus,
(Hc*gf)|t = Hc*;(t)(ﬂt)'

The next lemma concerns this TI.,, The lemma introduces V; to denote the covariant
derivative on C®(S! x C;C @ C) that sends any given pair { = (¢, ¢) of functions
on S! x C to the pair V,f = ((3/01t)q. (3/0t + Ag)c).

Lemma 2.5 The projection I1,,, maps L%(S I'xC;C®CQC) toitself. Moreover, there
exists k > 1 that depends on ¢ but not on ¢ such that

IV, e, 5 < k(1215 + D) (VIR + 1513).

forall fe L3(S'xC;C & C).
Proof of Lemma 2.5 The commutator [V, IT_, (.)] obeys

(2:23) fc Ve e )i < e 2+ 1) /C 12,

where ¢, is independent of A, and ¢ € S, but does depend on c. This last bound
follows using (2-21) and (2-22) with the k = 0 version of (2-2). Equation (2-23) implies
the inequality that is asserted by Lemma 2.5. The latter implies that the projection IT,,
maps L%(S1 xC;C e C) toitself. a

2.e Surfaces and vortices

Let C denote a compact or noncompact complex curve and let 7: £ — C denote a
complex, holomorphic line bundle equipped with a Hermitian metric and compatible
connection. Use Sg C E to denote the unit circle bundle in £. The integer n version
of the vortex bundle associated to E is the fiber bundle Sg x¢1 €,. The latter is
denoted by €g ,; when needed, the projection to C from € , is also denoted by .
This bundle € , is a holomorphic fiber bundle over C. Let V; ¢€g , — € , denote
the (1,0) component of the vertical tangent bundle with respect to the projection to C.
Thus VI,O = SE X g1 T]ﬁoQ:n.

There exists in this context a version of the d—bar operator that takes a section, ¢, of
CE.n to a section, ¢, of the bundle ¢* Vio® T%1C — C. It is defined as follows:
With ¢ viewed as an S ! —invariant map from Sg to €, its differential defines a linear
map from T'S g to ¢*T; (€, . Restriction of this differential to the horizontal subbundle
in TS g as defined by the given Hermitian connection gives the desired section of
C*Vl,()Q:E,n T%C.
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Let vc denote a section of T7%1C and pc a section of E? @ T%1C. With v =
vc and @ = pc, what is written in (1-9) defines a section, £, over € , of the
bundle 7*7%!C. This understood, use V1:*£ to denote the corresponding section of
VioCEn@n*T 0.1C . Of interest here are sections of € En that obey the equation

(2-24) e+ c*VI0g = .

To see something of what this looks like, note that in the case n = 1, the identification
¢; = C given by the function oy on € identifies the expression on the right hand
side of (2-24) with the R—linear operator from C*®°(C; E) to C®(C; E ® T!-°C)
that sends any given section ¢ to

(2-25) A +vet+pct.

When e =0, the identification €, = C” identifies the right hand side of (2-24) as the
C-linear operator from C®(C; D <4<, E) to C®(C; (D <4<y ET) ® T%1C)
that acts in a diagonal fashion as

(2-26) d+qve

on the g—th summand. These are the two cases of paramount interest in what follows.

2.f Banach spaces of sections of € ,

The bundle V1 oCg ,, — €, is arank n, complex vector bundle. As such, it inherits
a Hermitian structure from the L2 metric on €, and a fiberwise covariant derivative.
The latter with the given Hermitian connection on Sg defines a connection on this
vector bundle. Fix a smooth section, ¢, of €g ;. The pullback by ¢ of this connection
on V1,0€g , — g, gives the bundle ¢*V; ¢€g , a covariant derivative. The latter
can be used to define Sobolev spaces of sections. Of interest here are L% sections with
apriori pointwise bounds. What follows describes a convenient Banach space of such
sections. The space defined below is a version of a space used by Morrey in [3].

The definition of this Banach space requires the choice of a positive constant, v, but
with v < 1/100. Three norms on the space of smooth, compactly supported sections
over C of ¢*V; ¢€E , are defined in the next equation. The first is the standard L%
norm. Then second and third require the constant v. These norms are defined by
declaring the square of their respective values on any given section { are

o I81%s = e (Ve +112).
@27 * ElRs = suPpec, p<1 27" Jas(.py<p IVEI*-
o IEIR = NEIRs + 11
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Here, V denotes the aforementioned covariant derivative on C*°(C;¢*V; oCg ).
Meanwhile, the function dist( -, p) denotes the metric distance on C to the point p.

Use K.« and K, to denote the respective completions of the space of compactly
supported, smooth sections of ¢*V; ¢€g , with respect to the norms |- [|x« and || - [|x.
By definition, K is a subvector space of K.

The norm || - ||« is somewhat stronger than the L%;loc norm. Indeed, as stated in the
next lemma, elements of K., are bounded and Hdlder continuous. Moreover, if M
is a compact 3—manifold with a given contact 1—form as in Section 1, and if C is a
pseudoholomorphic subvariety in R x M of the sort described in Section 1.e, then
sections of K¢« converge uniformly to zero as |s| — oo on C.

Lemma 2.6 With v and C as just described, there is a constant k > 1 such that if
ce C®(C;€Eg ) and § € Kx then supe [§| < k|||« - In fact, each element in IC
(and hence K. ) is Holder continuous with exponent «~1, and the inclusion of K4 into
the Banach space of such Holder continuous sections defines a continuous map. If C is
a pseudoholomorphic subvariety of the sort described in Section 1.e, then K« includes
into the Banach space of Holder continuous section with exponent k! that have limit
zero as |s| — oo; and the latter inclusion is a bounded, linear map. However, the norm
of this map depends on c¢.

Proof of Lemma 2.6 See Morrey [3, Theorem 3.5.2] for the proof that elements in
K« are Holder continuous. In the case when C is of the sort described in Section 1.e,
the uniform decay to zero as |s| — oo follows from this fact as it implies that /C.4 sits
in the C© closure of the space of compactly supported sections of ¢* Vio€Cen. O

The Banach space K« is introduced because it is relatively easy to work with, and
because its small normed elements can be used to define deformations of the given
section c¢. In particular, given Lemma 2.6 and given what is said in Part 8 of Section
2.a about the map €xp, there exists &y > 0 with the following significance:

Fix ce C®°(C;Cg ). If { € Kok obeys |||l < &g then ¢y =Exp,({)

(2-28) defines a Holder continuous section of € ;.

An L? version of the Banach space /C. is needed for sections of ¢* VioCEn® 7%1C.
This L? version is denoted by L.; it is the completion of the space of compactly
supported sections of C*°(C;c¢*V; oCg, ® T%1C) using the norm whose square
sends a section ¢ to

(2-29) /|§|2+ sup p‘”/ 1512
C peC,p<l1 dist(-,p)<p

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology I1 2605

The Banach space L. is used when considering the linearized version of (2-24). Thi
linearization is defined at a section ¢ € C*°(C; € ;) as a linear operator that takes
any given section of ¢*V; o€ , and gives back a section of ¢*V; o€k, ® 7%1C.
This operator can be written schematically as

(2-30) ¢ — 3L + (Ve VOB,

where 9. here denotes the d —bar operator on the space of sections of ¢*V; o€k ,
that is defined using the pullback via ¢ of the Levi-Civita connection. Meanwhile, {r
denotes the section of the vertical tangent bundle of ¢’s pullback of the (real) vertical
tangent bundle to € , that is defined by ¢.

Lemma 2.7 The operator that is depicted in (2-30) defines a bounded operator
L%(C; ¢*V1,0€,) to L?(C;¢* Vio€n ® T91C). Moreover, there exists k > 1 such
that if D C C is a ball of radius k! and if { has compact support in D, then

|0 + (Ve VIR || o = o' = IE k-

As a consequence, if the operator £ — 9. + (Vg V1-04)|. is Fredholm from L% to L2,
then it is Fredholm with the same index, kernel and cokernel as a map from IC, to £..
In particular, if it is Fredholm from L% to L? and if its L? cokernel is trivial, then this
operator has a bounded inverse mapping K. to the L?—orthogonal complement in £,
of the kernel of its L? adjoint.

Proof of Lemma 2.7 The claims follow from [3, Theorems 3.5.2 and 5.4.1]. O

The Banach spaces IC; and K are used later in this article with the two special cases
that are described at the end of the preceding subsection. Recall that the first case is that
with n = 1. In this case, the isometry between €; and C that is supplied by the k =1
version of (1-5) identifies C*°(C,Cg 1) with C°°(C; E). With this identification
understood, the Banach spaces K« and /C. are the respective completions of the space
of compactly supported sections of C°°(C; E) using the norm whose square is given
by the relevant version of (2-27) where ¢ is a section of £ and V denotes the covariant
derivative from the connection Ag. With C*°(C;€g 1) viewed as C*°(C; E), the
operator in (2-30) is that in (2-25).

The second case is that where C = R x S'!, the bundle E is given as the trivial bundle
(R x S1) x C and the function y that appears in the equation for £ is taken to equal
to zero. As remarked previously, (2-24) in this case is also linear, now a direct sum of
n operators, these acting on Di< q<nC (R x S!; C) where the operator on the g—th
summand is d + gv. The norm for the Banach spaces K.« and . now depend on the
choice for c.
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2.g Lifts of sections of € ,

Let w: E — C denote the projection map. What follows describes how to lift a section
of €f , so as to get a pair whose first component is a connection on 7* E” and whose
second component is a section of this same bundle. It then goes on to discuss various
properties of such lifts. The discussion has three parts.

Part 1 To set the stage, remark that 7* E — E has a canonical section; the latter, s,
assigns to any given point n € E the point (n,n) € E x¢ E. This bundle also has
a canonical connection; this is the pullback, 6, of the given Hermitian connection
on E. This understood, the (z* E)* valued 1-form Vg5 pulls back to each fiber of E
so as to span the (0, 1) cotangent bundle of the fiber. This 1—form annihilates the
0 -horizontal subspace in TE .

With these preliminaries in hand, suppose that ¢ is a given smooth section of Cg .
Then ¢ can be lifted as a pair (A, @) where A a smooth, Hermitian connection on the
line bundle 7* E" — E and « is a section of this bundle. The connection A here is
taken equal to

(2-31) A=n0+A40+ 4

where the notation is as follows: First, 4 is an i —valued 1-form on E that annihilates
the horizontal vectors in TE. Thus, A can be written as %(aVe,E— aVy,s) where
a is a section of 7#* E. In addition (A4, ) solves (1-4) along each fiber of E; and

in doing so it defines the equivalence class of ¢. Finally, A is a section over E of
7*(i T*C) that is given along each fiber as the unique, L? solution to the equation

1 1 1
(2-32) (ZdVTdV(Ao) + §|a|2A0) +5 im(8" (Vi a)+272aVHa) = 0.

Here, d¥ and 9V are the respective exterior derivative and holomorphic derivative
along the fibers of = and VGH denotes the horizontal part of the covariant derivative
that is defined by 6. By way of an example, Véqs =0.

With A understood, introduce the pair (x,¢) by

(2-33) x=2"12(VHa-23" 40) and = (VH + Ap)a.
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Then (x, () restrict to each fiber of 7: £ — C as a solution to (1-7). Note that the lift
of (A, ) can be chosen so that they, the pair (x,t) and Ay obey

e A=(1 2)n(§_1V9§—s_1V95)+v and o =" /|s|" +r where |v|+|r| <
cc e~ V28l at points where |s| > 1.
Q3D o el 4] < ooV

o |Ao| fcée_‘/ﬂsl.

Here, ¢, is a constant that depends on the section ¢. Meanwhile, ¢/ depends on the
chosen lift of ¢. A lift of the sort just described is used implicitly below.

A change in the connection 6 to 6 + I changes (x,() to
(2-35) (x,1) = (x,0) =T (2712(1 = |a|?), 8% a).

Thus, the change adds to (x, ¢) a multiple of the solution to (1-7) along each fiber that
is given by (2-3).

Part 2 As is explained next, the lift of ¢ as (A, a) gives a canonical way to lift cy¢
when ¢ is any given small normed element in /.. To begin the story, remark that
the chosen lift of ¢ defines the rank », complex vector bundle K, — C whose fiber
at any given point p € C is the kernel of the operator ¥, along E|,. Here, ¥ is
defined in (2-6) using (A, «) along E|,. The bundle K. is canonically isomorphic
to ¢*V1,0€E , and so any given section of the latter can be viewed as a section of /C..
This understood, a corresponding fiberwise version of (2-9) is used to define the lift
of ¢y for any given section ¢. Indeed, define (g¢, G¢) fiberwise by (2-9). Thus, g¢ is a
section of 7* E and ¢ one of 7* E". Granted this notation, the lift of ¢, is given by

(2-36) (10 + Ao+ A +2712(qe Vg5 — G Vgs), o + G¢).
In what follows (A%, a?%) is used to denote (A4 + 2_1/2(q;V9§— qe¢Vgs),a +ce).

There are analogs for c,¢ of (2-21) and (2-22). These are defined as follows: Introduce
the pair (x¢,t¢) by

(2-37) Xe=x+Vpqe and ¢ =14+ (Vg + 4o)cs.
Then
(2-38) |x¢ — x|+ [ee — 1] fxfgzlfjs,le_ﬁls_sf‘,

where the notation is as follows: First, k is a constant that is independent of ¢. Second,
{s;} € Sym”" (E) is the zero locus of «. Finally, f¢ is the function on C whose square
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atagiven p € X is

(2:39) fE(p) = /

2
(IVogzol® +[(Vo + Ao)szol|”) + (IXI2+|LIZ)/ g1,
Elp E|17 Elp

Here, (¢¢0.Geo) are the components of {. Note that

o —li#2 2 2 2
G I < Je 1P + o SR < collE 12

(2-40) * C(Tl ||§||12C* = SupPGC,,O<1 'O_v(fdist(-,p)<p |§|2 + fdist(-,p)<p fé'z)
< coll¢ %

Here co > 1 is independent of ¢ and ¢. Note with regards to the first item that the L2
norm of { as a section over C of ¢*V; o€k 5, is the same, up to a fixed multiplicative
constant, as the L2 norm over E of ¢ as a section over E of 7*E @ n*E".

Part 3 The final item on the agenda for this section concerns the analog of Lemma 2.5
and (2-23) for sections of Cg ;. To set the stage, let ¢ denote a given smooth section of
CE.». Introduce V to denote the covariant derivative on C®(E; 7* E @ (n* E)") that
acts as Vg 4+ d £ on the first summand and V4 on the second. Here, A is defined by
(2-31) with A defined by (2-32). Use this covariant derivative to define the Sobolev
space L? (E;n*E®nr*E"). To be precise, the latter is the completion of the space of
compactly supported sections over E of 7* E & n* E" with the norm whose square
sends a section f to

(2-41) /E (V5P + [§P).

To finish with these preliminaries, fix a small normed section, ¢ € .« so as to define
the section c,¢ of €g 5. Use the associated pair (Az, ag) to define on each fiber the
operator ¥, (.) asin (2-6). Let I, (.) denote the fiberwise L? orthogonal projection
to the kernel of this operator. Apriori, the latter defines a continuous section over C of
a vector bundle that is associated to Sg and whose fiber is the vector space of bounded,
finite rank operators on L2(C;C @ C). Let K C L*(E;n*E @ n* E™) denote the
subspace of elements f such that I, (.)f = f. Note that K is a closed subspace of the
Hilbert space L?(E;7*E®m*E™). Use I, to denote the L? orthogonal projection
onto K.

With the stage now set, the following lemma plays a key role in the construction of the
map V.
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Lemma 2.8 The projection Il.,, maps L3(E;n*E @ n*E™) to itself as a bounded
operator. Moreover,

IV, Moy (113 < 171V + 1112)* + <lIF13.

Here, k > 1 depends only on the section c.

This lemma is proved momentarily.

The following lemma is used in the proof Lemma 2.8 and elsewhere.

Lemma 2.9 Let 0: [0,00) — R denote a smooth function such that the function
z — 0(|z]) on C is square integrable. Use 0g: E — R to denote the function 6(|s|).
Let § denote an element of L?(E; a*E ® n* E™). Then function on C given by

/ 0zl
a=1(")

isan L? function with L3 norm bounded by a 6 —dependent multiple of || V|2 + [If2.

Proof of Lemma 2.9 This follows using Holder’s inequality given that the exterior
derivative of the indicated function on C is bounded by a multiple of | ) Og|V§|. O

Proof of Lemma 2.8 The assertion that I1.,, maps L{(E;7n*E & n* E") to itself
follows from the inequality. To prove the inequality, note first that there is an analog
here of (2-23). This analog replaces the integration domain C by any given fiber of 7
and it replaces V; with V. This version of (2-23) follows using (2-2), (2-11), (2-12)
and (2-38). Granted this V; — V and C — E]|.y version of (2-23) use [3, Lemma
5.4.1] with Lemma 2.9 to obtain the desired inequality. O

3 The proof of Theorem 1.1

The purpose of this section is to first construct the map ®” and then prove the assertions
made in Theorem 1.1. To this end, fix a once and for all a coclosed 1-form u € Q2
with P norm less than 1.

To start the construction, fix a finite set, ®, whose elements are pairs (), m) where y
is a Reeb orbit and m is a positive integer. Require that distinct elements have distinct
Reeb orbits. Assign to each (y,m) € ® amap cy: S — ¢, that solves (1-10) and is
nondegenerate in the sense that the associated version of (1-11) has trivial kernel. This
data constitutes an element, Jq, in the set €O*. The first task here is to construct from
Jo a solution to the large r versions of (1-13).
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The first and simplest case has ® = @. The corresponding solution in this case is
described by [7, Proposition 2.8]. This proposition is restated below. The proposition
refers to the function E given by (1-12).

Proposition 3.1 Suppose that the Sping structure is such that S = Ic & K. There
exists r; > 1 and § € (0, %) with the following significance: Fix u € Q with P norm
less than 1 and fix r > ry . Then there exists a unique gauge equivalence class of solution
to (1-13) with the norm of the spinor component nowhere less than 1 — &. Moreover, E
has an r independent upper bound on this equivalence class.

Assume henceforth that © is nonempty. The spinor bundle S for the relevant Sping¢
structure decomposes as E @ EK ! where the first Chern class of E is Poincare’
dual to the class in H;(M;Z) that is given by the formal sum Z(y,m)e@ my . This
Sping structure is used implicitly in what follows. The construction of solutions to
(1-13) from Jo uses much the same technology that is used in [7] to prove the latter’s
Proposition 2.8. The salient new input involves the solutions to (1-10). As outlined in
[8, Section 5b], the first part of the construction uses the solutions to (1-10) to construct
a pair in Conn(E) x C°°(M;S) that almost solves (1-10). The perturbation-theoretic
approach used for [7, Proposition 2.8] augmented with techniques from the article
Gr = SW in [5] are then brought to bear to prove that there is a unique solution to
(1-10) that is near to this pair in Conn(E) x C*°(M;S). Sections 3.a-3.g supply the
existence proof. The uniqueness assertion is proved in Section 2 of the fourth paper in
this series [10]. Section 3.g proves the assertions made by Theorem 1.1.

3.a Configurations that nearly solve (1-13)

Let g9 > 0 be as described in the Part 8 of Section 2.a’s discussion of exponential maps.
The purpose of this subsection is to associate a Hermitian connection on E with L?
curvature and an L% section of S to the following data:

e A set finite set ® whose typical element is a pair (y,m), where y is a
Reeb orbit and m is a positive integer. There is no need to assume that y
is nondegenerate. These are constrained as follows:

(i) No two pairs share the same Reeb orbit.

(3_1) (11) Z(y,m)e@ my is Poincaré dual to C1 (E) .

o Aset J={(cy,ly)}(y,meo Where
(i) ¢y is a smooth map from S Uinto €,,.
(ii)) &y isan L% section over S! of c; Ty ,0¢,, with pointwise norm less
than g¢.

The pair of connection and spinor with the label ® and J is denoted below by cgj.
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Step 1 As described in Section 1.a, each Reeb orbit y from ® has an associated
tubular neighborhood coordinate chart, ¢, , that maps S! x D into M with D C C
a small radius disk about the origin. Such a chart can and should be chosen so that
the following is true: There is an orthonormal basis for 7* M near y of the form
{e!, e?, a} such that the C—valued 1-form e = e! +ie? annihilates v and is given by

27\ 1/2
(3-2) (Z_) e=dz—2i(vz+ uz)dt +e,

Y
where the dt and dz components of e are bounded by ¢g|z|? and the dZ component
by co|z|. Fix such a chart for each Reeb orbit from ® so that their images are pairwise
disjoint. Such a map is used in what follows to implicitly identify a neighborhood
of given Reeb orbit from ® with S! x D. In particular, this identification supplies

coordinates, r € S! and z € D, for a neighborhood of the given Reeb orbit.

The constructions that follow require a constant ps > 0 but less than 1/100 times
the radius of D. An upper bound for the constant p. is given in Lemma 3.2. This
constant can depend on r, but it is important that rp2 > r8 for some fixed § > 0. The
construction of instanton solutions to (1-14) takes px = r=1/2439 where o € (0,1/100)
is an appropriately chosen constant.

When y comes from a pair in ©, use U, C M to denote the ¢, —image of the subset
(t,z) € S x D with |z| <4ps. Use U)L C U,, to denote the ¢, —image of the concentric
solid torus where |z| < p4x. The pair ¢y is given first over Uy = M—int(U(y’m)GG) U)’,)
and then over each U, .

To specify cgy over Uy, remark that E’s restriction to Uy is isomorphic to the trivial
bundle. Choose an isomorphism to identify S = E @ EK ™! over Uy with C @ K~!.
Granted this identification, take c¢g3 on Uy to be (A, (1c,0)) where Ay is the trivial
connection on the bundle Uy xC that is defined by the product structure and where 1¢ is
the constant section with value 1 € C. This pair is written as (Ag, ¥o) in what follows.

Step 2 This step sets the stage for the definition of cgy over each set in {Uy },, m)co -
To start, remark that there are trivializations of E over any given set from {Uy }, m)co
with the following property: The trivializing section, 1, for Step 1’s trivialization of E’s
restriction to Uy appears in the trivialization E|y, = Uy x C as the § !_independent
function u = z™/|z|™: S x (D —0) — S! C C. Here, and in what follows, U, is
implicitly identified by ¢, with its preimage in S' x D. These transition functions
exist because E’s first Chern class is Poincare’ dual to T and T is the class of the
cycle Z(y,m)e@ my in Hy(M;Z). What with the coordinate 1-forms d¢ and dz
giving a trivialization of T*(S! x D), this trivialization of E over U, identifies S
over U, with the C @ C product bundle. As before, the direct sum decomposition
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corresponds to the eigenspaces of Clifford multiplication by «. The identification just
described is implicit in what follows.

Required next are two rather mundane definitions. For the first, fix once and for all, a
smooth, nonincreasing, [0, 1]—valued function on R which is 1 on (—o0, 5/16] and
equal to 0 on [7/16,00). Let x: R — [0, 1] denote this function. Fix a Reeb orbit y
so as to define a function, x,: M — [0, 1] with support near y . The latter is defined
in terms of the coordinates on S x D by X;, = x(|z|/p«). Here is the second: Given

r>1,setr, =({,/2m)r and let 7,,: C — C denote the map that sends z to r;/zz.

Step 3 Digress momentarily, and suppose that y C M is any given embedded curve.
Fix an embedding, ¢, of S' x D in M so as to identify a tubular neighborhood of
y with the solid torus S! x D and y with S! x 0. Assume that ¢’s differential is
isometric along y. Use ¢ to identify S! x D with its image, U . Fix a trivialization
E|y = U x C as described in Step 2, and use this trivialization to identify a given
version of S over U with (S! x D) x (C & C).

Let m denote a positive integer and choose some fixed R > 1. Select a smooth map
¢: ST — &, Lift ¢ as a pair (4, ) so as to give a smooth map from S! into the space
of solutions to (1-4). Choose such a lift so that o/ || =z /|z|™ for |z| > R. Introduce
the solution Ay, to denote the solution to the (A, «) version of (2-18). Now let ¢ denote
an L% section of ¢* T (€, with pointwise small norm. View { as an L% map from
S!into C%°(C;C@C). Use ¢ to define &xp,({) via (2-9); then use Cxg = (A%, ab) as
shorthand for this pair. For r > 1, write ?;‘ A% = A%" and ?;," af = a7 ; these viewed
as an S'! dependent pair of connection on the trivial bundle over C and section of this
bundle. Set Aj =7; Ao. Also, set u,y =z /|z|™.

A pair (Ay, V) of connection on E|y and section of S|y = U x (C @ C) is given
by

(3-3) Ay = xy Ajdt+xy AY —(1=x,)itydu, and Y, = (1= 3 Jur + xa*", 0).

Note that the large r versions of (A4, ¥,) change with a change of the chosen lift of ¢
by a a corresponding gauge transformation if the new lift has /|| = z""/|z|™ where

|z| > /T R.

Step 4 The set J associates to each (y,m) € ® a smooth map c: S! - ¢, and
a small normed section, ¢y, of ¢} 71,0&,. Use this map to define (4,,Vy) on U,
as instructed in Step 3. Then {(4o. Vo). {(Ay.¥y)(,meo0}} defines a Hermitian
connection on the bundle £ — M with L? curvature and an L% section of S. Any
given gauge equivalence class of this connection and the spinor is denoted in what
follows by (A, ¥ ). This pair (4, s) constitute the promised cgj.

Of interest in what follows is the case where each ¢, is a solution to (1-10).
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3.b The perturbative set up

Let ® and J be as described in (3-1). This part of the construction sets the stage for
the perturbative techniques that are used to modify a specific version of c¢gy so as to
obtain the desired solution to (1-10).

The strategy used in what follows is to find a particular set J = {(¢y, {y)}(,m)e@ and
a pair (b,n) € L%(M; iT*M & S) so that the large r version of (1-13) is solved by

(3-4) (A 9) = (A3.93) + (@) *b.n).
The pair (4, ) will solve the desired version of (1-13) if the triple b = (b, n,¢) €
Lf(i T*M &S @ iR) solves the system of equations
o xdb—d¢— 2_1/2r1/2(w§ﬂ7 +nleyy) =272, 2ty

= —2_1/2;f_1/2(BA3 — r(lﬁgtwyj —ia) — (i *du + %BAK))-
© D+ 2202 (elB)y + drg) + 202 (CA(b)n + §11) = —Da 3.
o xd *b—2_1/2r1/2(nTw3—1ﬁ§n) =0.

(3-5)

Note that solutions to this equation have ¢ = 0. The component ¢ of b is introduced
for the following reason: The part of the left hand side of (3-5) that is linear in b
defines a first order operator on C®°(M;iT*M @& S @ iR). This linearized operator
is denoted in follows as £ . This operator is elliptic with the ¢ term present, but not
so otherwise. More is said about this operator momentarily.

With £, understood, (3-5) is written schematically as
(3-6) Leosb+7720xb—0 =0,

where b — b x b denotes a quadratic, fiber preserving self-map of iT*M &S ®iR.
This system of equations has the same formal structure as that given in [7, (2.4)]. Even
so, this version has subtleties that are absent from [7] because Scm has eigenvalues
with O(1) norm. By way of contrast, the norms of the eigenvalues of [7]’s version of
Ly have norm at least %r /2 The O(1) eigenvalue norms that arise here are due to
the nontrivial behavior of (A3, ¥3) near the Reeb orbits that come from ©.

The strategy used in what follows to deal with the O(1) eigenvalues is much like that
used in the article Gr = SW from [5] to handle an analogous situation. The idea is to
first project (3-5) onto a subspace that is approximately orthogonal to the eigenvectors
of £.,; whose eigenvalues have small absolute value. This is done for a particular
choice of the data {c, }, and then for each {{) }, @ given that each {, has small L>°
norm. A solution, b, is found that makes this projection of (3-6) equal to zero. This b
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depends smoothly on the data {{) },c@. The remainder of (3-6) is then viewed as a
function of {{,},e@ and it is argued that there is a unique such collection that makes
this function zero. The six steps that follow set up the projected version of (3-6).

Before starting, the reader should take note of the following convention used in the
remainder of this subsection and subsequently: What is written as “co” designates
a constant that is greater than 1 and whose value is independent of r, i, the data
{¢y }(y.m)e@ and sections of various bundles, principally i 7*M @S @ iR. However,
co is allowed to depend on {cy }(;, m)e@. In any event, its value can be assumed to
increase from appearance to appearance.

Step 1 For the moment, let A € Conn(E). With A given, use H to denote the
completion of C®(M;iT*M @ S @ iR) using the norm whose square is given by

1
67) o1 = [ 1962+ 5 [ 1ol
M M

where V is the covariant derivative on C®° (M ;iT*M &S @iR) that acts as the met-
ric’s covariant derivative on the sections of i 7* M and iR, and acts as the covariant de-
rivative defined by the connection Ax +2A and the metric’s Levi-Civita connection on
the sections of S. Let LL to denote the L? completion of C®(M:;iT*M &S ®iR).

Suppose next that ¢ € C°(M ;S). The pair ¢ = (A, ) together define the operator
Loon C®(M;iT*M & S @ iR) that takes any given section b = (b, 7, ¢) to the
section whose respective three components are

o xdb—dp—2712r12(yTen+nTey).
3-8) * Dan+2'7r 120V + ).

o sdxb—2"12p 12Ty —yty).

This operator is symmetric and it extends as an unbounded, self-adjoint operator on the
Hilbert space I with dense domain H. As such, it has discrete spectrum with finite
multiplicities and no accumulation points. The spectrum is unbounded from above and
from below.

Certain Sobolev inequalities play a central role in the subsequent analysis. In particular,
given that |Vh| > |d|b||, the standard Sobolev inequalities for Lf(M ; R) guarantee
that || - || dominates the L? norms of § for p < 6. Indeed, if h — ||b||lm is any norm
with the property that [ > co([|d|bl2]| +7'/2|B]|2). then

(3-9) 1Bl < cor®=O742|1p |1

for any p €2, 6].
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Step 2 In what follows the space H is defined by taking A4 to be the version of A4;
that is defined by the data Jo = {(cy,{y = 0)}(,,m)ee . What is denoted as £y in
(3-6) differs from its ¢ = cgy, version of (3-8) by a degree zero operator that has the
schematic form b — b % b where b is a bounded, L% section of iT*M &S ®iR. As
a consequence, £q, defines a bounded, linear map from H into L. The remainder of
this step and the next constitute a digression to describe £, in more detail. This is in
preparation for an upcoming step where the aforementioned projections in I and H
are defined.

To start the more detailed description of £, , note that the identification of E over Uy
as Up x C identifies the operator £, in (3-6) on Uy with the (Ay, ) version of
the operator in (3-8). The latter version of (3-8) is denoted in what follows as £;. Let
H; denote the completion of C®°(M;iT*M &S @ iR) using the 4 = A; version
of (3-7). Define L  to be the corresponding L2 completion. As noted in [6, Section
5.5], the operator £; defines a bounded, invertible map from Hj to IL;. [6, Equation
(5.22)] guarantees that

(3-10) €613 = lIAl§

when r is large.

Step 3 The identification of any given version of U,, with a subset of S I'xC allows a
convenient rewriting of the operator £y, over U, . What follows describes the result.

To start, remark that the trivialization of the bundle E with the associated tubular
neighborhood map ¢, identifies S with the restriction to S I'x D of the product C @ C
bundle (S! x C) x (C @ C). This trivialization is such that Clifford multiplication
by dt and by dz act on C @ C along the z = 0 circle as constant matrices. This
identification is used implicitly to view the restriction to U,, of a map from § I« D to
(C @ C) as asection of S over U,,.

The 1-forms dt and dz also identify T*M on U, with the restriction to U, of the
bundle (S! x D) x (R x C), this being T*(S! x D). The latter trivialization allows
the restriction to S! x D of a section over S' x C of i T*(S! x C) to be viewed as a
section of i T* M over U, . This is also implicit in what follows.

Introduce the C-valued 1-form e from (3-2) and use {e, e, a} to write a given i—
valued 1-form b as gza + %(q?—(?e). Given an i —valued function ¢, introduce p to
denote the C—valued function p = ¢ 4 iq3. Write a given spinor 1 in two component
form (ng, n1) with respect to the splitting of S. Then the three components of the
first line in (3-8) and the third line in (3-8) can be combined to give the following two
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C —valued expressions:

27\ /2 27\ /2 8
o 2= 8 2~ 1/2 1/2
(Z,,) ( p+ wom+2 Ky 8t + 1.

21 1/2 i (21 1/28
. o " dg +2712¢ 112 4ng —
(ey) (q+ Vo= ) a?) T

Here, v/, ¢ is the first component of v, from (3-2). Meanwhile d = d/dz and 9=120/0z.
Finally, the norms of t; » are bounded by co|z|(|Vg|+ |V p|) +co(lg| + |p]). After
dividing by the factor 2, the two C—valued components from the second line of the
(Ay,¥y) version of (3-8) can be written as

2w 172 1/2.1/2 i (2w 172
AT (a0 5 () Vi) 4o
2 2

o\ 1/2 r\1/2
. 2(7) (3A no +271/2 1/2¢ 06]——([—) V:Aynl)+t4,
Y Y

(3-11)

(3-12)

where d,4,, here denotes the covariant version of d and V; 4, denotes the covariant
version of d/0¢ as defined by the connection A4, . Here, t3 4 indicate terms whose
norms are bounded by ¢o|z[|V.4, 1| + colnl.

What follows describes a useful way to package this. To start, write a section, f,
of iT*M &S @®iR over Uy, as f = ((¢,n0), (p,n1)) in the manner just described.
Written this way, sections of i7*M @& S @ iR over U,, are viewed as maps from
S1xC to C*. Now write C* = V@ V; where V, and V; are both copies of C & C.
Then, the (¢, o) part of f maps to Vy and the (p, ny) part maps to V;. This identifies
a section over Uy, of iT*M &S @ iR with a map from the relevant part of S I'xcC
to Vo @ V. With this identification understood, then £.,,f on U, can be written as
the map to Vo @ V; whose component in Vj is

27\ /2 3 1/2.1/27. 12
. 2(Z2 —dp+2- - — ,
(Z) (Craramiom)+5- () ) o
27\ 1/2 ~
. 2(7) ((—3A,,771+2 1/2V,}/21ﬂyop) ( ) VtAVno)+to1,
Y
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and whose component in Vj is

27\ /2 - i (270\"? 9
. 22 g +271/2p1/2 )—— —) 2 ) :
(ﬁy) (( q+ r, “Yyono 2\g, e R

2\ 2/ (= 1/2 1/2 i (2m\"/?
. 2(6_) ((3A,,770+2_ / Vy/ l/fyOQ)—E(z—) VtAyrll)-i-tll-
y y

Here, each tys has norm bounded by co(|z||Vf| + |f|) where V here denotes the
covariant derivative of f that acts on the (¢, p) components of { as the standard
derivative operator on C®°(S! x C;C), and on the (19,7;) components of f as the
covariant derivative on C®(S! x C;C) that is defined by 4, .

(3-14)

Step4 Let 5%, denote the operator with domain C*®(S! x C; Vy) and range space
L?(S! x C;V;) that sends a given (g, 1) to the map with respective V; components

(3-15) dq + 2_1/21’]}/2&;”770 and 3 4e.r 10 + 2_1/2r;/2a§”q.

Let L,; C L denote the subspace of elements | = x,((¢. 7o), (0,0)) such that
5%, (9.m0) =0 at each t € S!. To elaborate, note that this subspace inclusion uses
implicitly the identification just described between iT*M & S @ iR over U, and
Uy x(Vo@ V1). The subspace I, ¢ is closed in L. Let IT, ¢ denote the L?—orthogonal
projection from IL to L ¢.

Use ¢ = D, myeo y¢- Let ]Lé- C L denote the L? orthogonal complement of
@D .myce Ly, thus the kernel of I¢. The kernel of I¢: H — B, myeo Lyt is
denoted by Hé‘

It follows from Lemma 2.5 that the projection IT¢ maps H to itself as a bounded
operator; thus Hi = (1 — ITg)H.

The next lemma refers to constants gy and ps«. The former is defined in Part 8 of
Section 2.a, the latter is defined in Step 1 of Section 3.a.

Lemma 3.2 Fix o € (0,1/2) and smooth maps {c,,: S! — i} (y,myeo - There exists
a constant, k > 1 + 50_1 with following significance: Suppose that r > k and that
the constant py, obeys r < px < k™! Fix sections {{, € L%(Sl;c;'j T1,0%m) } (y,m)e®
with L™ norm less than k! so as to define J. Then

kTl < (1= ) Leoy ], < kllfllm

forall f € Hé‘ In addition, if each §,, has L% norm less than k!, then (1 — Mg) Leo,
maps Hé‘ onto Lé‘. Thus, (1 —T1¢)Lcq,: Hg- — Lé‘ is invertible and its inverse has
norm bounded by « .
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The proof is given momentarily.

Step 5 To motivate all of this, return now (3-6). It follows from (3-9) that the map
b — b b defines a smooth map from IH to .. Thus, what is written on the right hand
side of (3-6) defines a smooth map from H to L. Restrict this map to H-; then view

(3-16) (1—Tg)(Legy b + 717205 b —r7120) = 0

as an equation for b € Hé‘ This is the promised projected version of (3-6). Lemma
3.2 is used to write the latter equation as a fixed point equation for a self-map on H;
this the map

(3-17) b—T(b)= (QJ-)_l(l _ H;)(—}’l/zb £b+ r_l/zn),

where £1: Hé‘ — ]Lé: is the restriction to HJ- of (I —TI¢)Lce;- The norm bounds
given by Lemma 3.2 are used to prove that T maps a certain ball in Hé‘ to itself as a
contraction mapping. This is explained in the next subsection.

Proof of Lemma 3.2 The upper bound asserted by the lemma is straightforward to
prove and so the proof is left to the reader. |

The proof of the lower bound starts with a local form of Lemma 3.2. To set the stage
for the local version, fix y € ©. In what follows, H,, is used to denote the completion
of C®(S!xC;Vy@®V;) using the version of (3-7) that replaces M with S x C and
has the covariant derivative, V, acting as follows on any given ((¢, no), (p,n1)): It
acts as the exterior derivative d on ¢ and p, and acts as the covariant derivative given
by the { = 0 version of 4, on 1o and 7n;. In this regard, the norms on V¥, and V;
are their vector space norms as C @ C; and integration is defined using the Euclidean
volume for dt A (i/2)(dz AdZ). Use £, to denote the analogous L? completion. Use
L, to denote the operator on C°(S 1'% C; Vo @ V;) whose respective V and V;
components are given by the versions of (3-13) and (3-14) that have t44 set equal to
zero. This operator defines a bounded, linear map from H,, to L, .

Let 1/5\‘1, » denote for the moment the { = 0 version of what is defined in (3-15). Define
IL,,* C L, to be the subspace spanned by elements § = ((¢,70), (0,0)) that obey

Oy.r(q,m0) = 0 at each ¢ € S!. This is a closed subspace. Let I1,, denote the L?—
orthogonal projection from L, to Ly 4. Use ]Ly* C Ly, to denote the L? orthogonal
complement of Ly «. The kernel of TT,4: Hy — Ly« is denoted by H)J;* According
to Lemma 2.5, the projection IT, 4« maps H,, to itself as a bounded operator; this
implies that Hf;* = (1-TI,%)H,,.

What follows is the promised local version of Lemma 3.2.
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Lemma 3.3 Given a smooth map c¢y,: S! — &,,, there exists k > 1 with the follow-
ing significance: Suppose that r > k. Use ¢, to construct the pair (4, ), the
operator £,, and the projection I1,«. Then (1 —I1,4)£, maps H}J;* onto JLJJ;*. In
addition,

Kk fllm < ”(1 - Hy*)gyfﬁz < k|lfllm
for all | € HJJ;* As a consequence, (1 —ITyx)Ly: ]H[#* — ILJJ;* is invertible and its
inverse has norm bounded by « .

This lemma is proved momentarily. What follows directly explains how it is used to
prove Lemma 3.2.

Consider first the claimed lower bound. To this end, write £¢ and IT for the versions
of £¢., and I1¢ that are defined by the data {(cy,{, = 0)},ce. Here are three key
facts:

Fact 1 If { has L° norm less than ¢, then [|(£o, — Lo)fll2 < coer/2||§||, for all
f € H. Likewise, [|(IT¢ — ITo)f|l2 =< coé||f||2 for all f € L. Thus, if | € Hé‘ then

[TTofll2 = coellfll2-

Fact2 If ¢ has L° norm less than g, then Fact 1 with Lemma 3.2’s upper bound
imply that [|(1 —T1¢) Lo, fll2 = co_l [|(1—T1o)Lofll2 — cogllf|lm for all § e H.

Fact3 Write f € H as f+ + ITof. Use the £ = 0 version of the inequality in (2-23) to
see that [[(1—TIo)LoMofl|2 = collfll2-

The preceding three facts have the following consequence: If ¢ has L°° norm less than
e, and if f € Hy, then [|(1—T1¢)Leyfll2 = c5 (1 —To) Lo (1 —To)fll2 — coellfllm-
This understood, it is enough to establish the lemma’s lower bound for the case where
J is the set {(cy, 8y =0)},co.

To consider the lemma’s asserted lower bound in the case {(¢y,{, = 0)},c@, note
first that Fact 3 above has the counterpart ||(1 — I1o)£of|2 > co_1 1€ofll2 — collfll2
if T1of = 0. Keeping this in mind, write f € H as yof + Z(y,m)e@) Xy§ where
Xo=1=2_(, meo Xy- This done, then
105113 = 1€0(x0fo) I3 + 2, e0 Lo (Xy D13

+22y€® (SO(XOD’ 20(XVf)>2

Introduce fo to denote xof and f, to denote y,f. It follows from (2-1), (2-2) and
(2-12) that

(3-19) (14 o)1 €ofll3 = Lofoll3 + Xy co I Lofy 13 —cori 2 IF115-

(3-18)
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Now note that £9 = £; on the support of fo, and with the identifications given above,
it is very nearly IL,, on the support of f,, . In particular, (3-13), (3-14) and (3-19) imply
that

(3-20) coll€ofll3 = 1€1F0ll3 + Xy co €y Ty 115 — co(ox 2IIFI3 + P2 1IflI5)-

To continue, write f, = ff; + ITy «fy, where ff; € HJJ;* A first point to note is
that | TT,«fy ll2 < cor™'/2||f, |2 since the Hermitian metric on the product bundle
U, x (Vo @ V) is very close to that induced from M . This L? inequality also uses
(2-1), (2-2) and (2-12), and assumes that » > ¢o. These same facts with Lemma 2.5
imply a similar inequality for the respective derivatives of IT,«f, and f,; and thus
that | Ty «fy ez < cor™"/2[fy -

With the preceding understood, it follows from Lemma 2.5 and Lemma 3.3 that

(3-21) 1€, 17113 = c5 Iy I3

provided that r > ¢o. Meanwhile, (3-10) asserts that [|£7f]|3 > [[follZ;. Thus, (3-20)
and (3-21) imply the lower bound ||(1—11¢)£of2 > cal Ifllm if r > co and if TTof=0.

Now consider the assertion that (1 —TI¢) £, maps Hé‘ onto ]Lé-. As is explained
directly, such is the case if both the L% norm and the L.°° norm of ¢ is bounded by
Co 1 and if (1—11¢)Lo maps Hé‘zo onto ]Lé-zo. To see why such is the case, suppose
that ¢ > 0 and that each {,, now has both L* and L% norm less than &y. Suppose
that v € ]Lé- is orthogonal to the image via (1 —1I1¢) £, of Hé‘, but assume that there
exists g € Hé‘zo such that (1 —ITg)Log = (1 — [Tg)v. Granted this last assumption, it
follows from Fact 1 above that

(3-22) (Leo,8:9)2 = cg ' I0]I5 — coellglimIvll2

if the L°° norm of ¢ is bounded by ¢. Given what has been proved so far of Lemma
3.2, it follows from the equation (1 —1I1¢)Log = (1—1IIp)v that ||g|lm < collv]||2. Thus,
(3-22) implies that (£.,,9.0)2 > cal ||U||% if ¢ < co_l. Meanwhile, it follows from
Lemma 2.5 that ||IT¢gllm < cogllg|lm if the L% norm of ¢ is less than ¢ also. If such
is the case, then (3-22) implies that (£, (1 —TI¢)g,b)2 > co_1 ||U||§ when ¢ < co_l.
Given that v is orthogonal to the image of Hé‘ via (I —I¢)Lcq, , this implies that

v=0.

Granted all of this it is sufficient to prove that (1 —I1)£, maps Hé‘zo onto Lé;o. To
do so, let x, denote the characteristic function for the support of x, . Let v be as in
the preceding paragraph. Interpret x, v as an element in £,,. This done, then Lemma

3.3 finds an element §, € Hy;, with (1 —TT,4)£,f, = (1—I1,)x,0. Let xo denote
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the characteristic function for the support of xo. As £; is self-adjoint, it follows from
(3-10) that there exists fo € Ho with £7fp = xob.

Let f = xofo + Z(%m)e(@ Xy Ty . Given (3-13) and (3-14), it follows that

(3-23) (LesT. 0)2 = g o3 — co(3 2 1If1I5 + P2 I1FlIE)-

Meanwhile, [lle < co(lfoll# + X meolfy ) and so the norm lower bounds
given by (3-10) and by Lemma 3.3 imply that ||f|g < cal |loll, when r > ¢g. Thus
(3-23) implies that

(3-24) (Leoyf V)2 = 5 lol3
when r > ¢g.

Now (3-24) does not quite finish things because f is not apriori in H. Even so, it is a
consequence of (2-1), (2-2), (2-12) and Lemma 2.5 that there exists §' € Hg- such that
1F—F Il < cor~Y2||fllm when r > ¢q. Since |[flm < collv]l2, it follows from (3-24)
that (£cq,f.0)2 > cal ||U||§. This last inequality can hold only if v = 0.

Proof of Lemma 3.3 The upper bound for |(1 —1II,4)£,f|» is straightforward to
prove and left to the reader. Consider the existence of a constant x for which the
asserted lower bound inequality is obeyed. To find «, look first at the inequality for
f = ((0,0), (p.n1)). Use A to denote the pair (p,n;). The square of the L? norm of
£, f obeys

) ~
(3:29) [0 =T 2815 = T (1915 + 4197, 115).
14

A rescaling of the coordinate along the C factor of S x C and an appeal to (2-8) find
that
(3-26) 193, 4115 = o (I3 213+ ry [1A113)

here VJ(,C denotes the covariant derivative in directions tangent to the C factor of S'xC.
The lemma’s norm inequality for § = ((0, 0), (p, 1)) with a suitable « follows from
these last two inequalities. |

Consider next the asserted norm inequality when § = ((g, 179), (0, 0)). To this end, set
A = (¢, no) and note that

2 ~
(3-27) [(1=T088]5 2 ([ =Ty Vi A3 + 418y, 413).
Y
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Now suppose that A is L2—orthogonal on each constant ¢ € S slice of S! x C to the
kernel of ﬁy . Then (2-8) guarantees that ||z9y rk||2 is also larger than what is written
on the right hand side of (3-26). Meanwhile, it follows from Lemma 2.5 that

1
(3-28) |(1 =TI ) Viyd||, = SV hllz = colltlz,

where ¢ depends only on ¢, . Granted these facts, the lemma’s norm inequality also
holds for a suitable ¥ when § = ((¢, 10), (0, 0)).

Finally, consider § = fo + f; where fo is of the form ((q, 7o), (0,0)) and f; is of the
form ((0,0), (p,n1)). An integration by parts finds that

1
[0 =Ty, Go+ 505 = 5 (10 = T2l

+[ (1 =T00L) 11 H;) —<ollfll2,

where ¢ again depends only on ¢), . Given that there exists « that makes the norm
inequality true separately for fo and fy, this last inequality implies « can be found to
make the lemma’s claim true in the general case.

(3-29)

What follows explains why « can be chosen so as to guarantee that (1 —IT, )£, is
onto. To start, note that IT, £, : H « — LLyx extends as a bounded operator from
]LJ- to Ly« . This understood, suppose that fe ]L 4 is in the cokernel of (1 —T1,4)%, .
It such is the case, then (£y,,f)2 = (ITy« £y p, f) for all p € H, . From what was
just said, this implies that [(£y,p,)2| =< collp||2||fll2 for all p € Hy . Since H,« is
dense in L2, this implies that f is in the domain of the formal, L? adjoint of £, .
Since this version of £, is symmetric, so § is in Hf;* Granted that such is the case,
the lemma’s norm inequality implies that f =0

3.c The right hand side of (3-5)

The perturbative scheme use here to solve (3-16) and then (3-17) requires that what is
written as v in the latter have suitably small norm. This understood, this subsection
provides bounds on the norms of B4, — r(lﬂ;ﬂﬁg —ia) and D4 V5.

By construction, By, — r(tpgr% —ia) =0 and D4;¥; =0 on Up. The next lemma
describes their behavior on a given y € © version of U, . The lemma refers to the
C-valued functions x; and ¢z on S I x C. These are the respective pullbacks via the
map 7, of the functions x¢ and ¢¢ as defined in (2-21). The lemma also refers to the
function f; whose square is given in (2-20). In addition, the lemma reintroduces the
complex 1-form e from (3-2). Recall that the real and imaginary parts of e with the
contact form a define an orthonormal basis for 7* M near y .
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Lemma 3.4 Given a smooth map cy: S' — &,,, there is a constant k > 1 with the fol-
lowing significance: Take r = « . Fix a section & of ¢}, »T1,0€m with L2 and pointwise
norm less than . Use (¢, ) to define (4y, Yry). Then r_1/2 (BA —r(wyrwy—la))
and the two components of D4,V can be written as

2
o T2 =Pz 4 (1 - 0 ),
Y

(2712 r+r1/2(vz+,uz)(1 |a§”|2))e+3),

2w . _
. K_(l g —2(vz +/LZ)8AE.rOl§’r +30.31)
%

where 3] + 30 + [31] < kr~V2(1 4 fy)e VrIZl2,

The pair (4y,V,) can be constructed as directed above when y is an embedded
curve and not a Reeb orbit. In this case, the terms indicated by 3 and (3¢,31) in a
corresponding version of Lemma 3.4 would have contributions with norm bounded
below by « ! r1/2¢=7121/2 and bounded above by icer1/2e=VT12l/2  The fact that
these larger contrlbutlons are zero if and only if y is a Reeb orbit gives some indication
as to how the Seiberg—Witten equations distinguish the Reeb orbits from embedded
curves.

Proof of Lemma 3.4 An appeal to (2-1), (2-19) and (2-22) bounds the pointwise
norms of By, — V(l/fy‘twy —ia) and Dy, Y, where dy, # 0 by c.r 1721 + o)
X exp(—> Lp172)2)y. Thus what is claimed by the lemma holds on the support of dx,,
given that p2r > 1’ with § > 0.

Consider next By, r(wyfl//y —ia) where x, = 1. The curvature 2—form of the
connection A, is 2ry(l—|0t§’|2)dz/\afz 2-1/2,1/ 2(x’dz xgdz)/\dt Write this 2—
form in terms of the orthonormal basis given by a and the real and imaginary parts of e.

Given (2-19), it follows that B4, differs by less than ¢ (r 1z)2(1—=|a®7|2)+r /22| Ix£ )
from

—ir(1—%" ®)a+ i P27 2 — )2 vz + pE) (1= b 12))e
(3-30) v .
+Er1/2(z’2 125 X¢ + rl/z(vz +az)(1— a7 ))e.
Meanwhile, r(w;rgﬁy —ia) is equal to —i (1 — |a"|?)a. This last point with (3-30)
gives the first bullet point of the lemma. The verification of the assertion about D 4, ¥,
is proved by writing out the Dirac operator using the coordinates (z, z) for S! x C and
invoking (3-30). This task is straightforward and so left to the reader. O
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3.d Solving (3-16)

The purpose of this subsection is to describe a solution to (3-16). As noted above, the
strategy is to view (3-16) as the equation for a fixed point in Hé of the map T given
in (3-17).

Lemma3.5 Fixo€(0,1/2),aset® asin(3-1)andaset {c, € C®(S!; Cm) Y (y.m)eo -
There exists a constant k > 1 with the following significance: For each (y, m) € ©, fix
{y € L%(Sl, ¢ T1,0€m) such that || < k~ V. Fix r >k and ps € (r —°,k~ ). Use
J = 1{(cy.8y)}(y,m)eo to define the space Hé‘ and the operator £1 that appears in
(3-16) and (3-17). Suppose that v is a given element I with o], < Kc_lr_l/4. Then
the map T as depicted in (3-17) has a unique fixed point in H with norm less than
k- 1r~1/4 . The norm of this fixed point is, in, less than k. ||v]|5.

Proof of Lemma 3.5 The operation * that appears in (3-17) obeys

(3-31) 1658/l < collbll Lallb'll L+ < cor ™ * B lwlb [,

This follows from (3-9). Meanwhile, Lemma 3.2 finds an r—independent constant
co > 1 with the property that if 7 > ¢q then [|(£1)""w||g < o], for any o e LL.
Granted these last three observations, it follows that

(3-32) IT )l < co(llollz + '/ *(1b113).

In addition,

(3-33) IT (= b e < cor* (0 e + 116 l1w) 11— b’ 5. 0

The inequality in (3-32) implies the existence of a constant, ¢; > 1 such that T maps
the ball in ]HI;L of radius cl_lr_l/4 to itself provided that » > ¢y, that ||b], < 61—2,,1/4‘
The inequality in (3-33) implies that such a constant can be chosen as to insure that T
is a contraction mapping on the radius cl_1 r~1/4 ball in Hé‘

Granted the preceding, the contraction mapping theorem asserts that T has a unique
fixed point in the radius c¢or~'/# ball in H:, and that the norm of this fixed point is
bounded by col|v]| if ||b]| is smaller than ¢y 'r=!/4.

With Lemma 3.5 in hand, consider now the term that is designated by v when (3-17)
comes from (3-5). By construction, any fixed point of T is a solution in Hé‘ to the
Equation (3-16).
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Lemma3.6 Fixo €(0,1/2),aset® asin(3-1), and a set {c,, e C®°(S; Cm)}(y,m)ed -
There exists a constant k > 1 with the following significance: For each (y,m) € O,
fix ¢, € L%(Sl, C;TLOQm) with L% norm is bounded by k~!. Fix r > « and p* €
(r=9, k7). Use 3 = {(cy, $y)}(y,m)e@ to define the space Hé‘ and the operator £+
that appears in (3-16) and (3-17). Take the term v in (3-16) and(3-17) to correspond
to what appears on the right hand side of (3-5). Then ||v||, < kr~'/? and so the fixed
point, b, given by Lemma 3.5 has norm ||b||g < kr~1/2.

Proof of Lemma 3.6 The part of v that comes from r=/2(i x du + 1 B4,) has L?
norm bounded by cor_l/ 2 Lemma 3.4 with (2-1), (2-2) and (2-22) guarantee a point-
wise bound by ¢1e~V7121/2 on the contribution to v from both By, — r(lﬁ;ﬁ//y —ia)
and Dy, ¥, . Here, ¢; depends only on the set {¢ }(,,m)ec@ - Therefore, the L? norms
of these contributions are bounded by ¢or Y2 where ¢, depends only on the set

{ey}ymyeo - m]

The next lemma considers how Lemma 3.6’s fixed point varies with a variation in the
: - 20¢1.
choice of the sections {§, € L{(S"; c;'j T1,0%m} (y,m)co -

Lemma 3.7 The constant k in Lemma 3.6 can be chosen so that the following is true:
The assignment to a data set {{y }(,,m)e® € X(y,m)e@L%(Sl; c; T1,0¢y,) of Lemma
3.6’s solution of (3-16) varies smoothly in H as {{, }(,,m)e@ varies subject to (3-1).
Moreover, the directional derivative of the solution in the direction of any unit length
vector in any given (y, m) € ® version of the space L%(Sl; c;‘jTl’OCm) has I norm
bounded by kr—1/2,

Proof of Lemma 3.7 The smooth variation of the solution with varying input is a
standard consequence of the contraction mapping construction and the smooth depen-
dence of everything on the data set {{, }. This can be seen using (2-11), (2-12) and
the constructions in Section 3.a. This understood, the issue is that of a bound on the
derivative. What with (2-11) and (2-12), these bounds are obtained with arguments much
like those used to prove Lemma 3.5 and Lemma 3.6. The details are straightforward
and are left to the reader. |

What follows is a parenthetical remark with regards to Proposition 3.1. The arguments
given by Lemma 3.5 and Lemma 3.6 are, of course, much simpler for the equation

(3-34) €160 +12bg % by = v,

where v now contains just the —r12( « du + %BAK) term on the right side of
(3-4). These arguments find a unique, small normed solution, this denoted by bg. This
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solution has H norm ||bg || < cor~'/2; as explained in Lemma 3.10, it also obeys

|bo| < cor™!. This solution to (3-34) gives the gauge equivalence class that is alluded
to by Proposition 3.1.

3.e Solving (3-6)

Let g9 denote the constant that appears in (3-1). Fix ¢; > 0 but much less than &g.
Some additional upper bounds for ¢; are described in what follows. With ¢; chosen,
introduce B C @, myece L1(S': 5 T10¢,) denote the ball of radius &;. Here is
the first constraint on €1: Any given { € B has pointwise norm bounded g¢. This
understood, Lemmas 3.5-3.7 describe a smooth map b: B — H such that b({) € Hé—
solves ¢’s version of (3-16). With { = (§, € L%(Sl; c;‘j T1,0€m))(y,m)e6 € B chosen,
then b({) is a solution to (3-6) if and only if

(3-35) Mye- (Leoyb+ 7172050 —0) =0

for each (y,m) € ©. The task now is to find &; so that (3-35) holds for one and only
one choice of ¢ € B. The pair depicted by (3-4) solves (1-13) when (3-35) holds.

The first step in this task is to rewrite (3-35) in a more suggestive fashion. To this end,
note that the subspace IL,,¢ € I is canonically isomorphic to the space of L? sections
over S! of ¢y ¢+ 1'1,0€n . This isomorphism arises as follows: At any given 7 € S L
the kernel of the ¢ = ¢, ¢(#) version of the operator i, is isomorphic to T o€y, at
¢y¢(¢). Meanwhile, the operator 5,,,, |; is obtained from this same version of ¥, by
rescaling C by the factor r;/ 2 In particular, the kernel of the one is obtained from
the kernel of the other by rescaling. Introduce the function x4« on C given by the rule
x%(2) = x(|z]|/2px) . Multiplying the kernel of z?}y,, |¢ by the factor y. defines a linear
injection from the kernel into C*°(C; V). Meanwhile, the differential at ¢, of the
map €xp,y from Part 8 of Section 2.a identifies ¢, ¢+ T1,0€y, with c;‘j T1,0¢, . Granted
these identifications, then (3-35) defines a smooth map

(3-36) F: B> @ meol (S THOC,).

The assigned task is to find &; so that ¥ has a unique zero in the radius &; version
of B.

Lemma 3.8 Let © be as in (3-1), but now choose the data {c,: S! — S} (y,m) SO
that each ¢, is a nondegenerate solution to (1-10). Fix o € (0,1/2). Then there
exists k > 1 with the following significance: Take r >k, &; = k! and px obeying
r % <px < kY. There is a unique solution in B to the equation ¥ = 0. This solution
has L% norm bounded by kr—1/4,
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Here is a parenthetical remark: The key estimate in the proof of Lemma 3.8 fails
when the assumption about (1-10) is dropped. Indeed, (1-10) enters the Seiberg—
Witten/embedded contact homology story solely for its use in Lemma 3.8.

Proof of Lemma 3.8 The proof of this lemma also uses perturbation theoretic con-
structions. The proof has five steps. The first four focus attention on a given (y,m) € ©

component of ¥ . Denote the latter by 7, . O
Step 1 The section %, of ¢} T1,0&y is defined by first rescaling via r,}/ ? a certain
L? map from S! x C to Vo @ Vy, then projecting to the kernel of Ve, (., » and then

using the inverse of the differential of the map éxp., at ¢y . This operation can be
performed on any given L2 map from S! x C to Vo @ V;. Let § = (fo.f;) denote
such a map. What follows describes the resulting section of cj T1,0Cm.

Fix a trivializing, orthonormal basis {6;¢}1<;j<m for c;‘j T1,0%,. Atany given 7 € S L
the differential of éxp, () at Cyle identifies {0o|s}1<j<m With a basis {0 }1<j<m
for the kernel the operator ¥, ,,,. Each 6; is a map from C to C & C that obeys the
(AC, af) version of (1-7). The map § defines the section of c;‘j T1,0¢» whose value at
t € S! has the form

1 A
(3-37) Zisjzabiory /C(<r;e,~)*fo)><*<1 +od’z,

where (70;)(z) = Gj(r;/zz) and where |e| < co|z|?. Here, x«(z) = x(|z]/p«). The
section #,, is defined by (3-37) with § given by the expression that appears in the
brackets on the left side of (3-35).

Step 2 Do not assume yet that the map c,, is a solution to (1-10). Working from
left to right, consider the size of the various terms from (3-35) that make up the
map 7. The term T1,¢(£co;b) involves solely the Vo component of £y, this
given by (3-13). To bound this contribution to %, , write b as a pair (Ao, A;) with
Ao and Aq respective maps to Vo and V;. The component A; appears in (3-13) as
1’5; rA1 plus terms with norm bounded by c.(|z||VA1|+|A1]). Here, V is the covariant
derivative defined by AY. Meanwhile, 5,,,,)»1 is orthogonal on C to ?;,"Qj as can
be seen with an integration by parts. Thus, (3-37) with Holder’s inequality and (2-2)
imply that the component A; contributes at most c¢q||by, ||jr to the L? norm of Fy; and
this is at most cor~1/2 since 6y llm < cer~Y/2 . The component A = (g,10) of b
contributes to T, ¢ (£co,by) as V; ¢(q, o) = ((3/01)q, (3/9t + Ao)no) plus terms that
are bounded by ¢ (|z]||VAg| + |Ao]). As just noted, terms of the latter sort contribute
at most cor ~'/2 to the L? norm of #,. Meanwhile, the former contributes at most
co(ll f¢, l2r =14 + r~1/2)  this a consequence of Lemma 2.5.
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It follows from (3-37) and (2-2) that the term r'/2b % b contributes at most r3/4|| b”IzHI
to the L2 norm of ¥, , and is this bounded by cor~1/%.

The term designated by IT,¢(v) in (3-35) has one contribution that comes from the
term r—1/2 (i xdu+ %B 4;) in (3-5). Given (2-2), it follows that the size of the latter’s
contribution to the L? norm of Fy is bounded by cor~ /2. The remainder of T, ¢ (vy)
is considered in the next step.

Step 3 The portion of IT,¢(v) left to consider comes from B4, — r(lﬁ;‘ﬂﬂy —ia) and
D4, ¥y . As is explained next, their contributions to %, is the projection to kernel(#.,,)
of what can be written as

i, 1,0
(3-38) 5cy’gw ﬁ|w+e,

where |e| < cor~!/2. Here, £ is the function that is depicted in (1-9).

To see how (3-38) arises, use Lemma 3.4 to see that the contribution to the section ¥,
from By, —r(w;rwy —ia) and Dy, v, can be written as (i/2)c;,§ —vle, . +e,
where |e| < cor~ /2 and where the inner product between v and any given n =
(¢.6) € e, is

1 1
(3-39) o) =+ [ 0z4 2 (éaAa + - |a|2>).

What with (2-13), this implies that v = V1:04.

Step 4 Given what is said in the preceding steps, it follows that ,, can be written
now as

i i
(3-40) Fr =54+ v“’ﬁ\cﬁzvt;y +(Ve, VOB, + %Ry
where R, is an L? section of c;‘j T ,0¢, that obeys (3-40)

(3-41) 198y 112 < cc(r* +1IVety 12+ 116 12).

Here, the V; is the covariant derivative on L%(Sl; c;ﬁ T1,0¢,) that is defined by
the pullback via ¢, of the Levi-Civita connection on 77 ¢€,;,. The constant ¢, is
independent of  and ¢, though not of ¢, .

The small size of R, suggests a perturbative approach to finding ¢ € B that makes each
(y,m) € O version of #, equal to zero. This requires, first of all, that ¢, obey (1-10)
so that the {—independent term %c;, + V1’0ﬁ|cy contributes zero to (3-40). The most
straightforward sort of perturbation theory also requires that ¢, define a nondegenerate
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solution to (1-10). This says neither more nor less than the following: The operator, L,
on C®(S!; ¢, T1,0€m) that sends a section 1 to Lyn = (i/2)Vin + (V,,Vl’oﬁ)|cy has
trivial kernel. The operator L,, has a bounded inverse mapping L2(S!; c;j T1,0Cm) to
L%(S1 ;¢ T1,0€m) when its kernel is trivial.

Step 5 Assume now that each element in the set {cy }(,,m)c@ is a nondegenerate
solution to (1-10). Define a map P: B — @, mco L3(Sh ¢ T1,0€m) by setting its
component in a given (y,m) summand to be P, = —L;li)‘{y. A point { € B is a
solution to the equation F = 0 if and only if it is a fixed point of .

Lemma 3.9 Fix o € (0,1/2). Given that each element in the set {cy }(, m)co 1S a
nondegenerate solution to (1-10), there exists a constant k > 1 such that if r > k, &1 =
k1, and ¥~ < px <!, then the following is true: The map P sends B to itself as
a contraction mapping. Thus, it has a unique fixed point in 3. Moreover, any given
(y,m) € ® component of this fixed point is a smooth section over S of c; T1,0Cm
with L? norm bounded by «r~1/4.

Proof of Lemma 3.9 Since L, is invertible, it follows that the L% norm of P, is
bounded by an r and { independent constant times ||’y ||». Thus, (3-41) guarantees
a bound by c¢g (8% +r~1/4) on the L% norm of [P, . As a consequence, there exists
¢o > 1 such that P maps B to itself if » > ¢ and &1 < 1/¢q.

It remains yet to prove that « can be chosen so as to guarantee that IP is a contraction
mapping on B. This follows with a proof that

(3-42) 19 () =Ry ()12 < co(I8ll 2 + 18112 + r)g — Iz

The existence of such a bound follows from the bounds given in (2-11), (2-12) and
Lemma 3.7 after differentiating the various terms that appear in (3-35). The derivation
of (3-42) from these bounds is straightforward; it involves arguments that are, but
for minor cosmetic changes, the same as those used in the proof of Lemma 3.4 and
Steps 1—4 in this subsection. This said, the proof of (3-42) is left to the reader.

Given that P is a contraction mapping, the bound by cor 14 on the L% norm of its
fixed point in B follows from the bound in (3-41). The fact that any given (y,m) € ®
component of this fixed point is smooth can be established using standard boot strapping
techniques for first order differential equations. This is can be done in an iterative
fashion by alternately using (3-5) to incrementally increase the differentiability of b
via techniques from [3, Chapter 6] and then using the equations { ¥y}, m)ee@ = 0 with
Fy as in (3-40) to increase the differentiability of {{} }(, m)c@ using the fact that the
latter can be viewed as an elliptic system of first order, ordinary differential equations.
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There is a somewhat more direct way to see why the pair (A, ) given in (3-4) is
smooth. To elaborate, write (A4, V) as (A* + a,¥™* + A1) where (A%, ¥™) is the
version of (Ajy, V) that is defined by taking J = {(cy, ¢, = 0)}(,m)e@- The pair
(A*,¢™*) is smooth. Let ¢ denote the iR component of b. What with (2-9), (2-10)
and (3-4), it follows that the triple (a, A, @) obeys an elliptic, first order, nonlinear
equation with quadratic nonlinearities. Apriori, this triple lies in the Sobolev space
L%(M ;iT*M &S @ iR). Elliptic bootstrapping techniques (see, for example, Mor-
rey [3, Chapter 6]) can be used to prove directly that (@, A, ¢) are smooth. Of course,
it is known that any L% solution of (1-13) is apriori gauge equivalent to a smooth
solution (see, eg Kronheimer and Mrowka [2].) O

3.f Other properties of the solution

The next lemma says more about the zero ¢ € B of F and the corresponding point b({).
It is used in a subsequent section.

Lemma 3.10 There exists a constant k > 1 with the following significance: Fix r > k
and let { € B denote the zero of F that is provided by Lemma 3.8. Then the L% norm
of ¢ is bounded by kr~'/2. Meanwhile, let b(¢) € Hé‘ denote the solution to the
corresponding version of (3-16) that is provided by Lemma 3.6. Then b({) = by + e¢
where

o byl = k(r—t 4 p71/2 Z(y,m)e@) e‘ﬁdis‘("y)/").

o leghm <wr=t.

o« [6(0) =wr /2,

e The small solution bq to (3-34) obeys |bg| < cor™!.

Proof of Lemma 3.10 The proof has six steps. Steps 1-4 allow ¢ to denote any given
element in 5. |

Step 1 Fix (y,m) € ®. According to Lemma 3.4,the { version of v on U,, can be
viewed as a map to the vector space Vo @ V; that can be written as v, + 3', where
I3’ < cor_l/ze_“/?lzl/2 and where v, ¢ maps to Vo and is given by

(3-43) v, = (xg - r;/z(vz + uD) 27 V2 (1 = a7 P, g —(vz+ uz)aAf.,af”).

Note that v, ¢ is defined over the whole of S ' x C. Granted the preceding, let T1°
denote the L%—orthogonal projection on C to the kernel of (3-15) at any given z € S'.
The latter operator is denoted by .. Let p,¢ denote the L* map from S! xC to V;
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that obeys the equation (271/6},)1/25;,,]3,,; =(1- HO)U),; =0ateacht e S'. The
bounds in (2-1), (2-2) and the formula in (2-7) can be used to prove that

(3-44) yel + [Veybyel + 172V gerpye| < cor ™V 2e VT2,

Define p,¢ as above and view by, ¢ = (0,p,¢): S!xC — Vo @ V; over the U, part
of S x C as a section of the vector bundle i T*M @S ®iR.

Step 2 Introduce the operator £; as in (3-10). Let by denote the small normed
solution to (3-34); this the solution with ||bg|lg < cor~!/2 that is provided by the
analog of Lemma 3.5 and Lemma 3.6 when ® = & (see [7, Proposition 2.8]). This bg
obeys the equation 2;60 = —r'/22;(bg * by) + £7v. The operator SE; is depicted in
[6, (5.22)]. Given the latter, it follows that |bg| obeys the differential inequality

(3-45) dtd|bg| + 2r|bo| < cor|bo|? + co.

Fix p € M and let g(-, p) denote the Green’s function for d'd + 2r with pole
at p. The latter is a nonnegative function on M — p and it obeys |g(-, p)| <
Co dist(~,p)_le_ﬁdi“("p)/c(’. In particular, its L' norm is bounded by cor~! and
its L2 norm is bounded by ¢or~'/2. Note also that g(x, p) = g(p,x). Fix x e M
where |bg| is maximal, multiply both sides of (3-45) by g(x,-), and then integrate
over M . The resulting equation implies that

(3-46) [60lloc < corl|bolloollboll21lg(x,-)l2 + collg(x,-)l1-

Given what was said just now about the L2 and L! norms of g(-, p), the right hand
side of (3-49) is bounded by ¢ ([|bo||w||6olloo + 7). Since ||bollm < cor /2, this
last fact implies that ||bg]leo < cor™!.

Step 3 Fix R > 1 in the following way: For each (y,m) € ©, view the map ¢, as
a map from S! into Sym™(C). Let R, denote the maximum as ¢ varies in S! of
the norms of the points in C that define c,, . Set R=3", mee Ry +100. Let xy=
denote the function on C given by z — X(ry |z| /R). View this as a function on M
with support on U, . Set o« to denote the function 1 — Z(y,m) Xy*-

By virtue of the choice for R, the identifications in Steps 1 and 2 of Section 3.a that
define E over each U, and E over U, extend to identify £ as the trivial bundle over
the support of xo. Thus they identify i T* M &S®iR with the bundle i T* M &Sy diR
over the support of yo. With these identifications understood, then XO*bg defines
a section of iT*M &S ® iR over the whole of M . Meanwhile, each (y,m) € ©
version of x, b, also defines a section of iT*M @& S @ iR over the whole of M .
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Granted these identifications, set

(3-47) baz = (1=TI¢)(x0xbo + X (y.myco Xy bye)-

Step 4 It is a consequence of (2-1), (3-47), (3-46) and (3-13)—(3-14) with Lemma 3.4
that

(3-48) (1= Tg) (Ley baz + 11204z % bye — ™1/ 20)

has L? norm bounded by cor~!. Note as well that ||b.¢ |z < cor~ /2. Denote what
is written in (3-48) by v,¢. Write the section b € Hé‘ that is supplied by Lemma 3.6
as b = by¢ +¢e¢. As b obeys (3-16), so e¢; must obey the equation

(3-49) (1—TTe) (Leoyee + 71 2eg keg + 201 2byp % g —04g) = 0.

As |lee|lm = ||bllm + [ | <cor~1/2,(3-31) and Lemma 3.2 imply |[le¢|lm < cor L.

Step 5 Take ¢ € B to be the element that is supplied by Lemma 3.8. To refine the upper
bound for the L% norms § = (§y)(y,m)e, return to Step 2 of the proof of Lemma 3.8.
The latter derived a bound of cor_l/ 4 for the contribution to the L2 norm of ¥ from
the term IT¢(r 172 « b) that appears in (3-35). As is argued next the latter contributes
at most ¢cor ~1/2 to the L? norm of ¥ . Granted that such is the case, it then follows
that the left hand side of (3-41) can be replaced by co(r /2 + ||V, &, ||§ + 118y ||§). The
contraction mapping theorem used to find ¢ now gives a bound of cor~ /2 on its L%
norm.

To bound the contribution of IT¢ (7 172 4 b) to the L? norm of F, write b = by +ez.
Given (3-37), it follows using Holder’s inequality that the contribution to the L2
norm of F from this term is bounded by rl/z(|b*§|Loo)2 + r3/4||e;||12HI. The latter is
bounded by cor /2.

Step 6 Introduce Jo = {(cy,0)}(,myee and let Leoy, denote the (Azo, V3,) ver-
sion of the operator that appears in (3-8). This operator differs from the opera-
tor £, that appears in (3-6) by zero—th order terms that are bounded pointwise by
cor V3¢ |Z(y’ 11)€® e~ V/rdist(v.)/co Note that the coefficients of the derivatives appear-
ing in 'Sc@)ﬁ() are determined by the metric and are independent of ® and r. Meanwhile,
on any given ball in M of radius ¢, ! there is a trivialization of E such that the follow-
ing is true: When £C®GO is written with respect to this trivialization, its zero—th order
coefficients are bounded by co(1+r 1/ ZZ(},, i e@)e_*/; dist(y,)/¢0) I addition their der-

ivatives to a given order k are bounded by ¢z (1 + r*+1D/2 > (y.m)e® e~V distlys)/co
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Granted these last remarks, it then follows using a standard parametrix expansion that
if § and 1o are sections of i7*M & S @ iR and Legy,f = 10, then

(3-50) [Iflloc = co sup 1§ + cor®'? sup

: /
— If].
xeM /dist(x,-)suﬁ dist(x, -)? xeM Jdist(x, ) <1//7

Step 7 This step proves the asserted bound on |b(¢)|. To this end, remark that b = b({)
obeys an equation of the form £.,, b = v where o] < cor/2(|¢||b] + |6]2) +
r~1/2|v|. This understood, it follows that (3-53) holds with f = b and with || just
described. References are to this version of (3-53) in what follows.

Write b = by¢ + e¢. The by contributions from r1/2¢16| to the left most integral on
the right hand side of (3-53) is bounded by cor~!/2 [b4¢lloo and that from r 1/2|p)2
is bounded by cg||by¢ |2,. The former bound uses the bound by cor~'/2 on the L%
norm of ¢ from Step 5, and the consequent bound by cor /2 on |¢|. Granted the first
bullet of Lemma 3.10, it follows that the by contribution to the left most integral on
the right in (3-53) is bounded by cor~!. Meanwhile, the contribution of by¢ to the

right most integral on the right hand side of (3-53) is bounded by cor /2.

To bound the contribution from e¢ to the left most integral on the right in (3-50),
note first that if § € H, then ||dist(x,-)~'f||> is bounded by co||f|m using a standard
Sobolev inequality. This understood, it follows that the contribution of /2| le¢| to
the left most integral on the right hand side of (3-50) is no greater than cqr /4 llee!lm,
and that the contribution of r!/ 2|e¢|? to this same integral is no greater than r 172 et ”]1241 .
Meanwhile, the contribution to the far right integral on the right hand side of (3-53) from
¢¢ is no more than r1/4||e;||H. Thus, the ¢z contributions are no greater than cor—3/4.

To bound the contribution to the right most integral on the right hand side of (3-50) from
r~1/2|v|, use Step 1 to see that r 1/ 2|o] <co(r~1/2+|V)) Z(%m)e(a ¢~/ dist(y.)/co
It follows as a consequence that » ~'/2|v| contributes at most co(r ! 4~/ 2 Inr ||¢|| L%)
to the right most integral on the right hand side of (3-50). In particular, this is less
than cor_3/4.

Putting all of the above together gives the bound that is claimed by the lemma.

3.g Proof of Theorem 1.1

An element in X consists of the following: First, a finite set ® whose typical element
is a pair (y,m) with y a Reeb orbit and with m a positive integer. As always, distinct
pairs from ©® have distinct Reeb orbit components. Second, an assignment to each pair
(y,m) € © of a nondegenerate solution ¢,: S 1 ¢, of y’s version of (1-10). Fix
x € X. The preceding parts of this section find a «, > 1 and then construct a solution
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to (1-13) for any given r > «, > 1. The gauge equivalence of this solution is defined to
by ®"(x). Given that X is finite, the assignment x — ®” (x) is defined for all x € X
if r>cgp.

Consider now the claim that E < 2L on the image of ®” when r is large. For this
purpose, fix x € X. Write pyx = r=1/2439 with ¢ > 0. Write x = (O, ¢) where
¢ = {cy }(y,m)eo are the solutions to (1-10). Let { = {{ }(,,m)c@ denote the zero of
the map ¥ that is provided by Lemma 3.8. Let b({) € Hé‘ denote the solution to the
corresponding version of (3-16) that is provided by Lemma 3.6. Thus ®" maps (0, ¢) to
the equivalence class of the pair (A4, ) that is obtained by using J = {(cy, {y)}(y,m)ec0
and b(¢) in (3-3). This understood, write the i T7* M component of b as b. Thus,
A= Ay+2/2p1/2p,

To continue, write

(3-51) By= (1=, meoXy)Ba+ 2 meoXyBa

The integral that defines E(A) thus has a contribution from each of the terms on the
right hand side of (3-51). The contribution from the left most term on the right hand
side of (3-51) can be bounded via an integration by parts by

(3-52) cor'/? /M 161(1+ X mycoldxyl) +cor ™"

Note in this regard that Ay is flat where all x,, are zero. It follows from Lemma 3.10
that what is written in (3-52) is bounded by cor 9.

This last estimate implies that any significant contribution to E comes from the
radius px neighborhoods of the Reeb orbits that appear in ®. To see about this
contribution, fix (y,m) € ®. An analogous integration by parts writes the contribution
to E from x, B4 as

(3-53) i/ an*Bg, +e,
Uy

where A4, is defined in (3-3) and where |e| is bounded by what is written in (3-51). In
particular, it again follows from Lemma 3.10 that |e| < cor 3. Given (1-1)’s depiction
of a on Uy, it follows from (1-4) and (3-3) that the integral in (3-53) differs from
2mwm{, by a number with absolute value less than cor ~'/2. Given the bound on (3-52)
by cor 39, this last conclusion implies that

(3-54) E=2r Y mly+¢,
(y,m)e®

where |¢/| < cor—3?. This last bound implies that E < 2L when r > ¢g.

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology I1 2635

Consider next the claim that ®” is injective. To start, remark that what was said in
the preceding paragraphs has the following additional implication: The map ®” maps
pairs (®,¢) and (®’,¢') to the same gauge equivalence class if and only if ® = @',

Suppose that (0, ¢) and (O, ¢) are distinct elements in €ZL" and that (y,m) € ©
is given distinct maps from S! to €, by ¢ and ¢. Let ¢ = (4, ) and ¢ = (4", ')
denote these two maps. Since ¢ # ¢/, there is a point 7 € S! and a zero z € C of «f;
that is not a zero of «'|;. More to the point, because X is a finite set, there exists
a constant 77, > 1 with the following two properties: First, Ty depends only on L.
Second, there exists a point € S and a point p4 C C such that |a| < (1/100) T, !
and |o/| = T; ! at (¢, p).

Keeping this in mind, let ¢ and ¢’ denote the elements that are provided by Lemma
3.8 using ¢ and ¢ respectively. Let (A3, Y3 = (g, B3)) and (Ay, (ay, By)) denote
the corresponding versions of the data given in Step 4 of Section 3.a. It follows from
what is said in Lemma 3.10 about the size of ¢ and ¢’ that |os| < (1/64)TZ1 and
|y > (1/2)TL_1 at the point (z, p) if r > ¢g.

Write the E C E @ EK summand of the spinor component of ®” (0, ¢) as a3+ n and
that of ®”(©,¢’) as ay, +1'. Use the bounds |6(¢)| < cor~'/2 and |b(¢)| < cor~"/?
with what was said in the previous paragraph to see that oy + n| is bounded by
(1/32)TL_1 at (¢, p) when r > ¢o, while r > ¢q version of oy +7'| > (1/4)TL_1 at
(¢, p). This implies that ®, maps (O, ¢) and (®,¢’) to distinct gauge equivalence
classes.

4 From pseudoholomorphic curves to Seiberg—Witten instan-
tons

This section with Section 5—7 explain how certain pseudoholomorphic subvarieties in
R x M can be used to construct instanton solutions to the large r versions of (1-14).
These constructions are used in Section 7.k to prove Theorem 1.2. The construction
given in what follows of instanton solutions can be viewed as a more complicated
version of what was done in the previous section. In particular, all of the steps in
Section 3 have their analogs here, but each step is more complicated than its Section 3
analog.

What follows is also much like the construction that is used in the article Gr = SW
from [5] to construct solutions to the Seiberg—Witten equations from pseudoholomorphic
curves in compact, symplectic 4—manifolds. Even as most steps in the construction
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here have their [5] analog, the steps here do differ. This understood, what follows
defers to Gr = SW in [5] only for the more mundane derivations.

In this section and subsequently, > denotes a pseudoholomorphic submanifold in
R x M together with an assigned positive integer weight to each component that has
the form R x ¢ with y C M a Reeb orbit. This integer assignment is ignored when X
is viewed as a submanifold in M . It is relevant when viewing X as a current, however.
The purpose of what follows is to construct an instanton solution to any sufficiently
large r version of (1-14) from suitably constrained versions of ¥. These constraints
are listed in Section 4.b.

This section mostly sets the stage for the construction. The next two sections complete
the construction.

4.a A digression about pseudoholomorphic curves

Let C C R x M denote an embedded pseudoholomorphic curve. This section summa-
rizes some of the salient features of C that are used in the subsequent sections. The
section has four parts.

Part 1 What with C being a pseudoholomorphic submanifold, there exists so > 1
such that the |s| > so portion of C is a disjoint union of embedded cylinders on which
the function s restricts without critical points. Each such cylinder is said to be an end
of C. This constant 5o can be chosen so that the following is true: Suppose first that
‘E C C is an end where s < —1. There is a Reeb orbit, yz, such that the constant s
slices of £ converge uniformly to yz as s — —oo.

To say more about this, remark that the tubular neighborhood map ¢: S' x D — M
for y¢ as depicted in (2-1) can be chosen so that the contact form a with the real and
imaginary parts of the C—valued 1-form depicted in (3-2) define an orthonormal basis
for T* M near yz. Use ¢ to identify S! x D with a neighborhood of y in M . The
map ¢ is extended in what is a nonobvious way to identify a neighborhood of R X yz
in R x M with R x S! x D. This extended version of ¢ is the map given by

4-1) (w,t,z) —> (s=e—y(w+1|z|2),<p(t,z)).
2w 2

The latter map is also denoted by ¢ in what follows. The coordinate = is preferred
over s because dw + idt is closer than ds + idt where z # 0 to TVO(R x M).

Suppose that £ is not R-invariant. There exists a positive integer gz and a map,
zg: (—00, —so]| xR /(2w geZ) — C such that ‘E appears in these coordinates as the im-
age of the map from (—oo, —sg+ 1]xR /(2w gzZ) that sends (w, t) to (w, t, zz(w, 1)).
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This function zz can be written as

(4-2) 2e(w, 1) = 3 gedivg (S (1) + tg)e hav,

where the notation is explained next. To start, introduce A4, to denote the least negative
of the eigenvalues of the set of 2mwq¢ periodic eigenvectors of (2-3). With A4, so
defined, then dive C {1, 2, ..., g} is the subset with the following two properties: First,
any given ¢’ € dive is a divisor of gz . Second, there is a 27rq’ periodic eigenvector of
(2-3) with eigenvalue A, such that 0 > A, > A4, . What is denoted by G4 in (4-2) is
a C—valued function on R with minimal period 27rq. Moreover, G4 is a real multiple
(perhaps by 0) of an eigenvector of the operator £ in (1-2) with A, its eigenvalue.
What is denoted by v, is a function on (—00, —s¢ 4 1] x R with period 27 ¢q in the R
factor. In addition,

(4-3) ltq| < ce™e1l,
where ¢ > 0 is a constant.

There is a very much analogous picture of an end E that lies where s > 1. Here are
the salient differences: First, z¢ is now defined on [sg, 00) x R/(2wgzZ). Second,
Ag, > 0. Finally, a proper divisor g of g« is in divg if and only if the corresponding
eigenvector A4 obeys 0 <Ay <Ay, .

Part 2 This part describes some geometric features of a tubular neighborhood of C.
To start, let w: N — C denote the normal bundle to C. This bundle has the structure of
a holomorphic line bundle with compatible Hermitian structure. The complex structure
is determined by J and then the holomorphic and Hermitian structures are induced
by the Riemannian metric. An exponential map can be used to identify a tubular
neighborhood of any given compact subset of C with small radius disk subbundle
in N.

It proves convenient to fix an exponential map with certain special features. In particular,
there is a constant radius disk subbundle Ny C N and a smooth map e.: Ny > Rx M
with five special properties. Here are the first two:

Property 1 The map ec restricts to the zero section as the identity and the differential
at the zero section of ec is the identity homomorphism.

Property 2 The map ec is an immersion on N;. Moreover, the image via ec of any
fiber disk in Ny is a pseudoholomorphic disk in R x M .

Properties 1 and 2 are proved with techniques in [5, Section 5d]’s article SW = Gr.
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The third property refers to the tautological section, s, of the pullback bundle 7*N —
N . Tt also refers to a Hermitian connection, 6, on 7#* N . This is the pullback of the
induced Hermitian connection on N — C that is defined by the Riemannian metric.
The latter is also denoted as 6.

Property 3 The pullback via ec of ds Aa + %da to any given fiber of N; agrees
with the pullback of (i/2)Vgs A Vg5 up to an error that has size O(|s|?).

Property 3 is verified using the arguments that are used to prove Lemma 2.2 in the
article Gr = SW from [5].

The fourth property concerns the behavior of e, on the ends of C. To state this property,
let £ C C denote any given end. As can be seen from (4-2), the vector field vector
field d/0z along C trivializes the normal bundle N |z. This trivialization defines the
canonical product structure for N |z. Use (4-1) and the canonical product structure for
N |z to write a point in N|¢ as (w,t, z;n) with (w,t,z) € E and n € C.

Property 4 The map ec sends any given point (w,, z; ) in Ni|¢ to

0o\ "1/2
(4-4) (w—l—tw,t +t,z+(1+ tz)(ﬁ) n),

where |ty | + |t7] < co(|z]n] + [n]?) and [t;| < ¢o|z|?. In addition, the derivative of
tw,t; and v, are uniformly bounded, the former by co(|z| + |n]|) and the latter by
colz]-

Given Property 5 below, this property can also be arranged with the help of the
techniques from Section 5d of the article SW = Gr in [5].

The fifth property is relevant only to the R—invariant cylinders. This fifth property
implies the first four for such a component. To state this property, let y C M denote
a Reeb orbit and let C = R x y. Use the identification given in (4-1) to identify a
neighborhood of C in R x M with the z = 0 locus in R x S! x D. This identifies the
normal bundle of C with C. It also gives C a canonical identification with R x S via
the coordinates (z, ¢). This identification is implicit in what follows. Granted these
identifications, here is the fifth property:

Property 5 The exponential map along R X y intertwines translation along the re-
spective R factors of R x ¥ and R x M . In addition it sends (w,?,1) € Ni|rxy C
(R x S') x C to a point of the form (w + vy, 1 + t;, (E,,/27r)_1/277) eRxS'xD
where [ty| + [t/ < colnl?.
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The existence of an exponential map that obeys Property 5 follows from the fact that
the 1—form d w + idt differs from an element in 71°(R x M) by co|z|?.

With regards to Property 5: If @ = (£, /27)((1 —R|z|?)dt + (i/2)(zdZ —Zdz) in the
tubular neighborhood of y with R constant, and if dz —iRdt isin T1O(R x M) on
this neighborhood, it follows from what is said in [8, Section 2.e] that the exponential
map for R x y can be chosen so that both v, and t; are zero.

Part 3 The composition of e, with a section of Ny maps C into R x M . The image
is a pseudoholomorphic subvariety if and only if the section obeys a certain nonlinear
differential equation. The linearization of this equation along the zero section defines
an R-linear, first order differential operator, D¢, that extends as a bounded, Fredholm
map from L%(C; N) to L>(C; N ® T%!C). This D¢ sends any given section, ¢,
of N to

(4-5) Dct =0, + vl + pct,

where vc is a section of 79! C, and where ¢ is one of N2 ® T%1C,. Note that
the parametrization given in (4-1) for any given end of C induces a trivialization of
T Cy on such an end with the following property: When written using this trivialization
and the canonical trivialization of N, the pair (vc, ;uc) converges as |w| — oo on
the end to the pair (v, i) that appears in the associated version of (1-1).

4.b Constraints on X

Let ¥ denote a pseudoholomorphic submanifold in R x M together with an assigned
positive integer weight to each component that has the form R x y with y C M a
Reeb orbit. Various constraints are enforced on 3 and on the integral curves of v that
are obtained as large |s| limits of the constant s slices of 3. These are described in
what follows.

The statement of the first four constraints refers to nonnegative integers m, — and m,
that are associated to a given Reeb orbit y C M . The integer m,,_ is the sum of the
integers from the set {gz : Eis an s < —1 end of ¥ and yz = y}. The integer m,, 4
is the sum of the integer from {g« : ‘E is a positive end of ¥ and yz = y}. Here, ¢«
in the case where £ is an end of R x y¢ is the integer that is assigned to R x y¢ as an
element of X.

The following five constraints on X are assumed in what follows.

Constraint 1 Let y C M denote a Reeb orbit with either m,_ or m, greater
than 1. There is a tubular neighborhood map for y of the sort described in Section 1.a
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and Section 6.a for which the functions (v, ) are (v = %R, @ =0) with R € R an
irrational constant.

The construction of an instanton solution to (1-14) from X can be made when this
constraint is absent, but at considerable cost. [8, Proposition 2.5] can be used to find
contact structures all of whose Reeb orbits with any given apriori length bound satisfy
this last constraint.

Constraint 2 Let £ denote an end of X that is not an end of an R—invariant cylinder.
Let ¢ = g¢ and divg denote the data that appears in ‘E’s version of (4-1). Then

diveg = {gz} and Gq4, # 0.

It is also the case that an instant on can be constructed without this constraint, but also
at some cost.

Constraint 3 Let £ and E’ denote distinct pairs of either s < —1 or s >> 1 ends of
% that are not part of R—invariant cylinders and are such that yz = y¢ and gz = q¢’ .
Let g = gz = g and let G4 and gé denote the 27 g—periodic eigenvector that appears
in the respective £ and £’ versions of (4-1). Then ¢, # ngé for any n such that
n?=1.

The next constraint concerns the operator D¢ that is appears in (4-5) for any given
component C C X.

Constraint 4 Let C denote any given component of X. Then D¢ is a Fredholm
map from L3(C:; N) to L*(C; N @ T%'C). And, viewed in this light, D¢ has trivial
cokernel.

Constraints 2—4 hold for any pseudoholomorphic subvariety that is used in the embedded
contact homology differential if the contact 1—form a is in the residual set from [8,
Lemma 2.1] and if J € ;. Note that Constraint 4 enters only in Section 7. It is not
required for the constructions in Section 5 and Section 6.

The group R acts on R x M as the constant translations along the R factor. This
being the case, it is convenient to do constructions in an R —equivariant fashion. This
is accomplished by first translating ¥ so that half of the integral of da over ¥ is
contributed by the s > 0 part of Rx M and half by the s <0 part. A pseudoholomorphic
submanifold with this property is said to be centered. This understood, here is the fifth
constraint:

Constraint 5 The submanifold ¥ is centered.
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The constructions below are done with % centered. The constructions for a noncentered
version of X are obtained from those that follow by doing the appropriate translation
along the R factor.

4.c Constants

Fix a pseudoholomorphic subvariety % with the properties that are listed in Section
4.b. The constructions that follow introduce two r—independent constants that are
determined by X. The first is denoted by R. The constant R should be larger than 1;
it has a lower bound that is determined by X. This lower bound is chosen, in part, so
that the part of ¥ where |s| > (1/100) R lies far out on the ends X’s. Propositions 7.1
and 7.2 give an additional constraint on the lower bound for R.

The second constant is denoted by o; it must be less than the smaller of 1/100 and a
constant that is determined apriori by X as follows: Let £ denote the set of ends of .
Let ey denote the smallest of the versions of the constant ¢ that appear in (4-3) for
the case when E € € is not part of an R—invariant cylinder. If E € £, let A4, denote
the eigenvalue that appears in ‘E’s version of (4-2). Set ey, to denote the smallest of
those versions of [Ag, —Ag,, | for the cases where £ and £’ have the following four
properties:

e Both are either negative ends of X, or both are positive ends of X.

e The points on the large |s| slices of both converge as |s| — oo to the same
(4-6) closed integral curve of v.

e Neither is part of an R—invariant cylinder.

* qr #qz .

Use ey to denote the minimum of e&x; and €x,. The constant o is further con-
strained by

4- < inf -1
47 = 1000°% AL e

Positive constants psx, px, Rs« and a collection {Rz : E € £} are defined in terms of
o and R as follows:

o py=rTl/2430

o px=r-l/240
(4-8) e Ry =100(1 4 supgcg |Ag,| ") Inr.

e Rg= %(1 —40)|Ag, |~ nr if E is not part of an R—invariant cylinder.

e Ry =2R if E is part of an R—invariant cylinder.
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Note for future reference that these constants are such that when r is large and E is
not part of an R—invariant cylinder, then

o px K19y =e MharlRe — =0« o,

o o Clhaglten)Re < 1 =1/2-0 =12 _ =0
4-9) * Ry >200supgzee Re and e 2hap R < p=4,

* Suppose that £ and E’ obey (4-6) and Ay, < Ay, < 0. Then
e—2|)~qg/|Rf£ < },.—1/2—0.

There is one more “constant” used in what follows, this denoted by c¢g. As in previous
sections, it obeys cog > 1, and its value increases from appearance to appearance. This
constant ¢ is allowed to depend on the choice for £. However, it is independent of r.
It also lacks dependence on such data as sections of given vector bundles over parts
of ¥ or of parts of R x ST,

5 The construction of instantons: Part I

Fix ¥ as described in Section 4.b, but do not demand Constraint 4. The purpose of
this section is to construct from X a certain family of pairs consisting of a connection
on E — R x M and a section of S=E @ EK~! — R x M. The curvature of this
connection is flat and the £ —component of the spinor is covariantly constant except
very near X.

5.a A connectionon £ — R x M and asectionof S - Rx M

The constructions that follow use the following notation: The symbols C and £ denote
the respective sets of components of ¥ and ends of ¥. When C € C, then £¢c C £
denotes the set of ends of C. The symbols Ey_ and Ex4 are used to denote the
respective sets of distinct Reeb orbits that are approached as s — —oo and as s — +o00
by the constant s slices of %. Thus, y € Ex_ if and only if y = y¢ for some s K —1
end of ¥. When y € Ex_, the symbol &,_ is used to denote the set of ends E € £
with yz = y. There is the analogous definition of &, 1 foreach y € Ex .

There are two parts to what follows. The first part describes a relatively simple
construction that can be used only in very special circumstances. It is offered as an
introduction of sorts to give an indication of what is in store. Part 2 describes the
construction that works in the generic situation. Part 2’s construction is used in the
subsequent sections.

The respective connection and spinor that are constructed below are denoted by 4*
and ¥*.
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Part 1 This part describes a construction of (4*, ¥ *) that can be used in lieu of the
construction from Part 2 when the following condition holds:

Let £ denote any given end of ¥, andlet y = y¢. If s K —1 on E,
then my_ =1;andif s > 1 on E then m, = 1.

This warm up avoids the complications that arise when the exponential map | Jc-ccec
does not embed any fixed radius disk bundle in | JoceoN|c. This warm up also
introduces notation that is used in Part 2 and subsequently. There are two steps to the
construction.

Step 1 The bundle E is given by specifying isomorphisms with bundles that are
defined over certain sets that comprise an open cover of R x M . This specification
requires one auxiliary parameter, py . In this special case, py can either be as depicted
in (4-8) or independent of r. In any event, the parameter py is positive and is chosen
so that vectors in N with norm less than 100px, lie in each C € C version of the bundle
N1 . One additional requirement is needed: Given (4-6), there is no generality lost in
assuming that the ec and ecs images of the respective 100py radius disk bundles in
N|c and N|¢ are disjoint when C # C’.

When k > 0 is given, let Niyc denote the radius kpy, subbundle in N;. The cover
of E used here has open sets {Uc = ec(N4c)}cec and Uy = M —|Jcecec(Nic).
Given that (4-6) is assumed, it follows that Uc N Ucr = @ when C # C'.

The bundle E restricts to Uy as the trivial complex line bundle. Choose an isomorphism
E|y, = Uy x C. To describe E over Uc use the exponential map to identify Uc
with Ni¢. This done, E over Ni¢ is isomorphic to 7*N — Nyi¢c where 7: N - C
denotes the projection map.

The transition functions for this cover are as follows: Let s: Nic — m* N denote the
tautological section that sends any given point n € Ni¢ to (n,n) € x*N. Let 1¢
denote the constant section of Uy x C with value 1 € C. Viewed as a section of F
over Uy, the latter appears over Uc = Ni¢ as the section s/|s|.

Step 2 The pair (4%, ¥*) is specified with respect to the identifications of E given
above on the two sets of the open cover of R x M . Here is the story on Uy: The
connection A* here is the flat connection from the product structure on E = UyxC . The
latter connection is denoted by Aj. The section ¥* on Uy is given by ¥y = (I1¢,0).

To define (A*, y¥*) over Uc = N, it is necessary to reintroduce the function x from
Step 2 in Section 3.a. Recall that x: R — [0, 1] equals 1 on (—o0, 5/16] and equals 0
on [7/16,00). Set xc to denote the function on Nj¢ given by x(|s|/px) where s
again denotes the tautological section of the bundle 7*N — N .
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It is also necessary to review some of the geometry of the normal bundle. To this
end, reintroduce 6 to denote the pullback to 7* N of the Hermitian connection on N
that comes from the Riemannian metric on R x M. As s is nonzero off of the zero
section of N, there exists a unique connection on 7*N over N —0 for which s/|s| is
covariantly constant; this is the connection

1
(5-1) 0, =9+5(§—1v9§—5—1v95).

Introduce the map 7: N — N that is defined by setting 7(n) =r/25. As 7w (rn) =7 (1),
there is a canonical isomorphism between 7*7* N and 7* N . With this isomorphism
understood, 7*60 = 6.

To end these preliminaries, introduce the £ = N version of the fiber bundle €g | — C
that is introduced in Section 2.e. The latter is denoted as €p,;. Let ¢ € C°(C;€p,1)
denote the section that assigns the unique symmetric vortex to each point in C. Lift ¢
as a pair (A€, a€) where A€ is a connection on the bundle 7*N — N and «€ is
a section, this as described in Section 2.g. In particular, choose this lift that «€¢ =
|«€s/|s|. Note that this lift insures that the unique solution Ag to (2-32) is zero. Thus,
A€ =6, + A€ where A€ annihilates the horizontal vectors in N. Use (A", a©")
to denote 7* (A€, «€). Granted all of this notation, define (A*, ¥*) on Uc by

o A*=(1-xc)bs + xcACT.

(5-2) VU* = (a, B) with @ = xca®" + (1 — xc)s/|s| and B = 0.

Part 2 This part gives the construction that is ultimately used in what follows. Note
that even in the case when Part 1’s assumption holds, the resulting (A*, ¢*) differs
somewhat from that in (5-2).

The construction here requires the parameters R, px«, px, and the collection { Rz}zeg as
given in (4-8). When k is a positive integer and C € C, use Ni¢c — C to again denote
the radius k py, subbundle in N . When k is a nonnegative integer and ‘£ is an end of X,
use: Exg C ‘E to denote the part of £ where |s| > Rz + kR. It is assumed implicitly
that | J-ccec embeds the restriction of | cceN1ooc to Uegee(C — (UZG&C E100R))-
Note that such is the case when r is large. What with Constraints 2 and 3 in Section
4.b, this follows directly using (4-8), (4-9) and (4-2).

There are two steps to the construction of the desired pair (4*, ¢¥*).

Step 1 The bundle E is again given by specifying isomorphisms with bundles that
are defined over sets that comprise an open cover of R x M . The cover of R x M
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used here consists of the following:

e A collection {U¢ }cec where any given U is the image via ec of the
restriction of Ny¢c to C — (UZG&C ZzR)-

e Aset Uy,_ foreach y € Ex_ and a set U, 4 foreach y € Ex. The
set Uy — consists of the portion of y’s version of R x § U'x D where
both w < —2R and the distance to y along M at constant w € R is
less than 4p,. The set Uy, consists of the portion of y’s version of
R x S' x D where both w > 2R and the distance to y along M at

constant w € R is less than 4p,.
5-3
(>-3) A set Up. This is the complement in R x M of the closure of a union of

sets, one labeled by 3, one labeled by each y € Ex_ and one labeled
by each y € Exy. The set labeled by X is the image via ey of the
restriction of Ny to ¥ — ({Uges E4r). The set labeled by y € Ex_ is
the portion of y’s version of R x S x D where both w < —4R and the
distance to y along M at constant z € R is less than px. The set U, 1
is the portion of y’s version of R x S x D where both @ > 4R and the
distance along M at constant w € R is less than py.

Note that Uc N Ucr = @ when C # C’. By the same token, U,_ N U,/ and
Uy+ NUy 4+ =@ when y # y'. Finally, U, N U, 4+ = @ in all cases.

The bundle £ — M is given below as a product bundle over Uy and over each set
from {Uy—}yezy_ and {Uy+}yery - Over any given Uc, itis given as follows: Let
C C ¥ denote a non—R—invariant component. The bundle E over U¢ is given as
7* N . In the case where C is an R—invariant cylinder, the bundle E is formally 7* N4
where g is C’s associated integer. However, the normal bundle of any given version of
R —invariant cylinder has the trivialization described by Property 5 in Section 4.a; this
trivialization canonically identifies £ over C’s component of Uc with the product
bundle. The next three paragraphs describe the transition functions that relate the
respective incarnations of E over the intersection of distinct sets from the open cover.

The transition function for the intersection between Uy and Uc is as follows: In
the case where C is not R—invariant, the constant section 1¢ over U, appears as
the section s/|s| on Uc. In the case where C = R X y, the constant section 1¢
over Uy appears as z7/|z|9 on Uc where ¢ is the integer assigned to C. Here, the
neighborhood of C =R x y is identified with R x (S! x D) using y’s version of the
tubular neighborhood map ¢ as described in (4-1).

What follows describes the transition function for Uy N U, —. The transition function
for any Uy N U, 4+ has a completely analogous description and is not given. To start
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the description, remark that the s < —1 part of X intersects the image of any constant
(w,t) disk in (—oo,—R) x S x D as a set of distinct points. This follows from
(4-2). To elaborate, each end E C &, that is not part of an R—invariant cylinder
contributes g points to this intersection, and then there is one additional point with
z =0 if ¥ contains the cylinder R x y. The z = 0 point should be viewed as a point
with multiplicity ¢, where ¢ is the integer that is assigned to this cylinder. In this
way, ¥ defines a set of m, _ points in each constant (w, t) slice of (—oo,—R) x D,
with all but possibly the point z = 0 distinct. As w and ¢ vary, this set of weighted
points varies and so defines a map (w,?) — 35, —(w,t) € Sym”r~(C). Granted this
notation, the transition function is such that the trivializing section of E’s restriction
to Uy appears as the function on (—oo, —R) x S x D given by

(5-4) win— ] 72

, |z — 2|
/€35y —(w,t)

with respect to the trivializing section for E’s restriction to U,,—. This map is smooth
on the domain (R x S! x D) N Uy by virtue of the fact that distinct z # 0 points remain
distinct (and nonzero) as (w, t) vary.

Consider next the intersection between U, and Uc . The normal bundle to C in U, —
is isomorphic to the trivial bundle, C x C. Use the coordinates (w, ¢, z) for U,_. As
noted in Section 4.a, there is a trivialization of N over C N U,,— with the property that
the exponential map ec sends any given point (w, ¢, z) € C and n € N; to what is writ-
ten in (4-4). This gives a trivialization of E over the part of Uc in U, — since E over
any given component of U is an appropriate tensor power of 7 * N . With respect to this
trivialization of E over UcNU,— C U, the trivializing section of E over U, _ appears
on Ugc as the function that sends a point with coordinates (w, ¢,z) € C and n € Nj to

—1
1—[ P o % -1 n
(5-5) IO ( / //) ( / ’\) :
2'#2, |2/ =z lz/=2) Inl

z2"€3ny—(w',1")

Here the notation is as follows: First, the triple (w/,t’,z") is (w + vy, + 7,2 +
1+ tz)(ﬁy/2)_1/2n) with v, t; and t; as given in (4-4). Second, Z is the point that
is closest to z in the (@/,t’) slice of C. Note that there is a unique such point when
n € Ny and that the assignment of this point to the point (w, , z) € C varies smoothly.

There is a similar picture of the transition functions for {Uy+ NUc}yegy, -

Step 2 This step describes (A4*, ¥*) on the sets given in (5-2). Start with Uy. Given
that the bundle E here has the product structure Uy x C, set (4*, ¥*) = (A7, (1¢,0))
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where A is the flat connection given by the product structure. This pair (Ay, (1¢,0))
is sometimes denoted by (A4q, ¥o).

The pair (A*,¢¥*) on Uc is given by (5-2) on C’s component of Uc when C €C is
not R —invariant. Suppose next that C = R xy with associated integer ¢. The definition
here is that given in (3-2) save that x¢ should be used in place of x«. To elaborate,
let c€ C®(R x S;¢,) denote the constant map to the unique symmetric vortex. Lift
¢ as a pair (A€, a€) where A€ is a connection on the trivial bundle over C and
o€ is a section. There is a unique lift for which o€ = |«€|z9/|z|9. Reintroduce
ry = ({,/(27))r and also the rescaling map 7,: R x S' xC - R x S! x C to
denote the map that rescales the C factor via z — r;/ 2. Use (AS" €7 to denote
ry (A€, ). Let 6 denote the connection on the product bundle over (R x S x C)
that is induced by the product structure. With this notation understood, 4* on U¢
is given by A* = (1—x¢c)(0 + %q(?‘ldf—z_ldz)) + xcAS", and ¥* on Uc is
given by (a, B) with & = xca®” + (1 —xc)z?/|z|? and B = 0.

Now consider (4*, ¥*) on a given set from the collection {U,_},czy,_ . Note that the
description on a given set from {Uy4},ezy, is identical save for some sign changes.
To start the description on U,,—, remark that the points that comprise r;/ 232,,_ define
amap from (—oo, —R)x S! to Sym”r—(C) and thus a map, ¢y—: (=00, —R) x St
Cm,,_ . This is a smooth map since the nonzero points that comprise 35, — are distinct
and constant in number for all (w,) € (—oo,—R) x S'. The map ¢,_ has a lift,
(AY~,a¥7), as a pair that consists of a connection and section for the trivial bundle
over (—0o, —R) x S x C, these pulling-back on each constant (w, ?) slice so as to
solve (1-4). In particular, there is a lift with the following properties:

- — 1/2 1/2
a¥” =¥ |l—[2,€32y_ ((Z—ry/ Z/)/|Z_Vy/ Z/l)

at points with |z| > 1 + 2sup{r,}/2|z’| 12" € 35y—l(wr)}

¥~ = eal [Toszre35, @2, at points with w > —4R. Here,

(@) ol =lal|(z— r;/zz’)/|z - r;/22’| is the n = [ vortex with center
at z/ if z/ #0.
(5-6) (b) ozg = |oz8|z‘1/|z|q is the n = ¢ symmetric vortex if R x y is a com-
ponent of ¥ with ¢ here the associated integer. Otherwise, ozg =1.
_ Y
(C) |RC(U)| =< COZZ’#Z”;Z’,Z”G")ZV,E ﬁy‘z z |/2

AY™ =6y + Ag_ + AY~, where 6y is the connection from the product
structure AY is an i—valued 1-form that annihilates the tangent vectors
to theR x S factor and 4} annihilates the tangent vectors to the C
factor and is given by (2-32).
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Use (AY™",a¥™") to denote the pullback via 7, of the pair (A, a¥™). With the
latter in hand, the definition of (A4*,¥™*) is a relatively straightforward operation.
Over the part of U,_ where both |z| < %p* and w < —4R, the pair (4*,¥*) =
(AY=", («¥™",0)). The definition where either of these two constraints are violated
uses bump functions and the relevant transition functions to patch the latter with what
has been defined previously.

To say more about this patching business, it is first necessary to specify the bump
functions that are involved. The first, x,—, is the function on the C factorin RxS!xC
that sends z to x(|z|px). The second is a function xg— on R x (S! x D) that depends
only on the R factor; it is given by x g—(w) = x((3R+w)/R). An analogous function
w — xr+(w) = x((3R —w)/R) is used for the U, 4 versions of the formulae that
follow.

Consider first the patching on the part of U,,_ that lies where |z| > % px OF w > —4R,
but in either case where the distance to X is px or greater. Introduce for this purpose
the S! valued function

(z-2)

2=z

(5-7) (w.t.2) >uy- =[]

2/€3y—l(w.n)

Define (A*, ¢¥*) on the part of U, — under consideration by

o A*=(1—xy—xr-)(Oo—u,Lduy_)+ x,—xr—AY".

5-8 _
-8) v* = (1= xy-XR-)Uy—+ Xy-XR-¥"".0).

Here, du,_ denotes the exterior derivative on R x § v D.

Consider next the patching business for the points in U, — with distance less than px
from X. To start, let £ C ¥ denote an end where s << —1 and with yz = y. Use the
transition function that is depicted in (5-5) to write the Uy, version of the pair (4*, ¢*)
with respect to the trivialization of E over the part of Ux in U,_ as the product
bundle. Write the result using the coordinates (w,t,z) as (A%, (@*,0)). Another
cut-off function on R x (S! x D) is required for the upcoming formula. It is denoted
by x¢ and it is defined to be x((Rz 4+ 3R —|w|)/R). With these preliminaries set,
define (A*,¢*) where U, _ intersects Us near £ by

o A" = ye((U= Xy (00 —uyLduy ) + xy—-ATTT) + (1= x2)A®.

o Y* = (a,B) with a = x£((1 = xy=)uy— + xy—a¥=") + (1 — xx)a®
and f—0.

(5-9)
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5.b A family of deformations of (4*, ¥*)

The desired family is parametrized by elements from a certain subset of a Banach
space to be defined momentarily. The pair of connection and spinor labeled by a given
element & from this ball is denoted here by (A%, ¥%). The construction of (A€, %)
has seven steps.

Step1 Let ©— ={(y,my—)}yezy_ andlet O ={(y,my+)}yeey, - The construc-
tions in Section 3 can be carried out using the chosen coordinate charts for the relevant
Reeb orbits, the constant px and ® = ©_. Lemma 3.8 supplies {— = {{y—},eca5_.
Lemma 3.8 likewise supplies {4 = {{y+}yezyx, -
Step 2 This step serves as a warm up to describe the desired family when the assump-
tion in Part 1 of Section 5.a holds and (A*, ¥*) is given by (5-2) using the construction
from Part 1 of Section 5.a. The Banach space is QBC cc Kex with ¢ here denotes the
section that assigns the symmetric vortex to each point in C and with the s defined
subsequent to (2-27). This is to say that it is the completion of the space of smooth,
compactly supported sections of ¢*V; o€ 1 using the norm whose square is depicted
by the middle item in (2-27). Note that the identification between € and C given by
the function o in (1-5) gives the following equivalent definition: The space K is the
completion of the space of smooth, compactly supported sections of the normal bundle
to C using the norm whose square is depicted in the middle item of (2-27) with V
taken to be the connection that is induced by the Levi-Civita connection of the metric
on R x M. Viewed this way, an element &£ € @ Kex has components (c)cec
where £¢ is a section of N — C.

The relevant subset in @C cc KCcx is denoted in what follows by K. ; it is the subspace
with the property that each component of any given £ € K, has pointwise norm less
than a constant g9 with g9 > 0 chosen so that the map éxp from Part 8 of Section 2.a
embeds the radius 10%¢, disk in each fiber of T7,0€;. A second Banach space also
plays a role here, this being L = P K. Here, K. C Kcx is the set of elements on
which the norm in the third item of (2-27) has a finite value.

Some further preliminaries are needed to define the pair (4%, ) of connection on E
and section of S. To start, keep in mind that N on any given end £ C ¥ has a
trivialization that is supplied by the coordinate chart associated to the Reeb orbit y.
Indeed, ‘ is transversal to the constant (w, ¢) disks in the neighborhood R x S x D
of yz, and so the vector field d/dz tangent to the D factor trivializes N. This
trivialization allows a section of N on £ to be viewed as a smooth map from E to C.
Moreover, since the projection from R x S x D to R x S! restricts to £ as a 1-1 map,
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so a section of N on ‘E can be viewed as a map from R x S! to C. With the preceding
understood, if ‘£ is an end where s < —1, then the R—independent map given by the
y = yg version of {,_ defines a section over E of N . Likewise, if E is a positive
end, then the map given by the y = yz version of {, 4 defines a section over E of N.
In either case, these are to be viewed as sections over £ of ¢*V; (€ 1. In either case,

these sections have norm bounded by cor /2.

Fix a section, {x, of the bundle @, ¢*V1,0€n,1 With the following properties: First,
it is equal where s < —1 on any given negative end: £ to the y = yz version of {,_
and equal where s >> 1 on any given positive end E to the y = y¢ version of {, .
Second, it has support where |s| > R on the ends of X. Note that there exist such
sections with L% and supremum norm bounded by 2¢or /2. Fix &, with this last
property also. It is a consequence of Lemma 3.10 that .« can be chosen so that

(5-10) sup ,0_"/ IV |? < cor V2.
peX, p<1 dist(-,p)<p

Here, V is defined by the pullback via ¢ of the Levi-Civita connection. With regards to
(5-10), note that this bound holds with v =1 for {,,_ because the integral in question is
over a 4—dimensional ball and ¢, depends only on the coordinates of a 3—dimensional
slice. The bound in (5-10) is assumed in what follows.

With these preliminaries set, fix £ = (§c)cec € K«. Let C € C and define the pair
(ACE, «CE) of connection on E = 7*N — N and section of E over N by using
(2-36) with (A€, a€) in lieu of (4, ) and &s + & in lieu of what is called ¢ in
(2-36). Rescale with the map 7 and denote the result as (ACET oCET) . Write the
pair (ACE" = (@47, 0)) of connection on E — Uc and section of S over Uc as
(A*, ¢¥*) + ¢ where t€¢ is a section over Uc of iT*M & S with zero component
in the EK~! summand of S. The desired pair of connection on E and section of S
in this case is

(5-11) (A5 9%) = (A" Y™ + X ceexctet.

Step 3 This step starts the story in the general case by setting the stage and notation.

If C €C is anot R—invariant, let ¢ € C°°(C; €p,1) denote the section that assigns to
each point the symmetric vortex and set Ve = ¢*V; o€x ;1. If C € C is R—invariant,
let ¢ denote its associated integer and use V¢ to denote the product bundle C x CY.

Let y € Ex_ and reintroduce the map ¢,—: (—oo,—R] x ST — Cm,,_ from the
preceding subsection. What is said in Part 5 of Section 2.a can be used to define a ho-
momorphism from XcecC®(C||y|<r,: Vc) to C®((—Rx, —R) xS, 5_T1,0€m,)-
This homomorphism is obtained as follows: Write ¢,— as (AY™,«¥™) and write a¥~
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as in the second bullet of (5-6). Let C € C denote a component that is not R—invariant
and let £ C C denote an end that intersects U, _. A point (w,?,z’) € E defines the
zero at r,}/ 22/ of the function a¥ ™ ; this is the zero of the factor !, that appears in
the second bullet of (5-6). The function &, is defined by an element, c’z/|(w’,) e ;.
The identification of ¢; with C = Sym'(C) identifies T 1,0€; at c2’|(w,t) with C.
Meanwhile, the bundle V| (4,s,7) is isomorphic to the normal bundle of £ at (w, ¢, z’).
The latter is trivialized by the exponential map e, using Property 4 in Section 4.a.
This identification of V¢ |(,.z,2) With C and the identification of T7,0€; at ¢&/| (.5
with C identifies V¢ |(u,s,27) With the latter. This understood, the homomorphism ¢ in
Part 5 of Section 2.a maps the complex line Vi |y ,,27) to (C;_T1,0¢my,)|(w,t)-

To continue, suppose next that R x y is a component of 3, and let ¢ denote the
corresponding integer. Let ‘£ denote the end (—oo, —1]x y of X. The point (=, ?,0) €
E corresponds to a zero of a? |, ) of order ¢ at the origin. This corresponds
to the factor ozg that appears in the second point of (5-6). The latter is defined by
the symmetric vortex ¢g € €. Note in this regard that 77 (&, at ¢q is canonically
isomorphic to C7; this isomorphism given by the coordinates in (1-5). Meanwhile,
VRxy is the product of R xy with C? and so VRxy |(w,z,0) 1S canonically isomorphic
to 77,0¢4 at ¢g. This understood, the homomorphism ¢ from Part 5 of Section 2.a

also maps Vrxy|(w,z,0) 0 ¢5_T1,0€m,, -

These homomorphisms define a homomorphism from xcecC*(C||y|<r,; Vc) to the
space C®((—Rs, —R) x S!; c;_Tl,OCmy_). The latter is denoted by ¢,,—. There is
an analogous ¢, 1 for each y € Ex with the same domain and image in the space
C®((R, Rx) x ST ¢ T1 0Cm, )

Step 4 With the stage now set, a Banach space K is obtained by completing a set
of “smooth” elements with respect to a certain norm. A smooth element & can be

written as a vector § = ((§c)cec, (6y-)yegs_, (§y+)yezx, ) Whose components are
characterized as follows:

e Each C € C version of £¢ is a smooth section of V¢ over the |s| < R
part of C.

e The y € Ex_ component &, _ is a smooth section over (—oo, —R]x .S Uof
s ¢ _T1,0Cm, with compact support and such that &, = ¢, ((5c)cec)
(5-12) on (—Ry,—R)x S*.

e The y € Ex4 component £, is a smooth section over [R, 00) x S 1 of

¢34 T1,0€m,, with compact support and such that &, 4 = ¢y + ((§c)cec)
on (R,R*)XSI.
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The set of smooth elements is denoted by Kgmeoth- The square of the norm that defines
the Banach space assigns to any given smooth element £ the number

Yeeel (1= Zese xz)éc |
‘XR— (Sy— - ¢y—(((1 - Z‘EESC X{E)SC)CGC)) H,ZC
+2yeEs, ” XR+ (Sy+ —Py+ (((1 — 2 zeec Xf)EC)CeC)) ”/2c

where the notation is as follows: First, x¢ is defined just prior to (5-9) and x g+
are defined just prior to (5-7). The left most version of || - ||x when C € C is not
R—invariant is given in (2-27) with £ = N, n =1 and c¢ the section of €y that assigns
the symmetric vortex to each point. If C is R—invariant with associated integer ¢, then
the corresponding version of || - || is given by (2-27) with data E =C xC, n=gq
and c¢ the constant section of €g , that assigns to each point the symmetric vortex.
Each y € Ex_ version of || - || is given by (2-27) using C = (—o00, —R) x S, ¢, —
in lieu of ¢, and m, _ in lieu of n. The y € E x4 version has an analogous definition.
It follows from (2-4), (2-5), (4-4) and (4-9) that (5-13) defines a bonafide norm. The
norm defined by (5-13) is also denoted by || - ||«

(5-13) +2yeEs_

When & € K, use ||€]|oo to denote the norm that is obtained by replacing each version
of || -|lx in (5-13) by the corresponding L norm. Likewise, use ||S||)c% and [|&||xcx
to denote the respective norms that are obtained by replacing each version of || - || in
(5-13) by the corresponding versions of (2-27)’s norms || - || K2 and || - ||«

Fix g9 > 0 such that the map éxp from Part 8 of Section 2.a embeds the radius 10%g,
ball in each fiber of T'€;, for each m from 1 through the maximum of {m,_}, ez, U
{my+}yeay, - With g fixed, let K« denote the completion using the norm || ||«
of the subspace in Kgnoom With ||€]lco < 0. Note that the function & — ||€||co is
continuous on K, and, of course, bounded by gqg. By construction, the function
& — ||€]lxc+ is also continuous on K, but this function has no upper bound on K.
Meanwhile, || -||x need not be finite on any given element in Cy.

Step5 Fix £ = ((5c)cec. (6y-)yegs_. (Ey+)yess.) € Kx. Suppose that C € C is
not R—invariant, and let 7: N — C denote the projection. Define the pair (ACE oCF)
of connection on £ = 7*N — N and section of E over N by using (2-36) with the
constant section of € ; given by the symmetric vortex used to define (A4, ), and with
£c in place of {c. Rescale with the map 7 and denote the result as (ACE", €7,
The latter defines the pair (ACET Y= (@€, 0)) of connection on E over Uc, and
section of S over Uc . Write this pair as (4*,¥*) +t€%, where tC¢ is a section of
iT*M &S over Uc.
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Suppose next that C =R x y € C and let ¢ denote the associated integer. With C’s
normal bundle trivialized as in Property 5 of Section 4.a, use the constant map from
C to the symmetric vortex and £c to define (AC¢, «€%) on C x C as instructed by
(2-36). Rescale the result using the map 7,, and again use (ACET «CE7) 1o denote
the result. View the appropriate restriction of the pair (A", v = («€€7,0)) as a
connection on E over U,, and section of S over Uc . Write this pair of connection
and section as (A*, ¥*) +t¢ so as to define t€¢ as a section of i T*M &S over Uc.

Step 6 Suppose that y € Ex_. The map éxp, from the symmetric vortex in €,
gives local coordinates for €, _ on a neighborhood of this vortex; thus it identifies
T1,0€m,_ on this neighborhood as a trivial bundle. As the w < —1 part of ¢, — is
very close to the constant map from S! to the symmetric vortex in Cm,,_ , this local
trivialization of 77 o€y, _ allows {,_ to be viewed as a section of c;_T 1,0Cm,, _
on the w <« —1 part of R x S'. Extend this section to a smooth section, ¢, over
the whole of cl"j_Tl,Omef so as to vanish where w > —2 R, . There exists such an
extension which obeys the R x § 1 version of (5-10). Such an extension should be
selected.

With £ € Ky chosen, define the pair (AY$~, a¥$™) of connection on, and section of
the product bundle over (—oco, —R) x S! x C by

(5‘14) A)’E— :90+Ag_+Ay_—|—2_1/2(q$d2_67$dz) and ayé— :ay__}_g%_.

The notation used here is as follows: First, 8y is the flat connection given by the product
bundle. Meanwhile, (¢g, G¢) are defined at each point in R x § ! by the version of
(2-9) that uses { = {4 + &, — with &, coming from &.

To continue, let (AY™", «¥§77) denote the pullback of (A4~ ¥4~ via the map y.
View (A6~ ¢ = (@¥§7",0)) as a pair of connection on E over U, — and section
of S over U, _. Write the latter as (4%, ™) + 478~ where t"§~ is a section over U,—
of iT*M @ S with zero component in the £EK~! summand of S.

Make the analogous construction for those y € Ey+ to define from £ the section 7§+
over Uyt of iT*M & S.

Step 7 With (t“!)crec. (757)yegs_ . (751)ycqy, ) in hand, define (45, %) to
denote the pair of connection on E and section of S given by

(A*» 1,”*) + ZCecXC(l - Zzescxfc)tcg
(5-15) + Y ree Y yems XEc Xy—t'E
+ ZZESZ]/EZ_A,_ X‘ECXV+tyg+'
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Here, xz. is defined as follows: Let C € C denote the component that contains E.
Then xz. is the function on R x M with support on ec (N4x|z) where it is given by

the rule yz. = x(4|s|/p=)x((Rz + 3R —|s])/R).

5.c Another way to view the construction

This subsection describes a somewhat different way to view (5-9) and (5-15). What is
written in (5-9) and (5-15) interpolate between one construction that takes place on an
embedded disk bundle neighborhood of X and another that takes place on the |s| > R
part of R x M where a given exponential map is many to one. Thus, where two or
more points in the large +s slices of X are very close to a single point on an integral
curve of v.

To say more, fix attention on some y € Ey_. Here is how to think of (A48, wé )onU,_:
Any given constant (w, 1) slice has two regions where 4% is not almost flat and ¢
is not almost covariantly constant. The first region consists of the px neighborhood
of the part of ¥ N U, where |z| is O(1)r~1/24+29 or Jarger. Here, the pair (4%, y)
comes from some suitably rescaled €; vortex in X’s normal bundle. The second region
lies where |z| <« r~1/2%29 The z — r;/z rescaling of these points in ¥ define a
solution on C to the vortex equations in (1-4). The inverse scaling of this vortex gives
(4%, y¥) where |z| < r—1/2%20,

For a more precise discussion, recall how the map ¢, is defined: Let £ denote
an end from &,_; thus an end of ¥ in U,_. If £ is not part of R x y, introduce
gz €{1,2,...} to denote the multiplicity of the projection from any given constant s
slice of E to S!. It follows from (4-2) that £ appears in U, - as the image of a map,
(w,t) = (w,t, ze(w, 1)), of a map from (—oo, —R] x (R/2ngzZ) to Rx S! x D.
The map zz is used to define

(5-16)

3El(w,r) = {Zg(w,t +2m), ze(w, t +47),...,ze(w, t + 27TQ£)} € Sym?%(C).

If £ is the w <« —1 part of R x y, set g to equal the integer that is paired with
R x y as a member of X. Define 3z as above with zz set to 0. Introduce the set
3sy—l(wn = Ufegyfsgl(w,,) where &,_ denotes the set of ends of X that lie in
U, —. The rescaled set r; 232y_ defines a map from (—oo, —R]x S to Sym™»—(C)
and as such, a map from (—oo, —R]x S! to Cm,,_ . This last map is ¢, —.

With the preceding understood, let N = N, denote the number of distinct elements
in the set {Ag4, : £ € £,_}. Here, A4, <0 is the eigenvalue that appears in £’s version
of (4-2)if £ isnotin Rxy. If £ C R x y, then A4, is the symbol —oco. Partition
Esy— into N subsets &;1,&;, ..., En using the equivalence relation E ~ £’ if and
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only if Ay, = Ag,,. Use the ordering that is defined by the absolute values of the A4,
to label these partition subsets; thus Ay, > Ag,, when E C &_; and E' C & . Given
k €{l,..., N}, define the integer mj = stjsNZzegjq& and then define

(5-17) 3kl = Uk<jen (Uzeg; 3zl w.n) € Sym™ (C).

For example, 3; = 3x,—. Here is a second example: If R x y C X and has assigned
integer ¢, then 3 |(,,s) consists of g copies of the origin in C.

Recall for what follows that Rz = %qu |~1(1—40) Inr when E is notin R x y. The
set 3 is of interest where w is less than the £ € £; version of —Rz — R. Meanwhile,
the set 3, is of interest where w is greater than the E € £; version of —Rz —4R but
less than the E € &3 version of — Rz — R. In general, the 1 <k < N version of 3 is
of interest where w is greater than the £ € £ _; version of —Rz —4 R but less than
— Rz — R as defined by an end E € &;,. This w interval of interest for & is denoted
by I in what follows.

The rescaled map r;/ 23k maps Iz x ST into Sym™* (C) and thus into €, . Use ¢k to
denote the latter. With regards to ¢, suppose that k £ N, or if so, that 3 # (0,...,0).
The fourth point in (4-9) implies that all z € r;/ 23k|(w,,) have norm O(r~7) except
those that come from & . The latter have size O(r~?) near the left endpoint of Iy,
but size O(r?) near the right end point.

It follows from (2-4) and (4-9) that what is written in (5-9) on the |z| < p1/240
part of I; x S! x C is almost entirely determined by the rescaling via the map 7y of
the vortex ¢; except very near to the left endpoint of /; where the ends from & _
contribute. Except for very near this left endpoint, the pullback of (4*,¥™*) to a
constant (w, 1) € Iy x S' plane is almost entirely given where |z| < cor~/2%% by
the pullback via 73, of a suitable lift of ¢z as a connection on and section of the trivial
bundle over C. In particular the difference between the two pairs is bounded in a
suitable gauge by an inverse power of r when r is large. Meanwhile, (4™, ¥*) where
|z| has size cor~1/2139/2 or greater is very close to what is written in (5-2).

Now consider (AE , wé)_ What is written in (2-4) and (2-5) can be used to construct an
injective homomorphism ¢y : c}: T1,0Cm, — c;’;_Tl,OGmV_ over I x S! that differs
from an isometry by less than cqe™" o/ < cor~19. Use ¢}; to denote the adjoint of
this homomorphism. The kernel of qb;g over I x S! is isomorphic to the pushforward

of X¥’s normal bundle by the projection map
(5-18) 7 (Uges, — Elxst) = Ik xS
Said differently, there is an isomorphism and near isometry over I; x S! between

the bundles ¢, _T,0€m,_ and ¢ T1,0€m; & (Dgeg,_—g, 7+(Nlz)). This is to say
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that if £ = ((§c)cec, (§y—)yees_. Ey+)yees,) € K, then &, can be viewed via
this isomorphism as pair (&, w«(£xz)) where the notation is as follows: First, & is
a section over Iy x S! of c}: T1,0Cm, - Second, &xy is shorthand for the element in
Dse £ —Ek N |z whose component in the N | summand is the restriction to E of
the relevant &c .

From this perspective, the contribution to &, from a point in I x S1 with w not very
near the left endpoint of /; can be thought of as having two parts: The first, &, comes
from those components of X NU,,— with distance less than or equal to cor~1/2%9 from
R x y. The second, 7« (£xx), comes from those components of XN U, with distance
at least cor_l/ 2+9 from R x y . It follows from (2-4) and (2-5) that the & part of &,
determines very much the balance of the difference between (4%, ¥%) and (A4*, y*)
on the |z| < r~1/2%9 part of U,_ if w € Iy is not very near the left endpoint. Indeed,
the map from I x S! to &, given by €xp,, (&) defines a deformation of ¢ and the
7, rescaling of this deformation is very close to (A%, %) where |z| < r~1/2%9 for the
stated values of w. Meanwhile, the 4 (§xx) part of &,_ supplies the preponderance
of the difference between the pairs (A¢, %) and (4*, ¥*) on the part of U, where
w € Iy is not very near the left endpoint and where |z| > ¢cor~1/239/2 But for
corrections that are much less than 1, this difference is supported on the ey, image
of the bundle N — Uzeg,,_—sk Elj, xs1 Where it is given by the €€ sum in (5-11).

5.d The perturbative set up

The plan now is to look for a solution to the large r version of (1-14) that is gauge
equivalent over Rx M to a pair of connection on, and section of the respective pullbacks
of E and S over R x M given by

(5-19) A=A+ 212 (pds+b) and vy =vyE+n

for a particular £ € K« NK and section b= (b,n,¢) of iT*M &SDiR over Rx M .
The pair £ and b are chosen so as to have two properties.

Property 1 The following equation is obeyed on R x M :

o gebtxdb—dg =272 2(yE ey ptoyt) — 272 2Ty
= 2712 V2D gE 4 B —r(yET eyt —ia) — (i % dp+ L Bay)),

(5-20) o (Vge)sn + Dygen+ 221 2(C0)YE +¢y) +2r' (el b)n + ¢11)
= —(Vye)s¥ — Dgey%,

o %(p +xd % b _2—1/2r1/2(n’r¢$ _ w&’rn) —0.
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Here, (V 4¢)s denotes the covariant derivative along the R factor of R x M as defined
using the connection A% . Meanwhile, d here denotes the exterior derivative along the
M factorin R x M .

Property 2 The s — —oo limit of b is the solution to (3-4) that is supplied by the
® = O_ version of the constructions in Section 3. Meanwhile, the s — oo limit of b
is the solution to (3-4) that is supplied by the ® = ®_ version of the constructions in
Section 3.

Section 6 and Section 7 describe a pair (&, b) that has Properties 1 and 2. Use (£, b)
in (5-19) to define the pair (A4, ¥). It is argued in Section 7.h that (A, ) is smooth.
Section 7.h also establishes the following: Let ¢— denote the solution to (1-13) that
is given in Section 3 using ® = ©®_ and let ¢ denote the solution to (1-13) that is
given in Section 3 using ® = © . There exists a smooth map u: R x M — S such
that the assignment s — 0(s) = (4 —u~'du,uv)|s is a smooth map from R into
Conn(E) x C°°(M ;S) that defines an instanton solution to (1-14) whose s — —o0
limit is ¢— and whose s — oo limit is smoothly gauge equivalent to ¢ .

6 The construction of instantons: Part 11

The two properties required of the pair £ and b in Section 5.d are written schemati-
cally as

o Db+r2bxb—0v=0.
(6-1) e limg_,1o, b =Dby where by are the respective solutions Section 3 to the

® = ®4 versions of (3-5) as defined using 4.

Here, © and v are defined by £. As done with (3-5), the plan for what follows is to
project the top equation in (6-1) onto a certain subspace and then solve the latter with
& € K« N K fixed. The solution, b = b(§), will depend smoothly on &. The remaining
part of the top equation in (6-1) is subsequently viewed as an equation for £ which is
seen to have a unique, small normed solution.

The results of this section are summarized by Proposition 6.4 in Section 6.e.

6.a The projection for (6-1)

This first subsection is devoted to setting up the projected version of (6-1). There are
eight parts to this. In what follows, £ denotes a given section of /Cy.

Geometry € Topology, Volume 14 (2010)



2658 Clifford Henry Taubes

Part 1 Fix for the moment a connection, 4, on £ — R x M . With A given, define
the Hilbert space H to be the completion of the space of compactly supported sections
over Rx M of iT*M &S @ iR using the norm whose square is given by

1
©2) lalt= [ Vel [l
RxM RxM

where the covariant derivative V* acts on sections of i T* M as the Levi-Civita covari-
ant derivative; on sections of S as the covariant derivative that is defined by Levi-Civita
connection and A g +2A4; and on any given i —valued function as the exterior derivative.
Note in what follows that a dimension 4 Sobolev inequality provides an r independent
constant ¢ such that

(6-3) lalla < collallm

for all q € H. Here, || - |4 denotes the R x M version of the L* norm. Use L to
denote the space of L? sections over Rx M of iT*M &S ®iR.

Suppose next that ¥ is a section of S — R x M . The pair (A, ) together define the
operator, ®,on C*(R x M;iT*M &S ®iR) that sends a given section (b, 1, ¢) to
the section with the respective i 7* M, S and iR components

o Lb+xdb—dp—27"21 2y on 4oy,

64 * (Vn+ Dan+ 222 (clb)y + py).
o g5 txdxb =272 2Ty —y Ty,

Here, (V4)s denotes the covariant derivative along the R factor of R x M as defined
using the connection A. If the section i is bounded, then ® extends to give a bounded
operator from H to L.

Let a denote a bounded section of i T*(R x M). Then the A +a and A versions of
the norm | - ||ix are commensurate. Thus, the corresponding versions of H contain the
same elements. This has the following consequence; Suppose in addition that ¢ is a
bounded section of S — R x M . Then the (4 + a@, ¥ + ¢) version of (6-4) defines a
bounded operator from the A version of H to L.

In what follows, the connection A™ from Section 5 is used to define H. The operator D
in (6-1) is the version of (6-4) that is defined using (A%, ¥%) from (5-15).

Part 2 This part with Parts 3 and 4 constitute a digression to describe in more detail
the operator © as defined using the given element & € Ky to construct (4%, ). What
follows describes the (AE , ws) version of ® on Uy. To this end, the identification
of S with Sy on U, identifies © over U, with the restriction to U, of the version
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of (6-4)on C®(R x M;iT*M & S; ®iR) that is defined using (4 = Ay, ¥ = ¥y).
The latter operator is denoted in what follows by Dy .

Part 3 Suppose that C € C is not R—invariant. This part describes © on Uc . The
description starts by saying more about the bundle iT*M & S @ iR on Uc. The
summand i (7* M ®R) is identified with 7* (R x M) and is thus identified via pullback
by ec with T* N . The latter splits as 7*(7*C) @ Vy, where Vg, denotes the subspace
that annihilates the 6-horizontal vectors in 7N . Thus, Vj is canonically isomorphic
as a real bundle 7*(N*). This splitting is orthogonal along C for the metric that
is pulled back by ec from R x M . The almost complex structure J defines via ec
an almost complex structure on 7*N over eEl (Uc). The (0, 1) part of this bundle
has a C-linear orthogonal splitting along C as T%!C @ N|c¢. This understood, an
isomorphism between (7*T%!1C @ 7*N)lez! (we) and TO' (R x M)|y,. is defined
as follows: Any given vector ¢ € 7* N is mapped to the 1-form ¢(Vgs+ ¢) where ¢
has the following properties: It vanishes on C and it can be written as gy Vgs+ ¢ with
Ico| < cols| and with ¢; differing from a section of 7*7T'C by co|s|?>. Meanwhile,
any given vector, p, in 7*T%1C is mapped to a vector of the form p + L(p) where
L: 7*T%'C — 7*T10C vanishes along C.

Write the bundle S as E® EK~!. On Uc, the bundle E is the pull back via ec as
7* N, and the identifications in the preceding paragraph define an isomorphism over
Uc between K~ and n*(N ® T%!C). Let Ic denote the product complex line
bundle over C. The preceding identifications of S and 7*M @ R over U¢ identify
the ec—pull back of (T*M @ S @ iR) with the direct sum Voo @ Vo1 — C where

(6-5) Veo=a*N@&n*N and Vo =7*UIc® N> Qa*(T%C).

Here, the left hand summands from V¢ and V¢; make up eé (iT*M @®iR); and
the right hand summands make up e/.S. Use these same splittings of V¢ and V¢
to write a section of V¢ as (¢, n¢) and one of V¢ as (p,n1).

Granted the preceding, the operator ©® on Uc can be written as a linear differential
operator that takes a section of Vo @ V¢ over eEl (Uc) and spits out a section of
the bundle (Voo ® n*T%1C) & (Vo @ 7*T1-0C). The operator is defined so as to
send a section § = ((g, 19). (. 71)) to one whose component in Vco ® 7*T%1C can
be written as

e 2(-3Vp+ 2_1/2V1/21/_f§771) +20H g + o,

(6-6) o« 2(—9V 2—1/2,1/2,,€ 9H
( e+ r WOP)‘F Mo +To1,
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and whose component in V¢ ® 7*T1-°C can be written as
o 207q+ 2712128 n0) + 208 p+ .

(6-7) . 2(355770—#2_1/271/2‘#5@+2355771+t11-

To explain the notation, first, wg denotes the component of ¥¢ in the el E=n*N
summand of ef.S. Second, the t4x terms all obey |txx| < co(|s]|Vf| + [f|]) where
V denotes the covariant derivative that is defined using the connection 6 for the left
most summands in (6-5) while using the connection 6 with AE for the right most
summands. The operator ¥ and its Aé analog denote the holomorphic covariant
derivative along the fibers of 7 as defined by V. Meanwhile, 851 and its Af analog
denote the (1,0) horizontal part of V. The barred versions with V' and H denote
the respective vertical and horizontal (0, 1) parts of V. Here, the notion of (1,0) and
(0, 1) is defined using J|c . Note that (6-6) and (6-7) implicitly use the volume form
on C to identify T%!C ® T1-°C with the product bundle /¢ .

Since © is defined originally so as to take a section of iT*M & S @ iR and return
a section of this same bundle, a few words of explanation are in order to describe
the implicit isomorphism used in (6-6) and (6-7) between the latter bundle and the
vector bundle (Ve ® 7*T%1C) @ (Vo ® n*T1-0C). This implicit isomorphism is
constructed as follows: First, use the exterior product with the 1-form ds to identify
T* M with the bundle, A%T, of self-dual 2—forms on Rx M . This identifies 7* M $R
with A2 @ R. Meanwhile, let 7%2 C Aé+ denote the subspace of forms of type
(0,2), and let /¢ denote the product complex line bundle over R x M . Then AT @R
can be viewed as the underlying real bundle of the C? bundle Ic & 7%2. Here,
the /¢ summand corresponds to the Rw @ R summand in A2T @ R. Given that
792 = K~ the top line in (6-6) defines a section of K~! over Uc, thus a section of
792 . Meanwhile, the top line in (6-7) defines a section of the product bundle over Uc
and so a section of I¢. Thus, the top lines in (6-6) and (6-7) together define a section
of A>T @ iR and so account for the i (T*M @ R) required identification between
Veo@a*T¥C)® (Vo1 @n*T1H0C) and iT*M &S @ iR.

To finish the identification, introduce S+ and S_ to denote the respective self-dual and
anti-self-dual parts of the Spinc bundle of spinors over R x M . Clifford multiplication
by self-dual 2—forms annihilates S_ and Clifford multiplication by anti-self-dual 2—
forms annihilates S . The £i eigenspaces for Clifford multiplication by the self-dual
2—form w = (1/+/2)(ds Aa + (1/2)da) split Sy as E ® EK™! and so identifies
the latter with S. Meanwhile, the restriction of Clifford multiplication by forms in
TR x M) to the E summand in S, identifies S_ with T%!(R x M) ® E. At
the same time, Clifford multiplication by ds identifies S; with S_ and thus S_
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with S. The upshot of all this is the identification of T%!(R x M) ® E with S.
Granted the preceding, observe that the bottom lines in (6-6) and (6-7) define a section
of (m*N @ n*T%!C) ® n*N?. Writing the latter as (7*T%'C ® n*N) ® n*N
identifies it with 7%!(R x M) ® E. This how the bottom lines in (6-6) and (6-7)
define a section in the S summand of iT*M &S ®iR.

Part4 This part describes ® on U, when y € Ex_,on U,4 when y € Ex4, and
on Uc when C =R x y.

With y fixed, reintroduce the vector spaces Vy and V; that appear in (3-13) and
(3-14). The starting point is a rewriting of the operator © on the relevant open
set as an operator that maps C*®((—oo, —R) x S x C; Vo ® V) to itself. To this
end, write the components of an element f € Vo & V; as ((¢,10), (p,n1). Then
the Vo and V; components of ® are given respectively by (6-6) and (6-7) with
the following reinterpretation of the notation: First, 3V = (27r/€,,)1/ 2(9/0z) and
851 —(1/2)(d/dw —i(d/0dt)). Of course, the covariant versions of these operators
are similarly reinterpreted, as are their barred counterparts. In this case, the terms
designated by tys obey |tisx| < co(|z]| VS| + Ifl)-

Part 5 Suppose that C € C is not R—invariant. Use the component ¢ from & to
define the pair (A€%", «€€") as done in Step 5 of Section 5.b. This is a pair that
consists of a connection on 7* N — N |¢ and a section of this bundle. Define a rank 1,
complex line bundle K¢cg — C whose fiber is the span in L?>(N;Vco® Vey) of the
vector ((¢, 7o), (0,0)) where ¢ = 2=Y/2r1/2(1 — |a€&7|2) and 1 = Sch,rozCE’r.
Here, Bch,r denotes the (1, 0) part of the covariant derivative along the fiber of N as
defined by the connection ACET and the complex structure J|c.

Now suppose that C =R xy is a component of . Define (A“$" o €&7) on C xC as
done in Step 5 of Section 5.b. Identify C with R x S! using Property 5 of Section 4.a.
Let gc be the integer associated to C, and let Kcg — R xS ! be the g —dimensional
complex vector bundle whose fiber at (w, t) € Rx S is the subspace in L?(C; Vo®V;)
spanned by the elements of the form ((¢, n¢), (0,0)) where (g, o) are such that

(6-8) 0g +272r)%ang =0 and 4no +27"2r} 2ag =0,

where o = €7 and where 4 is pullback to (s,7) x C of ACE".

Fix y € Ex_ and use &, from & with &,_ from &_ to define the pair (AVE—T vE—t)
as done just after (5-14). Let K,z — (=00, —R) X ST denote the rank my_ com-
plex vector bundle whose fiber at any given (w,?) € (—oo, —R) is the subspace in
L?(C;Vy® V;) spanned by the elements of the form ((g,79), (0,0)) where (g, 1¢)
obey the version of (6-8) with & = ¥4~ and with A the pullback of AY~" to
(s,1) xC.
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An analogous definition assigns a bundle K,z — (R,00) x S Ito each y Syt

Part 6 Define K? to be the completion of K using the norm given by the analog of
(5-13) that has each version of || - || replaced by the corresponding L? norm. Fix

0 = ((Oc)cec: (By-)yeas_. (By+)yeas,)) € K2

Suppose that C € C is not R—invariant. The component f¢ is an L? section of
¢*V1,0€N,1 over the part of C where |s| < R«. Here, ¢ is the section that sends each
point to the symmetric vortex. The component £¢ from & € ICy is also a section of this
bundle, but one with small || - [|,c—norm. Let ¢ce denote €xp (§c). The differential of
éxp, at &c identifies O¢ as an L? section of c*cg V1,0€n,1 over the |s| < Ry partof C.
Thus, it can be viewed as an L? section of the bundle K¢ g — C as defined in Part 5. As
such, it defines a section over C’s component of eEl (Uc) of Vco® Ve, at any given
point, the latter section is a multiple of the section that has V¢; component zero and
Vo component given by the pair (271/2r1/2(1 — |a €87 |2), Bch,rch‘f”). Interpret
this section of Vo @ V; defined by ¢ as a section, acg, of iT*M &S ®iR.

Suppose next that C = R x y is from C, and let ¢ denote the associated integer. Let ¢
denote the constant map from C to the symmetric vortex in €. Let ccg again denote
éxp.(éc). The differential of éxp, at £¢ identifies O¢ as an L? section of ¢*T 1,084
and thus an L2 section of the bundle Kcg — C. The latter can again be interpreted as
an L2 section, §C§, of iT*M &S & iR whose restriction to the fiber over any given
point in C is a multiple of a solution to the relevant (A4, «) version of (6-8).

By the same token, each 6,,_ defines an L? section of the corresponding bundle K yE—>
thus a map from (—o0o, —R) x S x C to Vo @ V; . Interpret the latter as an L? section,
é},g_, of iT*M &S @ iR over U,_. Likewise, each 0,4 defines an L? section,
§y§+, of iT*M &S & iR over Uy 4.

A map tg: K? — L is defined as follows: Let § € k2. Then tg(6) has support only
on (UcecUc) U (Uyery, Uy-)U (UyeEHU}H-)- Here it is given by

e« t(0) = xc(1/4/m)Bce on Uc.

o t:(0) = (1—x2)xc(1/yvm)bcs

+(xcxz + (= x0)) xRt Xy (/)0 ¢+
(6-9) at points in Uy, 4 with distance py or less from an end £ in any given
component C of X.

o tg(0) = XRiXyi(l/ﬁ)gygi at points in U,+ with distance px or
more from each component C of X.
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By way of reminder: The functions x g+ and x,4 are defined just prior to (5-7), and
X is defined just prior to (5-9). This map t¢ is a bounded linear injection. Given
(2-4), (2-5) and (4-9), the injectivity of tg when r > ¢o and R > ¢o can be proved
using the perspective taken in Section 5.c. In fact, the map t¢ is nearly isometric.

Let IT¢ denote the L? orthogonal projection onto the image of tg and let Hg- CH
denote the kernel of the homomorphism ITg: H — L. It is a consequence of what is
said at the end of Lemma 2.9 that IT¢ maps H to H, and so ]HIEL is equal to (1—TIg)H.

Part 7 What follows describes a somewhat different version of K2. This version is
also a completion of a set of “smooth elements”. The typical smooth element is given
by the analog of (5-12) where the following modification is understood: If C € C is
not R—invariant, then £c is a section of the bundle ¢*V; oCn; & T 0.1C over the
|s| < Ry part of C. The identifications given by ¢, 4 are as before with it understood
that 7*C is trivialized over any given end by the pullbacks of d w and d¢. The norm
that defines this space is given by the analog of (5-12) that replaces each || - ||x norm
with the corresponding L2 norm. The resulting Banach space is denoted by £2.

The formula in (6-9) defines a bounded, linear injection from £? into L. The £?
dual of this injection gives the desired map, ITg: L — L£?. Use ]Lé- C L to denote the
orthogonal complement of the kernel of Ilg. This is a closed, linear subspace of L.
Although sloppy notation, (1 —TITg): L — ]Lg- is used to denote the associated L2
orthogonal projection.

Part 8 The promised projection of (6-1) asks for a solution to the equation
(6-10) (1—Tg)(Db+ 20 b—r~"/2p) =0

subject to the constraint limg— 400 b = b

6.b Operator norms

The next lemma is central to the approach taken here to solve (6-10).

Lemma 6.1 Fix X as described in Section 4.b, but do not assume Constraint 4. There
exists a constant xk > 1 with the following significance: Take r > k. Fix £ € Ky with

[€]loo < k™1 so as to define D, Hé‘ and ]Lg-. Then

k" Mlalle < |(1 - Te)Da|, <«llglle  forall g € H.

Moreover, if § € Ky has norm ||&||xcx <k~ the corresponding (1 — Ig)® maps Hé‘
onto ]Lé‘. In particular, (1—1TIg)D: Hé‘ — Lé‘ is invertible and the norm of its inverse
is bounded by k.
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Proof of Lemma 6.1 The asserted upper bound is straightforward to prove and so
omitted. What follows next proves the assertion about lower bound for (1 —ITg)®Dq]»

when q € Hé‘ To start, write q = qo + ) _cecdc + ZyeEE_q)/— + ZV€E>:+qV+’
where

* do= (1 - ZCECXC)(I - XR—ZVGXE+XV— - XR+Zy€EE+X}'+)q'
* qc =XC(1_XR—ZyeEZ_,_Xy—_XR+Zy€Ez+XV+)q'
dy— = Xy—XR-9-

®* qy+ = Xy+XR+9-

(6-11)

The section qq has support where (4%, ) = (A7, ¥7). This being the case, it follows
from these equations and from [7, (5.23)] that there exists ¢g > 1 such that if r > ¢,
then

(6-12) 1Dq0ll2 > ¢5 ' llq0llm.

But for two items, the arguments that are used to prove the left most inequality in
Lemma 3.2 and Lemma 3.3 can be employed here with purely notational changes to
find a constant ¢ > 1 such that when r > ¢y then

6-13) |(1-Te)Dac|, =o' lalm and (1 —Te)Day+ |, =g lay+lm.

The first substantive item concerns the reference to Lemma 2.5 in the Lemma 3.2
argument: The reference is replaced in the new argument by a reference to Lemma
2.8. The second item to be noted when applying the arguments for Lemma 3.2 and
Lemma 3.3 is the following: Let C denote a component of ¥ and let £ denote an
s < —1 end of C. The constant s slices of £ converge as s — —o0o to the Reeb orbit
ye. Given (2-4), (2-5), and (4-9), a section over ‘E of the bundle K¢¢ looks like a
section over (—R4, —R) x S of the bundle K y&— when viewed from the perspective
of Section 6.c. Conversely, a section of K, ¢ defines a section of Kcg over the ends
of C in U,_. There is, of course, a similar remark concerning C’s positive ends. O

Granted (6-12) and (6-13), a direct analog of (3-20) implies the lower bound inequality
given here.

Consider next the assertion that (1 — IT¢)® is onto when [|£]|c« is small. To this
end, let ¥ denote the constant that gives the lower bound inequality in the lemma.
Now fix ¢ € (0, %K_l) and suppose that x: H — L is a bounded operator such that
lxqll2 <eéllq|lm for all g € H. Then

1
(6-14) |(1—T)@ + x)q|, = Ex‘lllan
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for all q € Hé‘ Suppose that (1 — ITg)(D + x): Hg- — ]Lé‘ is invertible. Then it
follows from (6-14) that its inverse has norm bounded by 2« . This uniform norm bound

implies that the operator (1 —ITg)®: Hg- — ]Lé‘ is invertible if & < (1/100)x~1.

It follows from (2-11) and (2-12) that both Hg- and ]Lé- vary in H and L in a uniformly
continuous fashion as & varies in K. This understood, the argument from the preceding
paragraph implies the following: If the £ = 0 version of (1 —ITg)® is invertible as a
map from Hé‘zo to ]Lézo, then there exists k > 1 such that (1 —ITg)® is invertible

from Hé‘ to ]Lg- if ||E]lxcx <L,

In the case where & = 0, or is smooth, there is a straightforward analog of (2-23) that
can be applied here in conjunction with the formula in (6-7) and (6-8) that finds

(6—15) (I—HE)QHE = (I—Hg)%ng—(l—ng)xng,
where ||Rq|l2 < c||q|l> with ¢ a constant, and with x a first order operator that obeys

(6-16) lxgllz < cor ™2 p5 qllm-

Indeed, x has two contributions. The first comes from the terms that are indicated by
tyx 10 (6-6) and (6-7) and the second from the fact that the exponential map ec on any
given end of any component C C ¥ does not quite map the fibers of Ny — C to constant
(s,t) slices of RxS!x C unless C =R xy. In any event, given & > 0, it follows from
(6-16) that there exists k > 1 such that ||xql|> < ¢||q||m when r > k. In light of the
preceding paragraph, it is thus sufficient to prove that (1 — ITg—)(® + x): H(J)- — IL(J)-
is invertible when r is large.

To this end, remark that the norm bound in (6-14) implies that (1 — ITo)(® + x) has
closed range in ]L(J)- and so its cokernel is isomorphic to the kernel of its adjoint. Note
that this adjoint is not the formal L? adjoint; it is the adjoint that maps from IL(J)- to
Hy . The formal L? adjoint of (1 —TIo)(D + x) is (1 —o)(®T + xT) where DF
and xT denotes the respective formal L2 adjoints of ® and x, and where (1 — 1)
here denotes the L2 orthogonal projection onto Hd‘ C H. The maximal domain of
this formal L? adjoint consists of the elements in IL(J)- NH.

Suppose for the sake of argument that | € IL(J)- N H and f is also in the kernel of the
adjoint of (1—TIT¢)(® +x). Then (1—T1o)(DT + ") / = 0. In this case, the argument
used above to prove (6-14) can be repeated to prove that f = 0. This understood, it is
sufficient now to prove that the kernel of the adjoint of (1 —I1o)(® + x) is in H. To
do so, suppose that z € H. By virtue of (6-15) and (6-16),

(6-17) |(1 =)@ + 1) Mo3 ||, < cllsll2-
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Thus, if § € ]Lé is in the kernel of the adjoint of (1 — ITp)(® + x): ]HI(J)- — ]Lé-, then

(6-18) (. (@ + 00302 = clfll2 312

for all 3 € H. This implies that f is in the domain of the formal L? adjoint of © + x,
and hence § € H. Given what was said earlier, f = 0

6.c Solving (6-10)

A solution to (6-10) when £ is in a small radius ball in 5 € I is described below. It
has the form b = + q where q € Hé— has small norm. Here, h serves two purposes:

e It supplies the desired s — £oo limits. In particular, limg—+o0 h = b4

(6-19) o [t facilitates the use of Lemma 6.1.

What follows elaborates on the second point. The plan is to find this particular element

qe Hé‘ as the fixed point of a map from Hé‘ to itself that sends any given q to

(6-20) T(q) =D (1-Tg)((0 —vy) —r'2gxqg—2r""2h x ),
where D is shorthand for (1 —ITg)®: Hg— — }Lé- and where
(6-21) v, =Dh+r'/2pxp.

Granted Lemma 6.1, then (6-20) gives a well defined self map of H E provided that

e The map q — b * q defines a bounded map from Hg- to L.
622, v—vyel.
In what follows, (6-22) will be required to hold such that § * (-): ]HIJ- — L has small
operator norm and such that (1 — ITg)(v — vy) has small L? norm These last two
constraints are responsible for certain parts of §.

To quantify this small norm business, remark that the existence of a fixed point to T is
proved below with the help of the contraction mapping theorem. The use of the latter
requires that T map some ball in ]H[g- to itself. Consider, in light of this constraint, the
term on the far right in (6-20) that is linear in q: According to Lemma 6.1, the H—-norm
of the contribution to T from the linear term is no greater than « r'/2 || % q||,. Thus,
the linear contribution to T is norm decreasing provided that

1
(6-23) I %all2 = Jeg 1 =12|qlm  for all q € HL.

The fact that T must map a ball to itself also makes demands on the term in (6-20)
that is quadratic in g. As it turns out, these demands can be met when |v — vy |2 has
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small L? norm. Indeed, an appeal first to Lemma 6.1 and then to (6-3) finds that
©24)  DTNA-TC Paxa)] g = cor'2llallf < cor' -
Granted only (6-23) and (6-24), then T can map a ball in Hé‘ about the origin to itself if

the ball has radius less than %co_ 1y=1/2  This is insured only if the g—independent term

in (6-20) lies well inside this ball. Given Lemma 6.1, it is in the radius ~!/2§ ball when
(6-25) (1= Tg) (o — o) ||, < cg'r™ /2.

This last bound quantifies the small L? norm constraint on v — by,.

The preceding discussion is summarized by the following lemma.

Lemma 6.2 The constant k from Lemma 6.1 can be chosen so as to guarantee the
following: Fix r >k and an element & € K, NIC with ||§]|xc <k~ 1. Use £ to define T
as in (6-20) with b obeying (6-23) and such that ||(1 — I1g)(b —vp)|[2 < k=12,
Then T is a contraction mapping on the ball of radius k~'r~'/2 in HL. Thus, the
map T has a unique fixed point in this ball, and the latter has H—norm bounded by

K[| (1= ITg) (0 —vp) |2

Proof of Lemma 6.2 Given what is said above, it suffices to verify that ¥ can be
found so as to guarantee that T is a contraction on the radius '+ ~1/2 ball in Hé—
Granted (6-23), this follows from the bilinear version of (6-24):

DM =TI (r'/2q % q' — ' 2q% q) |
(6-26) <cor'?|q —qlla(lla’lla + llqlla)
<cor?|d = qllm (19 e + 119 l|5)-

O

6.d The description of §

The lemma that follows asserts that a section h of iT*M & S @ iR can be found with
all of the desired properties. The lemma refers to the norm || - || > that is obtained by
replacing each version of || - ||x in (6-20) by the norm defined by the top line of (2-27).

Lemma 6.3 The constant « that appears in Lemma 6.1 can be chosen so as to guaran-
tee the following: Fix r > k and suppose that £ € Ky has ||€||co < k~!. Then there
exists iy such that

o limg100h=0bx.
o lh*gla <r=/1%qllg forall q € H.

Moreover, if ||&|| K2 is finite, then

© (=T —vp)ll <ar™2@=2H5 4 lg]|c2).
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Proof of Lemma 6.3 The proof that follows has six parts.

Part 1 This part of the proof addresses the |s| — oo limits of §. To this end, reintro-
duce R, from (4-8) and introduce the functions y— = x(s+ Rx) and x4+ = x(s— Rx).
The required behavior as |s| — oo is met if h has the form

(6-27) h=x-b—+ x+b4+ + by,

where h; at this point is constrained only by the requirement that its norm should limit
to zero as |s| — oo. With (6-23) in mind, note that

(6-28) 6% % qll2 < cor > *qllu

for all q € H-L. Indeed, Lemma 3.10 with (3-8) implies that the L* norms on M of
b4 and b_ are bounded by cor —3/4. Meanwhile, the latter bound on each constant s
slice of R x M implies the bound that is asserted by (6-28). Lemma 3.10 also implies
that

(6-29) r1/2” |d x—||b—| H2 + r”x_(l —x-)b_x* b_H2 <cor V2.

A similar inequality holds using x4+ and by . These inequalities have the following
pleasant consequence: Neither the y_b_ nor the x4+by contribution to f will foul the
second and third requirements stated by the lemma if r is sufficiently large.

Part 2 As it happens, h; can not, in general, be taken equal to zero. To elaborate,
remark that what is written as v in (6-10) has a component from the term (i % du +
%BA &) on the right hand side of the top equation in (5-20). With h; = 0, this term
contributes something of size O(R*)r_l/ 2 to the L? norm of v — vy This understood,
let by denote the small solution to (3-34) and write

(6-30) h=x-b_—+ x+b+ + xobo + b2,

where

X0= 1= x)0=x+) A=Y ceex)(1=XR-Dyery Xy——XR+ D yeqs, Xv+)-

Note that (6-28) holds with hq replacing hi and for the same reason: The H norm

of by on M is no greater than cor_l/ 2 and its L norm is no greater than cor .

These facts about by imply that

o 12| |dxolIbol |, < coRYPrm V2 < corm /2480,
(6-31) o r|xo(1—x0)bo*bg|, < cor 't8.

. rX”X:i:Xob() * bi”z < Cor—1+3g‘
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By construction, the by contribution to h takes care of the contribution to v from
the part of r—V/2(i s« du + %BAK) that lies where |s| < R and has distance p, or
more from ¥ in that the L? norm of (v — vy) from this part of R x M is bounded
by cor 1189 Meanwhile, the rest of the contribution of r~'/2(i % du + %BAK) to
v — vy is supported at points with distance copx or less from the |s| < 4Ry part of X.
Given that the volume of this region is bounded by ¢ p?2 Inr, it follows that the L2
norm of this contribution to b — vy, is bounded by cor ~1139 also.

Part 3 It is not possible to take h, = 0 in (6-30) because of contributions to v
from points with distance ps or less from X. In particular, there are relatively large
contributions to v from each C € C version of Uc that come from (A€"", ") and
t¢¢ . To say more about these contribution, suppose first that C is not R—invariant.
Use (xg. tg) to denote the version of (2-37) that is defined using { = £¢ and using
the section of € ; — C that assigns the symmetric vortex to each point for ¢. (Note
that (2-33)’s pair (x,t) is zero in this case.) Let (xg’1 , Lg’l) denote the part of (xg, tg)
that involves 7*7%!1C. Both xg’l and Lg’l are sections over N of 7*(N ® T%1C).

Introduce (xg;,1 , Lg:,l) to denote the pullback via 7 of (xg’l, Lg’l).

As in Part 3 of Section 6.a, identify the bundle iT*M & S & iR over Uc with the
bundle (Veo @ Vo) @ n*T%1C. The parts of v not previously discussed can be
written on U, using a calculation like that in Section 2 of the article Gr = SW from [5].
In particular, they can be written as vcg+]m fz where veg € Voo @ m* T%1C and ;
obey

+ vce=(xfy =227 P (ves + pc) (1= [ P),
(6-32) @) = (es+ s ,aCr).
o 3l <cor V(14 |Vec| + [Ec)e VT sl eo,

Here, AC" is the pullback of AC to the fibers of N. The norm and covariant
derivative of &¢ that appear in (6-32) are defined by viewing &¢ as a section over C of
the pullback of the bundle V o€px,1 — €, via the section that assigns the symmetric
vortex to each point.

Suppose next that C = R x y is a component of ¥ with associated integer q. Then
the parts of v on Uc not already accounted for can also be written as vcg + 3 with [3]
satisfying the inequality in the second bullet of (6-32) and with vce viewed as a map
to the summand Vo C Vo @ V; that is given by the following modification to what
appears in the top bullet of (6-32): First, ry, replaces r, the coordinate z replaces s, and
y’s version of (v, i) replaces the pair (vc, uc). Second, (AS”", €7 are defined in
Step 2 of Part 2 in Section 5.a from the map ¢: C — &, that assigns the symmetric
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vortex to each point. Third, (x%- y o LE 1) are defined using the data supplied by &c .
Indeed, given the identification E|c with C x C as described in Step 2 of Part 2 in
Section 5.a, there is a corresponding version of (xg, tg), this as defined by (2-37) using
&c for & and using the constant map from C to €, that assigns the symmetric vortex
to each point for ¢. (Note that (x,¢) = 0 in this case as well. ) Introduce (xg’1 , Lg’l) to
denote the part of (xs Lg) that involves n*TO 'C. Both x2'! and 2! map RxS'xC
to C. Now use (x§r"$ 1) to denote r;‘(x , 1).

The L? norm of vce over Uc has size O((Supzeg R£)Y/2)r=1/2  This is trouble for
the lemma’s third item. Meanwhile, the L2 norm of r 1/2(1 + |Véc |+ |EcDe™ Vrlsl/2
over any given component of Uc is no greater than cor ! ((supzce Rz)'/? + ||| ,Cz)
thus the contribution of j to the L? norm v over Uc does not foul the third item in
the lemma.

What follows describes how to construct h, so that h has a term which cancels most
of the bcg contribution to v. The construction involves a section, bc, of the bundle
iT*M ®S @®iR over Uc. Suppose that C € C is not R—invariant. Then b¢ is given
as a section, (0,pc) of Veo® V. If C =R xy, view a sectionof iT*M &S ®iR
over Uc as amap to Vo & V; and the map b again has the form (0, p¢).

If C is not R—invariant, pc is defined on the whole of each fiber of N over C N U¢
as the unique section that obeys on each fiber the equation

(6-33) 208 pc—(1-T%)vce—g =0,

where the notation is as follows: First, the operator 192 , maps sections of V¢ to
those of Voo ® n*T%1C so as to send any given section (p,n1) of V¢ to that of
Veo @ 7*T%1C with components

(6-34) 3" p+27 12125 0 and —%crm 427212 Cr

Second, T1° denotes the L? orthogonal projection along each fiber of N to the L?
kernel of the adjoint, ¥¢ . Note in this regard that the kernel of ¢, is spanned on
each fiber by the pair (q,19) = 2~ 1/2r1/2(1 — |aC7 |?), . ralry.

If C =R x y, then p¢ is defined on the whole of C over each pointin C N U¢. It
is defined on each such copy of C as the unique solution to the analog of (6-33) that
takes 19Jr to be the operator on C°°(C; C & C) that is given by the version of (6-34)
that uses (27r/€ )1/2(d/dz) in lieu of 8¥ and ry in lieu of r.

In either case, the existence of p¢ follows using (2-7) to solve (6-33) fiberwise along C'.
Moreover, (2-1), (2-2) and (2-7) imply that

(6-35) vel + [VEpc| 4+ r V2V pe| < cor™'/2eV7lsl/co,
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where V# is the horizontal part of the covariant derivative as defined by A€~ and
VY the vertical part.

With p¢ and thus be in hand, write

(6-36) b= x_b_+ x+by + xobo + (X cecxcMzese (1 — x£))bc + bs.

With h3 zero on Uc, (6-33) and (6-35) have the following consequence: The L? norm
on Uc of v—vy is now bounded by cor™! supzeg Rz when £ =0. Take b as in (6-36)
with b3 zero on Uc. If £ # 0, then the L? norm of v — vy over Uc is bounded by

(6-37) o (r_l sug Rz + V_1/2||’§||1Cf) < co(r1+8” + ”_1/2||5||1Cf)'
Ee

This follows using (2-7) with (2-11), (2-12) and (2-38).

Note that (6-35) also implies that ||b. || < cor™/2|lqll2 < cor™"||qllm when g€ H.
Thus, the contribution to h from b does not cause problems with regards to the second
item in the lemma if r is large.

Part4 Itis not in general possible to take h3 = 0 in (6-36) because (6-32) has analogs
in each Uy, +. To say more about this, focus attention on some y € Ex_. There are
three regions in R x S! x C to consider with regards to the L2 norm of v. These
are denoted in what follows by X7, X, and X3. The first region, X7, consists of the
points in Uy— CRx S xC where w < — Ry and |z| <4px. The second region is the
complement in U, of the first region and the third. What follows describes the third
region, X3: This is the subset of U, with the following property: The coordinates
(w, t, z) are such that z has distance px or less from the constant (w, ¢) slice of an
end £ C £ NU,_. Meanwhile, the coordinate w obeys w > —Rz —8R.

Here is a summary of the story for X;: What is written as v in (6-1) and (6-10) is all
but cancelled by the contribution of x_b_ to vy. Indeed, it follows from Constraint 2
in Section 4.b that there is a positive constant, A > ¢’ ! with the following significance:
Suppose that 3 = 0 at points in U, where w < —R4. Then v — by at any given
(w, t,z) € Xy is bounded by

(6-38) co(r M+ (|VEy -]+ [8y-]))e VT,

Here, and in what follows, the covariant derivative and the norm for &, are defined
by viewing the latter as a section of the pullback of 77 &,

Given the preceding, it follows using (4-9) that the contribution to the L? norm of
v — vy from X; C Uy— is bounded by cor~'/2(r=1/2 4 IEllc2)-

Geometry € Topology, Volume 14 (2010)



2672 Clifford Henry Taubes

Part5 This part considers the L, norm of v in X, . There is, first of all, a contribution
to this norm from the term i r—!/ 2(xdp + %B 4,). The L? norm of this contribution
on X, is bounded by co,o*r_l/z(R* —R)/2. In particular, it is too small to bother
the third item of the lemma given (4-8). The size of this contribution is bounded
by cor T4,

There is also a contribution to the L? norm of v on X, that comes directly from
(AYE=" o¥E=") | this the analog of (6-32). This pair is defined in the paragraph that
follows (5-14). This contribution can be written as (b, ¢_ + 3). Here, b, on X,
maps to Vo and has the form

(6-39) b= (xgrl, g r) (vz+u2)(2 1/zrll/z(l — &3, 8Ay5_,,‘ay€_”),

where the notation is as follows: First, (x$ S té 1) are defined in terms of (A6~ a¥é)
with the latter given in (5-14). To elaborate, introduce the (AY~, a¥$™) versions of
what is written in (2-37) and let (xo L 1) denote the resultmg expression. View
(xo 1) as functions on (—o0, R) X S1 x C. Then (xg Y LE 1) designates the
pullback of (xo1 9 1) via 7). Second, the pair (AYE=" V87" is defined in
the paragraph that follows (5-14). Third, 0 4y¢r denotes the covariant version of
Q27 /Ly)2(3/0z).

What is written as 3 accounts for the various cut-off functions and for the fact that the
metric from R x M on U, has z and ¢ dependence. In any event,

(6-40) [3] < cory 21+ r|zP) (14 VE | + =) ores, e V717100,

The contribution to the L? norm on X, of v from 3 does not foul the third item in
the lemma because the L2 norm on X, of what is written in (6-40) is bounded by

(6-41) co(r™" + PR +[El2) < cor ™37 (1 + [l 2)-

On the other hand, the L? norm on X of (1— IMg)vy e is O(p« Ri/z). This relatively
large norm comes from the right most terms in (6-39). Indeed, the L2 norm on X,
of the term (1 — Hg)(xs o lE; %:1) is bounded by c¢o(1 + ||E||,C%)p* % because the
& = 0 version of (xg s LE 1) is annihilated by the £ = 0 version of (1 — I1¢) modulo
terms whose L2 norm on each constant (w, ) slice in X5 is bounded by cpx«. This
understood, let né denote the troublesome term, Ué =0y — (xg r o L o1y,

What is written as b3 in (6-36) supplies a term in v; that cancels the dominant part
of (1 — Hg)n This term in b3 is defined as follows: Introduce ,¢_ , to denote the
operator on each constant (w, t) slice of (—Ry, —R) x S! x C that is defined by what
is written in (6-7). View this operator on each constant (w, ) slice as an operator from
C>®(C; V) to C*®(C; Vy).
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The identities in (2-7) can be used to prove the following: There exists a smooth map
pe: (—Rx.—R) x S' x C — V| that obeys Zﬁlg—,rpé” —(1- l'[g)n’E = 0 on every
constant (w, ) slice of (—R4, —R) x S x C. Here, Hg denotes the L?—orthogonal
projection on each constant (z, t) slice to the L? kernel of ¥y ¢—, . Equations (2-1),
(2-2) and (2-11), (2-12) with (2-7) imply that this map pg obeys

o Ipel +r 2V < expul+ [Ep-D ez, |, ¢ V.

(6-42) _ o

o [VEpe| <cspu(l+|VE |+ &) ez, |, e V=,
Here V¥ denotes the dw and dt parts of the covariant derivative on maps to
Vi = C @ C that act as the usual derivative on the first factor and as the derivative that
is defined by the connection AY™" on the second factor.

With pg understood, introduce the section by, of iT*M &S ®iR over the w > — R
part of U,,_ that is defined by the map from (—Rx, —R) X S xC to Vo @ V; given
by the pair (0, pg). The contribution to b3 from y € Ex_ given by

(6-43) (1= X=)XR—Xy~by—.

With b3 defined by (6-43) over X, the L? norm of (1 — ITg)(v — by) over X, is
bounded by what is written on the right hand side of (6-41). In addition, [by,_ *ql|2 <
copxllallz < esr~139qllm and so the contribution from (6-43) to b does not cause
problems with regards to the second item in the lemma when r is large.

Part 6 Let £ denote an end that intersects U, of a component C C X. Set X¢
to denote the component of X3 where the coordinates (w,t, z) are such that z has
distance py or less from the constant (w, t) slice of E and the coordinate @ obeys
w > —Rg —8R. Extend b3 to Xz as

(6-44) (xexz + (= X)X R=Xy—) by

Consider now the L2 norm of v — vy on X¢. To this end, consider first the case where
£ = 0. In this case, (45, ¥%) is given by (4*, ¥*) with the latter defined on Xz in
(5-9). An evident new issue here concerns the fact that (A%, a%) is not identical in X
to (A", o¥") when C is not R—invariant. Even so, they almost agree. To quantify
this, focus on a disk in £ where the coordinates (w, t) are single valued. Coordinates
for the fiber of N4c over this disk are written as (w,,7n). Here, the bundle N is
trivialized by the restriction along C of the vector field 9/9z. Then (A%, «%) can be
written using these coordinates and the trivialization of N as

1\ _
(6-45) AE=90+u/r(r]dﬁ—ﬁdn)+(u/r|r]|2—5)(m—m) and af=r1/ze_”n,
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where the notation is as follows: First, 6 is the product connection for this trivialization.
Meanwhile, tv has only ds and d¢ components and its coefficients depend only on
w and 7. Moreover |tv| < cy. The 1-form tv comes from writing Vgn = dn + ron.
Finally, u and u’ are defined in terms of a certain real valued function, #, on [0, 00); at
any given (w, t, 1), they have respective values 7 (r|n|?) and ((d/dy)it)(r|n|*). Note
that u(y) = %lny +0(e?/?) at points y > 1.

In order to compare (6-45) with (AY>", "), it is necessary to pull back the latter via
the map that is depicted in (4-4). To this end, use (2-31) to write

AV =00+ Ag + U | p—wyr (2 —w)dZ — (Z—w)dz) +r

1/2 —u

(6-46)
a’ =r' e ™z —w)+ 1,

where the notation here is as follows: First, w = w(w, t) gives the z—coordinate of the
constant (=, t) slice of the disk in ¥ under consideration. Second, u = #(r|z — w|?)
and v’ = ((d/dy)i)(r|z — w|?). Third, both r and r’ have absolute values bounded
by cze_“ﬁ r=/2  Meanwhile, it follows from (2-3) and (2-5) that A here is

(6-47) Ao = |y ((z —w)dw — (Z— w)dw) +1”,

where [t”| < e~V7P=/2 als0. Write the pullback of AY" as 6y + gdij—gdn+3—3

where 3 has only ds and dt components. Granted (6-46) and (6-47), it follows that
° |g_u/rn|500r1/2|z|2e_\/;|77|/c().

(6-48) * |3 < coemVrInl/eo,

o |V —af| <colz|Pe=VTInl/co,

To see what this implies, use v to denote the version of v on X that would result
were (A%, %) defined by taking & = 0 and the y = 0 in (5-9). Set vy— to denote
the version of v that would result were (4%, ¥%) defined by taking £ =0 and xg = 1
in (5-9). By virtue of (6-48),

(6-49) lo— (1= xz£)oz — xzoy_| < cor V2 (1 4 r|z|*yeVrInl/eo,

This last inequality is derived with the help of the following identity: Suppose that
pairs of numbers (b, b, —) and (cz, ¢y —) are given and a number xz. Then

(x£by—+ (1 = x£)bz) (xzcy— + (1 — xz)ex)
= (1= xe)bzree + xeby—cy— — xe(1 = x£)(bz —by—)(cz — cy-).

Given (6-49), it then follows from (6-35), (6-37) and (6-42) that the L? norm on Xz
of (1 —TIg)(v—vp) on X is no greater than what is written in (6-41) with £ = 0.

(6-50)
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In the case when & # 0, the almost identical arguments prove that the L? norm of
(1 —TIIg)(b —vy) is also bounded by what is written in (6-41).

If Rxy C X and E is its w < —1 part, it is also the case that (1 — ITg)(b —vp) has
its L? norm bounded by what is written in (6-41). The argument for this is much like
that just given and left to the reader.

6.e Summary

The proposition that follows summarizes Lemmas 6.2 and 6.3, and then says a bit more.
To set the stage, suppose that some small v > 0 has been given for use in (2-27) and
(2-29). Let fe C®°(M;iT*M & S & iR) denote an element with compact support.
Define |/f||s« by setting

651 [flZ= sup sup p / (IV*31 + o725P2).
PERXM pe(0,1) dist(p,-)<p

Here, as before, V* is the Levi-Civita covariant derivative on sections of i T*M ,
the covariant derivative that is defined by A* on the sections of S, and the exterior
derivative on the sections of iR.

Proposition 6.4 Fix ¥ as in Section 4.b, but do not require Constraint 4. The con-
stant x in Lemmas 6.1-6.3 can be chosen so as to guarantee the following: Fix r > k
and let B C K denote the ball of radius k~'. Then B C K4. Given £ € B, define
h = h(&) as instructed by Section 6.d. There exists a unique q = q(§) € Hé‘ such that

e b=+ q obeys (6-10).

o lalm=r="2"

Moreover,

o llallm < kr= 2072480 4 g 2).

e The assignment & — q(&) defines a smooth map from B to H and the || - i
norm of the directional derivative of the map & — q(£) at any & € B along any
given vector &' is bounded by kr~'/2||&'||x.

Finally,

o llalls < wr=2E2H8 4 g ).

e The || - ||« norm of the directional derivative of the map & — q(§) atany £ € B
along any given vector £ is bounded by xr /2|’ k.
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Proof of Proposition 6.4 The existence of q and the first three items follow directly
from Lemma 6.2 and Lemma 6.3. The fact that the assignment & — (&) is smooth as
amap from B to H is a standard consequence of the contraction mapping construction
given the manner in which (A48, ws ) varies with &, and given (2-11) and (2-12) to
describe the variation of the projection ITg.

To say something about the derivative of this map, fix £ € B and let &’ denote an
element in X with norm 1. Use ¢’ to denote the directional derivative of ¢ in the direc-
tion &’. Write g’ = (1 —I1g)q’ + [gq’. Note that Tl¢q" = —I1q where IT¢ denotes
the derivative of the projection in the direction of &’. Use g to denote (1 — IT £)q'.

Properties of Hé can be deduced using (2-11) and (2-12). In particular, the third bullet in
Proposition 6.4 guarantees ||Héq||H <cor~Y2(r=1/2+80 4 |I£|x). To obtain a bound
on the norm of g1, note that the latter obeys an equation that has the schematic form

(1-Tg)Dqt + (1 - T (2r2q* g + 22 5 g+

(6-52)
+0'q+2r'/2h x q— (v/ —v})) =0,

where @', b, 0" and n;] denote the respective derivatives of ©,h,v and vy in that
direction &’. Given (6-3), Lemma 6.1, the second bullet in Lemma 6.3 and the bound
on ¢ given by the second bullet in the proposition, it follows from (6-52) that

(6-53) la'llmn < co(I1D'all2 + /2116 % qll2 + [0’ = vi 1),

when 7 > ¢g and when ||&]x < (:0_1 . A bound by ¢or~!/2 on the right hand side of
(6-53) is derived using much the same sorts of arguments that are used to obtain the
second two bullets in Lemma 6.3. The details of these arguments are left to the reader.

What follows is a derivation of the bounds on ||q||« and ||q’||« that are asserted by the
last two bullets of Proposition 6.4. To start, fix p € R x M and p > 0. Suppose that
f is, for the moment any given element of H. Define

(6-54) mop = [ (ViR 7).

dist(p,-)<p
The last two bullets of Proposition 6.4 assert that mq(p, p) and my (p, p) are respec-
tively bounded by cor ~1(r~1/2%8¢ 4 ||£|Ix)2p¥ and cor ! p¥. The proof that this is

so requires that v is small; an upper bound is derived in the proof of the forthcoming
Lemma 6.5.

To set the stage for Lemma 6.5, suppose for the moment that q € Hé‘ is not the element
given by Proposition 6.4, but that it does obey the equation

(6-55) Dq = wy = MeDq— (1 - Te) (r/2f % q+2r2h % q) +u,
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where f € H and where u € ]LSL. Here, and in the rest of this proof, Il¢ is viewed as
a map from L to itself, rather than as a map from L to L2,

Lemma 6.5 The constant k from Lemmas 6.1-6.3 can be chosen so as to guarantee
the following: Suppose that v < k!, that r > k, and that £ € ICy and ||£|leo <« L.
Suppose in addition that the element f € H has ||f|m < «~'r~'/2. Finally, suppose
that u € ]Lg- and that there exist constants my, and my such that ||u||§ <mp, and

(6-56) / u)? < myp®
dist(p,-)<p

foreach p e Rx M and p > 0. If q € Hg- obeys (6-55), then ||q||]2HI < kmp, and
lall3 < k(e + 74+ €7 OmL) .

This lemma is proved momentarily.

The proofs of the asserted bounds on ||q||x and ||q’[|«, and of Lemma 6.5 use the fol-
lowing three part digression. This digression supplies what are needed to bound the L2
norm of the projection ITg(-) or its directional derivative over any given ballin R x M .

Part 1 Fix an element C € C that is not R—invariant and consider what IT¢ does to a
smooth section of i T*M @& S @ iR with compact support where |s| <2R on C. To
this end, write the restriction as § = (fo, f1) with fo,; a section of V¢, 1. Then Ilgf
is equal to ¢¢(6[f]) where 0[] = (6¢)cecs (By—)yezs_): (By+)yezy, ) has only the
nonzero component 6¢[f] with the latter defined at p € C — (Ugeg. E2r) from an
integral over the |s| < pc part of fiber of N at p. This integral can be written as

(6-57) Oclflly = (1 + zp) /NI Xcefg,rf()’

where 01¢, = (1/Jm) (7 V2p1/2(1 — |05C5”|2),850s.rozc$”) and where |z,| <
cor~ /2. The integration is defined using the metric that is pulled back from R x M
by the exponential map ec . Analogous integrals define the components of 8[f] in the
generic case.

Part 2 This part of the digression introduces notation that is used subsequently in this
and the next subsection. To start, D, for p > 0 denotes a disk of radius p that lies either
in some C € C version of C — (Uzegc ExR), or in some U,,_ version of (—oo, —R] x
S, or in some Uy 4 version of [R,00) x S 1. With D, specified, use 7 to denote the
projection from ec—1(Uc) to D, when D, C C, the projection to (—00, —R]x S'!
when D, is in some U, _, or the projection to [R, 00) x S! when D,, is in some Uy, 4.
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As a final piece of notation, use 6, to denote the function xr 1/2=/r dist(Z,)/100 yhere
X here denotes xc or x,— or x,+ depending on whether D, isin acomponent C of X,
or in some U, _ version of (—oo, —R] x S or some U, + version of [R, 00) X St

Part3 Let D, be as above and let D5, denote the concentric disk of radius 2p. If
C € C is not R—invariant and D, C C, let 6 denote a section of Voo & V¢ over

7 1(Ds,). If C €C is R—invariant and D, C C, let § denote a map from D,, x C
to Vo ® V. If Dy isinany U, 4 version of R x S1 let 6 again denote a map from
Dy, x C to Vo @ V. In all cases, assume that |9| /6, where f isan L? function
with compact support on D,.

Granted that such is the case, then 5 can be viewed as an element in L.

Now suppose that f € .. Fix p e R x M and p > 0. Define Hefe L by
(6-58) n%:é/ ot
ml(-)

The integral of Hef over the radius p ball centered at p is zero unless this ball intersects
the support of 6 in which case

2
(6-59) /’ ITT%§]? < co min(1, rp?) (fz(/ GAH) ),
dist(p,")<p zeDs)p n=1(2)

where D), is a disk as described above.

Consider as an example I1¢f. The square of the L? norm of I1 gf over a ball of radius
p in R x M is zero unless said ball intersects some C € C version of Uc or some
y € By version of U,_ or some y € &, version of Uy 4. If so, then

2
60 [ R =cominrg?) [ ([ el
dist(p,")<p zeDyp \Jr71(2)

To use Lemma 6.5 for the proof of the fifth bullet of Proposition 6.4, note that q from
Proposition 6.4 obeys (6-55) with § = q and with u = r~1/2(1 — ITg) (v —vy)). Given
what is said in the digression, and given the definition in (2-27) of || - ||« , arguments
much like those that were used to prove the third bullet of Lemma 6.3 bound the integral
in (6-56) by cor~1/2(r~1/2+89  |I&x)p¥. The details involve nothing new and are
left to the reader.

Lemma 6.5 can also be used to derive the bound for the || - ||« norm of the directional
derivative of q that is asserted in the sixth bullet of Proposition 6.4. To this end, fix &
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and let £’ € K denote a vector with unit norm. Let q’ again denote the derivative of
q in the direction of £ ; and again write q’ = g+ — Mgq.

The square of the L2 norm of Héq over the ball of radius p centered at p is bounded
by ¢o times the f = q version of the right hand side of (6-58). As a consequence, p~2
times its L2 norm is bounded by cl|q||2p¥. Meanwhile, the square of the L2 norm of
V*(I1gq) over such a ball can be written as the sum of two terms. The first involves ITg
acting on derivatives of ¢, and the second involves derivatives of H/E acting on q. The
square of the L? norm of the former is bounded by ¢ times the f = V*q version of the
right hand side of (6-58); thus it is also bounded by c¢g||q||2p”. Given (2-11) and (2-12),
it follows from (6-59) that the square of the L2 norm of the latter term is bounded by

2
(6-61) co min(1, rp?) ((|V§|2+|Vg’|2+1)</ ()erlql) )
zeDy, x1(z

It follows using [3, Lemmas 2.9 and 5.4.1] that what is written in (6-61) is also bounded
by collqli3p®.

To say something about the |- ||+« norm of g, note first that the latter obeys (6-52) and
that (6-52) is the version of (6-55) with 1 = (1 — IT¢)(D'q + 2r/2h % g — (v/ — vg))-
The constructions that are used to prove the last two bullets of Lemma 6.3 can be

differentiated, so to speak, and thus used to establish that this version of 1t obeys (6-56)
with my < cor_l/ 2 The details are straightforward and left to the reader.

6.f Proof of Lemma 6.5

It follows from Lemma 6.1, the second bullet of Lemma 6.3 and (6-3) that ||q||I2HI =<
co(r'[flmllallm + mL). As a consequence, |ql|f < comy, if [[fllf; < cg'r™". To
bound | q|2 digress momentarily so as to define for each & > 0,

662 [ale= sup  sup p° / (IV*q2 + o21qP%).
PERXM pe(e,1) dist(p,-)<p

Note that ||q||« = limg—q ||q]|«e- Since ||q]l«e < 8_“/2||q||H, what is at issue is the
existence of a suitable  and ¢ independent bound for each | q||«s. The derivation of
such a bound has eight steps.

Step 1 It follows using a Sobolev inequality that

(6-63) r / 1% a1 < cor 1 a1 20"
diSt(pa')<p
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Here is the Sobolev inequality: Let q denote any given element in /. Then

1/2
(6-64) (/ |q|“) < Co/ (IV*al> +p~2lal?),
dist(p,-)<p dist(p,-)<p

where ¢q is independent of p, p and the connection that defines V*.

Meanwhile,

1/2
(6-65) r/ |h*q|2§c0R(/ |h|4) lallZep” < cor™"*|ql|2.0"-
dist(p,-)<p dist(p,-)<p

Indeed, this follows by first using Holder’s inequality, and then using the properties of
the various contributions to h that are described in the proof of Lemma 6.3 to bound
the square of the L* norm of h over any radius p ball by cor—17o/4.

Step 2 This step considers

(6-66) / ITT:Dq|>.
dist(p, - )<p

To begin the analysis, write I1¢® = DIl + [I1¢, D]. This done, it follows from (6-59)
that this integral can be bounded by co min(1, rp?)(4; + 4,) with

2
_ 2 2
a —/ZGDZD((W g )(/N_I(Z) 9r|q|) )
2 2
=t ([ ervaia?)

Indeed, as ITgq = 0, the integrand in (6-66) is |[T1¢, D]q|?. The commutator has zero—
th order parts which arise when derivatives in ® act on &. The latter are accounted
by A;. The other parts to the commutator arise from the terms in (6-6) and (6-7) that
are denoted by tgg, to1, t10 and tqy1. These are accounted for by 4.

It follows from [3, Lemmas 2.9 and 5.4.1] that A4; is bounded by

(6-67)

(6-68) cop”El%Nallfy < coll§lzmep".

Meanwhile, 4, is bounded by co,oﬁ”qllﬁ < ¢or=3/*my,. Thus, in the case when
p> 127y,

(6-69) Ay < Ay (pr'PH) < compr ™!/ p",

When p < r~1/27Y then min(1, rp?) < p® and so min(1,7p?)4, is again bounded
by what is written on the right hand side of (6-69). Thus if v <« 0/4, then the integral
in (6-66) is bounded by co(r~/2 4 ||£[2)my, V.
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Step 3 This step considers r [ dist(p.)<p | TTg (b * q)|%. According to (6-60), this inte-
gral is bounded by ¢ min(1, rp?)4; where

2
(6-70) ﬂ3=r/ (/ 9r|h*q|) .
zeDy, \Ur—1(2)

The contribution to A3 from b4 o is bounded by

1/2 1/2
6-71) corf /|[’:|:,0|2|Cl|2500”/ (/ |bi,o|4) (/ |q|4) .
[s—spl<dp I/ M |s—sp|<d4p\J M M

Here, s, denotes the value of s at the point p. As the L* norm of by o over S! x M
is bounded by r /% the right hand side of (6-71) is bounded by

1/2
6-72) cor /4 [| . ( fM |q|4) < o412 gl
s—sp|l<4p

The expression on the right side of (6-72) is bounded by compr /4 pY. Meanwhile,

the remaining contributions to A3 are bounded using (6-35) and (6-42) by

(6-73) / / 126,10 < pr 2l
zeDy, Jo~1(2)

This is also bounded by com]Lr_l/A'p”.

Step 4 This step discusses the term r fdist(p D<p | TTg (F * q)|?. According to (6-60),
the latter is bounded by co min(1, rp?) 4, where

(674) a1 | (f orli® [ erlqlz).
zeDy, \Un~1(2) 7=1(2)

There are two cases to consider. In the first, p > r~1/2 1In this case, the arguments
from Step 1 can be repeated to find that A4 is bounded by the right hand side of (6-63).

The second case is that where p < r~'/2. To deal with this case, fix an identification
of 77! (D3p) with Dy, x C. Let A C C denote the square lattice % pZ? . 1t follows
now that

A <reoYyen (e‘ﬁ lul/eo f |f|2|q|2)
sz XDZD(M)

< reo(Xpeae V1 V0) 1512 11q012,0°

Here, D,,(u) C C denotes the disk of radius 2 with center at the point u. The key ob-
servation here is that sum that appears on the far right in (6-75) is bounded by co(rp?)~!.
Thus, min(1, rp?)4, is bounded by the right hand side of (6-63) in the case p < r~1/2.

(6-75)
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Step5 Set z= (r~°/* +r'/2||f|m)? and mg = my + (r—'/4 4 ||.§||,2C)m]L. With the
equation for q written as ©q = tvog, it has now been established that

(6-76) pY f |wg|? < co(2llql2, + me)
dist(p,)<p

for each p > ¢ and point p e R x M .

To proceed from here, fix T > 1 and consider first the case where p < T~1r~1/2,

Let x denote the function on R x M with compact support in the ball of radius 2p
centered at p that equals 1 on the concentric ball of radius p and otherwise equals
(2—p~'dist(p,-)). The section q, = xq of iT*M &S @ iR obeys

(6-77) Dqp = sq+ xyg,

where s is supported where p < dist(p,-) < 2p and obeys |s| < cop~!. It follows as
a consequence of what has been derived in Steps 1-3 that

6-78) f 94,1 < co / dist(p.-) 2112 + co(211]12, + mg) o
o<dist(p,-)<2p

Use D4 to denote the version of the operator © that is defined using & = 0. Write
D =D+ /rvg and then use the Bochner—Weitzenboch formula for D to prove that

(6-79) fl@qp|2zcgl/lV*qu—co/(l+re‘ﬁdiS‘(E")/1°°)|qp|2.

As the smallest Dirichlet eigenvalue of V*TV* on the radius p ball is no less than
Co 1p=2, this last inequality implies that

(6-80) /mqpfzcalfw*qpf

when 7 > ¢o. What is written in (6-78) and (6-80) imply the following: If r > ¢,
T > ¢ and ||&||x = c;l, then

(6-81) / [V*q,|* < Co/ dist(p,-)"*[q|* + co(2]lq)lZ, +me)p¥.
p<dist(p,-)<2p

Meanwhile, a standard Sobolev inequality (proved by integrating by parts in spherical
coordinates) finds

(6-82) / V*apl* = / dist(p.)”*|al”.

dist(p,)<p
As a consequence, (6-81) and (6-82) imply that the function my(p, p) obeys
(6-83) mq(p. p) < Amg(p.2p) +co(zllqll2, +mg)p® for e<p< K 'r /2

where A < 1 is independent of §, u, v, p, p and r.
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The fact that A is independent of v has the following consequence: If v < ¢’ ! then
2% <1/(1 +¢y 1). Granted that v obeys this last constraint, iterate (6-83) some N
times where N is such that 2V p € [%T_lr_l/z, T_lr_l/z]. This iteration process
finds that mq(p, p) is bounded by co (2 q[|2, +mg)p® +coAN mq(p, T~1r~1/2). This
is to say that

(6-84) mq(p, p) < co(pr'/?)Pmg(p, 2Tr712) 4 co(2l|q]|2, +me) o7,

where the exponent § that appears in the right most term is positive and independent
of §, u, v, p, p and r if v < 1/cq. Note the replacement of 7! by 27T in the right
most term. This is done for the following reason: Since there are on the order of 78
balls of radius 7'+ ~1/2 inside the ball of radius 7r~1/2, any p < Tr~1/2 version
of my(p, p) is bounded by coT? times what is written on the right hand side of (6-84).

The discussion returns to (6-84) in Step 7.
Step 6 Suppose now that p > T r~1/2 Introduce x as before and write do = X9-

Write q, = (1 —Ilg)q, + Igq,. Use first order Taylor’s approximations for x near
Y to see that

(6-85) ITeq,l2 < co(rp) > / al? + coe™ 7P/ g, |12.
p=dist(p,-)<2p

This uses (2-1) and (2-2) plus (2-4) and (2-5) when p € U, 4. By the same token,
[V*(Igq,)l|3 is bounded by

cO(p_Z/ |q|2+(r1/2p)_2/ IV*qIZ)
(6-86) p=dist(p, )<2p p=dist(p," )<2p

+eoe VPO (ka2 + V¥ 0, 112).

Meanwhile, Lemma 6.1 applied to (1 —Ilg)q, finds

687 [2((1~Mpap) |32 5 (|V* (1= Te)ap) [+ (1 = Tea, ).

The preceding two inequalities imply that

19,13 +p—2/ |q|2+T—2/ V742
(6-88) p=dist(p," )<2p p=dist(p,-)<2p

> co  (IVapll3 +rllapll3)-

Equations (6-88) with (6-76) and (6-77) imply that (6-83) holds with A < 1 a constant
that is independent of §, u, v, p, p and r if v <1/co and p < 1/cy.
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As before, the inequality in (6-83) can be iterated if v < 1/¢q. Iterated N times with
N chosen so that 2V p is O(1); which is to say greater than 1/c¢. Doing so finds that

(6-89) mg(p, p) = co(allallze +me)p? + AN mg(p, 1/co).

As mg(p,1/co) < co ||q||]2HI < comp,, what is written in (6-89) implies that
(6-90) mg(p. p) < co(2llallZ, +me) (0" + p°).

where §’ > 0 is independent of v, p, p and r.

Step 7 Given that v < 1/co, what is written in (6-90) asserts that mq(p, p) <
co(zllqll?, + mg)p? for p > Tr~'/2 . This understood, return to (6-84) to see that

(6-91) mg(p, p) < colpr'/®)’mar ™2 + (2]ll3, +me) p°

for p such that ¢ < p < Tr~'2. Here it is important to note that § is independent
of v (as well as §, u, p, p and r). Thus, if v < §, the (6-91) has mq(p, p) <
co(zlall2, +me)p? for all & < p < 1/co.

Step 8 The preceding implies that ||q|2, < comg /(1 —coz). It follows as a conse-
quence that ||q 2, < comg when r > ¢ and r1/2||f||H is bounded by 1/cq. If such
is the case, then [|q[|Z =limgso [|q]|Z, < co(ms + (r1/* +[|&[|Z)my) also.

7 The construction of instantons: Part 111

The assumptions of Proposition 6.4 are taken as given in what follows; and thus its
conclusions hold. View Proposition 6.4’s vector b as a function on B. The task for
this subsection is to find a point £ € B where

7-1) HS(ZDq—I—rl/zq*q—l—Zrl/zh*q—(u—nh))=0.

Here, Ilg is viewed as a map from IL to L2,

The next proposition says what is needed about solutions to (7-1).

Proposition 7.1 Fix X as in Section 4.b satistying all constraints. There exists k > 100
and a finite dimensional, normed vector space Vy which have the following properties:

Make the constructions that lead to (7-1) with R > k, with r > k, and with the radius
of Proposition 6.4’s ball B less than k! . There is a linear map q: K — V such that

o la@®l =«l&ll>-
o If A € V), then there is an element £ € q~ ' (1) with ||£]x < «|A|.
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e If A € q(B), then there is a unique element in BN q~ ' (1) where (7-1) holds.
o This element, &) , obeys ||& |l < k(r~1/2F160 L |}]).
e The assignment A — &, defines a smooth map from q(B) to B.

The vector space Vj is determined by X. It is described in Section 7.f.

Sections 7.a—7.1 supply the proof of Proposition 7.1. Together, Propositions 6.4 and 7.1
supply a pair (£, b) that have Properties 1 and 2 as described in Section 5.d. As is argued
in Section 7.j, the (£, b) version of (A, ) given in (5-19) is gauge equivalent to an
instanton solution of (1-14) with the following large |s| asymptotics: The s — —oo limit
is the solution of (1-13) that is constructed in Section 3 from the data ® = ®_. Mean-
while, the s — oo limit is gauge equivalent to the solution of (1-13) that is constructed
in Section 3 using the data ® = @, . Section 7.k gives the proof of Theorem 1.2.

7.a Proof of Proposition 7.1

The proof this proposition uses perturbative techniques. What follows gives the details.
To start, view Ilg in (7-1) as a map from L. to the Banach space L£?. This understood,
it follows from the fourth point of Proposition 6.4 that the left hand side of (7-1) defines
a smooth map from B to £2. As it turns out, the norm that defines £? is not strong
enough for the purposes at hand. Here is a suitable replacement: Define £ to be the
Banach space that is obtained by completing the set of smooth elements in £? using
the norm that is defined by analog of (5-12) that has each || - | norm replaced by the
corresponding version of (2-29). Denote this norm by |- ||~

As explained momentarily, the left hand side of (7-1) defines a smooth map from 5
to £. This map is written as & — r~ /27 (¢). Meanwhile what is denoted by 7T is
decomposed as 7(§) = Ty + T1&€ + T (&) where Iy = 7(0), where ‘77 is a linear
map from K to £ and where 7; is, by definition, the rest of 7. Suppose that 77 is
invertible on the kernel of the map q. Use ‘1‘1_1 to denote the inverse of the restriction
of 7y to the kernel of q. Then a solution to (7-1) in the kernel of q is neither more nor
less than a fixed point to a map from the ball B N kernel(q) to itself that has the form

(7-2) £E——(T) (T + T(§)).

The contraction mapping theorem can be used to find a unique small normed fixed point
to this map given suitable bounds on the norm of 7, the operator norm of (‘Tl_l), and
the size of both 7, and its differential. A slight generalization of this sort of contraction
mapping argument gives a unique solution to (7-1) that maps via q to any given small
normed element in V4. The next proposition describes the salient features of 7y, 77,
T, and q.
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Proposition 7.2 There is a constant k > 100 and a finite dimensional, normed vector
space, Vy, with the following significance: Make the constructions that lead to the
equation in (7-1) using R > «, r > k, and with the radius of Proposition 6.4’s ball B
less than k~'. Then the left hand side of (7-1) defines a smooth map from B to L.
Write this map as r~1/20 . Thereis a decomposition of T as Ty + T; + I, where Iy,
Ty and ‘T obey the following:

To = T(0) obeys [ Tllz < icr='/2¥87,

e There is a surjective map q: K — Vo with |q(§)| < «||&|| ;2 and such that
(a) ‘77 maps the kernel of g isomorphically to L.

®) [ TEc+19E)] = [Elk.
In addition,

© T®le2+19E)] =k €l 2.

1T E)le < e 448 4] €] k-
In addition, | T5(€) = T2 (§)ll2 < k(7448 4 |Ig e + 1€ 1) 1€ =& lIx-

By way of a reminder, || - || K2 is defined by replacing each occurrence of |- ||x in
(5-13) by the (2-27)’s norm || - || K2 Note that (c) of the second bullet is not used below
in the proof of Proposition 7.1. Proposition 7.2 is proved in Sections 7.b—7.i.

Note for reference later that Constraint 4 in Section 4.b enters only in the proof of the
second bullet; in particular, it is invoked only in Section 7.g and Section 7.h to establish
that 7; is surjective.

Proposition 7.1 is a corollary to Proposition 7.2. To elaborate, fix & > 0 such that (7-1)
is defined on the ball B C K centered at the origin of radius %8. Use ¥ to denote the
linear map (73, q): K — L x V}. It is a consequence of the second bullet that F is
invertible, and that the norm of its inverse is bounded by cq. In this regard, the norm
is defined using the norm | - [|xc on K and the product norm on £ x Vj.

Fix A € Vy and let X3 : B— K denote the map £ — —(F) ™ (Zo+T2(£), —A). The map
X, obeys | X (§)|lx < co(r~1/2H160 4 ||.$§||2,C + |A]). Tt is a consequence of the third
and fourth bullets of Proposition 7.2 that there exists ¢ > 4 + ¢! with the following
significance: If r > ¢o and if |A[ < ¢y 3 then X; maps the radius Co ! ball in B to itself
as a contraction mapping. Thus, it has a unique fixed point in this ball. By construction,
the fixed point, &, , obeys the equations 7 () =0 and ¢(§)) = A. Moreover, its norm
is bounded by co(r~'/2189 4 |A|). The fact that the assignment of &, to A defines
a smooth map follows in a standard manner by differentiating the fixed point equation.
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7.b Proof of Proposition 7.2: Part 1

This subsection proves that left hand side of (7-1) is in £ when & € B and explains
why the resulting map is Lipschitz. The existence of the higher derivatives of the map
use the same sort of arguments that are used to prove that the map is Lipschitz. This
understood, no more will be said about these higher derivatives.

As noted above, it follows from the fourth point in Proposition 6.4 that the left hand
side defines a smooth map from B to £2. This understood, there are two outstanding
questions:

Question 1 Is the contribution to the £ norm from the far right term in (2-29) finite
on the left hand side of (7-1) as defined by any given £ € 3; and if so, does this
contribution have a &£ —independent upper bound?

Question 2 Is this same contribution to the £ norm finite on the derivative of the left
hand side of (7-1) at & € B along any unit length vector &’ € K; and if so, does this
contribution have an upper bound that is independent of & and &'?

Both these questions are answered affirmatively in what follows.

The subsequent arguments require a lemma that strengthens the fifth point in Proposition
6.4. To set the stage, fix p > 0 and let D, denote a disk of radius p as described in
Part 2 of the digression that follows Lemma 6.5. Define X as done in this same part
of the digression. When f € HI, set

(7-3) nj(p) = / f e I EIR0 vy,
zeD, Ja~1(2)

Here is the promised lemma.

Lemma 7.3 There exists k > 1 with the following significance: Assume that R > k
that r > «, that v < k~! and that the norm that defines Proposition 6.4’s ball B is less
than k!, Fix £ € B and define q from & as instructed by Proposition 6.4. If p < r1/2
then any D, version of ny(p) is bounded by «r~! (r~V/2480 L |Ig| )20V Let & e K
have unit norm and define q' to be the derivative of q at & in the direction of §'. If

p <r~V/2 then any D, version of ny (p) is bounded by kr1pY.

This lemma is proved in the next subsection. Assume it for the moment. Given Lemma
7.3, the proof that Question 1 and Question 2 have affirmative answers has seven steps.
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Step 1 To review what is involved keep in mind that the left hand side of (7-1) defines
an element in £? and so can be written as A= ((Ac)cec. (Ay-)yegs_)s Ay+)yess,)-
The £ norm of A is defined using the £2 norm of A¢ over C — (Ufegc ErR), the
L? norm of each Ay— over various regions in (—oo, —R] x § ! and the L? norm of
each A, over various regions in [R, 00) X S . A given disk D, from Part 2 of the
digression subsequent to Lemma 6.5 is assumed implicitly to lie in either some C € C
version of C — (Uzegc E»R), orin some y € Ex_ version of (—oo, —R]x S, or in
some y € Ex version of [R,00) x S1.

Step 2 Fix p € (0,1/100) and let D, be as described above. Define 4; and A,
as in (6-67). The contribution to the square of |[[1¢Dq| ;2 from D, is bounded by
co(A; + Ay). It follows as a consequence that

_ _ 2
(7-4) ITDqll 2 < cor ™2 (r71/2¥89 1))

The norm that defines £ also requires a p independent bound for p~ /. D, |H$®q|2.
Such a bound follows from the assertion that

1/ — 2/ _ 2
(7-5) / MeDal < cor™" (r™ 275 4|18l 2) " (725 + 1€ l1c) "
0
To derive (7-5), use Step 2 of the proof of Lemma 6.5 to see that the left hand side is
bounded by co(A; + A4;). A bound for A4, is given in (6-68) with

mp =7 T g )2,

A bound for 4, is given in (6-69) using this same my, for the case p > pl/2mv A
bound for 4, in the case p < r~1/2 that implies (7-5) follows from Lemma 7.3.

Step 3 This step bounds the £-norms of r'/2TT¢(h * q) and r'/2TIg(q * q). To
this end, note that the square of the L2 norm of r'/2TI g(h * q) over the disk D, is
bounded by ¢y A3 with the latter defined as in (6-70). Granted this, it follows from the
conclusions of Step 3 in the proof of Lemma 6.5 that

(7-6) 2T (b * a)lle < cor 2 (AT 4 g ) TS,

Meanwhile, the square of the L? norm of r!/ 2||l'[$(q *q)||c over D, is bounded
by coA4 with the latter given by the § = q version of (6-74). There are two cases to
consider. The firstis when p>r~1/2. As explained momentarily, the Sobolev inequality
depicted in (6-64) bounds 44 by corp? ||q||%I lq]2. As a consequence, Points 3 and 4
of Proposition 6.4 find that 4 < cor ! (r~1/2+80 4 IISII,C%)z(r_l/HS” + 1Ellc)? p®

when p > r1/2,
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To say more about the derivation of this p > r~1/2 bound for 44, note that Holder’s in-
equality bounds 44 by ¢ times the integral of r 2 |q|4e_*/7di3‘(2")/"0 over 771 (Dy,).
To bound the latter, fix an identification of 7~!(D,) with D, xC. Let A C C denote
the square lattice % pZ?. Given u € A, let D(u) denote the disk with radius 2p centered
on u. Introduce A(u) = infyepxp(u)dist(x, X). Let A" C A denote the set of ele-
ments u such that D,x D (u) intersects the support of x. Fix u € A" and use the Sobolev
inequalities in (6-3) and (6-64) to bound the integral of r x> |q|4e_‘/; dist(Z,)/co gyer
D;, x D(u) by r,o”||q||12m||q||ie_\/FA(”)/CO. As a consequence, the p > r~1/2 version
of A4, is no greater than corp?||q ”1[2&1 ||q||iZu€A,e_‘/;A(”)/CO. The sum here converges
with bound ¢, so the p > r~1/2 version of 4, is no greater than rp”||q||1[2ﬂ||q||ﬁ.

To obtain a bound for when p < r~1/2 let D now denote the disk of radius 2r~1/2
that is concentric with D,. Now write A4 as cor f D f? where f is the function on
D givenby f(-)= fn_1(~) 6,|q|%. As it turns out, this function is in LT/3 on D with
norm bounded by cor/4r~¥/4||lqllmllqll«. To see why this is, use Holder’s inequality
to see that

1/2
(7-7) df| < cofV 2(/ 9r|V*q|2) ’
7~1(2)

and then use Holder’s inequality a second time to obtain

1/3 2/3
(7-8) /|df|4/3s(/ fz) ([/ er|v*q|2) .
D D D Jr—1(z)

Meanwhile, Holder’s inequality also bounds the square of the L2 norm over D of f by
(7_9) Co / / X\ze—\/;dlbt(x,)/6‘0|q|4
D Jr—1(2)

To bound the latter, fix an identification of 7~ (D) with D x C. Let A C C denote
the square lattice 2r~'/2Z2. Let D(u) for u € A denote the disk with radius 2r~!/2
centered on u. It follows now that (7-9) is bounded by

JrF dist(u,Z)/co / 4)
Co e lql
Z( DxD(u))

ueA (
< o[ e PR ) a2
uel

(7-10)

Note that the sum that appears is bounded by c¢oy. A similar use of the lattice A
bounds the L? norm of V*q over the domain of the right most integral in (7-8)
by (r~"*|lqllmllall«)}/2. All together, this bounds the right hand side of (7-8) by
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cor 3 *qllmllall«)*/3. (The factor r'/3 here accounts for the factor 6, that
appears in the right most integral of (7-8); this is because |0, | < cor 1/2 ) To continue,
note that there is a borderline Sobolev embedding that sends LT/ 3(D) into L*(D).
Use this Sobolev inequality after Holder’s inequality to obtain the chain

/ 77 < coplll2
sz

(7-11) = COP||f||24/3

<copr2 72| q )13 13

As an aside for use in the proof of the upcoming Lemma 7.4, remark that almost the
same arguments bound the p < r~'/2 versions of / Ds, 2 by copr'/?r?|q||4. Indeed,
such a bound arises by using cor ~/*||q||« in lieu of co(r /4 g« lall)/? to bound
the L* norm of q and the L? norm of V*q over D x D(u).

To continue, note that (7-11) together with Points 3 and 4 in Proposition 6.4 imply
that the p < r~1/2 version of 4, is no greater than cor—!(r—1/2+80 4 ||f;‘||,cz)2
x (r~1/2480 4 |£]1)2p . Given these p > r~1/2 and p < r~1/2 bounds on Ay, it
follows that

(7-12) P He@xa)lle < cor™ 272 g2 (P72 4 I8 k).

Step 4 The £ norm of ITg(b — vy) is finite apriori given that £ € K and given what
is said about by, b, {bc}cec, {by—}yees_» {by+}yeey, in the proof of Lemma
6.3. More is said in the upcoming Section 7.d about ITg(v — vy).

Step 5 View 7 momentarily as a map to the space £2. As such, it is smooth; this
a consequence of the fourth bullet of Proposition 6.4. To see if T is a Lipschitz map
to L, fix £ € B and let £’ € K denote a unit length vector. The directional derivative
of T (viewed as a map to £?) in the direction of £ has two parts. To describe these
two parts, write the components of 7" as ((Z¢)cec, (Ty-)yegs_» (Ty+)yees, ). The
component Z¢ on the |s| < R part of C has the same form as what is written on the
left hand side of (6-57) with fo defined by f = Dq+r'/2qxq+2r1/2h % q— (v —vy).
This understood, the differential of 7 here has two contributions. The first is from
the differential of §, and the second comes from the differential of what is written
as (1+ zp)OT £.r in (6-57). The differentials of the other components of 7" have the
analogous two contributions. The contribution to the differential of 7 that comes from
the change in ©q + r'/2q % q+2r'/2h % q— (v — ) can be written as

(7-13) T =2 (D¢ +2r' g% q' +2r1/%p *q’+2r1/2h’*q—(n'—n§])),

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology I1 2691

where the primes denote the directional derivative of the indicated term in the & direc-
tion. The second contribution to 7 ’s differential has finite £ norm with bound c¢q ||| ¢ .

Granted the preceding, it follows that 7 defines a Lipschitz map to £ provided that
the contribution to its directional derivative from 7’ has finite £ norm. To see that
such is the case, write q’ = I1¢q’ + q. Noting that [T¢q' = —Tlgq, write 7" as a sum
of two terms. The first is —r 1/ZHSDHéq and the second is

(7-14) T =r'2T0(Dqt +2r g5 q' +2r 20 5 ¢ + b *q— (0" —vp)).

Step 6 This step considers the £ norm of —IT¢® Héq. The L2 norm of this term
over a disk D, is bounded by

2
Co/ ((IVSI2+IVE/|2+1)(/ 9r|q|))
zeDy, n—1(z2)
2
oo | (/ 9r|Vq|).
zeDy, \J71(2)

It follows from [3, Lemmas 2.9 and 5.4.1] that the left most integral in (7-15) is bounded
by cop? ”q”I2HI < cor~V(r~1/2%89 1 ||g]|x)2%p" . To bound the right most integral when
p > r~1/2_fix an identification of 7! (D2p) with Dy, x C. Let A C C denote the
square lattice % 0Z?. Let D, p(u) for u € A denote the disk with radius 2 centered
on u. It follows now that the right most integral in (7-15) is bounded when p > ro1/2 by

o Z (e—ﬁdist(z,u)/co / |Vq|2)
(D2p XDZp (u))ﬂsupport(j(\)

uelh
<a X e raEre )z,

ucel

(7-15)

This follows using (2-11) and (2-12).

(7-16)

Since p > r~'/2 the sum on the far right in (7-16) is bounded by c¢q. Thus the far right
hand integral in (7-15) is bounded by cor~'(r /2139 1 ||&|I)%p? when p > r~1/2.

When p < r~!/2 the integral on the far right in (7-15) is bounded by n4(p) and thus

guaranteed by Lemma 7.3 to be less than cor ~ 1 (r=1/2+89 4 ||£]x)2p".

Step 7 This step considers the £ norms of the various terms that contribute to 7.
Consider first the square of the L2 norm of D¢’ L over D,,. The corresponding
integral is bounded by co(A4; + A;) where 4; and A4, are defined by replacing ¢
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with q" in (6-67). This understood, the analysis done in Step 2 can be repeated with
only notational modifications to see that

(7-17) ITLeDq || < cor ™2 (r~V/4F89 i ).

The square of the L? norm of r 1/21'[5({) *q') over the disk D, is bounded by co4;
where 4 is defined by replacing q with q" in (6-70). This understood, the arguments
that lead to (6-72) and (6-73) can be repeated with only notational modifications to see
that r1/2||h % ¢'|| is also bounded by what is written on the right hand side of (7-17).

The square of the L? norm of ri/ 2Hg(q *q') over D, is bounded by coA4; where
A, is the § = q' version of (6-74). Granted this, the arguments in Step 3 that lead to
(7-12) can be repeated with only cosmetic changes to prove that /2| q* ¢’z is also
bounded by the expression on the right hand side of (7-17).

Consider next the £ norm of r!/2f’ x q. The square of the L? norm of the latter over
the disk D, is bounded by ¢o.4; where A5 is defined by replacing b in (6-70) with b'.
As can be seen in the proof of Lemma 6.3, ) depends on & only through the various
b, + that are defined in the Part 5 of this same proof. In particular, what is defined
there as pg can be differentiated, and its derivative along &’ also obeys (6-42). As a
consequence, A; is bounded by what is written in (6-73) and so r U e (b' * q)lc is
also bounded by what is written on the right hand side of (7-17).

The fact that TTg (v’ — ng) has finite £ norm is a consequence of the inclusion of the
-1l k2 norm in (2-27)’s definition of || - ||x. More is said about this term in Section 7.e.

7.c Proof of Lemma 7.3

The desired bounds on ng(p) and ny (p) in this case are seen to follow from the next
lemma. To set the stage for the lemma, suppose that f € H and u € L' have been
given. It is assumed in what follows that there exists my such that

(7-18) / / X\e—ﬁdist(z,')/200|u|2 < m*pv
zeD, Jr~1l(z) N

for each p < T~'r~1/2 and for each disk D), as described in Part 2 of the digression
subsequent to Lemma 6.5.

Lemma 7.4 There exists k > 1 with the fo]]owing significance: Suppose that r > k,
that v < 1/k and that £ € K has ||£|loo < k™. Suppose that f € H obeys ||f||m <
k1712 and that u € L obeys (6-56). Let q € HJ- denote a solution to (6-55)
W1th lqll« finite. Then any p < r~'/2 and D, Vers1on of ng(p) is bounded by
k(@ + [[qll2 + ng(=12)rv/2)p7.
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This lemma is proved momentarily.

To see how to obtain Lemma 7.3, consider first the asserted bound on ny(p). In this
case, q obeys the version of (6-55) with f = q and u = (1 —I1g)(b —vp). The required
bound on ||f|[g follows from Proposition 6.4 if r > ¢¢ and ||&||x < 1/co. Given that
Il -l as given in (2-27) contains the || - ||xc, norm, it follows from Parts 3—6 of the
proof of Lemma 6.3 that u obeys (7-18) with my = cor~' (r /2489 4 ||£]|)2. This
the case, the assertion about n4(p) made in Lemma 7.3 follows from Lemma 7.4 if
nq(r_l/z) <cor~'(r~1/2+89 | Ig|Ix)?r~¥/2. To see that such is the case, note that
ng (r~1/2) is bounded by the p = r~1/2 version of what is written on the far right hand
side of (7-16). Given that the sum that appears there is bounded by ¢y, the asserted
bound on ny (r=1/2) follows from Proposition 6.4’s fifth bullet.

Consider next Lemma 7.3’s assertion about ny(p). To this end, again write q' =
qt — [gq. The § = I1;q version of n;(p) is bounded by ¢ times the sum of n4(p)
and what is written in (7-15). As noted in Step 6 in the previous subsection, the left
most integral in (7-15) is bounded by cor ~' (r~1/2%89 4 ||£|x)2 p¥ . Meanwhile, the
right most integral is bounded by cong(p). As a consequence, the § = éq version
of nj(p) is in no case greater than cor ~r~ V28 g 10)2 0.

To say something about the § = g version of n;(p), recall that gT obeys the version
of (6-55) that takes § = 2q and u = —r'/2(1 = TI¢)(h * q) +r~1/2(1 — Tg) (v/ —p).
Thus, the bounds on ||f||gr are again obeyed when r > ¢¢ and ||&||x < 1/co. An upper
bound on my by cor~! is obtained by considering how the formula for h and v that
are give in the proof of Lemma 6.3 vary as & varies in B. The details of this derivation
are straightforward and left to the reader. A bound by cor~'r7?/2 on the f= qt
version of nf(r_l/ 2) is obtained from the bound on ||q||« given by the last bullet of
Proposition 6.4. The details of the derivation of such a bound are very similar to those
given two paragraphs back that established the bound for n, (r_l/ 2).

Proof of Lemma 7.4 There are seven steps to the proof. (The version below of Step 1
was suggested by the referee to replace an older version that required more of an
explanation.)

Step 1 Note first that ny(p) < ny (r~'/2) when p < r~1/2. Keeping this in mind,
suppose that 7" > 1 is given and that T =12 <p<r=12 As pTr'/2 > 1, s0
it follows that ny(p) < p?T"nyq (r=Y/2)rv/2  This understood, the lemma follows for
suitable « if its claim holds with a given T > 1 and all p < T~!'r~1/2_ A choice
for T is made in the next step.
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Step 2 Let D again denote the disk of radius 2r~Y/2 that is concentric with D,.
Use Gaussian coordinates on D so as to identify it with the radius 2r~1/2 disk in C.
Use the parallel transport from the center of D via the Hermitian connection on N
to write N over D as D x C. Let A C C denote the square lattice %r‘l/zzz. Let
D(u) for u € A denote the disk with radius 2r /2 centered on u.

Fix u € A. Identify ¢ over D x D(u) as a section of the product Vy x V; bundle as
follows: Use parallel transport via the connection A* and the Levi-Civita connection
along the radial arcs in D x {u} from the point (0, %) € D x D(u) to define a product
structure over D x {u}. Then use parallel transport along the radial arcs in any given
z € D version of {s} x D(u) to complete the construction the product structure over
the whole of D x D(u).

With this product structure understood, write ® as the sum @gl + ’D(I)/ + ¢ where © (I)/
and © ({1 have no zero—th order term, and are such that D(fl takes derivatives solely in
the direction along the C factor of D x D(u) while © (I)/ takes only derivatives along
D(u) factor. Meanwhile, v is the zero—th order part of © with respect to the given
coordinates and trivialization. Note that |t| < cor!/2.

Step 3 Let gq* denote the Vo x V; valued function on D(u) whose value at any given
u’ € D(u) is the average of q over the part of D x {u’} where the coordinate z € D
obeys p < |z| <2p. As just noted, D éf has no zero—th order part and it differentiates
solely along the D factor of D x D(u). As a consequence, CD(I;I annihilates Vo @ V;
valued functions on D x D(u) that depend only on the coordinate for the D(u) factor.
This understood, it follows that ®q = © (I){ q—qg“)+2 (I)/ q+rq.

Let x g denote the function on D given by x(|-|/4p) and let x3- denote the function
D(u) given by xp = x(|(-) —u|/4r="/2). Thus, xg is equal to 1 on D, and equal
to 0 on the complement of D,,. Meanwhile, xp has compact support in D(u) and

is equal to 1 where the distance to u is less than 12,
Write
(7-19) HWDA= D (xmxv(@—a") + D¢ (xmxra) + v(xm xra)

+sgay(@—9") + xasva.

where |sg| < coldxg| < cop™! and |sp| < coldxy| < cor'/?. Let d¥ denote the
exterior derivative along the D factor of D x D(u) but viewed here as acting on Vyx V;
valued functions. Given that @gl is elliptic on D, and given that the smallest Dirichlet

eigenvalue of d HgH o D, is no less than ¢, 1 p_z , it follows from (6-79) that

(7-20) | D (xmav@—a9)|3 = ¢ (| d¥ xmav ) |3+ 072 | xaav @—a9)|3).
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By the same token, [|D§ (xarar )3 = ¢5 ' (1d” (xmav)ll3 + rllxm aval3) where

dV denotes the exterior derivative along the D(u) factor of D x D(u), viewed as
acting on Vy @ V; valued functions.

Step 4 As argued momentarily, it follows from (7-20) and its © (I)/ analog that

|19 (xarav(a—a*) + O (xaxra) |

(7-21) 5
> o |V xmara)||; —coW —coR.,
where
(722) R=r lg> and W =p2 / v (a—a)1?.
sz XD(H) DZp_Dp D(M)

Indeed, such an inequality follows from a suitable rewriting of the inner product between
@(J;I (xgxy(q—g*)) and @g (xg xyq). In particular, were q smooth, one could write
twice this inner product as

(7-23) (xmav@—a"), D80 v ), +(xmara. ©F DY (xwr xv (a—0"))),.

Here, (, ), denotes the L? inner product. What is written in (7-23) differs from terms
that are bounded by uniform multiples of ® and W by

(7-24) (xva. 98T DY (x4 xva), + (xra. D8 TDE (K av (a—q)),.

Note in particular that this last expression would be bounded by uniform multiples of &
and 7/ but for the appearance of g% in the far right hand term. However, the part that
involves g* can be written as —(xp (q — q%), @(I)/T@({{(?&I?CVCIM))Z up to terms that
are again bounded by uniform multiples of ® and /. This is because the derivatives
in @f T annihilate g%, so it can be added at an acceptable cost. With this rewriting
understood, use the fact that the TDOH q“ vanishes to see that this term is no greater
coWV2||dY (x g x9)||2. This then establishes (7-21) for the case when q is smooth.
The general case follows by taking limits.

Step 5 Holder’s inequality and the Sobolev inequality from (6-64) bound the term
R by corl/zpr_”/2||q||i; and this is no greater than cop”| q||2. The square of the L2
norm of both the term x g syq and v(x g xpq) that appear in (7-19) are bounded by
a uniform multiple of %, and thus also by ¢ |q]2.

Meanwhile, the square of the L? norm of the term sz x3 (q—q*) that appears in (7-19)
is no greater than ¢o W . To bound the latter term, fix ¥’ € D(u) and note that

725 p? / o (@— a2 < co / / a7 (o) 2.
DZp_Dp sz—Dp D(u)
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Indeed, this follows from the fact that q“ at any given u’ is the average of ¢|,s on

What with (7-19) and (7-21), these last observations imply that
(7-26)

_ 2
o |V (xmava)|; < / / ld® (xya))® + p* llall2 + Il xm v Dall3.
D>,—D, D(u)

Step 6 The analysis of || xz xpDq]|» starts with the contribution from r'/2 x g xpfq.
Holder’s inequality with (7-20) and the Sobolev inequality from (6-64) finds that

(7-27) |72 % e o) |5 < cor 513 | V* (e ara) | 5.

Note that if r ”f”IzHI < cal , then the right hand side of (7-27) will be less than 1/100
of the left hand side of (7-24). Such a bound on r||f||12HI is assumed in what fol-
lows. Arguments much like those that lead to (7-27) find |r/2h (7(H7(yq)||§ <
cor_"/4||V*(7(H7(Vq)||§. Given what is assumed, ||7CH7CVU||§ < comxp".

To continue the analysis of ||xzx,©q|2, remark that the square of the L? norm of
xm Ay [1¢Dq is bounded by c¢o(A; + A;) with 4; and A, as defined in (6-67). It
follows from [3, Lemmas 2.9 and 5.4.1] that 4, is bounded by cg||q||2". Meanwhile,
4, is bounded by cor 3/ 4nq (2p).

The square of the L2 norm of x g xpr!/2Tg(h * q) is bounded by co43 with the latter
defined as in (6-70). Arguments much like those used in Step 3 of the proof of Lemma
6.5 bound this by cor~'/2|q||2p".

The final term to consider is x g xyr'/2TI¢(f * q). The square of the L2 norm of this
term is bounded by ¢y 44 where Ay is given in (6-74). Meanwhile, what is written in
(6-74) is bounded c0r||f||]%1(szp Y2 where f(-) = S0 6,|q|?. In particular,
it follows from what is said directly after (7-11) that the square of the L2 norm of
xm xyr' 2T (§ + q) is bounded by corIflglall30".

Step 7 Multiply both sides of each u € A version of (7-24) by e~V dist(Z,u)/200 4p4q
then sum over A . Given that the square of the L2 norm of xg|dxy|q is bounded by
K., and given that xpr =1 on D,, the inequality that results from this sum over A
implies that

(7-28) co "nq(p) = (147" 2)ng(20) —ng(p) + (mae + [lall3) "

Given that r > ¢g, this last inequality finds

(7-29) ng(p) < Ang(2p) + co(my + [|g]13) 0",
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where A < 1—c¢g Vif r > ¢q. Provided v < Co ! this last equation can be iterated by
successively N times where N is such that 2V p is between T —1p-1/2 —1/2
The resulting bound on ng(p) implies the assertion of Lemma 7.4. |

and r

7.d Proof of Proposition 7.2: Part 2

This part of the proof says more about ITg(v —vy). To this end, write r 1ﬂl’[g(t) —vp)
as 6 with 6 = ((6c)cec, (Oy-)yees_), (Oy+)yers ) € L. The various components
of 6 are described in the five steps that follow.

Step 1 This step considers 8¢ for the cases when C € C is not R—invariant. To start,
let ¢ denote the section of €p 1 — C that assigns to each point the symmetric vortex.
The component O¢ of 6 is a section of (¢* V1 o€x.1)®T %! C over C — (Ufegc ErR).
As such, it can be viewed equivalently as a section of N ® T%1C over this same part
of C. It follows from (6-32), (6-35) and what is said in Part 3 of Section 6.d with (2-4)
and (2-5) that this section of N is given by

(7-30) 0tc +vcéc + céc +e,
where [¢| < cor TV2(|VEc| + [Ec| + 1).

Step 2 Suppose that C = R x y is a component of ¥ and that ¢ is its associated
integer. Let ¢ denote the constant map from C to the symmetric vortex in €. In this
case, f¢ can be viewed as a section over C N Uc of ¢*T oC,. Given the first bullet
of (6-32) and what is said in Step 3 of the proof of Lemma 3.8, it follows (again using
(2-4), (2-5) and Part 3 of Section 6.d) that 6 can be written as

(7-31) Ok = 0cg + VIO R, +e,

where [e| < cor~V/2(|Véc| + |Ec| +1). Here, ce = éxp.(§c) and £ is defined as in
(1-9) using y’s version of (v, u).

Step 3 Fix y € Ex_ so as to consider the component 6, from 6. The discussion
for any given y € Ex 4 version of 6,1 is very much the same as what follows and so
is not presented. Note that 6, _ is a section over (—oo, —R] x ST over _T1,0%m,,_-
Consider first 6, on (=00, —R4] % S 11t follows from (6-38) that this section is
bounded here by

(7-32) co(r 2™ + (IVE,—| + [&,-1)).

where A > co_l.
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Step 4 This step with Step 5 describe 6, on [~ R, —R] x S!. To start the story,
reintroduce the subsets X, and X3 of U, _ as defined in Part 4 of the proof of Lemma
6.3. Part 5 of the proof of Lemma 6.3 describes b —vp, on X, as a map from R x SixC
to the vector space Vo @ V; that can be written as v, ;_ + 3’ where v, maps to Vg
and is given by (6-39). Meanwhile, it follows from (6-40)—(6-42) that

(7-33) 15/ <cory 2+ rp) (1 + |Vey—| + &N X oez, e Y F 2

Given what is said about v — vy on X3 in Part 6 of the proof of Lemma 6.3 and given
(2-4) and (2-5), it follows that v — vy, can be written here as r;/ zny;_ + 3’ where Oye_
is also given by (6-39), and where (7-33) describes 3’

Step 5 Reintroduce the notation from Section 5.c. View ¢}, _Tj o@p,,_ over Iy x S 1
as isomorphic to ¢; 7'1,0Cpn;, © (@Eesy_—Ek 7« (N |z)) where 7 is the map in (5-18)
and N is the normal bundle to E. This isomorphism writes 0, as (0k, w«(0xx)). It
follows using (2-4), (2-5), (6-9), (6-39) and what was said in the preceding step that
0 can be written

(7-34) Ok = Ok e+ VIOh|  +e

and where |¢| <r~1/2+60(] +|VE&,_|+1&,—|). Here, the notation uses ¢y ¢: I xS —
C to denote éxp,, (¢}:(§* +£&,_)) with {4 as described in Step 5 of Section 3.d.
Meanwhile, 0 denotes (1/2)(d/dw + i(d/0dt)). Finally, £ denotes the function on
Cm,, thatis given by the version of (1-9) that is defined by y ’s pair (v, ). The argument
from Step 3 of the proof of Lemma 3.8 can be used to prove this assertion about 6y .

Meanwhile, (2-4), (2-5), (5-12) and (6-9) imply that 65 here is also given on any
given end: E € &, — & by the relevant version of (7-30).

7.e Proof of Proposition 7.2: Part 3

This part of the proof describes the terms 7y, 7; and ‘7, that appear in (7-2). The
discussion has three parts.

Part 1 This part discusses Zy = 7 (0). As an element in the Banach space £, it can
be written as Ty = ((Zoc)cec, (Toy—)yegs_» (Toy+)yesx, ). It follows from (7-4)—
(7-6), (7-12) and by (7-30) that || Zoc ||z < cor~'/?+89 if C € C is not R—invariant.
Suppose next that C = R x y with associated integer g. As the constant map from
¢ to the symmetric vortex obeys the equation dc+ ¢* V104 =0, it follows from (7-31)
with (7-5), (7-6) and (7-12) that || Tyc ||z is again bounded by ¢or—1/2180

Consider next a given y € Ex_ version of Ty, _. Introduce the notation from Section

5.c to view ¢_T1,0Cm,_ over Iy x Stas ¢f T ,0Cm, ® (Dzee,_—g, T(Nz))
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where 7 is the map in (5-18). Viewed in this way, Ty, = (Tok, T+ (Zoxk)) - It follows
from (7-4)—(7-6) and (7-12) with (7-30), (7-31) and the formula in Step 4 in Section 5.b
that || Zysz || ¢ is again bounded by cor—'/2+89  Meanwhile, it follows from (7-4)—(7-6)
and (7-12) with (7-32)—(7-34) that Ty, has the same form as the £ = 0 version of (7-34).
What is written as ¢ in this new, Tz version of (7-34) obeys ||e||z < cor~'/2187 . At
the same time, (4-2), Constraint 2 in Section 4.b and (4-9) imply that

(7-35) }5% 4 V1’0ﬁ|ck‘ < COr—1/2+5062ks’

where A > co_l. As a consequence, || Tox ||z < cor~ /2189 also. Thus, | Toy—Ilc =

60r—1/2+80'

An analogous argument proves that Ty, 4[|z < cor~1/2+39 foreach y € Exy. Asa
consequence, | Tllz < cor~'/2189  This gives the first bullet in Proposition 7.2.

Part 2 What is written as 77 in (7-2) and Proposition 7.2 is defined as follows: Let &’
denote a section of K. Then 77 (£’) is the derivative In the direction of £ at £ =0 of
the map that sends & € B to rl/ZHg(b —vyp). The map that sends & to rl/ZHg(n—bh)
is denoted in what follows by ?. Note that  is a smooth map from B to L.

The second bullet of Proposition 7.2 asserts that 77 is an isomorphism when restricted
to the kernel of the map ¢, as yet to be define. It also asserts an upper bound for
‘Z‘l_1 . These two assertions about ‘77 are proved in the next subsection. What follows
provides a description of 77 for use in these proofs.

To start, write 71(§) = ((7T1c)cec, (T1y-)yegs_» (T1y+)yeEs, ) and consider first
Tic when C €C is not R—invariant. It follows from (7-30) with (6-32) and (6-35) that

(7-36) Tic = 0¢c +vcée + e+,

where [lefl 2 < cor™/2F87 g2 and [lellL < cor 2 HEY €k

Suppose next that C =R x y is a component of . Let ¢ denote its associated integer.
Let ¢ denote the constant map to the symmetric vortex in &, . Identity T o€y4|c = C?
using the coordinates in (1-5). This identification makes 7;¢ a map from the relevant
part of C to C?. If ¢ = 1, then (7-31) with (6-32) and (6-35) can be used to prove

that this map is given by (7-36). If ¢ > 1, then (7-31) with (6-32) and (6-35) can be
used to prove that the ¢g—th component of 7y¢ is

- 1
(7-37) 0Ecy + EqRécq + e,

where £c, is the g—th component of ¢ and where R is the rotation number as-
signed to y. Meanwhile, ¢ again obeys |l¢| 2 < cor_1/2+8”||§||,cz and |le|lz <
cor ™2 g . 1
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Consider next 77,,_. With C;_T1,0¢ml,_ over Iy x S again viewed as the bundle
& T1,0Cm, © (®£€y—_8k (N |g), write Tj— = (T1k, mx(Tyxk)). In this regard,
Ty is also given by the relevant version of (7-36); the arguments alluded to in the
previous paragraph can be used if augmented with (2-4), (2-5), (2-11), (2-12) and (4-9).
Meanwhile, T7; can be written as

(7-38) Tig = 0, &k + (Ve VIOR) o, + e,

where the notation is as follows: First, 5ck denotes the d —bar operator on the space
of sections of c,’: T1,0Cm, thatis defined using the pullback via ¢ of the Levi-Civita
connection. Second, £g denotes the section of T'C,,, that is defined by the section
& of T1,0Cy, . Third, the term ¢ obeys |e| 2 < cor 1/”8“||f§||,cz and |e||z <

cor 12189 & . The identification of Ty in (7-38) follows from (7- 32) (7-34).

There is an analogous description of 77,4 .

Part 3 This part considers 7, in Proposition 7.2. This term is equal to
(7-39) rl/ZH(.)(Qq—i-rl/zq*q+2r1/2h*q)—%+£P—‘T1.

To say more about (7-39), write Ty = P|o + R0, and introduce P, = —P —P|o— 7 .
Arguments much like those that imply (7-30)—(7-34) can be employed to prove that

(7-40) [22E)llc = collélk and [|22(8) = P2 (&) = co(l€lc+IEllx) 1§ =& llxc-

Now let ® = /211y (Dq+r'/2qxq+2r'/2h%q)— R . By construction R (0) =
Let & € B and let £ denote a unit length element in K. The derivative of & in the
direction & has two contributions, these precise analogs of the two contributions to the
differential of 7 that are described in Step 5 of Section 7.b. The first contribution is

(7-41) —rl/ZHEDHE/q +r1/2H§(@qJ‘ + 2k 25 g’ + 2,2 x g + b’ q),

where the primes denote directional derivatives, and where ¢’ is written as g~ — H’Eq
with g1 € HL. Meanwhile, the £ norm of the second contribution is bounded by ¢
times the £ norm of rl/zl'l(.)(@q +r12gxq+2r1/2p % q).

Consider first the £ norm of rl/ZH(.)(”Dq +r1/2q % q+ 2r'/2h % q). It follows
from (7-4)—(7-6) that its £ norm is bounded by co(r~—'/2189 4 ||£|x)?. Mean-
while, Step 6 in Section 7.c argues that the £ norm of r/ ZHECDH g is bounded
by co(r~ /289 4 ||€]|x). Step 7 in Section 7.c explains why the £ norm of what
remains in (7-41) is never greater than (r~'/4+39 4 ||£||x).

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology I1 2701

The bounds just derived for the differential of & imply that

o IR®lle = colr™ /48 +[1]x) 1k -

T80 1R @ = RE ke = colr™74% 4 el + 18 1) 1€ — €.

Taken together, (7-40) and (7-41) imply the last two bullets in Proposition 7.2.

7.£ Proof of Proposition 7.2: Part 4

This subsection defines the vector space Vj and the map q: X — V} that are mentioned
in Proposition 7.1 and Proposition 7.2. To start, V can be written as the direct sum
of spaces, these indexed by the elements in C, the elements in E,,_ and the elements
in 2, . In this regard, any given C € C contributes as follows to Vo: If C =R x y,
then C contributes nothing. If C is not R—invariant, then C contributes the summand
kernel(D¢), where D is the operator that appears in (4-5). Here, and below, kernel( -)
refers to the L? kernel.

Consider next the summand in Vj that is labeled by any given (y,m) e E_. If m =1,
then this pair contributes nothing to & _. To set the stage for the description of (y,m)’s
summand when m > 1, digress momentarily and suppose that £ C &, _. In the case
when Z is not the s < —1 part of Rxy, assign to E the configuration 3¢, € Sym?”(C)
that is obtained by replacing z¢ in (5-16) with nge_z}“ﬁ ¥ Here, G4, is the eigenvec-
tor that appears in E’s version of (4-2) and A4, denotes the corresponding eigenvalue.
If E is the s < —1 part of R Xy, assign to E the point in Sym?%(C) with all entries 0.

With these preliminaries out of the way, introduce the notation from Section 5.c. As
in Section 5.c, let N = N,,_ denote the number of distinct elements {A4, : E € E,_}.
The (y, m) contribution to Vj is itself a direct sum, with the summands labeled by the
integers k € {1, ..., N}. To describe the k—th summand, introduce the partition subset
&k C Exy— as defined in Section 5.c. Define 3x¢(,,r) € Sym™*(C) by replacing
each £ € & version of 3% in (5-17) by 3¢, and by replacing each £ € Uj>k€j
version of 3¢ by the point in Sym?%(C) with all entries equal to 0. When k < N,
the configuration 3¢|(,,) consists of my —my .1 nonzero points and my 4 points
at the origin. Meanwhile, 3n0|(.,s) has either all points distinct and nonzero or all
points at the origin.

Use the configuration r;/ 23k0 to define a map cxo: R x S! — Cm,, - Note that the
domain of this map is the whole of R x S to &, « - There is, as usual, an analogous
map cxo: R — &, foranygiven k €{1,..., Ny} if (y,m) € Ex4. The next lemma
refers to the version of ¢ that is defined either with (y,m) € Ex_ and k € N,,_ or
with (y,m) € Ex4 and k € Ny 4. The lemma also refers to the function A on &,
that is defined in (1-9) by taking © = 0 and v to be half of y’s rotation number.
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Lemma 7.5 If all but Constraint 4 in Section 4.b are satisfied, then

§— 5‘1{0; + (VEva’Oﬁ)‘

k0

is Fredholm from L}(R x S*:¢§T1,0€m,) to L2(R x St; ¢f Ty 0Cp,) with trivial
cokernel.

This lemma is proved in Section 7.i. Assume it for the time being.

As any given version of Lemma 7.5’s operator is Fredholm, it has finite dimensional
L? kernel. The (y,m) € Ex_ and k € {1, ..., N,,_} version of this kernel is denoted
by V,_k: the (y,m) € Exy and k € {1,..., Ny} version is denoted by V,, 4 .
Granted this notation, V, can be written as

Vo = (Bcec kernel(Dc)) & (@yeaz_ (@15k§N,,_ Vy—k))
@(69)/6324_ (@15k5Ny+ Vy+,k))-

The norm on Vj is the direct sum of the L? inner products for each of the various
summands.

(7-43)

The next order of business is to define the map ¢: ' — Vj. This requires a digression in
order to describe a certain useful decomposition of any given element & € K as a sum

(7-44) E=Ycect  + Y emy £+ yery, £

that are determined by their namesake components of

S = ((5C)Cec, (Sy—)yeEz_v (§y+)y62+)-

Consider first £€. As £€€ € K, it has components

£€ = (&) crec. (ES )yery_ (654 )yemsy)-

These are as follows: First, ég, =0 unless C =C". In this case, Sg =12 zee. x£)lC
where the sum is indexed by the ends in C. By way of a reminder, the cut-off func-
tion y¢ is zero on the complement of £ and defined on E by x((R¢+3R—|w|)/R).
Meanwhile, any given f;‘yC . is determined by (Eg,)c/ec through the homomorphism
¢y+ given in (5-12).

As an element of K, the term &Y~ from (7-44) has only nonzero components Sy: and
Eg for those C with CNU, _ # &. In particular, E =0if y’ #y,andalso E
for all y’ € Ex. The component &)_ is set equal to &, —Ef_ The component
EC is determined from Sy_ by the identifications in (5-12). Note in particular that
E,),’: has support where w < —3R. Any given £ has a similar description.
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Now fix (y,m) € Ex_ so as to describe a further decomposition of £¥~. To this
end, reintroduce again the notation from Section 5.c. With this notation understood,
fix k and write £~ on Ij x S! as (S}:_,n*(g&g;)). Note that the term ég; is
given by Eg; =Y reg,_—&, and £cc Xzbc - This means, in particular, that 5;; #0
only at values of = with distance 2R or less from the left endpoint of I ; this where
I,y N1 # 0 and where the ends in £, _1 have x¢ % 0. With the preceding understood,
agree now to decompose &Y~ as

(7-45) ET =g g T
Here & Y=k has compact support on I x S! and is given by
(7-46) § = (xxgl.0)

with xx: Iz — [0, 1] defined as follows: Let Rj denote the value of R for the ends
Ee&. Then xp = x(Rx +2R—|w])/R)(1 — x((Rr—1 + 2R — |w]|)/R). There
is, as usual, the analogous decomposition of any given (y,m) € Ex, version of £V,

With these preliminaries set, what follows describes the map ¢: K — Vj. To start,
fix C € C. Then the image of ¢(£) in the summand kernel(D¢) C Vj is the L?
orthogonal projection of ég onto the kernel of D¢ . In order to define the image
of g(§) in any given k € {1,..., N,_} and (y,m) € Ex_ version of the summand
V), — k, it is necessary to first note that the maps cxo and ¢ are very close where both
are defined, on I x § '« R x S'. Indeed, it follows from Constraint 2 in Section
4.b that the distance in €, between cx|(,,s) and ¢xo|(w,s) is bounded by cor /4
at each (w,t) € Iy x S'. This implies that the map €xp,,, from Part 8 of Section
2.a can be used to identify the ¢ and ¢z pullbacks over I x S! of T 1,0€m;, when
r > ¢o. This identification is used to view 1z & ;{’ "~ as a section of c}:OT 1,0€m, . Granted
this identification, the image of (&) in the summand V,,_ j is defined to be the L?
orthogonal projection of x ;& }; ~ onto V,,_ ;. There is an analogous definition for the
image of ¢(£) in any given k € {1,..., Ny,+} and (y,m) € Ex4 version of V), | .

The upper bound asserted by Proposition 7.2 for |¢(£)| follows from the definition of
any given component of q as an L? projection.

The final task for this subsection is to explain why g: K — V} is surjective when R
and r are large. To this end, fix C € C. Let 0 € kernel(D¢) and use o to define an
element § = ((§¢/)crec(§y-)yegs_. (§)4)yeax,) € K as follows: Set £2, = 0
unless C = C’ and set £ = (1 =) yce. X'z)0 Where X is the function on C with
compact support in E and given on ‘E by the restriction of x((Rz +3.5R—|w|)/R).
Define §)_ for y € E_ to equal zero unless C intersects Uy —. In the latter case, use

(6-18) to define £7_. Make the analogous definitions of (53 yegs, - Letoy € Vg
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denote the element whose kernel(D¢) summand is 0 and whose other summands
are zero. Given that any element o € kernel(D¢) obeys |o| < coe™51/<0]|o|| 2, it
follows that ||g(£°) —op | 2 = cor oo 2. A similar construction starting with an
element o from any of the other summands in Vy and using a suitably cut-off function
defines an element £° € IC with ||¢(£°) — oy || .2 obeying this same bound.

The assignment 0 — £° can be viewed as defining a linear map from V, to K.
This map is denoted in what follows by ¢*. It follows from what was just said that
l49* (0) — ol 2 < cor~'/€0||0]| ;2 and that ||g*(0)||x < collo|l 2 for all 0 € V.

7.g Proof of Proposition 7.2: Part 5

This subsection and the next justify the claims that are made about 77 in items (a), (b)
and (c) of the proposition’s second bullet. This subsection proves items (b) and (c). The
next subsection proves that 7; maps g’s kernel onto £. These next two subsections
assume implicitly Constraint 4 of Section 4.b.

Consider to start the £2 norm of 77 (£) when £ € K. Given the description of 77 in
the previous subsection, it follows that

o Ti@)I72 = Xeee (1T E) 72— R 2ol 72)
(7-47) +Yyemy (ITE N2 — R2collE”7172)
+Xems, (ITE D72 — R 2eol|E7F1172)-
To argue for (7-47), digress for the moment and suppose that f and g are func-
tions on a manifold with |g| + R|dg| < ¢o. Write f = gf + (1 — g)f and set
fi=gf and f, = (1 —g)f. The analog of (7-47) in this context is the claim that
|df|? > c0_1(|df1 |2 4+ |df>]?) — coR™2| f]*. To see why the latter inequality holds,
use the fact that df; = dg f + gdf to see that |(df1,df>)| < coldf>|(|df | + R f]).
This last inequality with the equality |df'|?> = |df;|?> + |df>|> + 2(dfi, df>) implies
the desired bound on |df|>. The inequality (7-47) follows using a straightforward,
multicomponent version of the inequality |df|* > co_1 (\df1)? + |df2|?) —coR2| f]?.

Equation (7-47) is used first to obtain a lower bound for the £? norm of T4
(7-48) 1T @)llz2 = ¢g ' lEll 2 when (&) =0.

Note that the assertion made by item (c) in the second bullet of Proposition 7.2 follows
directly from (7-48) given what is said about ¢* in the final paragraph of Section 7.f.

The lower bound (7-48) for the £? norm of 77 on the kernel of g will be seen to
follow from (7-47) given suitable lower bounds for each || 73 (£€)|| 2 when ¢(£) =0,
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and on each |73 (%) 2 forany & € K. The desired lower bounds are obtained in
Part 1 of what follows. Part 2 of what follows explains how to get a lower bound for
both parts of the norm that defines L.

Part 1 This part of the subsection derives lower bounds for each |7} (£€)| ;2 when
7(£) = 0, and on each || 7} (§¥F)| ;2 for any £ € K. These lower bounds make (7-48)
a direct consequence of (7-47). There are two steps in what follows.

Step 1 Suppose that C € C is not R—invariant. It follows from the description of 7}
given in the previous subsection that

C -1 c —1/2+38 C
I T € 22 = ¢g IDCEE I 2 — cor ™/ *F 1€ llic2-

Meanwhile, the fourth constraint in Section 4.b implies that ||Dcég 2 =cy? ||§g I K2
when the component of g(£) in kernel(Dc) is zero. For such &,

(7-49) I T EDIZ2 = R eollE 172 = 5 IEC IR

: -1

if R>¢,".

As an aside, suppose that o € kernel(D¢) and define g*(0) as done at the end of the

previous subsection. Very much the same argument that leads to (7-47) and (7-49)
finds |73 (g% (0)) |l 2 < cor ™" °|o]| z2.

Suppose next that C = R x y is a component of ¥ with associated integer ¢. Given
what is said in Lemma 2.4, it follows from (7-36) in the case ¢ = 1 and from (7-37)
in the case ¢ > 1 that (7-49) also holds in this case.

Step 2 This step proves a £¥~ version of (7-49). To this end, introduce once again
the notation from Section 5.c. Decompose &Y~ as in (7-45) and it then follows that

(7-50)  NTE D72 = " Cixn (1T E )20 — R collg” 7).
As is explained next,
(7-51) ITiE 2 = g ' 16" Iz when g(§) =0.

This last inequality, (7-50), their y4+ analogs and (7-49) imply, via (7-47), the desired
inequality that is asserted by (7-48).

To start the proof of (7-51), reintroduce the map ¢xo: R x ST — &, « from the previous
subsection. Keep in mind that the distance in &, between cx|(,,r) and cxol(zw,r)
is bounded by cor~°/* at each (w,1) € I x S!. This last remark plus (7-38) im-
ply the following: Suppose that ¢ is a compactly supported, smooth section over
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I x ST of ¢t T1,0Cm, - Use &xp,, , from Section 4.b to view ¢ and the ¢ 71,0,
component of 7;(¢) as a section of c,’:OT 1,0Cm,, over Iy xS . Meanwhile, the pair
(€,0) € G T1,0Cm, @ (@fesy_—Ek 7« (N |z)) defines an element in IC. Use ¢ to
denote the latter also. Then

(7-52) Ti(§) = oot + (Ve VIR + ¢,
where [[¢/(§)l| 2 < cor ™ISl c2.

Granted (7-52), then (7-51) follows as a corollary to Lemma 7.5. Indeed, trivial cokernel
or not, the fact that Lemma 7.5’s operator is Fredholm has the following implication:
Let ¢ denote an L% section over R x S of c;’;OTl’OL’:mk

(7-53) [Beio + (Ve VOB 2 = 5182

when ¢ is L? orthogonal to kernel of the operator { — 5%0{ + (V;RVI’OFL)MO.

Part 2 This part uses (7-48) to prove that ||Z; (§)||z > (:0_1 €|l when g(§) = 0. This
bound with the remarks in the final paragraph of Section 7.f imply item (b) of the
second bullet of Proposition 7.2.

Start the proof that |73 (£)||2 > co_1 |€llc when g(§) = 0 by writing & as in (7-44).
The description of 77 in Section 7.¢ implies that

1T E) e = g DS 12— cor ™28 |EE |1k,

and so an appeal to Lemma 2.7 finds that ||7; (§€)| 2 > CO_I IIESIIK > Cal 1EC |1 if
g(£) = 0. Meanwhile, decompose each y € Ex_ version of £V~ as in (7-47). Given
(7-52) and (7-53), it again follows using Lemma 2.7 that |7y (§x) |2 > cal Ik lc when
g(£) = 0. Granted these bounds and (7-48), the argument that led to (7-47) finds that
71 (EY e = CO_1 |EY~|lc when ¢(€) = 0. One more application of the argument for
(7-47) and (7-48) finds that || 77 (§) |z = ¢5 '€l x —cor ™28 | €[l when (£) = 0.
This implies the desired inequality ||Z;(§)|z > co_1 Ellc if g(§) =0 when R > ¢
and r > ¢gp.

7.h Proof of Proposition 7.2: Part 6

This last part of the proof explains why 7; maps the kernel of g surjectively to £. By
way of an overview: The surjectivity is ultimately a consequence of the fact that each
C €C version of D¢, and each y € Ex4 and k € {1,..., N1} version of Lemma
7.5’s operator have trivial cokernel. The details are presented in three steps.
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Step1 Write a given n € L as

(7-54) N=cecn® +Xyemy 7 +Lyeas 1

where the decomposition here is analogous to that given in (7-44). Meanwhile, each
y € Ex_ version of n¥~ is further decomposed as

(7-55) n’'" = 7]7_1 + 7]7_2 et n)’_N’

with this one analogous to that given in (7-45). Each y € Ex version of n¥* has
an analogous decomposition.

Step 2 It follows from Lemma 2.7 and Constraint 4 of Section 4.b that the com-
ponent ng of the term 7€ can be written as Dcixc Wwith t,c an element in C’s
version of the Banach space K¢. This is because D¢ has trivial cokernel. More-
over, there exists a unique such element with the property that (1 —) ¢ - XE)RC
is L? orthogonal to the kernel of Dc. Let (© denote the element in K whose
components ((LC,)C/Gc, (Ly_)yenzi), (Ly+)y€52+) are as follows: First, lg =
(1= zee - Xz)ixc Where xi is the function on C with compact support in £ and
givenon £ by the restriction of x((Rz+3.5R—|w/|)/R). Note in particular that x7. =1

where d x« # 0. The remaining components of (€ are determined by Lg using (5-12).

Lemma 2.7 and Lemma 7.5 have the following implication concerning any given ny k.
This section of ¢;' 71,0, can be written as dgotx + (VLkRVI’Oﬁ)hkO where (; has
finite K—norm. Define

—k —k —k —k
ty = ((L% )CGC’ (Lgl_ ))//GEE_’ (L;/J’_ )y/GEZ-‘r) e IC

as follows: First, only the components ty:k and {tc_k}Cec are nonzero, and LC_k #£0
only if C intersects U, —. Second, L,,_k has support on the subcyhnder I xS where it
is given in the notation from Section 5.c as t,,_ = (x/ e 0), with x’ o Ik — [0, 1] de-
fined as follows: Asin (7-46), let R, denote the value of R¢ fortheends ‘E € Ej.. Then

(7-56) = x((Rg + 1L.5R—|w|)/R)(1 — x((Rk—1 +2.5R—|wl|)/R).

Note in this regard that xk = 1 where the differential of the (7-46)’s function xj is

nonzero. The component L K of (¥~ is determined from L;j, k , using (5-12).

Define (¥~ =) ;< 17 7%. Make the analogous construction of ¥+ for each y €
E x4 . Then define t =1(n) tobe the sum t =Y ccotC +Y gy ¥~ +Y a0
Note that q(¢) = 0; this is a consequence of the fact that any given version of 1 — x¢
has support where 1 — x7. = 1, and any given version of x; has support where the
corresponding x/, = 1.
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Step 3 It follows from what just said and from the assertions in Lemma 2.7 and
Lemma 7.5 that the assignment 1 — ¢(n) defines a bounded, linear map from L to the
kernel of g with norm bound ||¢(n)|/x =< col|n|lz. This understood, it is a consequence
of the descriptions of 7} in preceding subsections, and from (2-4)—(2-5), that

(7-57) 171 () = nlle < co(R™Y 47 12F89) 1y 1.

This equation says that ¢ is nearly an inverse on the kernel of q to the map Z7; when
R and r are large.

Fix ns € L. To obtain &4 € kernel(q) with 7;(§4) = nx, define amap ¥: L — L by
setting

(7-58) F0')=—(T (e +1)) —ne —17).

A fixed point, 7, of this linear map obeys 73 (t(nx + 7)) =1« and so &x = t(nx + 1) €
kernel(g) is mapped to nx by 7; . It follows from (7-57) that the map ¥ is a contraction
mapping when R and r are greater than some constant co. When such is the case, the
map ¥ has a unique fixed point in L.

7.i Proof of Lemma 7.5

The arguments below treat the case when (y,m) € Ex_. Except for changing some
signs and changing “greatest lower” to “least upper”, the same arguments will prove the
lemma for the cases when (y, m) € E x4 . The details for the latter cases are omitted.
This understood, fix (y,m) € Ex_ and k € {1,..., N,_}. The proof that Lemma
7.5’s operator is Fredholm with trivial cokernel has four steps.

Step 1 The operator in question has a relatively simple form in the cases at hand when
written in terms of the coordinates in (1-5). If my = 1, these coordinates identify this
operator with that on C®(R x S!; C) that sends a given function ¢ to 5( +vi+ /LE,
The myj =1 version of Lemma 7.5 follows directly from this identification given that
(1-2) lacks a zero eigenvalue.

In the case my > 1, the operator in question is best viewed by using the functions in
(1-5) to identify &, with C"™k and so use the basis {d/004}1<g<m, to view a section
of ¢Z,T1,0&m, as an element in C®°(R x § 1. C™). Viewed in this light, Lemma
7.5s operator acts diagonally with the g—th diagonal entry given by d + (¢/2)R where
R is the rotation number of y. The constraints in Section 4.b guarantee that 0 is not
an eigenvalue of the operator (i/2)(d/dt) + (¢/2)R on L?(S';C). This implies that
9+ (¢/2)R is Fredholm as a map from L%(R x S1:C) to L>(R x S';C). Even so,
the claim asserted in Lemma 7.5 does not immediately follow because the metric on
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Cmy, 18 not the induced metric from C™* unless k = N and the one end in U,,_ is
the w <« —1 part of R x y. Thus, more work need be done.

Step 2 The simplest case to analyze is that where £, = {£} and so m,_ = q¢.
Assume that E is not the w < —1 part of R x y. In this case, kK = 1 and my = ¢g«.
The norm that is induced on the trivial bundle (R x S!) x C9% by the isomorphism
with the pullback via ¢jog of 77 0&,, is diagonal. This follows by virtue of the fact
that the Riemannian metric on g, is invariant with respect to the S! action that is
induced by the standard action of § I on C. Meanwhile, it follows from (2-1) and
(2-2) that the inner product between the dual basis elements {doy}1<4<4, for the c1go
pullback of 71:°¢,, has the form

(7-59) (dog, dog) = cxp™ ™3¢ |ux|* +my,

where the notation is as follows: First, ¢« > 0 is a constant that depends only on ¢z.

Second, p = p(w) is shorthand for r;/ 2e~(R—kz/42)w where kg is the smallest integer
. . 1

such that kz/qz > R. Note here that the eigenvalue A4, is equal to 5 (R —kz/qz).

Third, ug € C —0 is a constant. Third, |mg| < ¢o and my is asymptotic as w — —o0

to a positive constant.

With it understood that (R x S1) x C9% is the ¢;q the pullback of T ¢y, , write an
element in the ¢—th summand of (R x S1) x C9% as n(1 + p)2~1(d/day). It follows
from (7-59) that this element has norm ng|n| where ¢, I < ng < ¢o and where n; has
constant limits as s — Fo0o. Meanwhile, the operator d + (¢/2)R acts on such an
element so as to send 7 to

= 1
(7-60) o+ 5 (qr+ (@ = Dp/(1+ p)(ke/qgz = R)n.
This operator looks like
o I+ %R for w < —1.

7-61 =
( ) a+%(R+(q—1)kf/CI£) for w > 1.

Given the Constraint 1 in Section 6.a, what is written in (7-61) implies that (7-60) is
Fredholm from L%(R x S1:C) to L*(R x S!;C) when the norm on C sends 7 to
ng|n|. Indeed, this is so because neither of the operators

' id 1
(7-62) 27; TR O §E+§(R+(q—1)k£/qg)

on L2(S!;C) have eigenvalue 0. Moreover the fact that k¢ /g« > R implies that the
spectral flow from the left most to the right most operator in (7-62) is positive. This
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implies that (7-60) has nonnegative index. The fact that k«/gz > R also implies that
the cokernel is trivial. To see this, note first that the L? adjoint of (7-60) annihilates
only linear combinations of functions that have the form (w, 1) — ¢*(®)~*(@=i1) where
k € 7., and where the function u(-) obeys

e u(w)=¢gR+o(l) as w — —o0.

(7-63) u(w) = (R +(q— 1)kg/qr5)w+0(1) as w — 00.

These asymptotics for u follow from (7-61). Meanwhile, it follows from (7-63) that
the function (w,t) — e*(@~k@=it) 5 an L2 function if and only if k < ¢R and
k >R+ (q—1)ke/qz. As there are no such integers, (7-60) has trivial cokernel.

Step 3 The second case to consider is that when all of the ends in £, have the same
degree. Thus, ¢z = g« for any pair £ and £’ from &, _ and m,— = nqz with E any
end from &£, . Assume that n > 1. In this case, £, = & and the metric that is induced
on the vector bundle (R xS!)xC"9z = ¢1oT1,0€ng, is not diagonal. The configuration
3z, that is labeled by any given £ € £, is determined by a function of the form

(7-64) 250 = uge " kz/qr)wtilkz/az)t

where uz € C-{0}. Moreover, Constraint 3 in Section 4.b asserts that uz # nug with
n a qz—th root of unity if £ #: E’. It follows from (7-64) and (2-1)—(2-2) that the
inner product between the ¢;o pullbacks of the dual basis elements {doy}1<g<ng, for
T19¢,,, are such that (do,, dog) =0 when g # ¢’ mod (¢¢). Meanwhile, the inner
product of dog with dog when ¢ = ¢’ mod (¢£) can be written as

(7-65) (dog,doy) = c*,oq+q/_2qq/ei(q/_q)(kf/q’f)tZ@’Z/egwﬂ(glu%,_l +myg.

Here, |my4| < ¢o. Furthermore, mg, limits as w — —oo to zero unless ¢ = ¢’. In
the latter case, it limits to a positive constant. Identify the pullback by ¢;¢ of the (1, 0)
tangent bundle as (R x S1) x C"9% and define p(w) as before so as to write the ¢—th
summand of this bundle as 14 (14 )41/ doy). By virtue of (7-65), the induced inner
product between vectors n = (1q) 1<q<ng, and n’ = (U;)ISanqz can be written as

(7-66) {n,n') = leq,q’anggq,q’ﬁqnlqw

where the matrix g with (¢,¢’) entry g, 4 has constant, positive definite limits as

w — —oo and also as w — 0o. Indeed, the w — —oo limit of g is diagonal with g—th

entry my 4. Meanwhile, the z — oo limit has (¢, ¢’) entry zero unless ¢ = ¢’ mod (¢«)
— /I .

in which case the entry is D /¢ gy_ﬁq@ ! u%, ! These entries define a nondegenerate,

positive definite matrix by virtue of the constraint that uz # nuz: if E#E’ and n?z = 1.
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In terms of 7, the operator -+ (g/2)R acts as depicted in (7-60) and so (7-61) still
holds. The latter implies that Lemma 7.5’s operator is Fredholm with nonnegative index
and trivial cokernel. The argument is that used for Step 2’s version of this assertion.

Step 4 Consider now the general case. Let n denote the number of ends of X in &,
and write my =nqg +my_1 where g« is the integer degree that is defined by the ends
from & . Introduce the complex number ugz for E € & as defined in (7-64). These
are nonzero numbers, and they are such that ug¢ # nug if £ #: £ and n?= = 1.

As before, the inner product (doy, dog’) is asymptotic as w — —oo to zero if g # ¢’
and to a positive constant if ¢ = ¢’. It is a consequence of (2-1) and (2-2) that the
w > 1 version of this inner product has the form

(7-67) (dog.dog) = c*ptH-q/_zqqlei(q’_q)(kf/qz)tZZ’Z/Egk l_tg_l u%/—l + gy

where cx = 0 when ¢ # ¢’ mod (¢) and is a positive constant when ¢ = ¢’ mod (¢).
Meanwhile, mg o has bounded norm and it is asymptotic as w — oo to zero unless
g = ¢'. In the latter case, it has a positive w — oo limit. There is one other crucial
point to make here: The matrix my_; X my_; matrix with (¢q,q’) € x2{1,...,my_1}
entry my 4 is positive definite at large z . This is because the w — oo limit of this
matrix gives the inner product on the fiber of 71:9¢,,, | at the symmetric vortex for
the basis {dog}1<g<m_, -

Fix m € {l,...,qz}. The n x n matrix g,, whose (p, p’) entry is
— 1—(p— . 1
(7-68) Zf,z’esy_ Txug )" lur(Ep I)QEu(flj )4z

is nondegenerate by virtue of the fact that there are n ends in £ and no uz can be
written as qug where £’ is also in & and where n9% = 1. This understood, let 1 ,,
denote the number of integers in {1, ...,my} that equal m mod (g¢). It follows from
what was just said about gy, that the my ,, X my ,, matrix whose (p, p’) entry is

(7-69) ZZ,Z’GSV_ (ﬁzuf/)m—lﬁ(ZP—I)QZu(EIf'—I)qu

has kernel dimension my_,, —n. Moreover, this kernel has a basis whose k —th element
has k—th entry in C™k.n equal to 1 and all K’ < k entries equal to zero.

Granted this last point, write my = my_1 + ng¢ and then identify c}:OT 1,0€m, with
(R x S1) x C™Mk—17149z in the usual way. Then the vector space C™k—17"9% hag
a basis of the following sort: The g—th basis vector in the case that ¢ < myj_; is
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g = 0/00,4. Meanwhile, the g—th basis vector when ¢ > my_; has the form

ig=(1+p7"
8 / -2 / (! 8
(7-70) x| — 2 : (1 )] @'-) ,—i(@" ) (kz/qz)t ,
(80q+ N o (157 ) ¢ dog’
q9:q’<q,
q’'=gmod (qz)

where c44 is independent of w and 7. This basis is such that the numbers

(7-71) {tg1q') = gqq'
are the components of a matrix whose w — 00 limits define a positive definite matrix.

The operator in Lemma 7.5 does not act diagonally with respect to this basis; it acts
as a lower triangular matrix whose entries on the diagonal are such as to send 74 to
what is written in (7-60) in the case ¢ > mj_1, and to 577 + (¢/2)Rn in the case when
q < my_q. This understood, it again follows directly from (7-61) using the arguments
from Step 2 that Lemma 7.5’s is Fredholm with trivial cokernel.

7.j Loose ends

Proposition 6.4 and Proposition 7.1 describe a pair (¢, b= (b, 1, ¢)) that has Properties 1
and 2 from Section 5.d. Thus (&, b) obeys (5-20). Define (A4, ¥ ) using (5-19). The next
proposition asserts that (A4, ¥) is gauge equivalent to an instanton solution of (1-13).

Proposition 7.6 There exists k > 1 with the following significance: If r > «, then
Propositions 6.4 and 7.1 can be invoked using any given element from the radius x ™!
ball in Proposition 7.1’s vector space Vyy to define a pair (&, b = b(§)) that solves (5-20).
Use this pair to define the pair (A, ¥) in (5-19). The latter is smooth, and there is a
smooth map u: Rx M — S such that the assignment s — 0(s) = (A—u~""du, uyr)|s
defines an instanton solution to (1-14) whose s — —oo limit is the solution to (1-13)
that is obtained from the data ® = ®_ using the constructions in Section 3. Meanwhile,
the s — oo limit is gauge equivalent to the solution to (1-13) that is obtained using the

constructions in Section 5 from the data ® = ® .

Proof of Proposition 7.6 To see why (A4, ¥) is smooth, write (A4, ) as (4* +a,
Y* 4+ 1). Note that (4*,¥™) is smooth. Let ¢ denote the iR component of b.
Equations (2-9), (2-10) and (5-20) imply that € = (@, A, ¢) obey a first order, elliptic
equation with quadratic nonlinearities. Furthermore, € restricts to any given radius 1 or
less ball in R x M as an L% configuration whose L% norm is bounded by a constant
that is independent of the chosen ball. This understood, the bootstrapping techniques
from [3, Chapter 6] can be employed to prove that € is smooth.
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The proof that (A4, ¥) is gauge equivalent to an instanton solution to (1-14) invokes
a result, Theorem 1.1, from Paper III of this series [9]. To start the proof, introduce
c— = (A7, ¥ ™) to denote the solution to (1-13) that is constructed in Section 3 using
© =0_. Write (4, ¥) where s K —1 as (A" +a , ¥y~ +A7). Sett™ =@ ,A",9).
Suppose that the ¢ = ¢ versions of the operator in (3-8) has trivial kernel. Granted that
such is the case, arguments that are cosmetic variations of those used for [7, Lemma 4.6]
can be employed to prove the following: There is a constant ¢ > 0 with the following
significance: Take r > ¢¢ and that k € {0, 1,2,...}. Then

(7-72) IVEE™| < ¢ e

at points where s << —1. Here, cj is a constant and V_ denotes the covariant derivative
on sections of iT*M & S @ iR that is defined by the Levi-Civita connection on
T(R x M) and the connection A~ . Let ¢y = (4™, ¥ ™) denote the solution to (1-13)
that is constructed in Section 3 using ® = ® . The same sort of argument proves the
s > 1 analog of (7-72) if the ¢ = ¢4 version of (3-8) has trivial kernel.

Theorem 1.1 in the third paper [9] of this series asserts that both the ¢ = ¢4 versions
of (3-8) do indeed have trivial kernel. This understood, (7-72) and its s > 1 analog
imply that the function ¢ and all of its derivatives converge to zero as |s| — co on
R x M at an exponential rate. This implies that

(7-73) w(s,-) = (2r)!/? fs b(0,-)do

converges to zero with all of its derivatives as s — —oo and converges as do all of
its derivatives as s — co. Set u: R x M — S to equal e%. Then (4 —u~'du,uyr)
defines an instanton solution to (1-13) whose s — —o0 limit is ¢— and whose s — o0
limit is gauge equivalent to ¢ . a

7.k Proof of Theorem 1.2

The space M{(®_, ®4) has finite set of components, and each component is a smooth,
1—dimensional manifold, with any given element obtained from a unique centered
element by translating a suitable constant amount along the R factor of Rx M . Let X C
M (O_, ®4) denote a centered element. If r > ¢, then the constructions described in
Sections 4-7.j assign to X a solution, W" (X) in M (¢c—, c4+). This is the element that is
obtained from Proposition 7.1 by taking A = 0. Let X’ denote the result of translating
3 by a given amount along the R factor of R x M . Define W" (X’) to be the translate
of W"(X) by the same factor. Given that there are but a finite number of components
of M{(®_,04), the map ¥ is defined on the whole of this space for r > ¢q.
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A brief digression is needed to prove that W is 1-1. To start the digression, fix a
centered element ¥ C M {(O_, ®4) and write W' (X) as in (5-19). The curvature
2—form, F4, of A has the following two properties:

e The L? norm of F4 over the |s| < R portion (5-3)’s set Uy is bounded
by cg.-

Fix C € C and let 5o € [-R + 1, R—1]. The L? norm of F, over the

s €[so— 1,509+ 1] part of (5-3)’s set U is greater than calrl/z.

(7-74)

These points follow from the second item of Proposition 6.4.

Now suppose that X and X’ are distinct, centered elements in M{(O_,®,). To
see that W" separates these two element, note first that if r > ¢g, then there exists a
component, C’, of X/ and sg € [~R + 1, R — 1] such that the s € [sg — 1, 5o + 1] part
of Ucs lies in X’s version of Uy. This understood, it follows from (7-74) that the
U (X) # ¥ (¥). Given that each component of M{(®_, ©) is an orbit of the R
action, this last observation implies that the W” image of ¥’s component is disjoint
from the component of X',

The observations in (7-74) also imply that W separates the points in any given
component. Indeed, if this is not the case for X’s component, then W’ (X) must
be R—invariant. However, this is precluded by (7-74) unless X is R—invariant.

Index to the notation

v: the Reeb vector field Part 1 of Section 1.a
a: the contact 1-form Part 1 of Section 1.a
£, the integral of the contact form a along the Part 1 of Section 1.a
Reeb orbit y

(v, n) Equation (1-1)
L Equation (1-2)
hyperbolic, elliptic, n—elliptic Part 2 of Section 1.a
2rk—periodic Part 2 of Section 1.a
[ Part 1 of Section 1.b
lop Equation (1-5)
h Equation (1-9)
Cy.m) Part 4 of Section 1.b
cl, &, yTry: Clifford multiplication maps Part 1 of Section 1.c
S: the spinor bundle Part 1 of Section 1.c
K~!: the inverse of the canonical bundle Part 1 of Section 1.c

V: the covariant derivative for the spinor bundle Part 2 of Section 1.c
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Ak a chosen connection on K~!
E
D 4: the Dirac operator

B4: the Hodge dual of the curvature 2—form a

connection A

o a given 1-form with small C k norms
B4, : the Hodge dual of the curvature 2—form

of the connection Ag
gauge equivalence

®

¢O,CO*

zl ezl gzl

M (O-,04)
instanton

0: an instanton
M(c—,cq4)

O is simple

co: a constant greater than 1 that is independent
of all relevant parameters. It increases between

subsequent appearances.
De
D0

€0

exp.(¢)

Vg

VAR

Ag in the context of a Reeb orbit
Ag in the context of a surface

J¢ in the context of a Reeb orbit

J¢ in the context of a surface

(x¢, t¢) in the context of a Reeb orbit
(x¢, t¢) in the context of a surface
I, () in the context of a Reeb orbit
I, ,(.) in the context of a surface
€E N

Vi

181122 18R SR
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Part 2 of Section 1.c
Equation (1-12)

Part 2 of Section 1.c
Part 3 of Section 1.c

Part 5 of Section 1.c
Equation (1-13)

Part 5 of Section 1.c
Section 1.d

Section 1.d

Section 1.d

Section 1.e

Section 1.f

Section 1.f

Section 1.f
Equation (1-15)

Equation (2-6)

Equation (2-7)

Part 8 of Section 2.a
Equation (2-9)

Equation (2-10)

Equation (2-13)

Section 2.c, Equation (2-18).
Part 1 of Section 2.g, Equation
(2-32)

Equation (2-20)

Equation (2-39)

Equation (2-21)

Equation (2-37)

Part 2 of Section 2.d

Part 3 of Section 2.g
Section 2.e

Section 2.e

Equation (2-27)
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Kex, Ke

£, with its norm defined

s: the canonical section on the pullback
n*E - E

s when E is the normal bundle to a curve
0: the canonical connection on 7* E

6 when E is the normal bundle to a curve
dv, v v

(4%.ab)

J= {(CV’ CV)}(y,m) €O

Px

Uy in the context of Theorem 1.1

Uy in the context of Theorem 1.2

(Ag, ¥o) in the context of Theorem 1.1
(Ao, Vo) in the context of Theorem 1.2
Uy

x: a cut-off function chosen for eternity
Xy

ry =y /Q2n))r

Fy
(Ay,¥y)
C@3

Loy

b *x b in the context of Theorem 1.1
b * b in the context of Theorem 1.2
Il ||]2HI in the context of Theorem 1.1
Il ”%]I in the context of Theorem 1.2
H, L in the context of Theorem 1.1
H, IL in the context of Theorem 1.2
£

Jo

£y

94,504,

Vo, Vi

3y,

¢
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Section 2.f
Equation (2-29)
Section 2.g

Part 2 of Section 4.a
Section 2.g

Part 2 of Section 4.a
Part 1 of Section 2.g
Part 2 of Section 2.g
Equation (3-1)

Step 1 of Section 3.a. See also
Equation (4-8).

Step 1 of Section 3.a
Step 1 of Section 5.a
Part 1 of Section 3.a.
Step 2 in Part 2 of Section 5.a
Step 2 of Section 3.a
Step 2 of Section 3.a
Step 2 of Section 3.a
Step 2 of Section 3.a
Step 2 of Section 3.a
Equation (3-3)

Step 4 of Section 3.a
Equations (3-5), (3-6) and the as-
sociated discussion
Equation (3-6)
Equation (6-1)
Equation (3-7)
Equation (6-2)

Step 1 of Section 3.b
Part 1 of Section 6.a
Equation (3-8)

Step 2 of Section 3.b
Step 2 of Section 3.b
Equation (3-12)

Step 3 of Section 3.b
Equation (3-15)

Step 4 of Section 3.b
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Le¢, Hy

T

[y, H)J/_* Ly, Lyx

Ty«

<y

£o

B

F

b(Z), b*{a 74

w

Ve

qz

ZE

dinE

N': the normal bundle to C
ec: the exponential map defined on N
Dc

My—, M+

Cqz
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Step 4 of Section 3.b
Equation (3-17)

Step 5 of Section 3.b

Step 5 of Section 3.b

Step 5 of Section 3.b

Step 5 of Section 3.b

Section 3.e

Equation (3-36), Section 3.e
Lemma 3.10 in Section 3.f
Equation (4-1)

Part 1 of Section 4.a

Part 1 of Section 4.a
Equation (4-2)

Part 1 of Section 4.a

Part 2 of Section 4.a

Part 2 of Section 4.a
Equation (4-5)

Section 4.b

Equation (4-2), Constraint 2 in
Section 4.b

Equation (4-8)

Equation (4-8)

Equation (4-8)

Equation (4-8)

Introduction to Section 5.a
Introduction to Section 5.a
Introduction to Section 5.a
Section 5.a

Equations (5-2), (5-8) and (5-9)
Step 1 in Part 1 of Section 5.a
Step 1 in Part 1 of Section 5.a
Step 2 in Part 1 of Section 5.a
Part 2 of Section 5.a
Equation (5-3)

Step 1 in Part 2 of Section 5.b
Step 2 in Part 2 of Section 5.a
Equation (5-6)

Step 2 in Part 2 of Section 5.a
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Xy
XR+

XE

¢+

§c. &+

IC’ Ksmooth» IC*
-l

[ lloos Il - ||/cf’ Il

(ACEr’ aCEr)
tcs

Cx

(AVEE gvEE)
(Ayézl:,r : ayé‘:l:,r)
EE

(45, 9%)

3z

3k

Iy

Pk

Eks EEk
(VAE)S

bt
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Step 2 in Part 2 of Section 5.a
Step 2 in Part 2 of Section 5.a
Step 2 in Part 2 of Section 5.a
Step 3 of Section 5.b
Equation (5-12)

Step 4 in Section 5.b
Equation (5-13)

The paragraph following Equa-
tion (5-13)

Step 5 of Section 5.b

Step 5 of Section 5.b

Step 6 of Section 5.b

Step 6 of Section 5.b

Step 6 of Section 5.b

Step 6 of Section 5.b
Equation (5-15)

Equation (5-16)

Equation (5-17)

Section 5.c

Section 5.c

Section 5.c

Section 5.d

Equation (6-1)

Equation (6-2)

Equation (6-5)

Part 5 of Section 6.a

Part 6 of Section 6.a

Part 6 of Section 6.a
Equation (6-9)

Part 6 of Section 6.a

Part 6 of Section 6.a

Part 7 of Section 6.a

Section 6.d, Lemma 6.3
Equation (6-21)

Part 1 of Section 6.d

Part 2 of Section 6.d

Part 2 of Section 6.d
Equation (6-32)
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pc Equation (6-33)
ﬁg,r Equation (6-34)
be Equation (6-36)
Uye+ Equation (6-39)
Vye—.r Part 5 of Section 6.d
byi Part 5 of Section 6.d
Il 1« Equation (6-51)
B Proposition 6.4
q) Proposition 6.4
m;(p, p) Equation (6-54)
0, Part 2 of Section 6.
0 Part 3 of Section 6.e
A, A Equation (6-67)
A3 Equation (6-70)
Ay Equation (6-74)
& Proposition 7.1
-1z Section 7.a
L Section 7.a
T Section 7.a
n; Equation (7-3)
Ty Section 7.a, Part 1 of Section 7.e
T Section 7.a, Part 2 of Section 7.e
T, Section 7.a, Part 3 of Section 7.e
Vo Proposition 7.1, Section 7.f
q Proposition 7.1, Section 7.f
q* Section 7.f
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