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Embedded contact homology and
Seiberg—Witten Floer cohomology 111

CLIFFORD HENRY TAUBES

This is the third of five papers that construct an isomorphism between the embedded
contact homology and Seiberg—Witten Floer cohomology of a compact 3—manifold
with a given contact 1—form.

57R17; 57R57

1 Introduction

This is the third of five papers whose purpose is to prove that the embedded contact
homology of a compact, oriented 3—dimensional manifold with contact 1—form is
isomorphic to the manifold’s Seiberg—Witten Floer cohomology. This isomorphism
theorem is stated formally in the first paper of this series [13]. As described in Section 4
of [13], this isomorphism is obtained using two maps: The first takes generators of
the embedded contact homology chain complex to generators of the Seiberg—Witten
Floer cochain complex. The second associates an instanton from the Seiberg—Witten
Floer cohomology differential to each pseudoholomorphic curve from the embedded
contact homology differential. The former map is denoted in Theorem 4.2 of [13]
by ®" and the latter is denoted in Theorem 4.3 of [13] by W”. The maps " and W”
are constructed in the second paper of this series [14]. This paper establishes certain
additional properties of these maps. In particular, both the embedded contact homology
chain complex and the Seiberg—Witten Floer cochain complex are graded complexes,
and Theorem 1.1 below describes how ®” affects these respective gradings. Meanwhile,
Theorem 1.2 asserts that the contribution to the embedded contact homology differential
from a given pseudoholomorphic curve is identical to the contribution from its W”
image to the Seiberg—Witten Floer cohomology differential.

1.a Relative gradings and the map ®"

The upcoming Theorem 1.1 summarizes what is proved here about the map ®”. The
statement of this theorem requires a four part digression to set the stage. This digression
summarizes what is needed from [13; 14] to state Theorem 1.1.

Published: 15 December 2010 DOLI: 10.2140/gt.2010.14.2721



2722 Clifford Henry Taubes

Part1 Let M denote the 3—manifold in question and a denote the contact 1—form.
The manifold M is oriented using as volume form a A da. The contact form a is
implicitly assumed to be from a certain residual set of such forms, this defined in Part 3
of Section 1.a in [14] and denoted by Ny .

Use K~! to denote the oriented 2—plane bundle kernel(e) C TM with its orientation
given by da. The dual bundle, K, will be viewed for the most part as a complex line
bundle over M . The first class of K in H?(X;Z) is denoted by ¢;(K).

In what follows, v denotes the vector field on M that generates the kernel of da and
pairs with @ so as to equal 1. Its closed integral curves are the Reeb orbits. They are
oriented implicitly by v. Fix a homology class I' in H{(M;Z) and let Z denote the
set defined as follows: An element ® € Z consists of a finite set of pairs of the form
(y,m) with y a Reeb orbit and m a positive integer. Require that distinct elements
from ® have distinct Reeb orbit components, and require that the Z(y,m),E@ my define
the class I'. Given L > 1, use ZL to denote the subset consisting of those ® with
Z(y’m) m#t, < L where £, denotes the integral of the contact 1—form along y. The
assumption that @ € Ny guarantees that ZL is a finite set.

Part 2 Let p denote the greatest integer divisor of the —cq(K) + 2p(I"), where
P: H\(M;Z)— H?*(M;Z) denotes the Poincaré duality isomorphism. Hutchings [6]
explains how the elements in Z can be given a relative Z/ pZ grading. There are six
steps involved.

Step 1 Fix an almost complex structure, J, on kernel(a) such that da(-, J(-))
defines a Riemannian metric on kernel(a). Let ® denote a given element from Z and
let (y, m) denote a given pair from ®. There is a disk D C C and an embedding
@: S'x D — M with the following properties: First, y appears as S' x {0}. Second,

, .
Tpxa=(1=20|z2 — p — fA)dt + S(zdZ~Fdz) + -

EV
2
(1-1) E—nda —idz NdZ—2(vz + pZ)dz Adt —2(vE + fiz)dz Adt 4
Y
6, 9 N N
Zv_&+2Z(VZ+MZ)£_2Z(UZ+MZ)8_E+M

Here, v and  are respectively real and complex valued functions on S!. The unwritten
terms in the top equation are O(|z|*) and those in the lower two equations are O(|z|?).
Here and in what follows, the circle S! is implicitly identified with R/(27Z) and
t e R/(27Z) is used to denote its affine coordinate.
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Step 2 The pair (v, 1) are used to define the operator £ on C*°(R; C) given by

' d
(1-2) Lz= %Ez vz oz

Let £ — x(¢) and t — y(¢) denote the real and imaginary parts of an element z(-) in
the kernel of £. The latter obey

(1-3) (x(t)) _U (X(O)) where U|, € SL(2: R) for cach 7 € R.
y(@) y(0)

As ¢ varies in [0, 27], the map ¢ — U |; defines a path in SL(2; R) from the identity.
The assumption that a € Ny demands that |trace (U |5 )| > 2 or |trace (U|25)| <2. In
the former case, y is said to be hyperbolic, and in the latter case y is said to be elliptic.
In the hyperbolic case, there is a homotopy of the map U|.y: [0, 27r] — SL(2; R) such
that the 7 = 27 element of each member of this homotopy has |trace (U|(.))| > 2 and
such that the final member is a rotation through wk radians with k& € Z. The integer k
is said to be the rotation number. In the elliptic case, there is a homotopy of U].)
such that the ¢t = 27 element of each member of this homotopy is conjugate to U |,
and such that the end member is a rotation by angle 27R with R € R an irrational
number. The number R is the rotation number of ¥ when y is elliptic.

Note that & and R depend on the 1—jet of ¢. Even so, the hyperbolic/elliptic distinction
is intrinsic to y . For that matter, so is the mod(2) reduction of & when y is hyperbolic,
as is the mod(Z) reduction of R when y is elliptic. The point being that a different
choice of ¢ can change k by the addition of an even number, and change R by the
addition of an integer.

Step 3 Associate to y and each g € {1,2,...,m} the Conley—Zehnder index; this
defined as follows: It is defined to be gk when y is hyperbolic with rotation number k.
When y is elliptic with rotation number R, the Conley—Zehnder index is equal to 1
plus twice the greatest integer less than gR. In either case, denote the Conley—Zehnder
index by z, 4. Note that its definition depends on the 1-jet of ¢ along y.

Step 4 Now let ®4+ and ®_ denote a pair of elements in Z. Given the homology
condition with respect to I', there is an immersed, oriented surface Z C R x M with
the following properties: The |s| 3> 1 portion of Z is a disjoint union of embedded
cylinders on which s restricts as a function with no critical points. Those cylinders that
sit where s > 1 are labeled in part by the elements in ® 4 ; a given pair (y,m) labels
m such cylinders, each very near the large |s| part of R x y. To say more, let ¢ denote
y’s tubular neighborhood map as described above. Each of these m cylinders sits in
R x ¢(S! x D) as the image of the graph over R x S of the function that sends (s, ¢)
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to e 24+ ¢ C where A > 0 and x € R/(27Z). However, if C and C’ are two
such cylinders, then the corresponding points x and x’ must define distinct points in
the circle. There is an analogous labeling of the cylinders that sit where s < —1 with
the elements in ®_. The only difference in this case is that A is now required to be
negative.

The surface Z has a well defined self-intersection number in (0, 1) x M ; this defined
by intersecting Z with a push-off, Z’, that is defined near (y,m) in ©_ orin O, in
the same fashion as Z. This intersection number is denoted by Q 7.

Step 5 The (y,m) be any given element in either ®_ or ®4. The corresponding
may ¢ gives K a section on S! x D, this the C—valued 1—form dz. Define (c;, Z)
to be the Euler number of K as defined by counting algebraically the zeros of a section
of K|z thatis given near any (y,m) in ®_ or ®4 as just described.

Step 6 Introduce now the integer

0.0 Z)=—(cl.Z)+0z+ Y. D &4

(y,m)e®y 1=qg<m
- Z Z Zy.q-

(y,m)e®@_ 1<g<m

(1-4)

Hutchings [6] proves that the mod(p) reduction of [ is independent of Z, and the
choices for the tubular neighborhood maps used for each Reeb orbit involved. The
mod(p) reduction of I(®_, ®4; Z) is defined to be deg. ,(®—) —deg..,(®+). This
difference defines the relative Z/pZ grading of the embedded contact homology chain
complex. Note that the notation here with ®_ appearing to the left of ® as an entry
in I(-,-;Z) is opposite to that taken in [6]. The convention here conforms with that
used to define the Seiberg—Witten Floer homology.

Part 3 Let ® € Z denote a nondegenerate element. Section 1.b in [14] associates
a set €O and a subset €O* to ®. As explained in the three steps that follow, each
element in €®* has an associated integer degree.

Step 1 Focus on a given element (y, m) € ®. Introduce the vortex moduli space &,
as defined in Section 1.b of [14]. The latter consists of equivalence classes of pairs
(4,a) with A being a connection on the product C bundle over C and with o a
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section of this bundle, thus a C—valued function on C. This pair obeys the equations
4 *FAI—i(1—|Ot|2).
J 5Aa =0.

(1-5) lo| <1.

o The function (1 — |«|?) is integrable on C and Je(1— la|?) = 2mm.

The equivalence relation that defines €, has (4, @) ~ (4 —u~'du, ua) with u any
smooth map from C to U(1).

Step 2 As noted in Section 1.b of [14], this space is the complex manifold C™. It
also comes with a natural, complete Kahler metric; but this is not the flat Kahler
metric unless m = 1. In any event, this metric defines a symplectic form and thus the
Hamiltonian dynamical system that is defined using the time dependent Hamiltonian
function

(1-6) ﬁz—L/quF+0ﬁ2+ﬁf»a—mﬁy
4 Jc

The set &, ) consists of the maps ¢: § I — ¢, that are closed, integral curves of
the Hamiltonian vector field defined by #; thus solutions to the equation (i/2)c +
VL0 £ =0, where ¢’ is shorthand for the (1,0) part of cx(d/dt), and where V(-0 4
denotes the (1,0) part of the gradient of £. Let €® denote X(;, m)e@C(y,m)- Thus,
any given element in €® has the form {c), € €, )}y, m)cO -

Let ¢: S! — €, denote a given map. Associate to ¢ the bundle *T1,0Cm — S L
The pullback of the Riemannian connection on 7'¢,, defines a Hermitian connection
on S!. The map ¢ is said to be nondegenerate when the operator

(1-7) £~ SViE+ (Ve V0B

on C®(S1;c*T, ,0&m) has trivial kernel. The notation here is such that V, denotes the
covariant derivative of the aforementioned Hermitian connection. Also, (Ve Vo),
denotes the covariant derivative at ¢ along the vector defined by & in T€,|. of the
vector field V1:%4 € C%°(&y; Ty ,0€m). The operator in (1-7) is symmetric and elliptic.
The spectrum of this operator is a discrete subset of R with finite multiplicities and no
accumulation points. What is denoted here by €®* consists of the elements in €O of
the form {cy }(,,mye@ With all ¢, being nondegenerate.

Step 3 Fix (y,m) € ® and let ¢g: S' — €, denote the constant map to the symmetric
vortex. The latter is the equivalence class of solution to (1-5) with a~1(0) = 0.
Associate to ¢ the operator, R, on C®(S!;T¢,, |c,) that is defined as follows:

Geometry € Topology, Volume 14 (2010)



2726 Clifford Henry Taubes

e If y is elliptic with rotation number R, then & is the version of (1-7) that is
defined using ¢ and the function A given by taking (v = %R, w=0) in (1-6).

e If y is hyperbolic with rotation number &, then K is the version of (1-7) that is
defined using ¢ and the function f; given by taking (v = %k — %R’ = 0)
in (1-6), with R’ > 0 an irrational number such that mr’ < 1.

Lemma 2.4 in [14] asserts that the operator & has trivial kernel when y is elliptic, and
also trivial kernel when y is hyperbolic and m = 1.

Suppose that ¢: S' — €, is nondegenerate in the sense that (1-7) with A now defined
using (1-6) has trivial kernel. Then the spectral flow from the operator & to ¢’s version
of (1-7) is defined (see, eg Taubes [12]). Use deg(c) to denote this spectral flow.

Part4 The definition of the Seiberg—Witten cochain complex requires the choice of a
Riemannian metric on M . Such a metric should be chosen so that *«da = 2a and such
that |a| = 1. Such a metric is neither more nor less than an almost complex structure J
on the kernel of a that is compatible with da. Indeed, with J chosen, the metric on
the kernel of a is given by da(-, J(-)). The rest of the metric is given by declaring
that the Reeb vector field is orthogonal to the kernel of @ and has norm 1.

Fix such a metric. As noted in Section 3.c of [13], the spinor bundle S for a given
Spin(C structure decomposes as the orthogonal direct sum E @ EK~! where E — M
is a complex, Hermitian line bundle, and where K is now viewed as a complex line
bundle. These are the respective +i7 and —i eigenbundles for the endomorphism given
by Clifford multiplication with the contact 1-form. The first Chern class of E can be
used to classify the Spin(C structure. This understood, choose E so that its first Chern
class is Poincaré dual to T".

Let Conn(E) denote the space of smooth, Hermitian connections on E. The Seiberg—
Witten equations used here require the choice of a real number r > 1 and a coclosed
l—form p. The corresponding Seiberg—Witten equations are for a pair (A, ) €
Conn(E) x C®(M;S):

e By—r(Wity —ia)—xdu+ 1By, =0.

(1-8) Dy =0.

The notation here is as follows: First, B4 denotes the metric Hodge star of the curvature
2—form of A. Second, Ak is a fixed, connection on K ~—1 with harmonic curvature
2—form. Third, D4 denotes the Dirac operator on C°°(M;S) as defined using the
metric’s Levi-Civita connection and the connection Ag + 24 on det(S). Finally, if n
and £ are any given sections of S, then nT7& is the C valued 1—form whose metric
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inner product with a 1—form b is n'cl(h)é with cl(-) here denoting the Clifford
multiplication endomorphism.

The group C°°(M; U(1)) acts on the space of solutions to (1-8) as follows: Suppose
that u is a map from M to U(1) and ¢ = (4, ) is a solution to (1-8). Then uc =
(A—u="du,uy) is also a solution to (1-8). Solutions related in this manner are said
to be gauge equivalent. With u fixed, and » > 1 given, the space of gauge equivalence
classes of solutions to (1-8) is denoted by M”" in what follows.

The 1-form g that appears in (1-8) is constrained to lie in a certain Banach space of
smooth 1-forms. The latter is denoted by 2 and is described briefly in Section 3.d
of [13]. The norm on this space is called the P—norm; it bounds all of the C k norms.
In what follows, u is assumed to come from €2 and have P—norm less than 1.

Associated to any given pair ¢ = (A4, V) € Conn(E) & C®(M;S) is an elliptic,
symmetric operator, £, on C®(M;iT*M & S @ iR) that is defined so as to send a
section (b, 7, ¢) to the section with respective i T*M , S and iR components

o sdb—dp—2"12:12(y oy + ey,

(1:9) * Dan+2Y2r12(clb)y + ¢y),
o sxdxb—2"Y2p12(nTy —yTy).

The pair ¢ = (4, ) is said to be nondegenerate when the kernel of £, is trivial.

Fix a pair (Ag, ¥ Eg) € Conn(E) x C*®(M;S) for which the r = 1 version of (1-9)
has trivial kernel. Use £ to denote the latter operator. Let ¢ = (A, ¥) € Conn(E) x
C®° (M S) denote a nondegenerate pair as defined by (1-9) for the given value of r.
Then there is a well defined spectral flow from £g to £.. The degree of ¢ is, by
definition, the mod(p) reduction of minus this spectral flow. This mod(p) degree
is gauge invariant; it is denoted in what follows by deggw(c). Note also that if ¢,
¢/ € Conn(E) x C*°(M;S) are both nondegenerate, then deggy (¢) — deggyw (¢’) does
not depend on the choice for (A4 g, W ). This relative Z/ pZ degree gives the relative
grading for the Seiberg—Witten Floer cochain complex.

With the digression now over, reintroduce €®* from Step 2 in Part 2 above and define
CZ* tobe {€O* : O € Z}. Let X C CZ* denote a finite set. Theorem 1.1 of [14]
supplies a constant ¥ > 1 and for all r > k, an injective map ®": X — M". The
theorem below says more about ®” .

Theorem 1.1 Fix a finite set X C €Z*. The constant k > 1 from Theorem 1.1 in [14]
can be chosen so that when r > k, then the following is true: Let ®": X — M”"
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denote the map from Theorem 1.1 in [14]. If x € X, then ®" (x) is nondegenerate. If
X—, X+ € X, then

deggw (D" (1+)) — deggw (P (1))
= deg..,(0-) —deg..,(O1) + Y _ dege(c) — »  dege(c).

CEX— CEXH

This theorem is proved in the upcoming Section 2 of this paper.

Theorem 4.2 in [13] refers to a map E: Conn(E) — R. If it is the case that O is
surjective onto the E < 2w L subset of M”, then Theorem 4.2 in [13] follows directly
using Theorem 1.1 here with Theorem 1.1 and Lemmas 2.1-2.4 from [14].

1.b The map ¥" and the (co)chain complex differentials

The upcoming Theorem 1.2 summarizes what is proved here about the map W" that
appears in Theorem 1.2 of [14]. A digression is also needed to set the stage for this
theorem about W . This digression has six parts.

Part 1 The definition of the differential for the embedded contact homology chain
complex requires the choice of an almost complex structure from a certain set, 7, of
almost complex structures for 7' (R x M). This set is described in [7]. Fix J € J,.
Note that J is unchanged by the constant translations along the R factor of R x M . It
also maps 9/9s to v and it maps K~!, the kernel of a, to itself. Moreover, da(-, J(+))
is a Riemannian metric on the kernel of a.

Use Z. in what follows to denote the subset of elements in Z that lack pairs of
the form (y, m) with y hyperbolic and m > 1. Fix two elements, @_, O € Z.,
and define M{(®_,0) as follows: An element ¥ € M;(®_,O4) consists of
a finite set of pairs of the form (C,m) where m is a positive integer and where
C is a J—pseudoholomorphic submanifold. These pairs are further constrained as
follows: First, distinct pairs have distinct submanifold components. Second, m = 1
unless C is R invariant, thus of the form R x y with y C M a Reeb orbit. To
state the third property, let 7: RxM— M denote the projection. Here is the third
property: The formal sum Z(C,m)eE mm(C) defines a 2—cycle whose boundary is
Z(y,m)EGJ,_ my — Z(y,m)e@_ my . Finally, this cycle is homologous rel boundary to
the image of a submanifold Z C R x M of the sort described in Part 2 of Section 1.a
for which I(®_, ®4, Z) is defined and equal to 1. Note that /(®_, ®4,-) assigns
the same value to manifolds Z and Z’ if n(Z) — n(Z’) defines the boundary of a
3—cycle.

Hutchings proves in [6] that M{(®_, ®4+) has the structure of a 1-dimensional
manifold with a finite set of components. Moreover, each component is a copy of R,
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this the orbit of any one of its members under the action of the group R that is induced
by latter’s action on R x M as the constant translations of the R factor.

With L > 1 fixed, use ZeLch to denote the subset of Z.., that consists of elements ®
with Z(y’m)eg I’Vlﬁy < L.

Part2 The embedded contact homology chain complex is the free Z module generated
by equivalence classes of pairs of the form (®, 0) where ® € Z.., and o is an ordering
of the set of pairs in ® of the form (y, 1) with ¢ a hyperbolic Reeb orbit with even
rotation number. The equivalence relation has (0, 0) ~ (—1)?(®, o’) where o is 0
or 1, this the parity of the permutation that takes o to o’.

Let (®_,0_) and (®4+, 04) denote generators of the embedded contact homology
chain complex. Hutchings observed that the extra data given by o_ and o4 can be
used to orient each component of M;(®_, ®). The details of this are provided in
Section 9.5 of [8] and summarized in the upcoming Section 3.b. Here is a brief descrip-
tion of how this comes about: Quillen’s ideas [11] about determinant line bundles for
families of Fredholm line bundles are used, much like in [2], to define what is deemed in
Section 9 of [8] to be a coherent system of orientations for {M{(©—, O1)}e_ 0, ez
Such an orientation for any given M (®_, ®4) is denoted in what follows by 0ecp, .
As an parenthetical remark and for reference in later sections, the relevant operators
for the aforementioned version of Quillen’s construction are generalizations of the
following: Let C C R x M denote an embedded, pseudoholomorphic curve. Then C
has a canonical complex structure, and C’s normal bundle has a complex structure and,
as a complex line bundle, a canonical holomorphic structure. Let N denote the latter
bundle. Associated to C is an operator D¢: C®(C; N) — C®(C; N ® T%'C) that
is defined so as to send a given section £ of N to

(1-10) Dck = 0 +vcé + puck.

where v is a certain section of 77 0C and puc a section of N 2@ T%1C, these
defined by the 1—jet along C of the almost complex structure.

As explained in Section 9.5 of [8], the orientation .y, is used to define the differential
for embedded contact homology. What follows briefly summarizes how this is done:
The generator of the R action on M (®_, ®4) orients any given component. Either
this orientation agrees with the previous one or not. If so, assign the component +1, if
not assign the component —1. Use tech to denote this sign. Now, write the differential
of the generator (@4, 04) as a sum of distinct generators with integer coefficients.
Suppose that the generator (®_, 0_) appears in this sum. The coefficient that multiplies
(®_, 0_) is the sum of the versions of (e that are assigned to the components of
Mi1(0-,04).
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Part 3 Fix r > 1 and a coclosed 1-form p for use in (1-8). The associated Seiberg—
Witten equations on R x M are equations for a map, 0, from R into the space
Conn(E) x C®°(M;S). Write 0 as the map s — (A, ¥)|s and these equations read

o 2A+Byi-r(Wiey —ia)—ixdu+ LBy, =0.

(1-11) Dy + Day =0.

A solution ? is said to be an instanton when {0(s)}s;er converges as § — —oo and
also as s — o0, and both limits are solutions to (1-8).

Associated to any given map 0 = (4, ¥): R — Conn(E) x C*®(M;S) is the elliptic
operator, Dy, on CP°(R x M;iT*M @& S @ iR) that sends a given section (b, 1, P)
to the section with respective i T*M , S, and iR components

o Abtxdb—dy—272r 2yl +plry),
(1-12)  * 20+ Dan+22r12(cB)y + py),
. %q&-}—*d*b—z_l/zrl/z(nTW—an).

Here, d denotes the exterior derivative along the M factor of R x M .

Use H to denote the Hilbert space completion of the space of compactly supported
sections over Rx M of iT*M &S @ iR using the norm whose square is defined to be

(1-13) e =/ (V6] + 6P,
RxM

where V is the covariant derivative that is defined on sections of i T*M &S ® iR as
follows: View iT*M @ iR as iT*(R x M). This done, then V is the Levi-Civita
covariant derivative on the i 7* (R x M) factor. View the connection A as a connection
on the pullback £ — R x M and likewise view A as a connectionon K~ ! —Rx M .
The latter with the Levi-Civita connection define a covariant derivative for S — R x M .
The associated covariant derivative gives V on the S factor. Meanwhile, use L to
denote the L? completion of the space of compactly supported sections over R x M
of iT*M &S ®iR.

If the spinor component of 0 is bounded, then ®; defines a bounded, linear map from
H to L. If 0 is an instanton, and if both the ¢ = limg_,_o0 05 and ¢4 = limg_ 00 0|5
versions of (1-9) have trivial kernel, then 3, in this context is Fredholm. In the latter
case, 0 is said to be nondegenerate when the cokernel of this Fredholm map is trivial.

Part4 Suppose that ¢ and ¢4 are nondegenerate solutions to (1-8). Let M (c—, c4)
denote the space of instanton solutions to (1-11) with the following properties: First,
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the s — —oo limit of ? is ¢ and the s — oo limit is gauge equivalent to c4 .
Second, the Fredholm index of ©; is equal to 1. Note that this set depends only on
the gauge equivalence classes of ¢— and ¢4 in the following sense: Suppose that
ueC®M;U1)). If o= (A,%) € Mi(c—,cq), then ud = (A —u"'du,uyy)
M (uc—,cq).

If 0 € M (c—, ct) is nondegenerate, then 9’s component in M (c_, ¢4) is a smooth
1 —dimensional manifold with a free R action that is induced by R’s action on Rx M as
the group of constant translations along the R factor. As a consequence, all instantons
in 0’s component are also nondegenerate. If M (c—, ¢4) contains solely nondegenerate
elements, then it has a finite set of components. All this is explained in the bible on the
subject of Seiberg—Witten Floer homology, Kronheimer and Mrowka [9].

If ¢ € M” is nondegenerate, then there are versions of the Seiberg—Witten Floer
cohomology cochain complex whereby ¢ labels a generator. If ¢— and ¢4 are both
nondegenerate elements in M”, and if M (c—, c¢4+) consists of solely nondegenerate
instantons, then there are versions of the Seiberg—Witten cochain complex where ¢_
and c4+ label generators; and where the elements in M (¢c—, ¢4 ) are used to compute
the integer that multiplies ¢— when writing the coboundary of ¢4 in terms of these
generators. This is explained in Chapter 20 of [9]. A very brief summary what is said
there is given next in Parts 5 and 6 of this digression.

Part5 Let c— and ¢4 for the moment denote a given pair of nondegenerate elements
in Conn(E) x C®(M;S). Use P = P(c—, c4+) to denote the space of piecewise
differentiable maps from R to Conn(E) x C*°(M;S) that have s — —oo limit that is
gauge equivalent to ¢— and s — oo limit that is gauge equivalent to ¢4 . Each 0 €3
has its corresponding version of ®; as given in (1-11); but now viewed as a Fredholm
operator mapping H to IL.. Quillen [11] showed (in a somewhat different context) how
such operators define a real line bundle, det(®) — . If 0 € B is such that either the
kernel or cokernel of ®; is nontrivial, then the fiber of det(®) at a given d € P has a
canonical identification with A™* (kernel(Dy)) xXr (A™** cokernel(Dy))*.

Introduce A(c—,cy) to denote the orientation sheaf of det(®). As explained in
Chapter 20 of [9], this sheaf has the following properties: First, it is suitably gauge
invariant and has gauge invariant orientations. Second there is a canonical isomorphism
between A(c—,c4+)* and A(c—, c4). Third, if ¢y € Conn(E) x C*®(M;S) is likewise
nondegenerate, then there exists a canonical composition law isomorphism between
the modules A(c—, ¢g) ®7/27 A(co, c+) and A(c—,cy).

These properties have the following consequences: Any given nondegenerate element
¢ € M" has an associated Z /27 module, A(c), such that if ¢— and ¢4 are any
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two nondegenerate solutions to (1-8), then there is a canonical isomorphism between
the modules A(c-) ®z/27 A(c4+)* and A(c—,c4). This understood, a choice of
0(c—) € A(c—) and 0(c4+) € A(c4+) defines a unique element in A(c—, c4).

Part 6 Let M”  C M’ denote the subset of nondegenerate elements. A collection
of orientations {o(c—, ¢4+) € A(c—, c4)}c_,c er ™ is said to be coherent if there exists
a corresponding set of orientations {0(c) € A(c)}cepr™ such that any given o(c—, c4+)
is equal to o(c—)o(c4).

The relevance of this orientation business to the problem at hand stems from the
following fact: Suppose that ¢_ and ¢4 are nondegenerate solutions to (1-8), and
suppose that 0 € M (¢, ¢+ ) is also nondegenerate. Then the restriction of A(c—, ¢4) to
0’s component of M (c—, c4) is canonically isomorphic to the latter’s orientation sheaf.
With this understood, fix orientations {o(c) € A(c)} ¢ \qr* SO as to define a collection
of coherent orientations for {A(c—,c4)}, cLeMr - Use these orientations to define
the orientation for the components of {Mj(c—, c4)} cLemr* with nondegenerate
instantons. This orientation is denoted in what follows by 0g.

Let M C M;(c—, c4+) denote a component with nondegenerate instantons. The generator
of the R action on M also orients M . This orientation is denoted by og. Now view
c— and c4+ as generators of the Seiberg—Witten Floer cohomology complex. Then M
contributes +1 to the sum that defines the multiple of ¢_ in the coboundary of ¢t
when 0g = og. Otherwise, M contributes —1.

With the digression now over, fix L > 1 and assume the following about the contact
1—form a and the element J € 7,

e There is no element ® € ZeLCh with Z(y,m)e@) ml, = L.

* Suppose that y is a Reeb orbit with £, < L. Then y has a tubular
neighborhood map ¢: S! x D — M as described in Part 2 of Section
1.a such that if y is hyperbolic with rotation number k, then (v, u) =
(1-14) (%k, igetk) with & > 0 but very small. Meanwhile, if y is elliptic, then
its rotation number R is irrational. Furthermore,
(i) The pair (v, n) = (%R, 0).
(ii) The ¢*-pullback of T1:°(R x M) is spanned by ds + ia and
£y /2m)(dz —iRzdt).

Fix a 1-form pu € Q with P-norm less than 1 for use in (1-8), (1-9) and Theorem 1.1
in [14]. Use the latter theorem to define the large r versions of the map ®”: Z eLch - M".
Use the large r version of Theorem 1.2 in [14] to define the map W for any given

ordered pair (©_, ®4) with both elements from Zelgh. Recall that W is an injective
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and R —equivariant map from M (®_, ® ) into the space of instantons with s — —o0
limit equal to in the gauge equivalence class ®" (®_) and with s — co limit in the
gauge class ©"(04).

Theorem 1.2 Fix L > 1 and a pair (a, J) as above that obeys (1-14). There exists
k > 1 with the following significance: Define M" using r > k and the 1-form pu € Q
with P norm bounded by 1. The maps {\P’}(®_,®+)€ZechL from Theorem 1.2 in [14]
can be constructed so that:

e Let ®_ and ®4 denote any two elements in Ze];h, and use c¢_ and c to denote

solutions to (1-8) from their respective images in M" via the map ®" .

(i) The image via ¥" of M{(©_, ®4) lies in M;(c—, c4+) and it contains only
nondegenerate instantons. In particular, its image consists of a union of
smooth components of My (c—,c4).

(ii) The differential of " maps the generator of the R action on M1(®_, ®)
to the generator of the R —action on its image in Mj(c—, ¢4).

e There is a coherent orientation for the collection {A(c—, ch)}c_,ch epmr* Wwith
the following property: Let (®_,0_) and (®4, 04+) denote any two generators
of CechL. Use c_ and ¢4 to denote solutions to (1-8) from the respective ®”
images of ®_ and ®4 in M" . The pushforward via V" of the orientation Oecn
agrees on its image with that defined by the coherent orientation for A(c—, c4).

This theorem is proved in Section 3 of what follows.

Given that the map W" is surjective onto M (c—, c4+), then Theorem 4.3 in [13] follows
directly from Theorem 1.2 here and Theorem 1.2 in [14]. The fact that the large r
versions of W are surjective is proved in the final paper of this series [15].

1.c Notation and conventions
The notation used in what follows comes mostly from [14] where the maps ®” and
W are constructed. This said, the reader should be familiar with this reference.

As in [13; 14], it is always the case that ¢y denotes a constant that is greater than 1 and
is independent of what ever relevant data is under consideration. The precise value of
co can increase between subsequent appearances.

As in [14], it is useful to have chosen a fixed “bump” function on R ; this is a chosen
smooth function x: R — [0, 1] that equals 1 on (—o0, 1—56] and value 0 on [% 00).

An index for the notation used in what follows is provided in the last section of the
article, just prior to the references.

Acknowledgements This work was supported in part by the National Science Foun-
dation.
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2 The proof of Theorem 1.1

Fix an element © € Z and then a collection {c,: S'— Cm}(y,mye® Where any given c,,
is a nondegenerate solution to s version of the equation (i/2)¢' + V{19 4| . =0. This
data comprises an element, x € €O*. If r > ¢q , then Theorem 1.1 in [13] supplies a
solution, ®” (x) € Conn(E) x C®(M;S), to (1-8) with the latter defined with some
given choice for u € Q with P—norm bounded by 1. Section 2.a proves that " (x) is
a nondegenerate solution to (1-8).

Let x— and x4+ denote two given elements in CZ*. Section 2.d proves Theorem 1.1’s
assertion about their relative degree.

2.a Nondegeneracy

Define x as above and introduce ¢(x) = (A4, ¥) to denote @ (k). This pair is written
as (Ag, ¥3)+((2r) 1/ 2by, n3) where notation is used is as follows: First, J here denotes
the set {(¢y.&y)}(,m)e® Where any given (y,m) € © version of &, is the section
over S! of ¢y *T1,0€m that is described in Lemma 3.10 of [14]. Second, (A3, y3) is
described in Section 3.a of [14]. Third, by = (b3, n3, ¢3) is what Lemma 3.10 in [14]
denotes as b(&) for & the point in x(y’m)e@L%(S I ¢, * Ty ¢m) with components
(¢y)(y.m)c@ - This by is a section of the bundle i 7*M &S @ iR it obeys an equation
that has the schematic form

2-1) Leosb+r20xb =0,

where c¢gj denotes (A, v¥3) and where v is described in Section 3.c of [14]. The
bilinear map (bq, by) — by * by has respective i T*M , S and iR components

o —V2)lmiTna +matom),
(2-2) = clby)ny +cl(b2)ny + in2 + danis
o —2vV2)T T —nm).

The proof that ¢(x) is nondegenerate is done next in ten steps.

Step 1 This step outlines an argument for the assertion that c¢(x) is nondegenerate
that makes direct use of the various contraction maps that are defined Section 3 of [14].
Steps 2—-10 provide a somewhat longer proof whose presentation is justified by its
derivation of various inequalities that are used in Paper 4 [15] of this series.

To start the short proof, remark that the operator £, sends any given section § of
iT*M &S @iR to

(2-3) Lef = Loyt + 2020y 1.
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To prove that ¢(x) is nondegenerate, it is enough to prove that (2-3) is surjective. Thus,
fix a section h of iT*M & S @ iR so as to see if there is a section f that obeys
Lepf=Dh. Now, fix e € (=100 100y T et v, =v4h. Let £ = (¢y)(y,m)ee denote
for the moment a given element in Xy, ) co L%(S L c; T1,0¢y,) with small norm. Let
J for the moment denote the data set {(¢y,&y)}(,,m)e@, and define cgy = (A3, ¥y)
as done in Section 3.a of [14]. Now consider first solving (2-1) with v replaced by v,.

A repeat of what is done in Sections 3.d-3.f of [14] finds a unique element £° €
x(%m)egL%(Sl; ¢y T1,0€m) with small norm and a section v, of i 7*M &S®iR that
obey the v, version of (2-1) and are described by the v, version of Lemma 3.10 in [14].
The contraction mapping construction of b® using the v, versions of Lemmas 3.5-
3.7 in [14] and the contraction mapping construction of £¢ using the v, versions of
Lemmas 3.8-3.9 of [14] guarantee that both b® and £° vary smoothly with ¢ and give
at ¢ = 0 the data that is used to define ®" (x).

Granted this differentiability, note that the derivative at ¢ = 0 of the v, version of (2-1)
can be written as £'f' = b, where {’ is a certain section of iT*M &S @ iR and £’ is
a certain first order elliptic operator. Note in this regard that it follows that the i 7* M
and S components of £'f" are the same as those of £,(y)f". This follows from (2-2).
However, it is not necessarily the case that the /R component of £'f’ is that of £ (y)f .

Let J henceforth denote {(cy,&y)}(y,myee With & = X, myeeéy now denoting the
element in x(y,m)E@L%(Sl; c; T1,0€m) that is used to define ®"(x). Write f =
(b', 1", ¢’). The desired solution to £(x)f = b has the form f= (b’ — Qr)~Y2du, n +
uyy, ¢’) with u an iR valued function on M . An addition to § of this sort does not
change the iT*M @& S part of £,(x)f by virtue of the fact that /3 obeys the 4 = A3
version of the Dirac equation. Meanwhile, there is a unique choice for u that makes
the /R component of £.(x)f equal to the iR component of b.

Step 2 Fix (y,m) € ©. Introduce from Step 1 in Section 3.a of [14] the open
neighborhood U, of y. Step 3 in Section 3.b of [14] introduces a pair of 2—dimensional
complex vectors spaces that it denotes as Vy and V;. This same part of [14] goes on to
describe an isomorphism over R between i T* M @S®iR over U, and U, x(Vo® V).
Let x, denote the cut-off function with support on U, that is defined in Step 2 of
Section 3.a in [14]. Let pyo: S1 x C — V; denote the & = 0 version of what is
introduced in Step 1 of the proof of Lemma 3.10 in [14]. View (0, p,0) as a section
over Uy of iT*M &S@iR. As such, Z(y,m)e(@ Xy (0, py0) defines a section over M
of the this same bundle. Write the i T*M @& S part of this section as (bx, ). As it
turns out, the /R part of p, o is zero; this can be verified using the description of p,, ¢
that is given below just prior to (2-32).
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Let (A*, ¢¥*) denote the version of (A, ¥3) that is defined in Section 3.a of [14] using
the data {(cy,&, = 0)}. Use £« in what follows to denote the version of (1-9) that is
defined by (A, ) = (A* +2"2r1/2p, y* + n,). The operator £ is used to prove
that £.(x) has trivial kernel.

Step 3 This step is a digression to remind the reader of some of what is said in Section
2.a of [14] about solutions to the vortex equations. To start, recall that the (1, 0) tangent
space to any given vortex ¢ = (A, ) in &, is the vector space of square integrable
elements in the kernel of the operator ¥, on C*°(C; C @ C) that is defined by

(2-4) 9e(q, ) = (3q +272@c, 9 4¢ + 27 2ag).

Use kernel(9,) in what follows to denote this vector space of square integrable elements
in the kernel of ¥.. The Kahler metric on 77 0C|. is 7! times the L? metric on
kernel(?,).

Step 4 To start the story on the operators £« and £(y), introduce, as done in Step 4
of Section 3.b in [14], the orthogonal projection I1g = I1g—¢ on the Hilbert space L. =
L>*(M:;iT*M &S @iR). Use I to split L =L+ @ Iy where L+ = (1 —1I,)L.

By way of a reminder, an element in IToLL can be written as ¢(f) where 6 =
Oy)(y,myeo € @(y,m) L2(SY; c; T1,0%,) and where

(2-5) t: Bymy L (S S T1,0€m) = ToL

is defined as follows: Step 1 of Section 3.a in [14] uses a small, positive number, p«,
to define the map ®”. A particular choice is made in (4-8) of [14]. The homomor-
phism ¢(6) has support on the radius p, tubular neighborhoods of the Reeb orbits from
©®. To see what ¢ looks like near such an orbit, fix (y,m) € ® and use the associated
coordinate chart in (1-1) to view neighborhood of y as S' x D ¢ S! x C. View
iT*M &S @iR as the restriction of the product bundle (S x C) x (Vo ® V;) with
Vo and V; defined in Step 3 of Section 3.b in [14]. Fix t € S! and an L?(C;C @ C)
orthonormal basis, {ex(-)}1<k<m for kernel(d,,,), this the ¢ = ¢}, |; version of (2-4).
In the context of (1-14), ¢, is the constant map to €, and in which case such a basis
can taken to be independent of € S!. In any event, write the components of Oyt
with respect to this basis as {0, x (t)}1<x<m - Then ¢(6) pulls back to S 1'% C as the
map to Vo @& V; with V; component zero and with Vy component at (¢, z) given by

1
(2-6) 3 2zl 00y k() —=e (r)?2).
1okem P m Y

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology 111 2737

Note that the homomorphism ¢ is almost an isometry with respect to the L2 norm
on [L and on the space @(y,m) L2(S1; ¢ T1,0€m). This is because

(2-7) tT(£(0)) = 0 + v(0) where |v(8)| < cor~"/?|6].

Moreover, if 8 € L%, then ||7’(9)“L% =< cor_1/2||9||Lz. Here and below, subscripts L2
and L% indicate the respective norms of sections of bundles over S!.

Any given f € L is determined by - e L+ and t(f) € Dy .myco L*(SY; 3 T1,0€m).
With regard to the latter, let ¢ (f)y denote the (y, m) component of tf (f). Then

2-8) 11y | < cor/? /C X(p (eI )

This implies what (2-7) also implies: The L2 norm of ¢(f) is bounded by ¢ ||l .
Here, the notation uses | - ||, and, below, |- |, to indicate the L2 and L?>2 norms
for a section of a bundle over M .

Use H now to denote the Hilbert space that is defined as in Step 1 of Section 3.b
in [14]. The norm is given in (3-7) of [14]; it is the same as that depicted in (1-13)
with the integration domain M rather than R x M . As noted in Step 4 of Section 3.b
in [14], the projection 1y maps H to itself. This understood, write H as H~+ @ IToH
where H+ here denotes the L2 orthogonal complement in H to TTH. An element
f € H is written with respect to this splitting as f = f- + £(6).

Step S This step and the next consider £(x) — £«. It is proved momentarily that
1((Lery = LDz < o 72§l + 1911 L2)-
17 ((Ceeoy = LDz < o~ r AT T + 1611 2).

To start the proof of (2-9), reintroduce the notation from Section 3.f and Lemma
3.10 of [14] so as to write b(§) = b,g +¢g. Now write (Az, ¥3) = (4™, ¢*) +
(21/2712bg ne) where (A%, ¥*) is the {£, = 0}(,.m)c@ analog of (A, ¥3). Use t
to denote the sum of (bg, n¢) and the iT*M @© S component of b,g — bs. Granted
this notation,

(2-10) (Leo) = L)f = 1V 2t s f 4 11 2ee 7.

(2-9)

The inequality in (2-9) is proved by establishing suitable bounds on the norms of the
two terms that appear on the right hand side of (2-10) as applied first to fJ- and then
to ¢(0).

The L? norm of r 1/225 % {1 is bounded by

(2-11) P2 eellalF e < cor ™ llegllm i I < cor /415 [l
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Indeed, this follows using Holder’s inequality with the Sobolev inequality in (3-9)
of [14]. Meanwhile,

(2-12) r2[leg e £(6) |2 < cor |l Los llegll2 < 60r1/2||9||Lg||es||H < 60r_1/2||9||L%-

This uses (2-6) to bound |£(6)| by cor'/? times the sup norm, ||6]| 0, of 6. Mean-
while a standard Sobolev inequality asserts that ||6]|co < co||€]| L2 These last two
inequalities are consistent with what is claimed in (2-9).

The analysis of r!/ 2’(5 *  uses the fact that

[tel <collgllzee Y emVrAMCII00,
(y,m)e®
Since the L°° norm is bounded by its L% norm, and as the latter is bounded by cor~1/2,

so |tg| is bounded by cor~1/2 2 (y.m)e® e~ ~/7 dist(.¥)/100 Thig understood,
(2-13) P2t 72 < coll 12 < cor™ 2l

By the same token, the L? norm of rl/ztg x t(0) is bounded by ¢g||t(0) ]2 < collO|l 2.
In particular r1/2||(t§  £(0)) L2 < coll0] L2

Note that the bounds given so far prove the first line of (2-9).

Step 6 The L2 norm of r!/2¢T(t¢ * t(6)) is bounded by ¢o||6|| 2. This follows from
the just described L2 bound on r!/ ztg % t(0). As is explained next, the L2 norm is in
fact bounded by cor~1/2 ”9”L%'

To see how this comes about, it is necessary digress so as to consider in more detail
the operation * as depicted in (2-2) near any given Reeb orbit. Start the digression
by fixing (y,m) € ©. Write iT*M &S on U, as U, x (Vo @ V;) as in Step 3 of
Section 3.b in [14]. This done, view a section u of iT*M & S over U, as a map,
(o, uy), from U, to Vo@ V. Let tv = (wp, wy) denote a second section, also written
as amap to Vo @ V;. In this notation, write

(2-14) (uo. uy) * (wo, w1) = (yo. ¥1)-

Then

(2-15) [yol = co(luollwi|+|urllwo|) +vo and [yi| =co(luollwo|+ [u1]lwi])+11,
where [vo,1] = co|z||ul[ro].

Granted the preceding, now recall that there are two contributions to tg: The first
is what was written above as (bg, ¢) and the second from the i7*M @ S part of
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byg — bg. Both have support only in {Uy }(y m)yee. Written as a map from U, to
Vo @ Vi, the contribution to tg from (bg, ng) has the form (wo, wq) where

(2-16)  |wol = ColléllL%e—ﬁlzl/wO and |w;| < co||§||L%|Z|e_ﬁ|Z|/100,

Indeed, this follows from (2-9) in [14]. Meanwhile the contribution to tg¢ from byz— by
appears as (wg, w;) where

[wol < co(r™ 2l 2|z]e™VIEV100 7).
@17) :
lwi] < C()(r_l/Z”%-”L%e—ﬁ\zvloo + V_l).

Given that the L% norm of & is bounded by cor~!/2, these last observations with
(2-15) and (2-16) imply that

(2-18) 2 g+ @)z < cor™2)16] .

This last bound plus what was proved earlier about the f contributions imply the
second line in (2-9).

Step 7 This step derives some fundamental norm inequalities for £.f. To this end,
write | = -+ t(6). With f written this way, the L+ component of £,f and the image
of £4f under ¢t can be written schematically as

(L)t = &+ p(0).

2-19
19 tT(&4f) = o'+ + Do

Here, £ = (1 — I1y)£«(1 — ITy). Meanwhile, D is viewed in what follows as a
linear map from P, ) L%(S1 ;¢35 T1,08m) 10 Dy m) L2(ST; ¢y T1,0€m). As such,
it is also diagonal and so written as D = (Dy)(,,m)e® - By the same token, p maps
DB ymeco LI(S 5Ty 0€py) into Lt

What follows addresses the norms of the various terms that appear in (2-19). Start with
| €], . Given Lemma 3.2 from [14], and given that |bs| < cor~'/2, it follows that

(2-20) €552 = e Il
Meanwhile, (3-13) and (3-14) in [14] and (2-6) imply that
(221) 1912 < coll6] 2.

As for pT(fJ-), the argument used in Step 2 of the proof of Lemma 3.8 in [14] has
what is in essence a cosmetic modification that proves

(2-22) T2 < cor ™25 |
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The next lemma gives the fundamental observation about D.

Lemma 2.1 There exists a constant k > 1 such that if r > k, then the operator D in
(2-19) obeys ||DO|| 1.2 ZK_I(I—KV_I/Z)H@HL% forall 6 € X(y myeo L3 (S, ATy 0Cm).
Indeed, fix (y,m) € ® and write the corresponding components of 6 and DO as 0,
and (D0),,. Then up to an overall y —dependent factor,

i
(DQ)V = Evtey + (V(GV)RVI’OﬁNcy + ¢y,

where ¢, is such that |[ey| ;2 < cor_1/2||9||L%. Here, as in (1-7), V; denotes the
covariant derivative on c; T1,0%m and (6,)Rr denotes the vector in T'€,, defined by 0,,.

This lemma is proved shortly.

Lemma 2.1 with (2-21) and (2-22) imply that

(2-23) 124713 = co ™ (IF g + 10172)-

To see how this comes about, note that (2-22) and Lemma 2.1 imply that
(2-24) 124715 = cg ST+ 9@z +co™ 10172 = cor™ Il
Meanwhile, the right hand side of (2-24) is no less than

_ 2 _ _
(2-25) eco” IEH " —ellp(@)l2” + o™ 10172 — cor ™ I I,

where ¢ can be any given number in (0, %). What with (2-20) and (2-21), this last
inequality implies (2-23).

Step 8 This step finish the proof of that £(x) has trivial kernel. To this end, introduce
as notation o to denote £(x) — £«. Now observe that

(2-26) 1€ fl3 = e U1 + )P H I3 + 11T (L4 + O)f)lli%)-
What with the last line in (2-9) and (2-20) and Lemma 2.1, this implies that
(2-27) ILccnflI3 = cg (€ + )P TII3 + coll6 IIi% — cor ™ [F 115y

Now write (£4 f)1 as 5§+ + ©(6) and use the first line of (2-11) to see from (2-27)
that

— 2
ILecoflla? = (ecg IS5 112" = ellp(@)12° 161172

2 —1yely2
+Co||9||L%—COV 17~
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for any ¢ € (0, %). For a suitable ¢ = ¢ 1 this last inequality with (2-20) and (2-21)
prove that

(2-29) ILecoflla® = g (IF- I+ 10117)-

This with the fact that ¢ is nearly isometric as a map from EB(y’m) c® L2(SY; c; T1,0%m)
to I proves that £(x) has trivial kernel when r > ¢q.

Step 9 This step and the next contain:

Proof of Lemma 2.1 In order to identify DO and so prove Lemma 2.1, it is necessary
to return to (3-13) in [14] for it is the latter equation that gives the D part of £,.
Equation (3-13) in [14] has terms designated as voo and to;; and their O(1), O(|z|d)
and O(|z|d) make an O(1) contribution to DO. This understood, fix (y, m) € © and so
as to view the (y, m) component of D(-). A somewhat more detailed analysis rewrites
the contribution to the (4™, ¥*) version of (3-13) in [14] from a section fo = (¢, 10)
of Vg as

27\ (i 0 _ 0 _ _ 0 _
2\ — ——(]—(VZ+MZ)3—Z(]+(VZ+MZ)3—E(]+W]+/MI +tx0

L, J\20t
(2-30) ) ;
. ~ o
2(7) (EVrAy no— (vz+ uz)dg,no+ (VZ +1z)dg, 770) +ru1,
y

where [tyo(Fo)| + [tx1 (Fo)| < co(lz|([fol + [Vefol) + 121 Vol)-

Fix 1o € S! and then fix an L?(C;C @ C) orthonormal basis, {ex(-)}1<k<m for
the kernel(?,,,,) for z € § ! near 7. Assume that this basis varies smoothly with ¢.
Write the (y,m) component of @ at points ¢ € S! near #y in terms of this basis as
> 1<k<m Oy k(1) e . Likewise, write ), _; -, (D), x ¢ for the (y,m) component of
DO . Now use (2-6) and (2-30) to see that the contribution to D from (2-30) is given by
22w /Ly ) times

i 1 [_ = 1 R
(2-31) EVtGy,kJrv Z 0,,,,;/ Llj + 1 Z 9%]’;/ XpXj +e,
1<j<m c 1<j<m c
where the notation is as follows: First, V; denotes the covariant derivative on c;'j T1,0Cm.
Meanwhile, any given pair ¢ and xj are the two components of ¢; . Finally, what is
written as e obeys |e|/;2 < cor_1/2||9||L%.

What is written in (2-31) contributes to y’s component of DA, but it is not the end
of the story because there is still the contribution to £« from (b4, n«). To see the
contribution from (b«, n«), recall that (b«, n«) near y isthe iT*M @& S portion of
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amap to Vo @ V; thatis given by (0,p,0) with p, o descrlbed as follows: Rescale
by ry/ s0 as to write P, (¢, z) as v(t)u(t, ry/ z) + u(t)r(z, ry Z) Then u and to

obey

ol 1—T)[z2~Y2(1 = |a|?). d =0,
o) u+ (1= o)z 2(1 — ||?), d40)]
9T + (1 - ) EQ2(1 — |a|?), d40)] = 0,

where the notation is as follows: First, (4, «) here denote the vortex ¢, . Second, ¥ is
the operator from (2-4) as defined by this same symmetric vortex. Second, IIy denotes
the projection onto the kernel of ¢. In the case when ¢, is the symmetric vortex,

(2-33) u=—-02"2za7'940.0) and form=1, w=—(0,Za ' (1 —|«|?)).

In the general case, it is a consequence of (2-7) in [14] and the top line in (1-5) here
that u = (»,0) and w = (0, g) where y and ¢ obey

— 1 - 1
(2-34) —88y+§|a|2y:—2_1/2(1—|a|2) and —8A8Ag+§g:—8Aa.

The contribution to (D8),, from (b«, n4) adds to what is written in (2-31) so as to give

i 1 _ 1
(De)y=§Vt9y’k+v Z Qy,j;[;tktj(l—ﬁy)

1<j<m
(2-35) _ { !
) By / (_?_Ck)_cj_‘C(?_Cij +m>)+e
1<j<m TJc \/E :
where ¢ again denotes a term that obeys ||e||;2 < 007_1/2||9||L%- ad

Step 10 Granted (2-35), then Lemma 2.1 follows from:

Lemma 2.2 Letv eR and u € C denote a given pair of numbers. Fix m € {1,2,...}
and use the pair (v, jt) to define the function h: €, — R as in (1-6). Fix c = (A, «) €
¢, and define the functions y and ¢ as in (2-35). Let {ex = (Xg, tx)}1<k<m denote
an orthonormal basis for the L? kernel of the operator ¥, and thus an orthonormal
basis for Ty oCp|.. Write a given vector { € T10€mlc as { = D 1 <k<m tkey, and
write (V;RVI’O h)|c in terms of this basis as Y 1< j<m H¥ ¢, . Then

1
k—y ZJ th-(l——y)
2 e kw5
|
o Y Y= /([ ka_EC(kaj+ijk))-

1<j<m
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Proof of Lemma 2.2 Extend the orthonormal basis {ex =(xx, )} 1<k <m for T1,0€m|c
to a neighborhood of ¢ so as to have vanishing covariant derivative at ¢. Fix a smooth
function f: C — C with |z|®|f| bounded for some R > 1. Consider for the moment
the section, f, near ¢ of 77 0C;, whose ¢ component is given by

(2-36) £%.

7

The covariant derivative of § along ¢; at ¢ has component along e, equal to

1
2-37 —/ of uz.,
( ) V27 Jc ki

where uj; j is the L2 solution on C to the equation

— 1 Y
(2-38) —aau];j + §|Ol|2u];j =-2 1/2thj.

Meanwhile, the covariant derivative of § along €; has component along ¢ equal to

1

2-39 —
( ) 2 Jo

fo Wi
where wy; is the L? solution on C to the equation

- 1
(2-40) —8A8Awkj+§wkj :—2_1/2(xktj + Xjlg).
These formula for the covariant derivative of f follow from (2-7) and (2-10) in [14].

Now write £ = f, + A, where

1

m=7/wﬁaAWL
(2-41) T JC

_ =2 = 201 2
=g |0+ E2 =P,

Consider first VV1:0£, . To this end, use the top line of (2-13) in [14] to write the ¢
component of V1:04, as

1
2-42 — Xk -
(2-42) vﬁn[;”k

It then follows from (2-37) that the ¢; covariant derivative of the latter is equal to

1
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With the preceding understood, note that integration by parts using (2-38) and the left
hand equation in (2-34) yields the equality

(2-44) / (1 —laPug; = / Ykl
C C
Meanwhile, integrating both sides of (2-38) over C finds that

(2-45) / o Pug = 2112 / Tt
C C

These last two equalities imply that

1 1
2-46 —/TL' 1—271/2 =——/ ur ..
( ) 7 Jc kj( y) «/E]T C kj

As explained momentarily, the covariant derivative of V1:°4, in the direction of ¢;
has ¢; component equal to zero. Thus, the term proportional to v in the lemma’s claim
for H¥ is equal to Ve (V104,). To see about the €; derivative of V1:0£,, use (2-39)
to write its ¢, component as

1

(2-47) _VE ; ZQWg7

To make something of this equation, multiply both sides of (2-40) by —v(1/7)za and
integrate the result over C. What with the second line in (1-5), integration by parts
finds the left hand side of the resulting equality to be the complex conjugate of the
expression in (2-47). Meanwhile, the right hand side of this same equality is equal to
the integral over C of —v(1/m)zd(xxx;). This uses the fact that ¥.¢; = 0 and thus
oxy + 2~V 2@, = 0. Thus, an integration by parts finds (2-47) equal to zero.

Consider next Vg, (Vl’oﬁu). The ¢; component of Vl’oﬁﬂ is equal to

1
2-48 —p—— | X
(2-48) M\/En/;ZXk

It follows from (2-37) that the e; covariant derivative of the vector field on C depicted
in (2-43) is zero. Meanwhile, the ¢; derivative of (2-43) can be written as
1

(2-49) —p—
2w Jc

Zo IEE
To proceed from here, note that integration by parts using (2-40) and the right hand
equation in (2-34) gives the identity

1

1 [ -
2-50 —_— c i i = — 040Wy ;.
( ) \/EJT L Q(thj T Lk) v /(C A
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An integration by parts, and then a second integration by parts with an appeal to the
second bullet in (1-5) finds the right hand side of (2-50) equal to

1 —
(2-51) —/ 28040 4wy ;-
T Jc

Now use (2-40) to write this last expression as
1 1

(2-52) —/ Zowg;i + —/ za(Xgtj + Xjtg).
7 Jc T Var Je s

To continue, write @ty as —+/20xy and integrate by parts yet again to see that (2-52)
is equal to

1 1
(2-53) —[ ZOWkj +—/ X Xj.
T Jc T Jc

Thus, (2-50) implies that

1 _ 1 1 _1
(2-54) —E/CZOZU)]W' Z;/(C(EXka—gz(Xklj +thk)).

Thus, the term proportional to /4 in what the lemma asserts is H¥ is Ver (VHOh,). O

2.b The relative degree formula: Part I

Let x— and x4+ denote a pair of elements from CZ* . The previous section proves
that the large r versions of both ¢ = ®"(x-) and ¢4 = ®"(x+) are nondegenerate
solutions to (1-8). This is to say that the ¢ = ¢4 versions of the operator £, in (1-8)
have trivial kernel. The subsection and the next two prove the formula that Theorem
1.1 asserts for the difference deggy (c4) — deggw(c—). Assume here and in the next
subsection that both ®_ and ©® are such that if (y,m) is in either of these sets, then
y has a tubular neighborhood map ¢: S' x D — M with the following properties:

e If y is hyperbolic, then m = 1. Furthermore, (v, u) = (%k, ieetkt) with
k € 7Z and with & > 0 but very small.
If v is elliptic, then its rotation number R is irrational. Furthermore,
(1) The pair (v, u) = (%R, 0).
(ii) The ¢*—pullback of T1O(R x M) is spanned by ds + ia and
(£y/(@2n))(dz —iRzdt).

(2-55)

It is a consequence of Lemmas 2.1-2.4 in [14] that x— and x4 are as follows: If
(y,m) is in either ®_ or ®, then the associated map from S! to €, is the constant
map to the symmetric vortex; this the solution to (1-5) with a~1(0) =0 € C.
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Much of the notation that appears in these sections comes from Sections 4—7 of [14].
The discussion in this subsection has eight parts.

Part 1 Fix a smooth, oriented, embedded surface ¥ C R x M with no compact com-
ponents whose projection to M defines a homology between the cycles X, m)ee_my
and X, myee,my . To be explicit, fix R > 1 as in (4-8) of [14] and require that the
|s| > R portion of X be a disjoint union of embedded cylinders. Each such cylinder
is deemed an end of X. These ends behave as follows: Let (y,m) € ®_. Then
there are precisely m ends of ¥ where s < —1 whose constant s slices converge
as s — —oo to y as a degree 1 braid in a tubular neighborhood of y. Such an end,
‘E, appears as follows: Extend the coordinate map ¢ in (2-55) to give coordinates
(w,t,z) € R x S x D to a neighborhood of R x y in R x M via the map that sends
any given point (w, ¢, z) to the point (s = w — %|z|2, ¢(¢,z)). The end E appears in
these coordinates as the graph of the map from (—oo, —R]x S! to D that sends (w, t)
to z = zzc(t)e”2*¥ . Here A is the largest of the negative eigenvalue of y’s version
of (1-2) on S! = R/27Z and ¢(¢) is the corresponding eigenvector. Meanwhile
zz € C — 0 is an m—th root of unity, chosen so that zz # zz when E and E’ are
distinct ends whose constant s slices limit to . Each s > 1 end of X has an analogous
description but with A the smallest positive eigenvalue.

With ¥ fixed, introduce Uy — R x M to denote a tubular neighborhood of ¥’s
intersection with [-4R,4R]. If (y,m) € ©_, let U,— denote the set of points in y’s
version of R x S x D with w < —2R and distance less than 4p4 from y. Here,
P« > 0 is the constant that appears in (4-8) of [14]. If (y,m) € ©® 4, use U, 1 to denote
the set of points in y’s version of R x S x D with w > 2R and distance less than
4p4 from y.

Part 2 Fix an orthogonal, almost complex structure on a neighborhood of ¥ in R so
that ¥ is pseudoholomorphic. Denote this almost complex structure as Jy . Given the
description above for the ends of X, this almost complex structure can be chosen so
that it differs little from the already chosen almost complex structure J where |s| is
large. In particular it can be assumed that |J — Jx| < cge~Is!/c0 |

Let 7: N — ¥ denote the normal bundle to ¥. The almost complex structure Jy
gives N the structure of a complex line bundle over X. Use 6 in what follows to
denote both the Hermitian connection on N and also its pullback to 7* N — N . Also,
use s to denote the tautological section of 7*N . With R fixed, let ¥ g denote the part
of ¥ where |s| <4R. The metric’s exponential map embeds a fixed radius subbundle
of N|x,. The latter bundle is denoted in what follows as N;. This exponential map
is used implicitly in what follows to identify N; with its image in R x M .
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Because Jy is orthogonal, and because X is Jy pseudoholomorphic, there is a self
dual section, wy, of A T*(R x M) over ((—oo, —R]x M) U ([R,00) x M) U Us
whose pullback to X is the induced area form and whose |s| — oo limit in either
direction is the form w, = ds Aa + *a. Given the convergence of Jx to J atlarge |s|,
no generality is lost by requiring that the limit is approached exponentially fast:

(2-56) lim |0y —wa| < coe /0,
|s]—>o00

This form wy, can be chosen so that it appears on N; as
i
(2-57) oy = EVQE A Vg5 + 1* vols +O(Js|?),

where s: N; — 7* N is the tautological section, and where voly denotes the induced
area 2—form on X.

Extend wy; as a self-dual 2—form to the whole of R x M with transversal zero locus,
Z C(—1,1)x M. The form wy, can be modified if necessary so as to insure that Z is
either empty or has two connected components.

To elaborate, there are coordinates near any give component of Z which are such that
sy, appears as

S .
(2-58) oy =dt ANujjxtdx’ + Euijxlefk”dxkdx” + O(|x]?),

where the notation is as follows: The coordinates are on S' x B* where B? c R3
is a ball centered on the origin; ¢ € R/(277Z) is an affine coordinate on S' and
(x!,x2, x3) are the Euclidean coordinates on R3. What are denoted by {u; jh1<i,j<3
are the entries of a smooth map ¢ — u() from S! to SL(3; R). Meanwhile, &/ k is the
completely antisymmetric 3—tensor with £!23 = 1. Finally, the summation convention
for repeated indices are used. The map u may or may not be homotopically trivial.
If it is, there is a further change of coordinates that makes u to be the constant map
to the identity matrix. It follows from an observation of Gompf [4] that wyx can be
chosen so that each component of Z has a version of u that is homotopically trivial.
This extra requirement can be met only if Z has even number of components, and two
components is always sufficient. Assume such a version of wyx and assume that the
coordinates in (2-58) are such that u is the constant map to the identity element.

One more constraint on 2 is required: Assume that the projection from R x M to M
sends Z to the complement of [, myee_ ¥ and U, meo, V-
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Part 3 Let T C (—1,1) x M denote a tubular neighborhood of Z that is disjoint
from X. Use Xz to denote (R x M) — Z. Modity the Riemannian metric on R x M
so that the resulting metric has the following properties: First, this metric should agree
with the original on (R x M) — T'. Second, there is a smaller tubular neighborhood
T’ C T of each component of Z such that 77 — (7' N Z) C Xz is isometric to
the product (D? —0) x S? where D? C C is the disk of radius 1 centered at the
origin with the Euclidean metric. Let X denote the Riemannian manifold that is
obtained by first deleting each version of 7’ from R x M and then attaching D? x S2
using the aforementioned isometry to identify the complement in 7”7 of T/ N Z with
(D?—0) x S2.

The form wy, can be chosen so as to have a modification on 7' that extends to the
whole of X as a self-dual form, this denoted by wy . This form wy has the following
properties: It agrees with wy, on X —7 = (R x M) — T'; it is self-dual with respect to
the metric on X ; and it appears on each (D —0)x S> C T — Z as wy = wp + w2
where wp is the area form on the disk D and wg> is the area form on S? with the
latter viewed as the unit sphere in R3.

Part 4 An oriented, Riemannian 4-manifold with a Sping —structure has the C2
bundles of self-dual and anti self-dual spinors. These are associated to the given
Sping (4) = (SU(2) x SU(2) x S1)/{£1} lift of the principal SO(4) frame bundle of
the tangent bundle. They are obtained by composing the defining representation of U(2)
on C? with the two evident homomorphisms of Sping (4) to U(2) = (SU(2)xS ') /{%}.
These two spinor bundles are described at the beginning of Chapter 1 of [9]. When M
is a 3—dimensional Riemannian manifold, a Spin¢ structure on M induces one on
R x M . If the latter has its product metric, then the SO(4) frame bundle of R x M
is isomorphic to the pullback from M of the SO(4) bundle obtained from the SO(3)
principal frame bundle of M via the standard inclusion homomorphism of SO(3) in
SO(4). The latter isomorphism induces a canonical isomorphism from the self-dual
spinor bundle on R x M, and also one from the anti self-dual spinor bundle, to the
pullback of the spinor bundle over M .

Granted the preceding, view the spinor bundle S; as the bundle of self-dual spinors
on the 4-manifold R x M . By restriction, the associated Spin¢ structure defines an
analogous bundle of self-dual spinors on Xz. The latter is denoted by Sy x . Clifford
multiplication by wy defines a splitting of Sy x on X7 as a direct sum of two complex
line bundles. This splitting is written as

(2-39) Sr.x =L®(LKy"),

where the convention takes the left most summand to be the +i|wy | eigenspace of
Clifford multiplication by wy and the right most to be the —i |wy | eigenspace. Note
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that this splitting is very close where |s| > R to the splitting that is defined by Clifford
multiplication by the 1-form a.

Consider now the line bundles Ky — Xz and L — X . By definition, L restricts to
the |s| > 1 part of X as the trivial bundle and Ky restricts as the bundle K. To say
more, note that the bundle Ky restricts to any (D?—0)x S? end in X as the pullback
from S? of the bundle whose first Chern class is twice the generator of H?(S?;7).
Meanwhile, L restricts to this part of X as the pullback from S? of the bundle whose
first Chern class generates H2(S?;7). Indeed, this can be seen using (2-58) given
that Sy extends over Z. This analysis leads to the conclusion that Ky = L*K.

It follows from what was just said that Sy x extends from X to X as the bundle of
self-dual spinors for a Spinc bundle on X'. Use Sy to denote the bundle L7'®S IX-
This splits as Ic @ Kx ! with respect to Clifford multiplication by wy . Use S E+—X
in what follows to denote (EL™!) ® Six=E® EKx~!. Both Sy, and Sg are
spinor bundles for Spin¢ structures on X .

Part 5 As noted previously, the bundle L restricts to {1} x M as the trivial bun-
dle. Moreover, it has a canonical trivialization here using the section 1¢. With this
trivialization understood, it’s first Chern class has a well defined pairing with %. This
pairing is denoted in what follows by ky;.

To say more about ky, let x* denote the Euler characteristic of . Meanwhile,
let deg(Ny) denote the Euler class of the normal bundle of X as defined using the
section whose restriction to any given end is the real part of d/dz. Let —(cy, X) denote
the Euler class of the restriction in X of K to ¥ as defined using a section whose
restriction to any given end is also the real part of d/0z.

Lemma 2.3 The integer ky, is equal to —%((cl, ¥) + x* 4 deg(Nx)).

Proof of Lemma 2.3 A section of L is defined as follows: Let ¥y denote a unit length
section of S; with the property cl(a)yo = i¥. Then (cl(wy) +i+/2|wyx|) Vo defines
a section of L. The latter vanishes on X at those points where wy = —(ds Aa+ %da).
To see what this means, fix a trivialization of 7* M . This then induces a trivialization
of the R3 bundle of self-dual forms on R x M , and thus its restriction to X. Both
(ds hna+ %da) and wy are nowhere zero, self-dual 2—forms along 3. With this bundle
trivialized, both define a map from ¥ to S? and together they define a map from X
to S2 x S? with limit on the diagonal as |s| — oo. This understood, the image of X
via this map has a well defined intersection number with the antidiagonal in S2 x S2.
This intersection number is ks .
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To write this intersection number as in the statement of the lemma, again view wy
as a map to S?2, and consider its pullback of the tangent bundle of S2. A section of
wyTS 2 is a self-dual 2—form along ¥ that is orthogonal to wy . Fix such a form
with the following property: On any given end in any (y,m) € ©_ version of U, or
(y,m) € ©4 version of U, 4, require that the |w| — oo limit equal the real part of
(dw+idt)Adz. Use u to denote such a self-dual 2—form. Then u(b, b’) =0 if b and
b’ are sections of T'X. Thus u defines a homomorphism from 7' to the dual of the
normal bundle N — ¥. This homomorphism on any given end of ¥ maps the vector
field 0/ds to the real part of dz. It follows as a consequence that the degree of u as a
section of wy * T'S?|x is —(x= + deg(Nyx)) where deg(Nyx) denotes the euler class
of the normal bundle of ¥ as defined using any section whose restriction to any given
end is the real part of d/dz. Consider next the pullback via the map (ds Aa + %da)
of the tangent bundle to S?. A section of the latter bundle is, by definition, a section
of the bundle K. Fix a section whose restriction at large |s| at any given end is the
real part of dz(d/dz). The Euler class of this section is well defined and is equal to
{(c1, K). The claim about ky follows directly from these observations. |

Part 6 Follow the instructions given in Section 5.a of [14] to construct a pair (4%, w;,)
of section of Conn(E) over X and section of Sg4 over X . Note in this regard that
the spinor vy appears as (cy, 0) with respect to the splitting of Sg that is defined
by Clifford multiplication of wy . Here, ax is a section of E that is A} —covariantly
constant on the complement of a neighborhood of X. In particular, A} has zero
curvature and zero holonomy on the [0, 00) x S x S?2 part of X .

Each pair (y, m) € ©_ also has its £ = 0 version of what is denoted as pg in Part 5
of the proof of Lemma 6.3 in [14]. Introduce the corresponding by, = (0, pg—o),
this defined a priori as a map from (—oo, —R) x S! x C to Vo @ V. Define the
set Uy— CRx M as in (5-3) of [14] and view b, on the set U, as a section of
iT*M &S @iR. There is an analogous b, 4 for each pair (y,m) € © 4.

Let C denote the set of components of X. Define the tubular neighborhood U¢ for
each C €C as in (5-3) of [14]. Each C € C has a corresponding section b as defined
Part 3 of the proof of Lemma 6.3 in [14]. This is viewed as a section over the set Uc
of iT*M &S ®iR.

Granted the preceding definitions, introduce

b=Z(xC I (1—xfc>bc)+ D> Xecxy—by-

ceC Eelc E€€c (y,m)e®

+ Z Z XEc Xy+by+,

Ee€c (y,m)e@’

(2-60)
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where Ec denotes the set of ends of C and where x ¢ is defined as follows: Let C €C
denote the component that contains E. Introduce from Part 2 of Section 4.a in [14] the
normal bundle to C with its exponential map, ec, onto a tubular neighborhood of C.
Introduce from Step 1 of Part 1 in Section 5.a of [14] the disk subbundle N4yc — C in
C’s normal bundle. Finally, introduce the constants R, py and Rz from (4-8) in [14].
What is denoted by x«- above is the function on R x M with compact support on
ec(N4c|z) where it is given by the rule xz. = x(4|s|/p) (R + 3R —|w|)/R).

View b as a section of i T*X @ Sg4 over the whole of X which is nonzero only on
the part of X that is isometric to R x M , thus where T* X splits as 7* M @ R. Write
b = (¢,c). Define Ay to be the connection on E over X given by A} + V2ri2e.
Meanwhile, define ¥x to be the section of Sg4 over X given by ¥¥ +¢.

Part 7 Let Sg_ denote the bundle of anti-self-dual spinors on X that is defined
by the Sping structure with self-dual spinor bundle Sg. Let A>T — X denote
the bundle of self-dual 2—forms on X . These bundles appear implicitly in the up-
coming Equation (2-61) which describes an operator D g: C®(X;iT*X ®Sg4+) —
C®(X;iA*T @Sg_@®iR) that plays a central role in the subsequent parts of the
proof.

To start the definition of ® g, fix a Hermitian connection on Kx with the follow-
ing properties: First, it restricts to the |s| > 1 part of X as the connection Ag
on K that is described in Part 3 of Section 1.a. Second, it restricts to each end of
X — X as the pullback of a connection on the S? factor of [0,00) x S! x §2. Use
Agy: C®(X;SE4) — C®(X;SE-) to denote the Dirac operator that is defined by
this connection on Ky and the connection Ay on E. Use dT: C®(X;iT*X) —
C®(X; A*T) to denote the self-dual projection of the exterior derivative. Meanwhile,
use d*: C®(X;iT*X)— C®(X;iR) to denote the formal L? adjoint of the exterior
derivative. The operator © g sends any given section (b,7) of iT*X & Sg4 to the
section of the bundle i A>T @ Sg_ @ iR whose respective components are

o dt6—272r 1 2(yxten Ty,
@61) * Daen+2"212cb)yy
o d*6—2712r 12 (gt yy —yxTy).
Lemma 2.4 There exists « > 1 with the following significance: If r > k, then the

operator ® g defines a Fredholm operator from L%(X ;iT*X @& SEgy) to the Hilbert
space L2(X;iA*T @ Sg_@iR).

Proof of Lemma 2.4 The assertion follows from the fact that both the ¢— = " (x—)
and ¢y = ®" (x4+) versions of (1-9) have trivial kernel.
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Part 8 The following lemma motivates the interest in © g . The lemma uses ind(D g)
to denote its index as a Fredholm operator with to the domain and range spaces that
are described in Lemma 2.4.

Lemma 2.5 The spectral flow from £._ to £, is equal to ind(Dg) + 2kx.

Proof of Lemma 2.5 The index of © g is insensitive to any change of the connections
and spinors used to define this operator as long as such changes have compact support.
Keep this fact in mind in what follows.

Reintroduce the pair (A_, y_) = (A* 4+ 2Y/2r1/2p, y* + n,) as defined in Step 2 of
Section 2.a using the data from the set ®_. Let (44, ¥ 1) denote the corresponding
®4 version. Fix R’ > R and deform the pair (Ay,¥x) to (A%, ¥}) with the
following properties: This pair is equal to (Ay, ¥x) where s < 1. Where s € (2, R),
it is equal to (A—,¥—). Finally, it is equal to (A4, 4) where s > 2R’. Let D',
denote the (A’ , ¥} ) version of (2-61). The operators D g and D', have the same large
|s| limits and so D" is also Fredholm as a linear map from L%(X iT*X ®SEgy) to
L?(X;iA*T @ Sg_ @iR). Moreover, its index is the same as that of D .

Granted the preceding, let D', denote the operator from L%(X JiT*X ®Sgy) to
L?(X;iA*T @ Sg_ @iR) that is defined via (2-61) using (A”, ") where the latter
is declared equal to (A4, ¥} ) where s <2 and equal to (A—, ) where s > 2. This
operator is also Fredholm. Take R’ large and a standard Mayer—Vietoris argument
can be used to prove that index(D’;) = index(D';) + f(c—, c+), where f denotes the
spectral flow from £,_ to £ .

Meanwhile, the operator 33/;5 where s < —R is the same as where s > R. As a
consequence, its index is that of an operator on the compact manifold, Y, that is
obtained by identifying {—R} x M C X with {+ R} x M C X . This understood, the
index of D%, can be computed using the Atiyah-Singer Index Theorem. This theorem
finds ind(®';) = —2ks. Thus, ind(Dg) = =2k + f(c—.c4). This is what is stated
by the lemma. O

2.c The relative degree formula: Part II

This subsection computes the index of ® g and completes the proof of the degree
formula in Theorem 1.1 for the case that (2-55) holds for each Reeb orbit y from either
®_ or ®4. Note that (2-55) is assumed in this subsection. The discussion here has
eight parts.
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Part 1 This part of the proof begins the task of computing ind(® g). To set notation,
let V denote the covariant derivative on both i T*X @ Sgy and iA>T @Sg_®iR
as defined using the Riemannian connection from 7* X, the connection chosen for
Kx and the connection Ay for E. Define the Hilbert space Hy to denote the space
of L? sections of i T*X & Sg4 with the norm

|
(-6 lallxz = [ 194+ 57 [ laP
X X

Meanwhile, use Ly to denote the Hilbert space L2(X;iA*T @ Sg_ ®iR).

Define the Hilbert space IC% as in (5-12)—(5-13) of [14] using the L% norm rather than
the IC—norm. Define the map ty: IC% — Hy by copying the definition in (6-9) of [14]
for its map ¢. Introduce Iy : Hy — Hy to denote the L? orthogonal projection onto
the image of 7. Use Hf to denote (1 — [Ty )Hy . Note that £y is a bounded injection
when 7 > ¢g and R > ¢y. Mimic what is done in Part 7 of Section 6.a in [14] to define
the space £2. The analogous version of ty maps £? injectively into Ly . Use Iy
also to denote the orthogonal projection on Ly with image ty(£?). Finally, use JL)J;
to denote (1 — Ty )Ly . Note that when r > ¢y and R > ¢g, the map ty: L2 — Ly
is nearly isometric because

(2-63) (1—cor ™)1l 22 < x|l 2 < (1 +cor™/*)||6]) 2.

Here, and below | -|| -2 denotes the norm on £2. Meanwhile, o is the positive constant
that is introduced in Section 4.c of [14]. By way of explanation, these inequalities
follow because the various identifications of the bundle i 7*X & Sg that are used
to define ty are nearly isometric. See Part 6 of Section 6.a in [14] and (5-12)—(5-13)
in [14].

The operator ® g is analyzed below by decomposing Hy as ]HI)L( P ty (le) and Ly
as L+ @ ty (£?). To this end, write f € Hy as f- + tx(0) with f- € H; Then write
the respective IL)J; and £ components of D gf as

o (1-Tx)Dgf=DEf +px(6).

(2-64)
t (Df) = px'(F) + A6
The lemma below says what is needed about @é.

Lemma 2.6 There exists a constant k > 1 with the following significance: Fix r > k
and R > k so as to define D g, ]HIAJ; and IL)J;. Let @E denote the restriction of
(1-Tx)Dfg to ]H[)J; Then @% is a bounded, invertible map from H)J; to ]L)J; that
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obeys
—1el Ll 1
K e x < I19EF 2 = ©llf~ lmx

for all f+ € Hy .
Proof of Lemma 2.6 It follows by copying what is said in Parts 3 and 5 of the proof
of Lemma 6.3 in [14] that

(2-65) ] Scop*e—ﬁdist(gE)/lOO‘
As a consequence, the L? norm of the contribution to CDJEf from b is bounded by

(2-66) cor 2 pellftll2 < copsllft Il x-

Let D g+ denote the version of © g that is defined by using (A%, ¥y) in (2-61). The
latter is what is left of ® g with the contribution from § absent. A repeat of the
arguments for Lemma 6.1 in [14] prove the assertion of Lemma 2.6 for ZD%* . Granted
(2-65), the assertions hold for ”DJE- when r > ¢g.

Consider next the size of py (0) and px’ (f1). To bound the latter, remark first that © g
near X has the schematic form given in (6-6) and (6-7) of [14]. What with (4-7)-(4-9)
in [14], these equations imply that

(2-67) lpx @)]12 < cor® (101 x2.
Here, |- [[x2 denotes the norm on K% . They also imply that
(2-68) lpx' ()2 =< copellF i < cor ™2 H37 ) . x

The next lemma describes A. This lemma uses the following notation: Given finite
dimensional vector spaces V,y and V; with injective, linear maps ¢q: Vo — IC% and
¢1: Vi — L2, themap A defines a linear operator from the IC% —orthogonal complement
of ¢o(Vy) to the £2—orthogonal complement of ¢; (V;) that is obtained by composing
A with the £2—orthogonal projection. This map is denoted by A-L. a

Lemma 2.7 There exists k > 1 and finite dimensional vector spaces V,, and V;
with the following significance: Suppose that r > k and R > k. Then the operator
A: IC% — L2 is Fredholm and its index is equal to dim(Vy) —dim(V;). Moreover, there
exist injective linear maps ¢q: Vy — IC% and ¢1: Vi — L£? such that the associated
map AL is an isomorphism of vector spaces that obeys | A0 2 > k1|6 2.

The proof of this lemma is given momentarily so assume it is true for now.
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What follows directly are some comments with regard to the substance of this lemma.
To start, note that Lemma 2.7 has two assertions. The first is that A is Fredholm when
r is large. This assertion needs no reference to the vector spaces Vy and V;. These
two vector spaces involve the second assertion, which is the lower bound for the norm
of AL. There are three key points to observe with regard to this lower bound: First, the
lower bound is r—independent. Second, the domain and range of AL are subspaces
with finite and r—independent codimension. The third point, though not stated by the
lemma, is that Vjy, V7 can be described explicitly. This is done in the Part 3 to come.
These descriptions are used to compute the index of A. Meanwhile, Lemma 2.8 in
Part 2 below asserts that the index of A is equal to the index of D .

Part 2 This part uses some straightforward linear algebra in conjunction with Lemma
2.6 to translate statements about the kernel and cokernel of ® g into statements about
the operator A. To start this task, suppose that f € Hy and suppose that © gf = 0.
Write f = §+ + tx(6). Given Lemma 2.6, it follows from (2-64) that f- is determined
by 6 and can be written as j- = —(D )~ !px(#). This understood, then 6 obeys

(2-69) Apf = A0 —px'(DF) ' px(0)) =0.

Equation (2-69) identifies the kernel of © g with the kernel of Ag. With regard to
A g, note that (2-67) and (2-68) find that

(2-70) lpx" (@5~ px (O)2 = cor™ 245782

Now consider the cokernel of © g . To this end, fix y € Ly . Given 6 € £2, the equation
D+ + px (0)) = vt is solved by

(2-71) F= @5 pr(0) + @5

It follows that 1 has nonzero projection to the cokernel of © g if and only if there is
no 0 € E% solving

(2-72) A8 = px' (@) oh) — £ ().

Thus, the map that sends y € L to the projection of px’ (@JE-)_1 pt) — t;( () into the
cokernel of A g defines an injection from cokernel(® g) to cokernel(A g). Moreover,
given (2-63), this injection is an isomorphism.

The following lemma summarizes:

Lemma 2.8 There exists k > 1 with the following significance: Suppose that r >k and
R > k. Then the map 6 — (’D ) lpx (0)+ tx (9) and y — px (”D YTyt — t;,(lj)
define respective isomorphism from the kernel of Ag to the kernel of ® g and from
the cokernel of ® g to the cokernel of Ag . Thus, the operators ® g and A g have the
same Fredholm index. Moreover, the index of the latter is the same as that A.
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Proof of Lemma 2.8 It is necessary only to comment on the last assertion. This
follows from (2-70) when r is large given the assertion in Lemma 2.7 that | A6/ 2 >
co ! [€]/xc2 when 6 is orthogonal to ¢o(V5)- m|

Part 3 This part describes the vector spaces V and V7 in preparation for the proof
of Lemma 2.7. There is a version for C of the operator D¢ that is depicted in (1-10).
This operator is Fredholm as a map from L%(C; N) to L%(C; NQT%C). Let Voc
denote the kernel of C’s version of this operator, and let V;¢ denote kernel of the
formal L2 adjoint of this operator.

Now fix (y,m) € ©_. Define amap ¢,—: Rx S — &, as follows: Let {Zy, ..., Ep)
denote the set of ends of X that intersect U, —. Recall that each such end is a graph of
a function (w, 1) — zzc(t)e > where A is the largest negative eigenvalue of s
version of (1-2) and g(¢) is a corresponding eigenfunction. The set {z¢,, ..., 2z, }
are the m—th roots of unity. The map ¢, is defined by specifying the R x S !
dependence of the coordinates {04 }1<g<m for &, that are given in (1-5) of [14]. This
understood, the coordinates o, for ¢ <m are zero and oy, = (r;/ 2g(t)e_z}‘w)m where
ry =y /Q2m))r with £, = fy a. This is to say that if ¢, is written as the pair (4, ),
then the zero locus of « at any given (w, t) is the point in Sym™ (C) whose coordinates
are given by r;/zg(t)e_uw(z@“ ey ZEy,).

Let A: €, — R denote y’s version of (1-6) and introduce the operator
(2-73) ¢ =0+ (Ve VOB,

a linear map from L2(R x S':¢,_*T 0@y) to L*(R x S';¢)_*Ty o€p). As ex-
plained next, the assumptions in (2-55) imply that this operator is Fredholm. To see this,
suppose first that m = 1. Use the function oy in (1-5) of [14] to identify €; with C.
Under this identification, the operator in (2-73) acts on the space of C —valued functions
on R x S! as the operator d+v+ M(f). The assumptions in (2-55) imply that this is
Fredholm as a map from L%(]R x Stc,*T) oCm) to L2(R x St ¢, * T 0Cm).

Consider next the case m > 1. To start, introduce the basis vectors {9/004}1<g<m
for T1,0¢;, that are dual to the coordinates {04 }1<q<m in (1-5) of [14]. With ¢
written as ZISqu $q(0/00y), the operator in (2-73) acts diagonally to send {; to
5§q +(q/2)RE,, where R is the rotation number that appears in (2-55). This is because
the relevant version of f lacks the term with p and so the corresponding Hamiltonian
vector field in question is %R times the generator of the S! action on ¢€,,.

Introduce next the function w — p(w) = r,}/ 2o=2Aw Note that in this m > 1 case, A
is equal to %(R — k) where k7 is the least integer greater than R. The inner product
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between the ¢, —pullbacks of the dual basis {doy}1<4<m is diagonal, and such that
(2-74) (¢y—*doy, cy—*dog) = cxp®2q* + my,

where ¢4 > 0 and where |my| < ¢ is asymptotic as w — —oo to a positive constant.
The diagonal form for the metric follows because the set {z¢,, ..., zg,, } are the m—
th roots of unity. With ¢,_*T} €, identified with R x S Ly cm using the basis
{0/004}1<g<m ., Write an element in the g—th summand as (1 + p)9~1(3/d04). By
(2-74), this element has norm |ng| || with ¢o~! <|ng| < co where n, has constant
limits as s — F00. The operator 9+ (¢/2)R acts on such an element so as to send 7 to

= 1
(2-75) o+ 3 (qR + (¢ = Dp/(1+ p) (kg = R))n.
This operator looks like
o I+ %R for w < —1.

(2-76) 0+ 1R+ (g —DkY) for w>> 1.

Given what is assumed in (2-55), it follows from (2-76) that each ¢ € {1,...,m}
version of (2-75) is Fredholm. As a consequence, the operator (2-73) is Fredholm as a
map from L% RxS; ¢, *T1 0€m) to L2(RxS';¢)y—*Ty 0€p). Moreover, its index
is nonnegative and its cokernel is trivial. Indeed, the arguments for this are, but for
notation, identical to those used in [14] for Step 2 of the proof of Lemma 7.5 subsequent
to (7-61) in [14]. Let Vp,,— to denote the kernel of this same version of (2-73).

In the case when (y,m) € ®, there is an analog of (2-75) that is obtained by replac-
ing k; where it appears explicitly and in the definition of p with k", this the greatest
integer that is less than R. The resulting analog of (2-76) is such that the top line holds
where @ > 1 and the lower line with k7 replacing k; holds where w < —1. It then
follows from (2-55) that the ¢, 4 version of (2-73) is Fredholm with trivial cokernel.
Define Vj, 4 to be the L? kernel of the ¢y+ version of (2-73).

Granted these definitions, set

Vo = (@Bcec Voo) @ (Dy,myce Yoy-) ® (By.mycor Voy-)-
Vi=@Bcec Vic:

These are the spaces Vy and V; in Lemma 2.7.

(2-77)

Part 4 This part constitutes a digression to prepare for the proof of Lemma 2.7. To
start, let © g+ again denote the version of © g that is defined using the pair (A%, ¥¥)
in (2-61). The latter is what is left of © g with the contribution from h absent. Recall
that b is defined in (2-60) and that (Ay, ¥x) is obtained from (4%, v¥y) by adding
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terms from h. What follows describes certain aspects of © g+ on each Uc and on
each Uy 4.

Suppose that C C C denotes a given component. A somewhat more detailed analysis
of ® g+ on Uc writes the contribution to the ® g+ version of (6-6) in [14] from a
section fo = (¢, ng) of Vg as

. 2(5561 — (x5 + 1045)0Y ¢ + (V45 + [145)0"q + vig + Pxq) + Txo-

(2-78) — — . — \T
. 2(35; no — (v«s + M*E)BZ; no + (v«s + M*5)az; 10) + tx1-

Here, [t40(fo)| + [tx1 (Fo)| < co(ls|(Ifol + 1V fol) + Is|*|Vfol) with V the derivative
that is defined by 4% and with VH denoting the derivative along horizontal tangent
vectors in the normal bundle to C. In this version of (2-78), the pair (v, ix) =
(ve. pc)-

Let (y, m) € ®. A more detailed analysis of ® g+ on U, _ finds the following: Let fo =
(g.no) denote a map to V, over the part of (—oo, —R)x S ! xC where | Z| < px. Then
the U, _ analog of (6-6) in [14] for ® g is given up to inconsequential factors of 27 /¢,
by (2-78) with the identifications s = z, 3¥ = 3/9z, and 9 = %(a/aw —1i(d/0dr)).
Meanwhile what is written as txo,1 obey [t (fo)|+ [tx0(Fo)| < co(1z](fo] + |V fol) +
|2|?|V§o|). In this version, (v, j1x) are the pair (v, ;) associated to y. There is an
analogous picture of ® g« on U, 4 for (y,m) € ©'.

Part 5 This part describes the operator A in preparation for the proof of Lemma
2.7. To start, fix 0 = ((0c)cec. (Oy-) im0 (Oy+).mee’) € IC% and write the
components of A6 as ((Ac)cec. (Ay-)y.meo, (Ay+)(,myee’). Consider Ac for
C e first. View ¢ as a section of C’s normal bundle, N, and view A¢ as a section
of N®T%1C. Use tx () to define §, in C’s version of (2-78), in all (y,m) € ®_
versions for the cases where C NU,_ # @, and in all (y, m) € ® versions for the
cases where C N U, 4 # @. Doing the relevant integrals to compute t;r, D gty (0))
using (6-6)—(6-7) in [14] finds that the © g= contribution to A¢ has the form

_ 1 -1
(2-79) 390+vc9c—/ |t1|2+ILCQC—[ Ix11% +e,
7 Jo 7 Jo

where (x1,11) = 27Y2(1 — |«|?), d4«) with (A4, «) here denoting the symmetric
vortex in €;. Meanwhile, the L2 norm of ¢ obeys |¢ 2 < cor™/*||6] k2 Finally,
vc and juc are the respective sections of 7%!1C and N®? ® T%!C that appear in
(1-10). Granted (2-79) and the definition of hj, the bounds from Parts 3 and 5 of the
proof of Lemma 6.3 in [14] on the various terms in (2-60) imply that

(2-80) Ac(0) = 30¢c +vebe + pebe +e,

where the L2 norm of ¢ on the |s| < 2R part of C is bounded by cor_°/4||0||;C%.
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Now fix (y,m) € ® so as to consider A, _. The case considered first is that where
m = 1. Thus, there is one end of X in U,,. This end is denoted by E. To describe A,
it proves convenient to view both A, _(#) and 6),_ as maps from (—oo, —R) x S'!
to C. This is done using the coordinate o from (1-5) of [14]. Use tx(0) to define
the element fo = (¢, no) in the (y, m) version of (2-78) and in the versions that are
defined by the element C € C that contains . Doing the relevant integrals to compute
t;, finds that A,,_(8) is given by

(2-81) Ay—(0) = 360,— +v0,— + uby_ +e,

where the L2 norm of ¢ on the s < —R part of Uy,_ is bounded by cor_”/4||9||;<%
Indeed, (2-81) follows using Lemma 2.2 and the arguments that lead (2-35). The
following are the only substantive changes: First, u in (2-32) now depends on the
variables w and ¢ for (—oo, —R) x S!. To describe u, recall that £ appears as the
graph in (—oo, —R) x S x C of the function (w, ) — ¢(f)e”2*¥ where A and ¢ (r)
are as described in Part 1 of Section 2.b.

Granted the preceding, 1 = z‘};(y, 0) with y =21/2(z —zy_)a~ 1940 and Zy—|(w,p) =
r;/zzg’_”‘w; and with (A4, a)|(,,) denoting the vortex in €; with a”1(0) = z,.
Meanwhile, what is called to in (2-32) is replaced with (0, (Z,—)a ' (1 —|«|?)) with
zy— and « just described.

Turn now to the case where m > 1. In this case,
(2-82) Ay—(0) =30y—+ (Vg, 1. V'"OH)lc,_ +e,

where ¢ has L2 norm bounded by cor /4| 0| k2. The proof of (2-82) is identical,
but for notation, to the proof of the formula for DA that is given in Lemma 2.1.

There is, of course, an analogous description of A, when (y,m) € ©’.
Part 6 This part contains the promised.

Proof of Lemma 2.7 The fact that A is Fredholm with the asserted index follows
from the assertions made about A~L. The proof of these assertions borrows much from
Section 7.f in [14]. There are five steps.

Step 1 This step defines the map ¢o: Vo — IC%. To start, fix C €C and n € Vo . Write
the components of ¢o(n) as ((Poc’)crec: (Poy—)(y.myeo: (Poy+)(y,myee’) With the
n—dependence of these components implicit in what follows. These components are
defined as follows: First, ¢poc’ =0 unless C’ = C. Meanwhile, ¢oc = (1—Zzee- X210
where ¢ and x7. are defined in the following manner: First, £c denotes the set of
ends of C. Second, the cut-off function x7. is equal zero on the complement of the
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end ‘£; and it is equal to x((Rz + 3.5R—|w/|)/R) on E. Each (y,m) € ©®4 version
of ¢oy— and each (y,m) € ©4 version of ¢g, 4 is determined from ¢oc via the
homomorphisms in (5-12) in [14].

To continue, fix (y,m) € ®_ and suppose that n € Vp,,. The components of ¢q (1)
are defined in this case as follows: First, ¢g,,— = 0 unless y = y’ in which case
$oy— = x'g_n. Here, w — x'p_(w) = x((2.5R + w)/R). Meanwhile, each C € C
version of ¢oc is zero unless C intersects U, — in which case ¢oc is determined from
¢oy— via the homomorphisms in (5-12) of [14]. Finally, each (y,m) € ® version of
¢oy+ 1s zero. There is an analogous definition of ¢q(n) in the case when 7 is in some
(y,m) € ® version of V4.

It is an exercise to verify that
(2-83) (1=cod)[Inll2 = llgoMlixcz = (1 +cod)llnll L2,

where 8 here and in what follows is short hand for § = R~ + r~1/¢0_ Thus, ¢ is
injective when r > ¢g and R > ¢(. Note in this regard that if C € C and if n € V¢,
then

(2-84) [l + 1Val < collnll L2 eV,
By the same token, if (y,m) € ® and n € Vj,,_, then
(2-85) [l + V] = collnll L2 e71H I 440,

In the case (y,m) € ©®4 and n € V), 4, there is an analogous inequality, this obtained
from (2-85) by changing w to —w. Meanwhile, it follows from the description of A
in Part 5 that

(2-86) Ao (Dl 2 = codlinll .2

when ne€ Vy and r > ¢y and R > ¢yp.

Step 2 This step proves that [|Af| 2 > co~ ! €][xc2 when 6 is IC% orthogonal to the
image of ¢ provided that » > ¢o and R > ¢(. To this end, fix 6 € IC% and decompose
it as
(2-87) 0= 64 > 0+ Y of

ceC (y,m)eb (y,m)eb’

by copying what is done in (7-44) of [14]. The terms here are determined by their
namesake components of 8 = ((0c)cec, (Oy-)(y,m)e: (Oy+)(y,m)eq’) . Consider 6¢ .
Since 6€ e le, it has components 0€ = ((Qg/)C’GC’ (95_)(%,”)69, (0),C+)(%m)€9/).
These are as follow: First, Qg/ =0 unless C = C’. In this case, GCC =(1—Xzeecxz)0c
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where the product is indexed by the ends in C. Here, yz is defined so as to equal
zero on the complement of E and to equal y((R¢ + 3R —|w/|)/R) on E. Meanwhile,
any given 9)/C  1s determined by (Qg/) crec through the homomorphism ¢, 4+ given in
(5-12) in [14].

As an element of IC2 the term 0¥~ from (2-83) has only nonzero components 6
and Qy for those C with C N U, _ # @. In particular, 9 =0 if y' # y, and also
Qy _0 forall y’ € E x4 . The component 6)_ is set equal to Gy_ ZC .CNUy #0 9VC_.
Note 0;,'_ has support where w < —3R. Meanwhile, a component 0 is determined
from 9)},/_ by the identifications in (5-12) of [14]. Each #¥* for (y, m) € ©4 hasa

similar description.

Given the description of A in Part 5 and given the description of the decomposition in
(2-87), the argument for (7-44) in [14] can be repeated to prove that

QP (Z NG P D INCI P

Ccec ,m)€6
(2-88) € (y,m)e

+ ) IIA(GH)IIgz)—Cof?II@IIK%

(y,m)€®’
when r > ¢y and R > ¢y.

It is a consequence of (2-79) that ||A(9C)||£z > ¢ 1||9C||;c2 if 9C is L% orthogonal
to the L2 kernel of d + vc + uc(-) when r > R? and R > ¢o. Meanwhile, if
(y.m) € ©_, then [|A(Y7)||z2 = o' [|6¥|k2 when 6y~ is LT orthogonal to
the space Vp,— when r and R obey similar bounds. And, if (y,m) € ©_, then
IAOY )| 22 = co 1||9”+||IC2 if 0¥ yt I8 L2 orthogonal to the space Vj, 4 given that
r=>coand R > ¢g.

These last assertions with (2-83)—(2-85) and (2-88) imply the desired result: If r > ¢g

and R > cq, then |A(0)| 2 = co~! [60]lxc2 when 6 is L? orthogonal to the image
of (]50 .

Step 3 The map ¢, is defined by mimicking the definition of ¢q. Given that (2-84)
holds for n € V¢ when C €, it follows that

(2-89) (I=cod)lInllLz = lp1 (M2 = (1 +cod)lnll 2.

Note that there is an approximate inverse to the map ¢ . This is a map, q;: £> — V7,
that is defined as follows: Decompose any given 6 € £2? as in (2-87). Suppose
that C € C and n € Vj¢. The inner product of 1 with g;(6) is by definition equal
to the L? inner product of Gg with n. The Vic¢ version of (2-84) implies that
4101 () — nll L2 < coBInll > when r > co and R > .
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Step 4 This step verifies the lemma’s assertion about the norm of A+ when r > ¢
and R > ¢y~ !. To this end, consider first the £2 orthogonal projection of Af onto
¢1(V1). Integration by parts with what is said about A in Part 5 and the V; analogs of
(2-84)—(2-86) can be used to prove that

(2-90) I(A = A1) ()2 < o8]0 k2

when r > ¢p and R > ¢y. What with the final conclusion of Step 2, this last bound
implies that

(2-91) IAL6] 2 = co™ 116112

when 0 is IC% orthogonal to ¢o (V). Here it is again assumed that > ¢g and R > ¢g.
This last conclusion implies that AL is injective.

Step 5 To see that AL is surjective, note first that it follows from (2-91) that A~ has
closed range. Thus, A~ is not surjective if and only if the L? orthogonal complement
of its image has positive dimension. Let 1 denote an element in this orthogonal
complement. Introduce the map g;: £ — V; from Step 3 and write n = n’ +7" where
1’ is the L?—orthogonal projection of 7 into the kernel of ¢;. Note that 1" satisfies
7"l 2 < coR™2||n| 22 . Indeed, this follows from what is said about ¢; in Step 4 and
from the V; analogs of (2-83)—(2-85). Granted this, it is sufficient to prove that " = 0
when R and r are large. To this end, decompose 7' =) e nC + Z(y,m)e(a '+
E(y,m)e@/ny"' as was done with 6 in (2-87).

Fix C € C and consider the term nC = ((ng,)czec, (nf_)(y,m)e@, (77)€+)(%m)€®’)'
Here are two observations that play a key role: First,

(2:92) g )2 = codlln'll 2
when r > ¢g and R > ¢(. Indeed, this follows because ng is L2 orthogonal to V;c.

Here is the second observation: Because ng is L2 orthogonal to Vjc, there exists an
element, £c € L%(C; N) that is mapped to ng by d 4+ vc + uc(-). Moreover, &c is
L? orthogonal to Vj¢ and is such that

(2-93) co MInEll2 < llsclix? < colné L2

Define an element EC = ((Sg,)c/ec, (Sf—)(y,m)E(H)’ (fyc_;_)(y,m)e@’) € IC% as follows:
First, fg/ = 0 unless C = C’ in which case

(2-94) £ = (1 — Zgeec Xp)kC
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Here, as in Step 1, x/; is equal zero on the complement of the end £; and it is equal
to x((Rgz +3.5R—|w|)/R) on E. Meanwhile, each (y,m) € ® version ofé

each (y,m) € ®' version of vl €. is determined from £ C via the homomorphlsms in
(5-12) in [14]. It follows from (2 4)—(2-5) of [14] and from what is said in Part 5 about
A that

(2-95) 1AEC =€ 22 < o8I |l 22

This is a consequence of the fact that (1 — xz) = 0 where dx. # 0. Here, x« is the
cut-off function x((Rg + 3R — |w|)/R) defined just prior to (5-9) in [14].

Now let £¢L denote the L? orthogonal projection of £ to the complement of the
image of ¢g. It is a consequence of (2-84), (2-85) and its w» — —w analog for when
(y,m) € ©L that ||$CL—*§C||L2 <coR™! when r > ¢y and R > ¢¢. This understood,
it follows from (2-93), (2-96) Wlith (2-5)—(2-6) from [14] that

(2-96) (ATECL ) 2 = o7 I 1% — cod I’ [12
when r > ¢y and R > ¢y.

Fix (y,m) € ©, consider the term n¥~ in the 1’ analog of (2-87). This ¥~ € E% had
y — component 77)):. By virtue of the fact that (2-73) has trivial cokernel, there is &), €
L%(]R{ xSt ¢y—T19¢,,) that is mapped to ng: by the operator in (2-73). Note that
(2-93) holds when C is replaced by y— in all appearances. Define an element £¥~ € Lz
as follows: Write its components as ((EC )cec, (S )y m)e®- (Sy (' m)ee’)- All
components are zero except for Ey_ and SC for those C € C that intersect U, .
The component Ey_ is set equal to x'p_&,— where xp_(w) = x((2.5R + w)/R).
Meanwhile, EZ,_ is defined from E,’,’: using the homomorphisms in (5-12) of [14]. Let
£¥~L denote the L2 orthogonal projection of £¥~ to the complement of the image
of ¢¢. An argument much like that used to derive (2-96) finds that

(2:97) (ATE" ) L2 = o N 711 3e — o8l 125
when r > ¢g and R > ¢g. Note that (2-97) uses the fact that y g = 0 where d)(’R_ #0.

Here, x g— is the cut-off function x((3R + w)/R) defined just prior to (5-7) in [14].
Each (y,m) € ® has an analogous £ that obeys the '+ version of (2-97).

Let §:Z$c¢+ Z gyl Z gr+l,

ceC (y,m)e® (y,m)e®’
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Summing (2-96) and the various versions of (2-97) finds that

(ALE )2
(2-98) 2o (I Y i Y IR

ceC (y,m)e® (y,m)e® 2
—cod|n' 1172

when r > ¢g and R > ¢(. Given that the left hand side of (2-98) is zero, this inequality
requires that each C € C version of 7€, each (y,m) € ® version of 7¥~ and each
(y,m) € ® version of n¥* have L2 norm bounded by co8||n’|| ;2. What with the
triangle inequality, this requires n” = 0 when r and R are large. O

Part 7 It is a consequence of what is said in Lemma 2.7 and Lemma 2.8 that the
index of ® g is equal to that of A, and the latter is equal to dim(V,) —dim(V7). What
follows derives a formula for this number.

To start, fix C € C so as to consider the contribution to dim(Vy) — dim(V;) from
dim(Vyc) — dim(Vi¢). A formula for this is obtained from Theorem 5.1 of [6].
Summing the results for the various elements in C gives

> (dim(Voc) — dim(Vie))

(2:99) Cec

== Y mzu+ Y. mz+x"+2deg(Ny),
(y,m)€e® (y,m)e®’

where the notation is as follows: First, z, ; is the rotation number for y if y is
hyperbolic. If y is elliptic with rotation number R, then z, ; is one plus twice the
greatest integer less than R. Second, x* denotes the Euler characteristic of . Finally,
deg(Ny) denotes the degree of the normal bundle of X as defined using the section
whose restriction to any given end is the real part of d/dz. It proves useful to invoke
Lemma 2.3 to rid the formula of x=. Doing so writes (2-99) as

Y (dim(Voc) —dim(Vic))

2-100) <€

=— Z mzy 1+ Z mzy, 1 —(cy, X) +deg(Nxg) —2ks.
(y,m)€® (y,m)e®’

Fix (y,m)€® so as to consider the contribution to dim(Vp)—dim(V7) from dim(Vp, —).
As a consequence of what is said in Part 3, this is zero if m = 1. If m > 1, then
dim(Vj, —) is the sum of the L? indices of all of the ¢ € {1, ..., m} versions of what is
written in (2-75). Fix such an integer ¢. It is a consequence of (2-76) that the L2 index
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of (2-75) is equal to twice the number of integers n that obey
(2-101) grR <n <qrR+ (q— 1) (kg —R).

To put this in a different light, introduce kq>R for ¢ > 1 to denote the least integer that

is greater than gR. Write n = k_;, +n’. Then n’ must obey

(2-102) 0<n' <qki k.

Thus, the index is twice gk — kg . This understood,

(2-103) dim(Voy) =2 Y (gkg —kgy)
1=<g<m

Meanwhile, the analog of (2-101) for (y, m) € @' leads to

(2-104) dim(Voy4) =2 Y (kg —gqky),

1<g<m
where kq<R denotes the greatest integer that is less than gR.

Fix (x,m) ineither ©®_ or O . If y iselliptic, define z, 4 for ¢ >1 by z, 4 = 2kq<R+1 .
With this notation set, then (2-100), (2-103) and (2-104) sum to give

dim(Vy) —dim(Vy) = —{(c1, X) + deg(Ny) — 2kx

- Z Z Zyq T Z Z Zyq

(2-105) (y,m)e® 1<q<m (y,m)e®’ 1<qg<m
+ Y mm—Dk;— Y mm—1kg.
(y,m)e® (y,m)e®’

Part 8 To put the right hand side of (2-105) in recognizable form, note that X is not
a surface that can be used to compute the ®_ and ®_ version of what Hutchings
denotes as I(®_, ®4,-), this the integer given in (1-4). This is because the ends of X
do not approach their limit Reeb orbits in the required fashion. A surface Z for use in
(1-4) can be obtained from X as follows: First, Z = X except where |s| > R. As it
turns out, it is also permissable to take Z = X in any (y, 1) version of either U, or
U, + . However, such is not the case for a (y, m) version with m > 1.

What follows describes Z in a given (y,m) € ®_ version of U, when m > 1. Let
E denote an end of X that intersects U, . As constructed, £ is the graph of the
function (w, 1) — z(w,t) = zge *¥eke W+ where zg is an m—th root of unity
and R is the rotation number. Now identify R x S with C* using the function
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(w,1) — x = e@H) Then ¥ intersects U,— C C* x C as the locus of points (x, z)
where

(2-106) XML gmmRrw _om ()
The model for Z’s intersection with the w < —1 part of U, is the locus where
(2-107) xMKE gmmRw _om — b e

with & > 0 but much less than 1. Here again, xg—(w) = x((3R + w)/R). The latter
is a smooth curve for small ¢. It has m ends that have the required asymptotics for use
in computing /(®_, ®4, ). Let s denote the section of the normal bundle of Z in
U, — that is defined by the normal projection of the vector field d/dz. As can be seen
readily by comparing (2-107) with (2-106), if ¢ is sufficiently small, then this section
has precisely m(m — 1)k extra zeros on Z’s intersection with U, _, and each such
zero counts with weight 1.

A similar construction can be made to obtain Z in any (y,m) € ® 4 version of Uy, 1. In
this case, the section of Z’s normal bundle defined by d/0dz in U, 4 has m(m — 1)k
zeros with each having sign —1.

Granted the preceding observations, it follows that what is denoted by Q; in (1-4) is
given by

(2-108) Q:=deg(Ng)+ > mm—Dkg— > m(m—Dkg.
(y,m)€® (y,m)e®’

Substitute (2-108) into (2-105). A comparison with (1-4) then finds
(2-109) dim(Vp) —dim(V;) = I[(O®_, O4+; Z) —2ky.

The formula in Theorem 1.1 for deggw (" (x4 )) —deggw (P’ (x—)) when (2-55) holds
for each Reeb orbit from either ®_ or ®4 follows from (2-109), Lemma 2.8, what is
said after Lemma 2.7, and Lemma 2.5.

2.d The relative degree formula: Part I1I

Suppose that ®_ and ®4 are elements in Z, but assume no longer that their Reeb
orbits obey (2-55). Fix x— € €®* and x4+ € €®*+. This subsection completes the
proof of Theorem 1.1 by verifying its formula for deggw (®” (x+)) — deg(P" (x-)).
This is done in three parts.
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Part 1 To start, take L > X, myeo_mly + Xy myee,mLy and § > 0 but very
small. Proposition 2.5 in [13] asserts that there is a (§, L) approximation to (a, J). In
particular, pair (@, J ) of contact 1—form and almost complex structure in J; has the
following properties:

e There exists a smoothly parametrized family of pairs {(a¢, Jz)}re[0,1] Of
contact 1-form and almost complex structure in J,, such that the 7 =0
version is (a, J) and the T = 1 version is (a, J).

e Suppose that y is a Reeb orbit for a’s Reeb vector field with £,, < L.
For each 7 €0, 1], the loop y is a Reeb orbit for a;’s Reeb vector field.
Moreover, if y is hyperbolic for a, then y is hyperbolic for a;, and if
it is elliptic for a, then it is elliptic for a,. In addition, the a and a,
versions of £, are equal. Finally, there is fixed tubular neighborhood
(2-110) map ¢: S' x D — M for y that pulls back a; as in (1-1) with (v, )
now functions of t. With respect to this map, the rotation number of y
is independent of 7 € [0, 1].

e Suppose again that y is a Reeb orbit for a’s Reeb vector field with
¢, < L. Let ¢ denote the tubular neighborhood map just described.
If y is hyperbolic with rotation number &, then the @ version of the
pair (v, i) is (%k, igetkty with & € (0,8). If y is elliptic with rotation
number R, then the a version of (v, u) is (%R, 0).

This pair (@, J ) is sufficient for what follows when there are no pairs (y, m) in either
®_ or ®4 with y hyperbolic and m > 1. If the latter condition is not satisfied, then
an additional homotopy must be made in a small tubular neighborhood of the Reeb
orbit from any pair of the sort where the latter condition is violated. This said, let y
denote such a hyperbolic Reeb orbit that is paired with 7 > 1 in either ®_ or O, . Let
k denote its rotation number. Fix a small irrational number R” € (0, ¢) and consider
the homotopy {d<};¢[o,1] that replaces the top line in (1-1) with

@-111) [ (1- %(%k ~ew)lep

—(1- r)ie(eik’Ez — e_iktzz)dt) + %(Zd?—?dz),

where |z] < %8, and leaves the top line unchanged where |z| > %8. Such a homotopy
has the following property: The loop y is a Reeb orbit for all a,. However, it is elliptic
with rotation number %k — R’ with respect to d@;—1. Note that the homotopy T — @
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can be constructed so that
(2-112) IV®P (@G, —a)| <coe®™? for p{0,1,2}.

Each contact form @, has an associated compatible almost complex structure that
differs from J only on the radius ¢ neighborhoods of the hyperbolic Reeb orbits
that are paired either in ®_ or ® with an integer greater than 2. A smooth family
{Jr}re[o 1] of such almost complex structures can be chosen so that (aq, J 1) obeys
the R = —k R’ version of (1-14), and so that J, 1 € J3, - One can assume, in addition,
that this famlly is such that

(2-113) IVOP(J, = J)| < coe®? for p€{0,1,2}.

Use O to denote the same set as ®_, but now viewed as a collection of pairs of
the form (y,m) as defined using the contact form d,;—; and the almost complex
structure J;. Define G)/+ from ©® in the same fashion.

Part 2 Both ®” and ®'  are described by (2-65). According to what is said in
Lemmas 2.1-2.4 in [14], both 6@’ * and Ql@i‘ contain a single element; these elements
are denoted respectively by x” and x/, 4

If r > ¢g, there is a corresponding (a1, J 1) versions of ®” that assign to x’ and ;(QL
solutions to corresponding version of (1 8). Let ¢ and ¢/_ denote the solutions to
these respective versions of (1-8). Both ¢’ and ¢/ are pairs 1n Conn(E)xC®(M:;S’)
where S’ is the spinor bundle for the metric that is associated to (ay, J 1) Both ¢
and ¢, have corresponding versions of the operator £, as depicted in (1-9); and both
versions have trivial kernel when r is large. As a consequence, there is a corresponding
spectral flow from the ¢ version of £, to the ¢ version.

As argued in the previous two subsections the spectral flow from the ¢/ version of £,
to the ¢, version is equal to deg,..,(x/,) — deg,.,(x”) mod(p). Note in addition, that
if R” is sufficiently small, then deg,.,(x/,) —deg.q, (x") = degeq, (a+) — degeen (A-)-
Indeed, this follows from (1-4) given the definition of the Conley—Zehnder indices in
Step 3 of Part 2 in Section 1.a.

Part 3 Let ® and ®' now denote either ®_ and ®” or ®4 and © . Use x
and x’ to denote the corresponding x— and 7(;_ or x+ and 7Cﬁ|_ Now consider the
homotopy from the original pair (a, J) to (dy, Jy) to the original pair. Reparametrize
this homotopy by 7 € [0,1]. Given that ® and ®’ contain the same Reeb orbits
with the same integer partners, such a homotopy can be covered by a corresponding
homotopy that changes the data x to x’. Note in this regard that x’ is such that
each (y,m) version of ¢, is the symmetric vortex in &;,. Let {A;}r¢[0,1] denote this
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covering homotopy. The constructions in Section 3.a of [14] can be done for each ;.
This with each (y,m) € © version of &, = 0, produce a configuration, (4*%, y*7),
in Conn(E) x C*®°(M;S;). Here, S; is the spinor bundle that is defined using the
metric that is defined by 7’s version of the contact form and almost complex structure.
Each x; has a version of what is denoted in Step 2 of Section 2.a as (bx, n«), this
denoted here as (b, xz). Use Lx; to denote the version of (1-9) that is defined by
(AT, 7)) = (A*T + 2V 2012, p*T 4 21/ 2012 ) Tt follows from what is said
in Steps 8 and 9 of Section 2.a as applied to x and to x’ that the spectral flow of the
family {£xc}refo,1] is the same as that from the ¢ = ¢(x) version of £, to the ¢ = ¢(x”)
version.

To compute the latter spectral flow, remark that there is a version of (2-19) for each
L1, with corresponding terms -, Sﬂ- and D;. The bounds in (2-20)—(2-22) hold in
each case. Meanwhile, if (y,m) € ©, then

i
(2-114) (Dcb)y = ZViby + (Vig,)e V' fic)leg + ey

where ¢}, is the map from S — €, that is defined by ;. Here, [|¢, |2 < c0||0||L%.
The proof is identical to that used to prove the formula for (D), given in Lemma 2.1.
What with the £4; versions of (2-20)—(2-22), these formulae for {D¢},¢[o.1] imply
that the spectral flow for the family {£«¢};e[o,1] is the sum of the spectral flows for
the various (y,m) € ® versions of {(i/2)V,0, + (V(GV)RVI’OﬁT)h; Yre[o,1]-

This last conclusion with what is said at the end of Part 2 imply the formula asserted
by Theorem 1.1.

3 Proof of Theorem 1.2

This section proves the assertions of Theorem 1.2 about the map W". Section 3.a
proves the assertion that is made by the first bullet. Section 3.b proves the assertion
that is made by the second bullet.

3.a Nondegeneracy

Fix L > 1 and a pair ©®_ and ®4 in Zéh. Suppose that X obeys the (O_,04)
versions of the constraints in Section 4.b of [14]. This being the case, the constructions
in Sections 4-7 of [14] produce a family of instanton solutions to (1-11) that are
parametrized by a small radius ball about the origin in the vector space V} of Proposi-
tion 7.1 in [14]. Let 0x: R — Conn(E) x C°°(M;S) denote such an instanton. Use
¢— and c4 to denote the respective s — —oo and s — oo limits is 0y . Let © denote
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the corresponding version of the operator that is depicted in (1-12) The upcoming
Proposition 3.1 describes this operator.

Proposition 3.1 refers to an integer /(®_, ®4; Z). The latter is defined by (1-4)
using for Z a suitable embedded, oriented surface in [0, 1] x M with the following
property: The respective closures of the projections to M of Z and X(c u)exmC
are homologous rel their boundaries. The proposition also refers to a parameter R.
This is the parameter introduced in Section 4.c of [14] and used subsequently in the
construction of the map W’ .

Proposition 3.1 There exists k > 1 with the following significance: Fix R > k?

and r > k. Then Propositions 6.4, 7.1 and 7.6 of [14] can be invoked to construct an
instanton solution to (1-11) from any element in the radius k~' ball about the origin in
the vector space V. Fix such a point to define the instanton 0y, and the corresponding
operator ® maps L2(Rx M;iT*M ®@S@iR) to L>(RxM;iT*M @S®iR) asa
Fredholm operator. This operator has trivial cokernel and index equal to I(©_,®4; Z).

This proposition is proved momentarily.

Proposition 3.1 implies directly what is asserted by the first item of the first bullet in
Theorem 1.2. The second item follows from the first given the fact that ¥" was defined
so as to be equivariant with respect to the respective R actions on M (0®_, ®4) and
on My(c—,cyq).

Proof of Proposition 3.1 The fact that ® is Fredholm follows directly from Theorem
1.1’s assertion that both ¢_ and ¢4 are nondegenerate. If ¢y (det(S)) is torsion, then
the fact that © has the asserted index follows directly from formula given in Theorem
1.1 for the deggw (c4+) —deggw(c—). The computation of its index in the other cases
follows from the arguments given below that establish the dimension of its kernel
and the trivial nature of its cokernel. These arguments constitute Parts 1-6 of what
follows. O

Part 1 Reintroduce the pair (4*, ¥™*) as defined in Section 5.a of [14]. Let B C I,
Vo and the map ¢: B — V} be as described in Proposition 7.1 of [14]. Let A € g(B)
denote the element that defines the instanton 0y . Introduce £ € BN ¢~ (1) to denote
the element that is subsequently supplied by that same proposition. Section 5.b of [14]
describes (A, ¥¥). Section 6.d of [14] defines h = h(£) and Proposition 6.4 of [14]
describes q = q(§) € Hg- As noted in Proposition 7.6 of [14], the instanton 0y is
obtained from the (¢, b = b+ q) version of the pair (A4, ) given in (5-19) of [14] by
acting on the latter with a suitable map from R x M to S'. In any event, agree now
to use (Ay, ¥x) to denote this same pair (4, V).
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Set X = Rx M . With its product metric defining the Hodge star and the notions of self-
and anti-self-duality, define the operator ®y by replacing (Ay, ¥x) by (A4x,¥x) in
(2-61). This operator is the gauge transform of the operator ® via the map from R x M
that writes the instanton 0y as (Ayx, ¥yx). Note in this regard that if X =R x M and
the metric is the product metric, then the bundle i 7* X & Sg whose sections define
the domain space in (2-61), and the bundle i A>T @ Sg_ @ iR whose sections defines
the range space are both canonically isomorphic to i T*M @ S @ iR, which is the
domain and range space of ©. These identifications of domain and range spaces are
implicit in what follows.

The plan for what follows is to compare Dy with an operator, D¢, that is more
accessible. To define D¢, introduce the connection (AE, ws) from (5-15) in [14]
and introduce h = h(&) from Section 6.d and Proposition 6.4 of [14] and write its
components as (by, 1y, ¢y). Now define D¢ by (2-61) using X' = R x M and using
for (Ax, ¥x) the pair (4% + (2r)1/2(thds + by), vE + 1) . The comparison between
Dy and D¢ will be made by writing

(3-1) Dxf = Def +r'/2e}
where ¢4 is the contribution from q. Note that |eq| < ¢o|q|. Meanwhile,
(3-2) laller + llall« < cor/ (/2787 ).

These bound on q comes via Propositions 7.1 and 6.4 in [14].

Part 2 It proves useful when discussing (3-1) to introduce the Hilbert space H as
defined in (6-2) of [14]. Introduce IC% to denote the Hilbert space that is defined as in
Step 4 of Section 5.b in [14], but with each norm || - ||x in (5-13) of [14] replaced by the
corresponding L% norm. (The latter is denoted by | - [[x2 in what follows.) Use (6-9)
in [14] to define the homomorphism ¢: IC% — HI. This ¢ is injective when r > ¢.
Define Hg- as in Part 6 of Section 6.a in [14], this the L? orthogonal complement
in H of the image of ¢ . An element f € H has the L?—orthogonal decomposition
f=fl+ te(0) where e IH[EL and where 6 € IC%.

Use L to denote the space L>(Rx M;iT*M &S @ iR) and define £? as in Part 7
of Section 6.a in [14]. The formulae in (6-9) of [14] define an injective map, this also
denoted by ¢, from £? to L. Note that the large r versions of te: £? — L are such
that

(3-3) o 18llL2 = [t (O)l2 < collB]l 2.

In any event, both the IC% and £? versions of t¢ have two properties to keep in mind
for now. To describe them, introduce as in Section 5.a of [14], the symbols Ex_
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and E x4 to denote the respective sets of distinct Reeb orbits that are approached as
s — —oo and as s — 400 by the constant s slices of 2. Thus, y € Ex_ if and only
if y = yg for some negative s < —1 end of ¥. When y € Ex_, the symbol &, is
used to denote the set of ends £ € £ with yz = y. There is the analogous definition
of £, 4 foreach y € Ex,.

Here is the first property: The set (| Jcee Uc) U (UyeEz— U,-)u (UyeEZ+ Uyt)
contains the support of #(0). To state the second property, write the element 6 as
((Bc)cec, (Oy—)yezs_. (Oy+)yezs, ). Onany given C € C version of Uc,

(3-4) |t§(9)| fC()Vl/ze_ﬁdm("E)/100|9cl.
Meanwhile, on any given version of U, or U, 4, the analogous inequality holds with

6y — or 0, replacing Oc .

Part 3 This part gives bounds for the L2 norms of the endomorphism r!/ 2e;"(-) that
appears in (3-1). Consider its norm when acting on a given f+ € Hé The bounds in
(3-2) imply directly that

3-5) Vel < cor P allmlit e < cor 2T+ DT a

Indeed, this follows by first bounding the L2 norm of |q]|f| by the product of their L*
norms, and then bounding the latter using (6-3) in [14].

Consider next the L2 norm of r!/ 2e;‘ te(0) for 0 € E%. To obtain a useful bound, write
0 =((0c)cec, (Oy-)yers_, (Oy+)yers,). Fix C €C. It follows from (3-4) that the
contribution from U¢ to r'/2| extz(0) |2 is bounded by the square root of

(3-6) o / 0,
C_UZESC ZZR

where [ is the function on C — ((Ugeg. E4r) given by

(3-7) F()=r / RGP
ls|<2px

Here, py = r~1/2%0 s from (4-8) in [14]. Meanwhile, xr for any given T > 0 is
shorthand for the function on the normal bundle N — C that given by x(|s|/T). To
bound (3-6), fix any given p € (0,1) and a disk D, C C — (Uzegc E4R) of radius p.

As argued momentarily, there exists ¢ and § > co~! such that

(3-8) / < colr1167 4 32) 0.
D,
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Granted (3-8), use Lemma 5.4.1 in [14] to conclude that the integral in (3-6) is bounded
by co(r=1T169 1112|1612 K2 A very similar argument finds the same sort of bound
for the square of the L2 norm over any U,_ or U, of r1/2||e te(0)]2. Thus,

(3-9) P2k te(0)ll2 < co(r™ 28+ AN [10] 2.

To obtain (3-8), consider first the case when p < 2. In this case, Holder’s inequality
finds that the left hand side of (3-8) is bounded by cor3/2p||q || . This is bounded in
turn by ¢o(pr)'/?r ||C|||IHI using the Sobolev inequality in (6- 3) of [14]. According to
Proposition 7.1 in [14], this is less than the § = 1/2 version of what is written on the
right hand side of (3-8).

Consider next the case where p > r~2. This argument here exploits the identity
ge—VTslco — _cOr—l/Zdi(Se—«/?S/Co + Cor—l/z(e—ﬁs/m _ 1))
s

This and integration by parts finds

ffcwwzf (@—wvwo+f4mhrqéwﬁmnm_nﬂwvﬂ
(3_10) |5|<2p2

n r_loe_“ﬁlS'/chXsz (11— sz)lqlz)'

It then follows using Holder’s inequality that the integral of f over the disk D,
is bounded by c0r||q||H(f ~1(D, )|Vq| ) +r_8||q||H This last expression is
bounded courtesy of Lemma 7.3 in [14] by co(r~'/2149 1 |A)2(poV/* +r78). In
particular, if p > 2, then what was just written is bounded by what is written on the
right hand side of (3-8) if 6 < v/4.

Part 4 Write f € H again as §+ + t(0) with e Hé‘ Use II¢ to denote the L2-
orthogonal projection to the image of #, either in I or in H. As done in Part 7 of
Section 6.a in [14], introduce ILSL to denote (1 —Ilg)L, this the L? orthogonal com-
plement of the kernel of the adjoint, th: L — £2. When considering the operator £
it proves useful to view it with the help of its projections in ]Lé- and via th in £2. To
this end write

o (1-Tlg)Def = Dpf* + p(9).

G0 e d@eh = p) + 6.

To start the analysis of the terms on the right hand side of (3-11), use the small size of
h(&) with Lemma 6.1 in [14] to see that

(3-12) 195 112 = coll* e
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This same lemma from [14] also implies that ”DJ- is invertible as a map from HJ-
to Lé‘ Meanwhile, (6-6)—(6-7) from [14], the descrlptlons in the latter’s Section 6. d
of §, and what is said in Lemma 3.10 of [14] imply that

(3-13) lpO)ll2 < copx(IVOll 22 + r1/2[10] z2) < cor™ (|01l xc2.
These same parts of [14] also find that

(3-14) 17 G5 22 < cops I < cor ™23l 1|

Note that the factor 3¢ is absent in both (3-13) and (3-14) when each C €C component
of 6 has support on C — (Uzeg. Z2R)-

The operator A is described in part by the next lemma. The latter refers to the inner
product K2 on ICf that is obtained by replacing in (5-13) of [14] each occurrence of
|- lx with the corresponding L? norm.

Lemma 3.2 There exists k > 1 such that if the constants R and r used to construct
0y obey R >k, r >«?, and |A| < k™! then the operator A is Fredholm as a map
from IC% to £* with trivial cokernel and kernel dimension 1(®_, ®; Z). Moreover,
|AB]| 2> k! 101lxc2 when 6 is IC? —orthogonal to the kernel of A.

This lemma is proved in Part 6 below.

What with (3-5), (3-9), (3-12)—(3-14) and Lemma 3.2, all of the relevant questions about
®y can be rephrased as questions about A. The following lemma states something
more precise.

Lemma 3.3 There exists k > 1 such that if the constants R and r used to construct 0x;
obey R>«,r>«?,and |A| <k~', then ©y, has trivial cokernel and the composition of
t with L2 —orthogonal projection maps the kernel of A isomorphically onto the kernel
of ®y. As a consequence, the index of ®x, is equal to that of A; thus I(®_,04; 7).

The assertions made by Proposition 3.1 are direct corollaries to this last lemma.
Proof of Lemma 3.3 Use (3-5) and (3-12) to conclude that the linear map fJ-

Dt = DJ'fJ-+r1/2(1—H )(exf+) is invertible, with [[(D5)™'(+)llm < coll - |12
This understood it follows that if y € L and f = §- + () € H obeys Dxf =1, then

(3-15) Jt= @) (=T —r'2e5t0) - p(6)).
Meanwhile, 6 obeys the equation
(3-16) AO) +e®) = T (n) —p(Dx) ™' (1~ Men).
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where

e(d) = p'((@JE‘)_l (r1/2(1 = Tg) (e} £(6)) +p(9))) + 1268 (e e (6)).
Note in particular that the operator e obeys
(3-17) le(@)l z2 < co(r™/2¥8 + [AD 6] 2

Indeed, this follows by first using (3-9) to bound r /241 (e;" t(6)) and then the following
two additional facts: First, the operator

(3-18) 0 — ¢ (@%) 'r2(1 - TIg) (e 1))

has norm bounded by ¢o(r /2189 1 |A|)2, this because of (3-9), (3-14) and the bound
on the norm of (BDJE-)_1 . Second, the operator

(3-19) 0 — 7(D%) ' p(0))

has norm bounded by cor_1/2+3"r30, this because of (3-13), (3-14) and the bound
on the norm of (’DJE-)_1 .

Given what is asserted by Lemma 3.2, the claims made by Lemma 3.3 follow directly
from (3-16) and (3-17).

Part 5 This part describes the operator A in preparation for the upcoming proof of
Lemma 3.2 To begin, write 6 € IC% as 0 =((0c)cec, (Oy-)yegs_» (Oy+)yeex, ) and
write the component of A(f) as A(f) = ((Ac)cec, (Ay—)yezs_» (Ay+)yeas,)-
The three steps that follow supply a description of these components. a

Step 1 Suppose that C € C is not R—invariant. View ¢ as a section of C’s normal
bundle N, and view Ac as a section of N ® T%!C. A virtual replay of what is said
in Parts 4 and 5 of Section 2.c that lead to (2-80) finds that A¢ appears as in (2-80):

(3-20) Ac(0) =30¢c +vcbe + pncbe + e,
where the L? norm of ¢ on C — (Uzeg E2r) is bounded by co(r™o/* + IADIOlxc2 -

Step 2 Suppose next that C € C is an R—invariant cylinder, thus R x y for some
Reeb orbit y. Let m denote the associated positive integer. Use the coordinates in
(1-5) of [14] to identify the tangent space in &, at the symmetric vortex with C".
Use C’s identification with R x y = R x S' and C’s normal bundle identification as
C x C, these as described in Section 4.a of [14], to identify 6c and Ac as maps from
the |w| < 4R partif R x S! to C™. In the case m = 1, the arguments that lead to
(2-80) can be used almost to verbatim prove that A has the form given in (3-20) with

Geometry € Topology, Volume 14 (2010)



2776 Clifford Henry Taubes

the pair (v¢, i) equal to y’s pair (v, i). In the case when m > 1, the arguments
that lead to (2-80) together with those that give the formula for D# in Lemma 2.1
prove that Ac has the following form: Let Ac, and ¢, denote the g—th coordinates
components in C” of the maps 6¢ and A¢. Then

(3-21) Acg = 0cq + %RQCq te,

where R here denotes the rotation number of y. Meanwhile, ¢ is such that its L% norm
is bounded by co(r /% + |1 ])[|0]x2.

Step 3 Consider next A, _ for a given y € Ex_. A very similar description holds
for Ay when y € Exy. The {Ay4}yery, descriptions are left to the reader.

Suppose first that the associated integer m,— is equal to 1. To describe A, _, it
proves convenient to view both A, _(0) and 6,_ as maps to C from (—oo, —R) x S'!
to C. This is done using the coordinate oy in (1-5) of [14]. Given the fact that
€Nl < cor='/2189  a very slight modification of the arguments leading to (2-81)
finds that A, _(6) is given by

(3-22) Ay—(0) = 30y — +vOy_ + ub,_ +e,
where the L2 norm of ¢ on the s <— R part of U, _ is bounded by co(r ~%/*+|A|)||6 llxc2.

Suppose next that m1,— > 1. The simplest case to analyze here is that when C contains
the cylinder R x y and its associated integer is 71, —. The arguments for the DO formula
in Lemma 2.1 can be re-employed to prove that A, _(6) in this case has the form given
in (3-21) on the g—th summand in C™» .

Assume again that m,,— > 1 and suppose £, contains an end that is not part of R x y.
Reintroduce the notation from Section 5.c of [14] to view ¢, _*T} ,0&m,,_ over the cylin-
der I x S! forany given k €{1,..., N,_} as <t T1,0Cm, © (@gegy__rgk 7« (N|E)).
Use this isomorphism to write 0, as (0, m«(0xr)) and A, as (Ag, m«(Axk)).
Then

(3-23) Ak = 0, 0k + (Vo VOB, + e,

where £ isthe v = %R version of the function 4, on €,,, given in (2-41), and where ¢
is such that its L2 norm on I x S! is bounded by ¢o(r /% + |16 |2 . Meanwhile,
if E€ &, —&, then E’s component of Ay is given by (3-21). These assertions can
be proved using, once again, arguments that differ little from those used to derive the for-
mula for DO in Lemma 2.1. The details of all of this offer nothing new and are omitted.

Reintroduce the map cxo: R x .S LN €, from Section 7.f of [14]. As is noted
there, it follows from Constraint 2 in Section 4.b of [14] that the distance in &,
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between c¢x|(,,r) and cxol(z,r) is bounded by cor~%/* ateach (w,1) € I x S'. As
a consequence, the map éxp,, from Part 8 in Section 2.a of [14] can be used to
identify the ¢z and ¢ pullbacks over I x S! of T1,0Cm, when r > ¢o. With this
identification understood, then Ay in (3-23) can just as well be written as

(3-24) Ak = 00Ok + (Ve VVOR) | + ¢

where ¢ here differs from its namesake in (3-23) but obeys ||e|| ;2 =<co(r —ol4 L )16 K2
Part 6 This part of the subsection consists of the.

Proof of Lemma 3.2 If y € Ex_ and m,_ =1, set V,,_; = 0. Likewise, set
Vy4+ =0if y € Exy and my4 = 1. Now suppose that y € Ex_ and m,_ > 1.
If there is just one end of ¥ in U,_ and the latter is an end of R x y, then set
V,—,1 = 0. If such is not the case, introduce the notation from Section 5.c in [14]. If
ke{l,...,Ny_},use V,_ i to denote the kernel of the operator

(3-25) £ — Oeof + (Ver VIOR) | ero

when viewed as mapping L%(IR{ xSt toT1,0€m) to L*>(Rx ST; %oT1,0€m, ). Note
that Lemma 7.5 in [14] asserts that this operator is Fredholm with trivial cokernel. In
the case when y € Ex 4, define the analogous vector spaces Vy, 4 .

Define V as in (7-43) of [14]. Note in this regard that the kernel of D¢ is trivial when
C is an R—invariant cylinder. Mimic what is done in Section 7.f of [14] to define the
maps ¢: IC% — Vo and ¢g: Vo — le. With only cosmetic changes, the arguments
from Section 7.f of [14] establish the following when r > ¢y and R > ¢o: First, g4
maps onto Vj and, in addition,

(3-26) Iq(po(§)) —&llp2 < cor /|||l 2 forall& € Vq.
Meanwhile, it follows from what is said about A in Part 5 above that
(3-27) 1AGo(E)ll 2 < co(r™0 + AD)[Ell > forall £ € V.

Finally, the arguments given in Sections 7g and 7h in [14] can be applied with only
notational changes to prove the following: If r > ¢o, R > ¢o and |A| < ¢y ™!, then
A maps the kernel of g onto£2.

3-28 _ .
G20 A@) 2 = o 0]z if g(6) =0.

These last points imply that the kernel of A is isomorphic to Vj, that A has trivial
cokernel, and that ||A(0)| 2 > co ™! [611x2 if 6 is L? orthogonal to the kernel of A.
In this regard, the isomorphism between V,, and the kernel of A can be taken so
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as to send any given & € Vj to ¢o(§) + t(§) where ((§) € kernel(g) obeys ||¢[|x2 <
co(r e +ADE] 2

Granted what just been said, all that remains is to verify that dim(V}) is equal to
1(®_,04; 7). This task is done in the six steps that follow. a

Step 1 Suppose that C € C is not R—invariant. Introduce D¢ as depicted in (1-10),
viewed as a Fredholm map from L%(C; N)to L2(C; N ®T%'C). As D¢ has trivial
cokernel, the dimension of its kernel is the index of D¢ . This index can be computed
using the formula from Theorem 5.1 in [6]. What with Lemma 2.3, the result can be
put in the following schematic form:

index(D¢) = — Z Z Zr
y€EBEx_ E€ECNE) —

+ Z Efegcmgy+ZZ_(Cl,C)+deg(NC),

YEES+

(3-29)

where the notation is as follows: First, {c¢;, C) denotes the Euler class of a section
of the bundle K| with it understood that the section is given on C’s intersection
with any given U, 4+ as the restriction of the projection to K of the vector field %
Second, deg(N¢) denotes the Euler class of C’s normal bundle as defined using a
section whose restriction to C’s intersection with any given U, + is the projection
to N of this same d/dz Finally, what is written as zz is defined as follows: If the
associated Reeb orbit y is hyperbolic, then z¢ is the rotation number of y. If the Reeb
orbit y is elliptic, then z¢ = 2k;£ g 1 where gz denotes the integer that is described
in Constraint 3 of Section 4.b in [14], where R is y’s rotation number, and where kq<R
is the greatest integer that is less than gR.

Step 2 Consider dim(V,,_ ) in the case when y € Ex_ and k € {1,...,N),_}.
Assume that £,_ contains at least one end that is not part of R x y. If such is not
the case, then there is only V),_ ; and the latter has dimension zero. Reintroduce the
notation from the proof of Lemma 7.5 in Section 7.1 of [14]. This step considers the case
that is discussed in Step 2 of the proof of Lemma 7.5 in [14]. Thus, &£, consists of a
single end, and the latter, £, has gz = m, —. In this case, N,— =1 and the space V),
can be written as a direct sum B, <, <,, Vq Where V4 denotes the L? kernel of the
operator depicted in (7-60) of [14]. It follows from (7-61) of [14] that any function
annihilated by the operator in (7-60) of [14] is a linear combination of those that have
the form (w, 1) — e#(@)+tk(@+it) where k € Z and where the function u(-) obeys

e u(w) —> —qRw +o(1) as w — —o0,

(3-30)
e u(w)—>—-R+(@q—Dke/qz)w+0(1) as w — +oo.
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Here, k¢ is the least integer that is greater than gzR. It follows from (3-30) that the
function e*(®)Tk(w+it) j5 square integrable if and only if

(3-31) grR <k <qR+ (¢ —1)(kz/qz —R) = gk&/qz — (k&/qz —R).

>

qr> and such is

As is argued next, this inequality is satisfied by at most one integer, k
the case if and only if k. /q <kz/qz.

>

To prove that the only possible integer that obeys both sides of (3-31) is qu, note first
that the left hand inequality requires k > kq>R. On the other hand, the ratio kz /g« is
less than R 4 1 /g which is less than kq>R/q + 1/g¢; thus the right hand side of (3-31)
is strictly less than kq>R + 1. As a consequence, there is at most one integer, namely

kq>R, that obeys both sides of (3-31).

To see only one such integer if and only if kq>R /q < k& /qz, note first that the necessity
of this condition follows directly from the fact that the far right term in (3-31) is negative.
To see that (3-31) holds when kq>R /q <kz/qz, rewrite this inequality as gzk g, /q <kz.
Thus, kz = qekgy/q + p/q for some integer p >0 and so k, = gkz/qz— p/qz.
Meanwhile, kz/qz — R < 1/qz, and so the far right hand term in (3-31) is strictly
greater than —1/¢<«.

Let ng = 1 if k/q < kz/qz and zero otherwise. It follows from what was just said
that

(3-32) dim(V,— ) =2 Y  ng.
1=9=<qz

To put this sum in perspective, let kg4 denote the least integer greater than gkz/qz«.
Then kq>R — kgx —ng . This understood,

(3-33) dim(Vy—)=— > 2k;+2 Y kgs
1=q=q¢ 1=9=q¢
As explained to the author by Noam Elkies, the right most sum in (3-33) is
(3-34) 2 Y kg =(gz— (ke + 1),
1=g<qz
this a consequence of the fact that gkz/qz + (92 — @)k« /qx = k¢. Granted (3-34),

reintroduce zy,4 = 2kg, + 1 =2k, — 1 and so write

(3-35) dim(Vy 1) =— Y zyq+ 2z +kzlgz—1).

1=g<m,, —
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Note for a subsequent step that the far right term in (3-35) has the following geometric
interpretation: Let S C C* x C denote the nonsingular curve given in terms of the
coordinates (x = e+ 7Z) as

(3-36) xke 292 — 1,

Let s denote the projection of the vector field d/dz onto the normal bundle of S. This
vector field is nonvanishing where |x| < 1 and where |x| > 1. Thus, it has a well
defined Euler class. The latter is equal to k¢(gz — 1).

Step 3 This step considers dim(V),_ ;) for the case that is discussed in Step 3 of the
proof of Lemma 7.5 in [14]. In this case, there are n > 1 ends in &, _, each with the
same integer gz . Again there is just V,,_ ;. Given what is said there, a virtual repeat
of the arguments just given find that

(3-37) dim(V,—)=2 Y ng
1=g<nqz
where n4 is the number of integers that obey (3-31). To say something more about 7,
remark that (3-31) is obeyed if and only if k& satisfies
(3-38) kgw <k <qkz/qz.

Indeed, necessity of (3-38) for the left hand inequality in (3-31) follows because
there are no integers between gR and kq>R. The necessity of (3-38) for the right hand
inequality in (3-31) follows since —(k«/qz —R) < 0. The sufficiency of (3-38) for the
left hand inequality in (3-31) follows since gR < kq>R. The sufficiency of (3-38) for the
right hand inequality is argued in Step 2.

It follows from (3-38) that

(3-39) ng = kg —kgy,

where kg« denotes the least integer greater than or equal to gk« /q«. This understood,
(3-36) can be rewritten as

(3-40) dm(Vy_ ) == Y zpg—nge+2 Y kg~
1=g<m,, — 1=g=<nq<¢

The sum on the far right can be evaluated as was (3-34) to find that

(3-41) dim(Vy,) = —X1<q<m,_2yq + nQkz —1)+nke(nge —1).

Since (2k£ — 1) is equal to zz, what is written in (3-41) is

(3-42) dim(Vy ) == Y zpq+ Y. zz+nke(nge—1).
1=g=<m,,— E€E)
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For future reference, note that the right most term in (3-42) also has a geometric
interpretation as the Euler class of a section of the normal bundle of a curve in C* x C.
In this case, the curve, S, is the locus of pairs (x, z) where

(3-43) xhe _ pnaz — 1

Consider again the projection, s, of d/dz to the normal bundle of S'. The latter vanishes
at each of the nk¢ points of S where z = 0 with degree ng¢ — 1. This understood,
its Euler class is nkz(nge —1).

Step 4 This step corresponds to the case that is considered in Step 4 of the proof of
Lemma 7.5 in [14]. Consider dim(V,,_ x). Given (7-71) in [14] and what is said in the
final paragraph of Step 4 of the proof of Lemma 7.5 in [14], the arguments from the
previous two steps can be employed with only notational changes to prove that

(3‘44) dim(Vy—,k) = zzmk_1<q5mk_1+nq£ (kq* _k;R),

where kg« denotes the least integer that is greater than or equal to gk« /g% . A variation
of the argument used for (3-34) finds the kg« sum in (3-44) equal to

(3-45) 2I1H1k_1kf+nkrg(nq$—1)+n(2k£—1)+7’lq$.

As a consequence, what is written in (3-44) can be rewritten as

(3-46) dim(Vy_i)=— > zpq+ Y zz+nke(ngz—1+2mp_y).

mp_1<q<my Ee€&

The right most term in (3-46) has the following geometric interpretation: Let S; =
S US’ C C*xC denote the reducible curve given as follows: First, S is given in
terms of the coordinates (x, z) by (3-43). Second, S’ is the disjoint union of nj_;
disjoint, constant z cylinders, each with z > 0 and |z| <« 1. The right most term in
(3-46) is the sum of two terms: The first, nkz(ngz — 1) is again the Euler class of the
normal bundle of S as defined by the restriction of d/dz The second, 2nkemy_q, is
twice the intersection number between S with S”’.

Step 5 It follows from what has been said in Steps 2—4 that
(3-47) Yo odim(Vy—p) == > zg+ > zz+deg(Nzay, ).
1<k<N,_— 1<q<m,_ EeE,)

where the far right term is short hand for the degree of the normal bundle of a certain
surface in U, — with degree here defined by the normal projection of the vector field
0/0z. The surface in question, Z N U, _, is embedded in U, _ and has the following
four properties: First, it is agrees with ¥ N U, where s > —4R,. Second, the
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§ < —2 R, portion sits where |z| < px/100. Third, the s < —6 R, portion is the union
of my,_ disjoint, cylindrical ends. Finally, any given end, E, is a graph of the form
(w, 1) > zge ¥ where ¢ > 0 and where z¢ # 0. This description of the far right term
in (3-47) follows directly from: The geometric interpretations of the far right term in
(3-35) as the degree of the normal bundle of the surface in (3-36); the interpretation of
the far right term in (3-45) as the degree of the normal bundle of the surface in (3-43);
and the interpretation of the far right term in (3-46) as given at the end of Step 4.

Here is an analogous formula for ZlﬁkﬁNer dim(V,, 4 x) when (y,m) € ©4:

(3-48) Yo odim(Vypr) = Y. zg— > zz+deg(Nznau, ).

ISkSNer 1=g<m, + E€Ey +

The derivation of (3-48) is much the same as that of (3-47) and left to the reader. Add
the various versions of (3-47), (3-48) and (3-29) to obtain an expression for dim(Vj).
Given that —(cy, X) = — ) ~cclc1. C) = —(c1, Z), the result is identical to what
appears on the right hand side of (1-4). Note that this equivalence of first Chern
class pairings follows from the fact that Z differs from ¥ only on U, ez, Uy—
and Uy €Exy U, + where the section whose algebraic zero count computes (cy, ) is
nonzero.

3.b Instanton signs

The purpose of this section is to prove the assertion made by the second bullet in
Theorem 1.2. What follows directly sets the stage.

To start, remark that any given version of M(®_, ®4) has an orientation sheaf,
A(®_, ®4), which is defined using Quillen’s ideas about determinant line bundles.
Definition 9.9 in [8] introduces the notion of a coherent system of orientations for
the collection {A(O—,01)}e_,0,cz.,- As explained in Section 9.5 of [8], and
demonstrated below explicitly, a coherent system of orientations is specified by choosing
an orientation for a certain real line that is associated to each hyperbolic Reeb orbit.
A given coherent system of orientations orients any given version of M{(0_,04).

This orientation is denoted by ogc in Theorem 1.2.

By way of reminder, Part 6 in Section 1.b introduced the 2—element set A(c—, c4) for
any ordered pair ¢, ¢4 € M”"*. An element in this set canonically orients each compo-
nent of M (c—, c+) whose instantons are nondegenerate. As noted in Part 6 of Section
L.b, the set A(c—, c4) is canonically isomorphic as a Z /27 module to A(c—) ®z/27
A(c+)* where any given version of A(c) is a certain 2—element set viewed as a
nontrivial Z /27 module. A collection of elements {o(c—, ¢4) € A(c—, c4)fe_ e emr=
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was said to be coherent if there is a corresponding set {o(c) € A(¢)}cerr= such that
any given o(c_, c4) is o(c—-)o(c4).

The second bullet in Theorem 1.2 asserts that it is possible to choose elements {o(c) €
A(c)}cemr sO as to guarantee that the orientation of the image of W” by the collection
{o(c—)o(c+) € A(c—, ¢4 )}c_,cyemr= is the same as the pushforward via W" of oecp.

The proof that follows of this assertion has fourteen parts. The first two parts of the proof
summarize material about determinant line bundles for families of Fredholm operators.
This is relevant by virtue of the fact that the sheafs A(®_, ®4) and A(c_, ct) are the
orientation sheaves of such line bundles. Parts 3—5 introduce the notions that are used in
Part 6 to define a coherent system of orientations, Oech, for {A(O—, O1)}e_ 0 ecZe-
As is seen below, this requires as input a choice of orientation for a line that is associated
to each hyperbolic Reeb orbit. Parts 7-13 use this same data to define an element
o(c—,cy), for A(c—,c4+) when c— and ¢y are in the image of some large r version
of ®". The proof of the second bullet of the theorem is completed in Part 14 which
explains why the o(c—, c4+) orientation of M (c—, ¢4 ) agrees on the image of W” with
the latter’s pushforward of oech. Part 14 also proves that the set {o(c—, ¢4)}c_ ¢, eim(@r)
is coherent in the sense defined above.

Part 1 As noted above, the sheaves A(®_,®4) and A(c—, c4+) are the orientation
sheaves of determinant line bundles. Quillen [11] introduced the notion of determinant
line bundle for a family of Fredholm operators; and what follows gives a brief descrip-
tion. Much of what is said here in the context of embedded contact homology can be
found in Section 9 of Hutchings and Taubes [8] and also in Bourgeois and Mohnke [2].
The corresponding story in the Seiberg—Witten context can be found in Chapter 20
of Kronheimer and Mrowka [9]. (See also Bismut and Freed [1] for more about the
general subject of determinant line bundles.)

To start, let .y and IL; denote separable Hilbert spaces, let § denote a space, and
suppose that s — A;: Lo — L denotes a continuous family of bounded, Fredholm
operators parameterized by the points in .§. Now let V; — § denote a finite dimensional
vector bundle, and ¢;: V; — L1 denote an injective map with the following property:
For all s € §, the composition of first ¢; and then projection to cokernel(A;) is
surjective onto cokernel(A;). Under this assumption, the spaces V|, = {u € Ly :
As(u) € ¢1(Vq]s)} define a vector bundle, Vj, over S. The determinant line bundle
for the family s — Aj is the real line bundle with fiber

(3-49) AP (Vols) @ APP(Vy])*.

Here, convention takes A'P of the zero dimensional bundle to be R. One can show
that this bundle is independent of the choice of V; and ¢;. This line bundle is denoted
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by det(A). Note that there is an exact sequence
(3-50) 0 — kernel(A;) — Vo — Vi — cokernel(A;) — 0,

where the middle arrow is the map A; with it understood that ¢ is used to identify V;
with ¢ (V7). Thus, the line det(A)|; is canonically isomorphic to

(3-51) AP (kernel(A) ® A"P(cokernel(Aj))*.

The latter observation is relevant to the case at hand by virtue of the fact that an
orientation for ¥’s component of the moduli space M{(®_,®4) is no more nor
less than an orientation for the product of the top exterior powers of operators that
are associated to the components of ¥. To elaborate, suppose that C C X is not an
R—invariant cylinder. Then the tangent space to C’s component in M{(0_, ©4) is
canonically isomorphic to the kernel of the operator D¢ as given in (1-10) but viewed
as a Fredholm operator from L%(C; N) to L>(C; N ® T%®!C). Suppose next that
C is an R invariant cylinder. Let m denote the associated integer and let C,,, — C
denote the associated, m—fold connected cover. For the purposes of this proof, define
Dc in this case to be the pullback to C,;, of the operator depicted in (1-10). Given
(1-14) and the constraints in Section 4.b of [14], this version of D¢ is a Fredholm
operator from L%(Cm; N) to L*(Cy,; N) with trivial kernel and cokernel. The point
of all this is that the sheaf A(®_, ®) at X is canonically isomorphic to the Z /27
module of orientations of the line

(3-52) det(Pcec De)-

There is a similar story for the Z /27 module A(c—, c4+) at 0x. The latter is canonically
isomorphic to the Z/27Z module of orientations for the line det(®) where © is 0x’s
version of the operator that is described in (1-12).

What follows is meant to give some indication of how the argument for the second point
in Theorem 1.2 uses these determinant lines. It is first argued that a coherent orientation
for (3-52) is determined in a suitably canonical fashion from an orientation of a tensor
product of 3 lines, det— @ dety, ®det ™, where each is the determinant line bundle
for a Fredholm operator. The Fredholm operator that defines det_ is a version of D,
that is determined solely by ®_. Furthermore, det_ is oriented given the following
data: First, a Z /27 choice for each hyperbolic Reeb orbit with even rotation number
from ®_. Second, an ordering of these orbits. Meanwhile, the Fredholm operator that
defines det is a version of D, that is determined solely by ®_ ; and det is oriented
given the ® analog of this same data. Finally, det¢ has a canonical orientation by
virtue of the fact that the operator that defines this determinant line, yet another version
of D¢, has a deformation through Fredholm operators to one that is C -linear.
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To say more about an orientation for the line det(®), consider first any pair ¢_ and ¢4 of
nondegenerate elements in Conn(E)xC (M ;S). Let 0: R — Conn(E) x C®(M;S)
denote any given smooth map with s — —oo limit equal to ¢ and with s — oo limit
equal to ¢4. An element in A(c—, c4) is determined in a canonical fashion from an
orientation of the determinant line that is associated to 9’s version of the operator in
(1-12). As it turns out, one can choose a map 0 so that this same version of det(®)
can be written in a suitable canonical fashion as Det_ ® Dety ®Dety* where each of
Det—, Dety and Dety, is the determinant line of a Fredholm operator that differs from
(1-12) by a zero—th order term. Moreover, the respective operators that give Det_ and
Det, are determined solely by ¢— and ¢4 . Meanwhile, the operator that gives Dety
is homotopic through Fredholm operators to a C—linear operator. This gives Dety, a
canonical orientation which is assumed henceforth.

The fact that an element in any given ¢ and ¢4 version of A(c—, c4+) is determined
solely by orientations for Det_ and Dety underlies the assertion that there are ele-
ments {o(c—,c4+) € A(c—, c4)}e,cpemr= such that each o(c—, c4) here has the form
o(c—)o(cq)* with {o(c) € A(¢)}cepr=. Indeed this is the case because the module
A(c) for ¢ € M” is isomorphic to A(c, ¢g) with ¢y any given nondegenerate element
in Conn(E) x C*®°(M;S). To say more, define an element in A(c—, ¢g) by orienting
the version of det(®) that is associated to a map 0: R — Conn(E) x C*°(M;S) with
s — —oo limit is ¢— and with s — oo limit is ¢g. As noted above, the associated
version of det(®) for such a map is canonically isomorphic to Det— ® Det_ ® Dety
where Det_¢ and Detg are also determinant lines of Fredholm operators that differ
from (1-12) by something of zero—th order. Moreover, the operator that defines Detg
is determined solely by ¢q, and the operator that defines Det_(, deformable through
Fredholm operators to a C—linear operator. This understood, fixing an orientation for
Dety gives the element o(c—). There is an analogous o(c+). The composition law
A(c—, ¢0) ®7/27 Alco. ¢4)* = A(c—, c4) gives the latter the element o(c—)o(c4)*.

It is important in what follows to note that the element o(c—)o(c4)* is the same as that
determined for A(c_, ¢4) by the orientation of Det_ ® Det¢, ®Det4* given previously.
This is because the lines Det,, Det_¢ and the ¢4 analog of Det_, are all oriented
by deforming their corresponding operators through Fredholm operators to something
C—linear.

With the preceding understood, let ¥ € M{(0®_,04) and take c_ and ¢4 to be
respective solutions to (1-8) that determine the gauge equivalence classes of " (®_)
and ®"(®4). A crucial observation made in what follows is that the associated tensor
product Det— ® Det¢, ® Det can be defined using W to supply the operator whose
determinant line is Det_. Moreover, this version of Det_ is canonically isomorphic to
the line det_ that is used to define the coherent orientation for 3’s version of (3-52). By

Geometry € Topology, Volume 14 (2010)



2786 Clifford Henry Taubes

the same token, W" supplies a version of Det that is canonically isomorphic to det .
Finally, all of this is compatible with the pushforward via W”. These observations
have the following sought after consequence: A coherent orientation for M (®_, ®4)
defines an element in A(c—, ¢4+) which gives the same orientation to det(®) as does
the pushforward via W". Moreover this element comes from a coherent orientation of
the collection {A(c—, c4)}e,cpemr=.

Part 2 This part of the proof states a well known gluing principle for first order Fred-
holm differential operators such as D¢ and ;. This gluing principle lies behind the
composition law A(O—, 0') xz/,7 A(®',04) = A(O_, ©4) implied by Lemma 9.6
in [8]; and also the composition law A(c—, co) Xz/27 A(co. c+) = A(c—, c4) that is
stated in Chapter 20.3 of [9]. See also Section 9.6 in [8] or Corollaries 6 and 7 in [2]
in the former case; and see (20-8) and the surrounding discussion in [9] or Mrowka’s
thesis [10] for the latter. In particular, this gluing principle is used momentarily to
write triple product decompositions of both the determinant line bundle in (3-50) and
of det(®), this in the manner described at the end of Part 1.

What follows states the gluing principle in somewhat greater generality than is necessary.
To set the stage, suppose that Y is a smooth, Riemannian manifold, that Py and P,
are smooth vector bundles over Y with fiber metrics, and that

(3-53) O: L3(Y; Py) — L*(Y; Py)

is a Fredholm, first order differential operator. Let ¢: N — Y denote an embedding of
a separating, codimension 1 submanifold. Let L: C®°(N; ¢ x Py) = C*®(N ;¢ * P1)
denote a first order, unbounded, self-adjoint elliptic differential operator with trivial
kernel. Here, the metric on N is that induced by ¢. Suppose that ¢ > 0 has been
specified, this a number that is much smaller than the smallest of the absolute values of
the eigenvalues of L.

Suppose that 7> 2 and that ¢ extends to an isometric embedding ¢7: [T, T|xN —Y
such that the following is true: Let 7: [T, T] x N — N denote the projection. Then
there are bundle isometries from ¢7. Py ; to 7*¢* Py ; that identify O on the image
of ¢ with the operator

ad
(3-54) —+L+e

as
on [—T,T]x N . Here, ¢ is a first order operator whose coefficients are such that their
derivatives to order 3 are bounded by &.

To continue, define manifolds Y_ and Y, as follows: The manifold Y_ is obtained by
discarding the part of Y that contains the ¢—image of (1, 7] x N and replacing the
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latter with (1, c0) x N. Meanwhile, Y is obtained by discarding from Y the part that
contains the ¢—image of [-7, —1) x N and replacing the latter with (—oo, —1) x N.
Both Py and P; extend in the obvious fashion to Y_ and Y. . Likewise, the operator O
extends over both Y_ and Y4 so as to map L%(Yi, Py) to L*(Y+, P;). The latter
operators are denoted by O+ . Indeed, O_ = d/ds + L + xe on the (1,00) x N part
of Y_; meanwhile O =0d/ds+ L+ (1—y)e onthe (—oo, —1)x N partof Y, . Finally,
define maps ¢_: C®(Y_, Py,;) — C*°(Y, Py) by sending ¢_(n) = xn. Likewise,
define ¢p1.: C°(Y—, Po,1) — C(Y, Py) by ¢+ (n) = (1— ).

The lemma that follows states the promised gluing principle. This lemma uses 04f
and O to denote the formal L2 adjoints of the indicated operators.

Lemma 3.4 There exists e« > 0 and Ty > 2 with the following significance: If & < &4
and T > Ty, then

(a) The operators Q4 define Fredholm maps from L%(Y+, Po) to L*(Yx, Py),
respectively.

(b) The composition of first ¢_ @ ¢ and then L? orthogonal projection onto the
kernel of AT defines a surjection ¢ : kernel(@j) @kernel(@i) — kernel(OF).

(c) The composition of ¢— @ ¢4 and then L% orthogonal projection onto kernel(A)
is an isomorphism from kernel(OQ_) & kernel(Q4) to Vo = {u € L%(Y; Py) :
Ou € Image(¢y)}-

(d) In particular, ¢— & ¢4+ induces and isomorphism of lines

AP (kernel(O-) @ kernel(Q4)) ® AP(cokernel(Q—) & cokernel(04))*

3-55
( ) ~ det(Q).

A proof is straightforward to come by; indeed, the arguments are much like those that
are used to below to prove Lemma 3.5. See also Lemma 9.6 in [8] which gives a
relevant N = S'! version of (3-55). Various N = M versions have been used since
the early days of gauge theory (see, eg Chapter 7 in [3]). Very much more sophisticated
versions in the Seiberg—Witten context are used in Chapters 17 and 24 of [9].

An N= S version of (3-55) gives the composition law A(®_, O')Xxz/22zA(O,04)=
A(O®_,04). A version for N = M gives the composition law A(c—,cg) Xz/27
A(cg, c+) = A(c—, c4+) given in Chapter 20 of [9].

Part 3 This part of the proof serves as a digression to introduce some auxiliary
operators that are used in Part 6 to define a canonical orientation for the line in (3-52).

These operators are used to define the lines det—, dety and dety that are mentioned
in Part 1.
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To start the digression, fix ¢ € (0, 1) but very small, fix k € Z, and define the operator
Do_ on C®(R x S!;C) by declaring it to send any given function 7 to

(3-56) Do_n = %(%+i%+ Gk+e(1—x)))n+igxe’kfﬁ,
where x = x(w). This operator is Fredholm from L%(R xS1:C)to LZ(Rx S!;C).
A spectral flow calculation can be done to prove that it has index 0 when k is odd and
index 1 when k is even. Moreover, if ¢ is small, its kernel dimension is, respectively, 0
and 1. Indeed, when k is even, the kernel is the real span of (1 —i)ee’(®)Fikt/2 where
the function u is an antiderivative of (1 —2y). Fix such a small value of ¢. In the
case when k is even, fix an orientation for the kernel of Dy_. If T > 0 is given, use
Dr— to denote the operator that is obtained from Dy_ by translating the latter using
w — w+ T . Thus Dr_ is obtained from (3-56) by replacing x with the function

xr—=x(w+T).

Consider next the operator Doy on C®(R x S'; C) that sends a given function 7 to

(3-57) Doin = %(%—I—i%—i—%(k—i—e}())ﬁ—i—ia(l—x)e’k’ﬁ.
This operator is also Fredholm from L%(R xS C) to L>(R x S';C). The operator
Do+ has index zero when k is odd and index —1 when k is even. If & > 0 is small, it
has trivial kernel and cokernel when k is odd, and trivial kernel but 1-dimensional
cokernel when k& is even. Fix such a small value for ¢, and then fix an orientation for
the cokernel of Dy when k is even. Given T > 0, define Dy by replacing y in
(3-57) by the function 74+ = x(w—T).

There are yet two more operators that play a roles in what follows. Both map
C®(R x S';C) toitself. The first has the form

1
(3-58) n—D_n=—

9 9 1
2(—+i—+§(k+8))n.

dw 0t

Note that this operator is C-linear. Note as well that it agrees with D7 _ at points in
R x S where —T < w. The second operator of the two operators is denoted by Dy ;
and it is defined by replacing ¢ with —¢ in (3-58). Note that D is also C—linear, and
that it agrees with D4 where 7' < w.

Part4 This part of the proof describes a deformation of certain C € C versions of D¢ .
The particulars are motivated by what is said in Section 9 of [8]. To set the stage,
suppose that y € Eyx_ is a hyperbolic Reeb orbit and let £ denote the end of ¥ that
lies in Uy —. Use C in what follows to denote the component of ¥ that contains .
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View E as a graph (w,t) — zz(w,t) as in (4-2) of [14], and then identify the normal
bundle to ‘£ with C using the projection of d/dz. This done, the operator D¢ appears
on E as

1/ 0 Jd 1 :

where |¢| < ¢o(|n] + |Vn|)e1#I/¢0 Here, k is the rotation number of y .

Fix T > 4R and T’ > 8T ; and consider now the operator on £ that sends a function
n to the operator

(3-60) n— xr-Dr—+ (1 —xr-)Dc.

The deformation of D¢ that is depicted in (3-60) is homotopic to D¢ through a path
of Fredholm, first order operators. Indeed, such a homotopy parametrized by [0, 1] can
be obtained by replacing y7— in (3-60) by ¢ x7— where o € [0, 1].

Let y € Ex denote a hyperbolic Reeb orbit, let £ denote the end of X in U, 4,
and let C denote the component of X that contains E. There is a deformation of D¢
through Fredholm operators that is the analog of (3-60): Replace x7— with (1 — x74)
and replace Dr/_ with D/, .

Given C €C, use D,C;T,T to denote the operator on C that is obtained by replacing D¢
by the appropriate version of (3-60) or its positive end counterpart on each end £ C C
whose constant s slices limit as |s| — oo to a hyperbolic Reeb orbit. It follows from
what is said above that this operator is homotopic to D¢ via a path of Fredholm, first
order differential operators acting from L%(C :N) to L*>(C; N @ T%1C). As just
noted, such a homotopy, parametrized by o € [0, 1], is obtained by replacing each
occurrence of 7+ by oxr4+.

Fix T > 4R and T’ > 8T so as to introduce the line

(3—61) det(@CEC det(DC;T,T/)).

Here, as in (3-52), the operator associated to an R—invariant cylinder component C
that comes with weight m > 1 is that defined by the pullback of D¢ to the m—fold
covering cylinder. Cylinders of this sort have Dc.7,77 = D¢ as they are of the form
R x y with y an elliptic Reeb orbit.

Since each version of Dc.r,1, is homotopic through Fredholm operators to D¢, an
orientation for the line in (3-61) defines one for the line in (3-52); thus it defines a
point in the Z /27 module A(®_,®4) at X.
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Part 5 The two operators D4 are now used to define yet another operator that is
associated to a given component C C X. This operator, D¢, is defined as follows:
First D¢ differs from D¢ only on those ends of C' whose constant s slices converge
as |§| = oo to a hyperbolic Reeb orbit. This understood, let £ denote an end of C
whose constant s slices converge as s — —oo to a hyperbolic Reeb orbit. Then D¢ ¢
on ‘E sends a complex-valued function 7 to

(3-62) Dcon= xr-D-+ (1 —xr-)Dc.

If £ C C is an end whose constant s slices converge as s — oo to a hyperbolic Reeb
orbit, then D¢, on E sends n to Deon = (1 —xr+)D+ + x7+DcC.

The operator D¢ is also Fredholm as a map from L%(C; N)to L>(C;T%!C). Even
S0, it is not homotopic to C through Fredholm operators unless C' has no ends whose
constant s slices converge as |s| — oo to a hyperbolic Reeb orbit with even rotation
number. Indeed, let nc— denote the number of such ends that lie where s < —1 and
let nc+ denote the number that lie where s > 1. Then

(3-63) index(Dc¢) = index(Dc) —nc— +nc4.

This operator D¢ ¢ has the nice property that it is C—linear at large values of [s|. As
a consequence, it is homotopic through a family of Fredholm, first order differential
operators mapping L12(C;N) to L*(C; N @ T%'C) to a C-linear operator. For
example, a homotopy parametrized by [0, 1] is obtained by writing D¢ as

(3-64) n— Dcon = e +veone + ReoTes

and then taking the o € [0, 1] operator in the homotopy to be what is obtained by
replacing uc¢ in (3-64) by (1 —o0)uce -

Here is why the existence of such a homotopy is relevant: The determinant line bundle
of a C—linear operator has a canonical orientation, this defined by taking the vector
space V7 in (3-49) to be complex. As a consequence, det(Dc ) also has a canonical
orientation. This orientation is deemed the positive orientation.

By the way, the existence of such a homotopy implies that D¢ has even index.

Part 6 Let n_ denote the number of hyperbolic Reeb orbits with even rotation number
that come from ®_, and let n4 denote the analogous number from 4. If 7> 4R and
T’ > T, then it follows from Lemma 3.4 that det(D¢.r,7/) is canonically isomorphic to

(3-65) det(@cee Do) = AP(D, R) ® det(@cee Deo) ® AP(ED,, R).
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Here, each factor of R that appears in the first term on the right in (3-65) accounts for the
1 —dimensional kernel of one of the n_ versions of Dy,_. Likewise, each factor of R
that appears in the far right hand term accounts for the 1-dimensional cokernel of one
of the versions of D7 . just noted, det(Dc ) has a canonical orientation, and for the
same reason, so does det(P - Dc¢ ). Note in this regard that the ordering of the com-
ponents of X has no bearing on this orientation as each version of D¢ ¢ has even index.

With the preceding understood, it follows from (3-65) that det(E - Dc;1,77) has
a canonical orientation given two additional choices. Here is the first choice: Each
hyperbolic Reeb orbit with even rotation number has its associated operator Do—. An
orientation is required for the kernel of each such version of Dy_. Note that such a
choice induces an orientation on the given Reeb orbit’s version of Dy . Indeed, this
follows from Lemma 3.4 with the following observation: Take 7' << —1 and define
Dro = (1 = x)Dr_ + xDr, . This operator Drq is Fredholm and it is homotopic
through Fredholm operators to the C—linear operator D_ given in (3-58).

The second choice required is that of an ordering for the respective subsets of Ex_ and
of Ex thatconsist of hyperbolic orbits with even rotation number. With such orderings
chosen, the resulting orientation for det(® ¢ Dc.7,77) induces an orientation for
the line in (3-52).

Now let ¥ and X’ define distinct components of M (®_, ®4). It is a consequence
of what is said in Section 9 of [8] that the orientation and X’ versions of (3-532) define
the same element of the Z /27 module A(®_, ®4); and it follows that this element
comes from a system of coherent orientations as described in Definition 9.9 of [8].
This element in A(®_, ®4) is deemed the positive element. It is the element e, in
Theorem 1.2.

Part7 Fix ¥ C M (0_, ®4), and reintroduce the operator Dy as defined in Part 1
of Section 3.a. What follows here and in Parts 8-10 use constructions from Section 3.a
to relate the kernel and cokernel of an operator such as ®y with certain vector spaces
of sections along the components of X. The general sort of operator that is considered
in what follows is denoted by D x4 and this Part 7 gives its definition. The notation
used in this definition and subsequently is the same as that introduced in Section 3.a.

To set the stage, suppose that y is a hyperbolic Reeb orbit from Eyx_. Fix a pair of
complex functions (vy—x, Uy—x): R xS I C with the following properties: First
Vy—x is real where w < —1 and both are independent of w € R for w <« —1. Second,
the latter w—independent pair defines a version of (1-2) with trivial kernel. Fix an
analogous pair, (Vy4x, ly+x%): R XS I C for each hyperbolic Reeb orbit y € Ex "
Such that vy, 14 is real where @ > 1, both are independent of w where w > 1, and
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is such that the version of (1-2) defined by the latter wv—independent pair has trivial
kernel.

To continue, suppose that C C C is not of the form R x y where y is an elliptic Reeb
orbit. Fix for C a pair (vcx, ites) With vos being a section of 7%1C and jucx being
section of N2 ® T%1C. Constrain vex and s on the ends of C as follows: If
y € Ex, is an elliptic Reeb orbitand C N Uy 4+ # F, then vex = ve and pcx = pe
on CNUyx.If y € Ex, is a hyperbolic Reeb orbit and C N Uy, + # @, first identify
C’send E in U, 4 as a graph via (4-2) in [14] and trivialize £’s normal bundle using
the orthogonal projection along C of d/dz. This identifies (vc«, L) as a pair of
functions on (—oo, —R] x S! or on [R,o0) x S! as the case may be. Granted this
identification require that (Vcs, e #)|(w,r) = (Vy+x. hy++)|r + ¢, where ¢ and its
derivatives to third order are bounded by coe~2raz¥ Here, Ag, 1s the eigenvalue that
appears in E’s version of (4-2) in [14].

To end the stage setting, reintroduce the operators © and D¢ as described in Part 1 of
Section 3.a. Use (3-1) to define eg«.

The operator D x4 is written as Dy = Dy + rl/zeq*( +) where D¢, is the first order,
elliptic operator from L%(RXM; iT*M @S ®iR) to L2RxM;iT*M &S PiR)
that is described in the five steps that follow.

Step 1 This step and the next three steps define an operator B¢, with respective domain
range spaces LI(R x M:;iT*M & S ®iR) and L2(Rx M:iT*M & S ®iR). To
start the definition, take B¢, = D¢ at points with distance py or greater from X.

Step 2 Recall that C denotes the set of components of ¥. Fix C € C and at points
in Uc, write Pesx = xcPex + (1 — xc)Dg, where P is obtained from D¢ by making
two replacements. To describe the first, write D¢ on Uc as in (6-6) and (6-7) of [14]
with the refinement of (6-6) in [14] that is given in (2-78). Now replace C’s version
of (v, ) in (2-78) by (vc«, tc«). To describe the second, recall from Part 1 of
Section 3.a that the pair (A€, ¥¢) that defines D¢ has a contribution from h(£), this
as described in Section 6.d of [14]. The component C contributes to h(§) via be
in (6-36) of [14] with b given as a section, (0,pc) of V.o & V. Here, pc is
defined by (6-33) of [14]. All this understood, the second replacement that defines
B, is obtained by replacing p, in the definition of h(&) with the solution, pcx«, to
—i@g’rp(c* — (1 =T1%vcy = 0 where vey is defined by using vy and s in the
& = 0 version of (6-32) of [14] instead of v¢ and ¢ .

Step 3 The operator P, is equal to D¢ in any U, when y € Ex is an elliptic
Reeb orbit. Note that this is consistent with (3-65) because if y is elliptic, then
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(ves, ex) — (ve, pe) at points in Uc N Uy +, and therefore ‘Pe« = D at points
inUcNUy+.

Step4 Take y € Ex_ to be a hyperbolic Reeb orbit such that XN U, + # . Let E
denote the end of ¥ in Uy, and let C denote the component of X that contains E.
Write Pey in Uy + at distances less than py from £ as Peyx = xc(XzPy+« +
(1 = xz)Bcx) + (1 — xc)Dg where P, 14 is obtained from D¢ by making two
replacements. These are the analogs of those made in Step 2. To elaborate, write D¢
on Uy + as described in Part 4 of Section 6.a of [14] using the relevant version of (6-6)
and (6-7) of [14] with the refinement of (6-6) given by the U, version of (2-78).
Then replace y’s version of (v, 1) in (2-78) by the pair (vy+x, ty+x). This is the
first replacement. To describe the second, recall from Part 1 of Section 3.a that the
pair (A€, %) that defines D¢ has a contribution from (&) as described in Section 6.d
of [14]. If y € Ex_, then it contributes to h(&) via by _ in (6-43) and (6-44) in [14].
If y € Ex_, it contributes via the analogous by, using the Uy 4 analogs of (6-43)
and (6-44) in [14]. In any event, b, is given as a section, (0,p,+) of Vo & V;.
Here, p,, + is defined by in Part 5 of Section 6.d in [14]. The second replacement that
defines P, 4« is obtained by using (v, +x, [ty+x) instead of y’s version of (v, i)
when defining p, 4+ as instructed in Part 5 of Section 6.d in [14].

Step 5 Note that ‘Be, and D¢ have the same first order symbol. As a consequence,
Pes can be written as Vs + L¢yi, where Lg, contains only derivatives along the
M factor in R x M. This understood, set Dgx = Vg + 1(L¢, + £L,) where L1,
here denotes the formal, L?-adjoint. Note that Desx = D¢ when all versions of
(v(-)» (-)x) are equal to the original, unstarred version. This is the case because
De = Vs + £¢ and L¢ is symmetric. The fact that £¢, is not, in general, symmetric is
a consequence of the definition in Part 3 of Section 6.a in [14] of what is denoted by ¢
in (2-78).

Here is a key point to keep in mind in what follows: Let C € C or y € U, 4. Then the
corresponding version of (6-6) and (6-7) in [14] with the refinement of (2-78) holds for
Dy with it understood that (vex, fLc«) is used in lieu of (ve, jue), or (Vy %, iy +x)
is to be used in lieu y’s version of (v, i), as the case may be.

Part 8 Fix data {(vc«, hC+)}cec as described above so as to construct the opera-
tor Dy, . What follows summarizes some of the salient features of this operator. Note
that it is to be understood below that what is written as D¢y when C = R X y has
associated integer m > 1 denotes the pullback of D¢ to the nontrivial, m—fold cover
of C. The next two lemmas refers to the parameter R that is used in the construction
of W". This parameter is defined in Section 4.c of [14].
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Lemma 3.5 Fix Q > 1. Then there exists k > 1 such that the following is true:
Take r > k%, R > k; and suppose that each C € C version of (vc, [Lcx) and
each y € Ex_ version of (Vy+, [Ly+) has C?3—norm bounded by Q. The operator
Dyt LZRXM;iT*M & S®iR) > L*(Rx M:iT*M & S ®iR) is Fredholm
with index equal to X c¢c index(Dcy). In addition, there exists a canonical isomor-
phism det(Dx4) ~ det(Pcee D) -

The next lemma is a slight refinement to Lemma 3.5.

Lemma 3.6 Suppose either that all C € C versions of D¢, have trivial cokernel, or
that all have trivial kernel. Then there exists k > 1 with the following significance: If
r > «? and R > «, then there are isomorphisms kernel(Dg,) ~ kernel(P e D)
and cokernel (Dx4) ~ cokernel(P o Dc«) that are compatible with the determinant
line isomorphism of Lemma 3.5.

Note in particular that Lemma 3.6 is applicable in the case that {Dcyx = Dclcec
and so when Dy, = Dyx. In this case, all cokernels are trivial, and there exists
exactly one C € C where the kernel of D¢ is not trivial. In this case, the kernel is
1 —-dimensional and a nonzero element can be taken to be the generator at ¥ of the
R action on M{(®_, ®4) that is induced by the translations along the R factor of
R x M . The isomorphism takes this element to the element in the kernel of Dy that
gives the generator at 0y, of the corresponding R action on M (c—, ¢4). The fact that
the respective R—action generators are mapped to each other follows from the fact that
the constructions are done in an R—equivariant fashion.

The final result is a corollary to Lemma 3.6 that concerns the R—invariant case. To
set the stage, suppose that ®_ = @4 and that each C € C is an R—invariant cylinder.
Assume that the instanton 0y is independent of the R factor on R x M . This is
to say that 0y = (A4, ¥) is constant map to Conn(E) x C*°(M;S) with (A4, ) the
pair that is constructed using the data ®_ = ®4 as instructed in Section 3 of [14].
Finally, assume that each C € C version of (vc«, tcx) is R—invariant. In this case,
the operator Dy is also R—invariant, and it can be written as

d
(3-66) Dys = — + Ly,
as

where £, differs from what is written in (1-9) by a zero—th order endomorphism. The
operator £, is symmetric, and self-adjoint with domain L%(M T*M & S ®iR).

Corollary 3.7 There exists k > 1 such that if r > k, then the operator £+ has trivial
kernel.

The proofs of Lemmas 3.5 and 3.6 are contained in Part 9.
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Part 9 To set the stage for the proofs, suppose that Q > 1 and suppose in what
follows that each C € C version of (vc, itcx) and each y € Ex_ version X+ of
{(vy+, y+) has C3-norm bounded by Q.

The operator D¢, has a decomposition as in (3-11), this written as
(1 - Te)Desf = D5 (©) + pu(6),
1(@ef) = p' () + As6.

The fact that (6-6) and (6-7) of [14] still hold has the following implication: The analysis
that led to (3-12)—(3-13) can be repeated to obtain a constant, ¢g > 1, such that

1Dt 112 = collit m,
(3-68) I (O)ll2 < cor11]lx2,

g’ GOl 2 < cor /23|57 ||,

(3-67)

when R > cgp and r zcé.

The next lemma says what is needed about A, . The constant R that appears in the
lemma is from Section 4.c of [14].

Lemma 3.8 Fix Q > 1 and there exists k > 1 with the following significance: Suppose
that each C € C version of (vc«, fLc) and each y € Ex_ version of {(vy+, (ty+) has
C3 —norm bounded by Q. For each such C € C not of the form R x y with y an elliptic
Reeb orbit, there exist vector spaces Vic C L>(C; N ® T%!'C) and Vyc C L%(C; N)
such that

o L? projection from V1 to kernel(Dcy) is surjective.

. L% —orthogonal projection from V¢ onto the subspace {u € L%(C; N):Dcyuce
Vic} is an isomorphism.
o Let Vo=Pcee Voo and Vi =Peee Ver - If r = «% and if R > «, there exist
monomorphisms ¢1: Vi — £* and ¢y: Vo — IC% such that
(a) The projection from ¢1(V7) to the cokernel of Ay is surjective
(b) The composition of ¢y followed by the IC% —orthogonal projection to the
vector space {0 € IC% : Ax0 € ¢1(V1)} defines an isomorphism, ¢, that

obeys g0 — doxllx2 < xR |ollx2
(c) Let P: £L? — L£? denote the L? projection orthogonal to ¢1(V;). Then
IPAsA| 2 > K_1||)\||,C% when A is KC? orthogonal to {# € IC% 1 AL0 €

d1(V1)}.

This lemma is proved in Part 10. Accept it as true until then.
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The proof of Lemma 3.5 requires, in general, both Vy and V) to be nontrivial. A
proof of Lemma 3.6 is obtained from the arguments below by taking either V; =0
and Vo = @ ep kernel(Dcy) orelse Vo =0 and V) = @ ¢ cokernel(Dc«) as the
case may be.

Proof of Lemma 3.5 The proof has three steps.

Step 1 Fix y e LL. It follows by virtue of (3-5), (3-11) and (3-67) and (3-68) that a
given § = f+ + t(0) € H obeys Dx4f =1 if and only if 6 obeys an equation that has
the schematic form

(3-69) Avl + ex(0) = 1T (n) — (@571 (1 - Hg)y),

where Dy, [ is defined to be @g'* (L 4+ r1/2(1 — ) (¢q * 1) ; and where ey is the
analog of what is denoted by e in (3-16). This e, obeys the following analog of (3-17):

(3-70) lex(0) ]l 22 < cor ™' /2F8| 0|2

It follows from (3-69) that kernel(®y) is canonically isomorphic to the kernel of
Ay + e« and that the cokernel of ®y is canonically isomorphic to the cokernel of
Ay + ey

Step 2 It follows from the isomorphisms just described that the operator Dx= is
Fredholm if and only if Ay + e« has finite dimensional kernel and cokernel. This
understood, it is sufficient to prove the following:

e The £? projection of ¢ (V) to the cokernel of Ay + ex is surjective.

(3-71) « The K?-orthogonal projection of ¢o(Vy) onto {6 € K3 : (Ax + ex)0 €
¢1(V1)} is an isomorphism.

To prove the first assertion, suppose that u € kernel((Ax + ex)T) is £2—orthogonal to
¢1(V1). It follows from Part (c) of the second bullet in Lemma 3.8 that there exists a
unique A € IC% such that A is ICf—orthogonal to the space {6 € IC% A0 € p(V1)}
and such that P A4A = u. This understood, it follows that

(3-72) (u, PAGA) p2 = [lul%,.
On the other hand the small size of e, implies that
(U, PAL) < cor ™ 2H8T A 2 |ul o2

and this is compatible with (3-72) only if [|A[x2 = co”'rV/2789 ||| p2. This lower
bound is not consistent with what is said in Part (c) of the second bullet in Lemma 3.8.
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What follows next explains why the IC% —orthogonal projection maps ¢g(Vy) onto the
vector space {0 € IC% ((Ax+ex)0 €py(Vy)} is an isomorphism. Suppose that 6 is K2_
orthogonal to ¢o(Vy) and is such that A0 + e«(0) € ¢1(V1). Part (c) of the second
bullet in Lemma 3.8 implies the following: There exists a unique A € IC% such that A
is ICf_ orthogonal to the vector space {6 € IC% A0 e (V1)) and PALAL =PALG.
Given the small size of e, it follows that [|A[[x2 < cor—1/2t80 [[61x2 It then follows
that A (6 4+ X) € ¢1(V7) so there exists u € Vj such that ¢« () = 0 + A. Given the
small size of A, this runs afoul of Part (b) of the second bullet of Lemma 3.8 unless
0=0.

Step 3 The identification described in Step 1 between the respective kernels of Dy«
and A, + e« and between their respective cokernels induces a canonical isomor-
phism between det(Dx+) and det(Ax + ex). Meanwhile, the homomorphisms that
are described in (3-71) supply a canonical isomorphism between det(Ax + ex) and
AP (V) ® AP(V1). The composition of these two isomorphisms gives the asserted
isomorphisms between det(Dx+) and A°P(Vy) @ AP(V7). O

Proof of Lemma 3.6 Suppose first that each C € C version of D¢, has trivial
cokernel. In this case the first bullet in (3-71) implies that the cokernel of Dy, is
trivial and the second bullet gives the lemma’s asserted isomorphism between Vy =
@D e kernel(De ) and kernel of Dyx,. The other possibility has Vp =0 and V; =
@D cec cokernel(Dc ). In this case, the second bullet in (3-71) implies that D s, has
trivial kernel and that the projection of ¢; to the cokernel of Ay + e is injective. This
and the first bullet of (3-71) imply that the composition of ¢ followed by projection
defines an isomorphism from V; to the cokernel of ®y .. The latter is the isomorphism
asserted by Lemma 3.6. a

Part 10 This part of the proof contains:
Proof of Lemma 3.8 There are six steps to the proof.

Step 1 Given that (2-78) holds for D¢, using (Vc«, cx) in lieu of (ve, ), and
using any y € Ex_ version of (Vy4x, [y++) in lieu of y’s version of (v, 1) has the
following consequence: What is done in Part 5 of Section 3.a can be repeated to obtain
a description of A that is, but for two changes, given by the relevant versions of (3-20),
(3-21), or by (3-22) and (3-23), or by their y € Ex_ counterparts. The first change
replaces (vc, i) in (3-20) with (vex, itc«). The second change replaces (v, i) in
(3-22) with (Uyzl:*y My:l:*)-
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Step 2 Let C denote a component of ¥ that is not an R—invariant cylinder; let y
denote an elliptic Reeb orbit in either Ex_ or Ex_ , and suppose that £ C C is an end
that sits in U),_ or U,,, as the case may be. Since (vc, uc) and (ve«, e +) agree here,
there exists cg > 1 such that any element u € kernel(D¢4) and any u € kernel(DC*T)
must obey

(3-73) |u| + | Vu| < coewI=2R oy,

on E. Suppose next that y is a hyperbolic Reeb orbit in either £x_ or Ex , and
that £ is an end of C that lies in U,_ or Uy, as the case may be. In this case, any u
from either the kernel of D¢, or its cokernel obeys

(3-74) |u| + |Vu| < cg(1 + eI#I=T=2Rcoy=1 1)

on E. Here, ¢p depends on the bound, Q, for the C 2 norms of vVesx and flex.
Meanwhile, 7" is such that each y € Ex_ version of {(vy_, ty—) is constant for
w < —T',and each y € Ex, version of {(vy+,ty+) is constant for w > T".

Step 3 This step constitutes a digression to state and then prove a key lemma.

Lemma 3.9 Fix Q > 1. There exists k > 1 with the following significance: Suppose
that C C C is not of the form R x y with y and elliptic Reeb orbit. Assume that
(Ve fhex) and each y € Ex, version of (Vytx« iy+«) Is as described in Part 7
and has C3® norm bounded by Q. Then there exists a finite dimensional subspace
Vei C L2(C; N ® T%'C) with the following properties:

o L2 —orthogonal projection maps Vic onto kernel (DC*T).

e Let Veo =1{u € L%(C;N) :Desut € Vorb. If u € L?((C; N) and if u is
L%—orthogona] to Ve, then | Desul|p2 > k! ||u||L%.

o IfueVcy orifu€ Vey, then (3-73) and (3-74) hold on the ends of C'.

Proof of Lemma 3.9 In what follows, cg in each appearance denotes a constant that
depends only on C and @, but not otherwise on the particulars of (Vex, thex). As with
Co, the value of ¢ can be assumed to increase between subsequent appearances.

Associate to each elliptic Reeb orbit in Ex_ the smallest of the absolute values of the
eigenvalues for the operator in (1-2) when acting on functions from R to C that are
27 n periodic for n € {1,...,my_}. Associate to each elliptic Reeb orbitin Ex the
analogous positive number. If y € Ex_ is hyperbolic, associate instead the smallest of
the absolute values of the eigenvalues of the version of (1-2) that is defined using the
pair limg_s oo (Vy—x, ity —+)|s in lieu of y’s version of (v, ). Associate the analogous
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positive number to each hyperbolic y in E x4 ; here, the version of (1-2) is defined
using the pair that is defined by the s — oo limit of (V) 4, /4y ++)|s. Each Reeb orbit
now has an associated positive number. Set g to equal 1/100 times the smallest of
these positive numbers.

Fix for the moment ¢ € (0, gg) and let U C L%(C ; N') denote the set of elements in
L%(C; N) with unit L2 norm and with the property |Dcxu||;2 < . Note that the
Bochner—Weitzenboch formula for the operator D¢, implies that ||u|| L2 <cg when
uel.

To say more about the set I/, let y denote an elliptic Reeb orbit in either Ex_ or
Ex, and suppose that C NUy— # @. Let X denote the function on C with support
on CNU,_ or CNUy,4 asthe case may be, where it equals x((2R — |w|)/R). As

(3-75) &> [XDcsttllL2 = IDcx ()2 —coR ™ ullL2 = eoll Rull 2 —co R,

it follows that
(3-76) / )A(lul2 Sco(s—i-R_l)z.
C

If y € E_ is a hyperbolic orbit, then (3-76) holds if ) is defined to be the function
on C with support in C N U, + where it equals x((7"+ 2R —|w|)/R).

The existence of an upper bound for the L% norm of any u € U implies that U/ is weakly
compact in the Lf topology. This plus (3-76) implies an additional L? compactness
property whose description follows. To start, let w denote the function on C that is
obtained by summing all of the y € Ex_ and y € Ex versions of what is denoted
by X in (3-76). If u € U, then the function (I — w)u has compact support and is such
that

lu — (1 =wull2 <cole+ R

(3-77) |Dew (1= wyu)| 2 < cole+ R
[I(1— w)u||L% < Cp.

As a consequence, the image of ¢/ under the map u — (1 —w)u maps U in a bounded
and injective fashion to a set of L% sections of N with compact support where
|s] < (T'+ 2R). This image of U under this map is weakly compact in L% and,
by virtue of the Relich lemma, strongly compact in L?. In particular, there exists a
finite set, Uy C L%(C ; N), with the following property: If u € U, then (1 —w)u has

L?-norm less than & from an element in 178. It then follows from (3-77) that any
u € U has L? distance less than cp¢ from an element in U,. This then implies that
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there exists a finite set, s C U such that any u € I/ has L? distance less than cie
from an element in (1 — w)U,.

This last observation implies the following stronger assertion: Any u € U has L%
distance less than cg (e + R~ from some element in (1 — w)U. To see why, first
use the Bochner—Weitzenboch formula for D¢ to see that

(3-78) IV@—=u)lg2 < coIDesullpz + 1Destt’ 2 + lu —u'l| 2)

for any given pair u# and u’ from L%(C ; N); and then use (3-77). Given that
e+ R 1< CQ_1 , the preceding assertion about the L% distance between points in I/
and (1 — w)U, has the following corollary:

Ifue L%(C; N) is L% orthogonal to all elements in (1 —w)U,, then

CT) Dcsullpe > elull 2

With the preceding understood, define V¢ € L2(C; N ® T%'C) to equal the span of
the set {Dcsu +x:u € (1 —w)lde and x € kernel(DTC ). The assertion in Lemma
3.9’s first bullet holds by construction. It follows from (3-79) that a Q—dependent
choice of ¢ can be made so that the assertion of Lemma 3.9’s second bullet also holds
with k depending only on Q. The third bullet of the lemma concerns points in C where
vex = Ve and pucx = e and so where Doy« = D¢ . As a consequence, the proof
that these assertions hold for w € kernel(DTC ,) is now standard; see Hofer, Wysocki
and Zehnder [5] or Lemma 2.6 and Section 3 in Hutchings and Taubes [8]. Meanwhile,
the assertion also holds for the elements D, ((1 — w)u) with u € U, because the
latter vanishes on the relevant portions of C. The assertion made by the third bullet
for u € Vyc follows using the arguments used in [5] or those used in Sections 2 and 3
of [8] because an element u € V¢ obeys D.u = 0 on a neighborhood of the relevant
portions of C. |

Step 4 But for one modification, the map ¢q is constructed by mimicking what is
done in Step 1 of the proof of Lemma 2.7. To say more, fix C € C that is not of the form
R x y with y an elliptic Reeb orbit. Suppose that 1 € Vo . Write the components of
do(n) as ((Poc’)crecs (Poy_)yegsy» (Do, )yeas,)- Set docr = 0 unless C' = C.
Meanwhile, set ¢poc = Zzegc (1 — X'z, )7, Where Ec again denotes the set of ends of
C, and where x7, is defined as follows: If y is an elliptic Reeb orbit in either Ex_ or
Ex . then xi, has support on £ where it equals x((Rz +3.5R—|w|)/R). If y isa
hyperbolic Reeb orbit, then /., has support on where it equals x((7'+2.5R—|w|)/R).
Meanwhile, ¢¢,,— for y € Ex_ and ¢, + for y € Ex are determined by ¢oc using
(5-12) in [14].

The map ¢, is defined in the same manner.
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Step 5 With the maps ¢g and ¢; so defined, it remains now to establish the assertions
that are made by Lemma 3.8’s third bullet. This is done with the help of the next
lemma. This upcoming lemma reintroduces the £?—orthogonal projection P onto
the £2—orthogonal complement of ¢;(V;). The constant R in this lemma is from
Section 4.c in [14].

Lemma 3.10 Given Q > 1 and given the assumptions made by Lemma 3.8, there
exists k > 1 such thatif r > k2 and R > «, then the following is true:
e Both ¢y and ¢, are nearly isometric in the sense that
(a) Ifu e Vo, then (1— kR Mull 2 = [ go@)liz = (1 +&R)ull 2.
(b) IfueVy,then (1—kR™Yulp2 < |po@)llc2 < (1+«R)|ulp2.

o Let A denote the map from the IC% —orthogonal complement of ¢o(Vyp) to the
L2 —orthogonal complement of ¢ (V) that is by restricting P A .
(a) The operator A is an isomorphism that obeys || A6 =l 2.
(b) IfueVy. then P Ao ()l 2 < kR ull 2.

Proof of Lemma 3.10 The arguments for Lemma 3.10 are essentially identical to
those used to prove Lemma 2.7. Here is the only substantive change: Use the bounds
provided by Lemma 3.9 on the elements in Vg in V7 in lieu of those asserted by (2-84)
and (2-85). One perhaps nonobvious, but essentially cosmetic change must also be
made: Suppose that y is a hyperbolic Reeb orbit in either Ex_ or Exy. Let E
denote the end of X that lies in U, — or Uy, 4 as the case may be. The function ¢
should be replaced by the function yzs« which is defined so as to have support on ‘E,
and on Z it is set equal to x((T'+2R —|w|)/R). a

Step 6 To see that the projection of ¢ (V7) to the cokernel of A, is surjective, fix
n € L£? with nontrivial projection to the cokernel of Ay . According to what is said by
Lemma 3.10, there exists 6 € IC% that is le—orthogonal to ¢o(Vp) and is such that

(3-80) AxO =n—1
with " € ¢1 (V7). So ' € ¢1(V1) and n project to the same element in cokernel(A).

Now consider the assertion made by Part (b) of the third bullet in Lemma 3.8. To this
end, suppose that A € IC% is mapped by Ay to ¢1(V7). Suppose in addition that A
is IC%—orthogonal to ¢o(Vy). Then A is in the domain of A}, and since AJA =0,
Lemma 3.8 requires that A = 0. This implies that the IC% orthogonal projection maps
¢o(Vy) onto the space {6 € IC% 1 A6 € ¢1(V1)}. To complete the proof of Part (b),
suppose that u € Vj.

According to Lemma 3.10, there exists a unique A in the ICf—orthogonal complement
of ¢o(Vp) such that PA4A = PAs¢po(u). This implies that x = ¢g(u) + A is in the
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space {6 € IC% : Axb € ¢1(V1)}. Lemma 3.10 asserts that [|A[|x2 < coR™! l[po () || 2
Since ¢o«(u) is no further from u than x, it follows that [|g«(u) — do(u) |2 <
coR™! [ o (u)]|x2 also.

To prove Part (c), suppose that A is IC% orthogonal to {6 € IC% :Ax0 €¢1(V1)}, and write
A =¢o(u)+AT with AL being IC% orthogonal to ¢¢(Vp). Part (b) of the lemma requires
that [[go(u)llx2 < coR™! [Allx2 This understood, ||)»J-||;<% > %||)»||;C% when R > ¢g.

Meanwhile, what is said by Lemma 3.10 finds that ||A-L|| K2 =coll AL 2 and, what
with the small size of u, this is less than co(|PAA| 2 + R™! [Allxc2). Putting all of
these inequalities together gives what is claimed by Part (c) of the third bullet. |

Part 11 To start, take 7 > 4R and T’ > T. Suppose that C € C is not of the
form R x y with y an elliptic Reeb orbit. Part 4 describes a Fredholm operator
Dc.r,1,and a 1-parameter family of first order, Fredholm differential operators from
L%(C :N) to L*(C; N) that begins with D¢ and ends with Dc.r,1,. Each member
of this family differs from D¢ by an R-linear, compactly supported endomorphism.
Parametrize this family by [0, 1] and use D¢ to denote the * € [0, 1] member of the
family. Given that r and R are sufficiently large, then each * € [0, 1] version of the set
{Dc«}cec leads to a Fredholm operator, ® 5, mapping L%(R XxM;iT*M&SPHiR)
to L2(Rx M;iT*M &S @ iR). This operator is described in Part 7. Meanwhile,
Lemma 3.5 describes a canonical isomorphism

(3-81) det(Dx4) ~ det(@ ccp Dew).

Here, as in Lemma 3.5, the notation is such that when C = R x y with associated
integer m > 1, then D¢, is independent of the chosen parameter in [0, 1]; and refers
not to D¢, but to the latter’s pullback to the m—fold covering cylinder. Use Dx.7.7,
to denote the end-member, Dy 4—1, of this family. Given (3-81) and (3-65), there is a
canonical isomorphism

(3-82) Det(Dx.7,77) ~ AP(P,_R) ® det(Pcec Do) ® AP(P, 1 R).

An orientation for the line det(®x.7,7/) determines an orientation for det(®x) since
the two operators in question are the end points of a path of Fredholm operators.

What is written on the right hand side of (3-82) is a tensor product of three lines. What
follows here describes a decomposition of D .7 7/, in terms of three operators on
CPRXM;iT*M &S @ iR), with each accounting for one of the lines on the right
hand side of (3-82). These operators are denoted as D, Dy, and D .

What follows provides a quick definition of these operators. Given x € R, use Ax
to denote the action on C®°(R x M;iT*M & S @& iR) of pullback via the map that
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sends (s,-) to (s —x,-). Thus, (Axf)|s = fls—x. This understood, set
D_ = lim )\.T/QE;T,T/)\,_T/,
T'—00
Dyo = lim Dy.7.7/,
(3-83) =0 T,I_I)noo =T,T
©+ = lim )\—T’QE;T,T’)\T’-
T'—o0
There is another way to define these operators. Start with ©_. Define X_ to be the
collection {R X ¥}, myee_ Where any R x y has weight equal to the integer m that
is associated to y as a member of ®_. Let ¢— denote the solution to (1-8) that is
constructed from @_ via ®". Thus, ¢— = limg—,_oo 05 . Introduce the operator

0
(3-84) Dy =—+ L,
as

where £, is the operator that is depicted in (1-9). To continue, let y denote a hyperbolic
Reeb orbitin Ey_ and let C =R x y. Associated to C is the operator

1/ 0 Ja 1 .
(3-85) D¢ = —(— +i—+ —k)r] +igetky,

where k is the rotation number of y. Define D¢, to be the operator Dy_ that is
depicted in (3-56). Use the collection {Dc«}cec as instructed in Part 7 to define the
operator Dy _,. The latter is D_.

There is an analogous definition of ® 4, this using the data from ®4 and the operator
Dy that is depicted in (3-57). Meanwhile, the operator D5, is obtained from Dy
using the constructions in Part 7 with any given C € C version of D¢, set equal to the
operator D¢, that is described in Part 5.

Lemma 3.11 There exists > 1 such that if r>k? and R >k, then the following is true:
Each of the operators ®_, ©  and D5, maps the space L%(R XM;iT*M&S@iR)
to L>(Rx M;iT*M @ S @ iR) as a Fredholm operator. In this regard, the opera-
tor ®_ has index —n_ and trivial kernel; the operator ® ; hast index n4 and trivial
cokernel; and the operator ¢, has index 1 —n_ +ny . Moreover, there are canonical

isomorphisms  rop
det(D_) ~ A"P(D,,_R),

det(g‘l‘) ~ Atop(@n+ R)s
det(@go) I~ det(@CeC 'DCQ),
det(Dx.7,77) ~ det(D-) @ det(Dx ) ® det(D ),

with the following property: The isomorphism in (3-82) is identical to that obtained by
composing this last isomorphism with the preceding three.
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Proof of Lemma 3.11 The assertions that ®_, © 4, and D5 are Fredholm follow
from Lemma 3.5. The assertion about the index, kernel and cokernel of ©_, © 4,
follow from Lemma 3.6. This lemma supplies the canonical isomorphism between
D,,— R and the kernel of ©®_. Here, each copy of R corresponds to the kernel of a
copy of (3-58)’s operator D_; one such copy for each hyperbolic Reeb orbit in Eyx_
with even rotation number. Likewise, Lemma 3.6 supplies the canonical isomorphism
between its cokernel and @, . R. In this case, each copy of R is associated to a
hyperbolic Reeb orbit in E x4 with trivial rotation number. The assertion about the
index of ®x¢ can be proved by using Lemma 3.4 given that the 7’ > 8 Ry« version of
the operator ®x 7/ 7 is very nearly s—invariant where |s| € [%T 1, T'].

The assertion about det(Dx.7,7/) also follows by taking 7" large and invoking Lemma
3.4. The compatibility of the isomorphisms in Lemma 3.11 and that in (3-82) is a
consequence of two facts: First, both isomorphisms invoke Lemma 3.4. Second, the
isomorphisms that appear in Lemma 3.4 are defined using cut-off functions that have
no substantive affect on the various constructions that are used in Parts 9 and 10. The
details of justification are straightforward and omitted. a

Part 12 This part focuses on the operator D5, . To start, suppose that C € C is not of
the form R x p» where y is an elliptic Reeb orbit. As the corresponding operator D¢ ¢
is C—linear at large |s| on C, it follows that there is a deformation of D¢ through
Fredholm operators to a C—linear operator. In particular, choose such a deformation,
parametrized by [0, 1], whose o € [0, 1] element is defined by replacing pc¢ in (3-63)
with (1 —o)uc - Let De e denote the resulting o € [0, 1] operator.

The constructions in Part 7 can now be applied using each ¢ € [0, 1] version of the
{Dc« = Dcoolcec to define a 1—parameter family {Dxy = Dz oo foefo,1] Oof Fred-
holm operators mapping L3 (RxM ;i T*M &S®iR) to L2 (RxM;iT*M &S ®iR).
There is of course, a canonical isomorphism between det(©x¢) and any o € [0, 1]
version det(Dx¢s). Meanwhile, Lemma 3.5 provides the canonical isomorphisms

(3-86) det(@goa) ~ det(@CeC 'Dcog).

As noted at the end of Part 5, the line det( - Dco1) has its positive orientation
because each D¢y is complex. This orientation induces a canonical orientation on
det(@EOl).

Now suppose X’ is a second element in M (©_, ®). There is a corresponding opera-
tor D¢ and the two operators Dy and Dy have the same s — —oo limit and
they have the same s — oo limit. Since they have the same index, there is a 1—parameter
family of first order, Fredholm operators that maps L%(R XxM;iT*M &S ®iR) to
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L>(Rx M:;iT*M &S @ iR) with one end member Dx¢1 and the other Dy .
Such a homotopy can be used to compare the canonical orientations of det(Dx¢ 1)
with that for det(Dx/¢1).

Lemma 3.12 Let ¥ and X’ denote two elements in M(®_, ®). Then the canoni-
cal orientations of det(Dx.¢ 1) and det(Dyxr () agree.

This lemma is proved in the upcoming Part 13.

Assume for the moment that Lemma 3.12 is true. Let ¥ and ¥’ denote two elements
in M1(®_, ®4). Their respective components are oriented by respective orientations
for the ¥ and X’ versions of (3-52). The latter are oriented by the respective versions
of (3-65). In this regard, both versions of the line det(D - Dc¢) are oriented by the
canonical orientations for the respective ¥ and ¥’ versions of det(Prec Peo1). As
noted at the end of Part 6, the respective orientations of the ¥ and ¥’ components of
M(O_, ©4) define the same section, oech, of the orientation sheaf A(®_, ®), this
coming from a system of coherent orientations. These orientations also serve to orient
the components of the instantons 0y and ?y, via the Dy, = Dy versions of Lemma
3.5. It follows from Lemmas 3.12 and 3.11 that these orientations of the instanton
moduli spaces define one and the same section of the orientation sheaf A(c—, c4). The
latter is denoted by o(c—, c4).

Part 13 This part of the proof contains:

Proof of Lemma 3.12 The vector bundle 7*M @ R can be viewed as a rank 2,
complex vector bundle as follows: First, view T* M @R as T*(R x M) by identifying
the R factor in the former with the span of ds in the latter. Then, use the almost
complex structure J to view 7*(R x M) as a complex vector bundle. As S is given
as a complex vector bundle, so the bundle iT*M & S @ iR can be viewed as a
complex vector bundle. The principle symbol of any D .) is C-linear with respect
to this complex vector bundle structure. Moreover, the operator D s is very nearly
C-linear. To make this precise, introduce the operator Dy ¢ that is defined so as to
take a section f of iT*M &S ® iR to

1
(3-87) Dxoof = E(QZOIf_iQEOI(if))-

Here, i = v/—1. By construction, the operator Dy is C-linear and it differs from
Dyo1 by a zero—th order endomorphism. O

Lemma 3.13 There exists k > 1 such that when r > 2 and R >k, the operator Dx ¢ ¢
is Fredholm from L2(R x M;iT*M &S @ iR) to L*(Rx M:iT*M &S & iR).
Moreover, it is homotopic through first order, Fredholm differential operators to Dx¢1 .

Geometry € Topology, Volume 14 (2010)



2806 Clifford Henry Taubes

This lemma is proved momentarily.

To continue, note that as Dy is a C—linear operator, the line det(Dx¢¢) has a
canonical positive orientation. The latter induces via Lemma 3.13’s homotopy an
orientation for the line det(Dx ).

Lemma 3.14 There exists k > | such that when r > k2 and R > «, then the orientation
on det(D 1) that is induced from the positive orientation of det(Dx ¢ ) is the same
as that induced from the positive orientation on det(ED-c- Dc 1) via Lemma 3.5.

This lemma is also proved momentarily.

To complete the proof of Lemma 3.12, introduce the ¥’ version of (3-87), this denoted
by Dx¢¢ - The latter is also C—linear. Of course, the conclusions of Lemmas 3.13
and 3.14 apply to Dyx/o¢ and Dyrp also. Meanwhile, Dy and Dy are
C-linear Fredholm operators with the same domain and range Hilbert spaces, with
the same index and with the same principle symbols. In addition, their respective
s — —oo limits agree as do their respective s — oo limits. As a consequence, they are
homotopic through such C -linear, first order, Fredholm operators. This being the case,
it follows from Lemma 3.14 that the respective positive orientations of det(Dx¢¢)
and det(Dyx/¢¢) are identified by any such homotopy. This fact with Lemma 3.14
implies Lemma 3.12.

Proofs of Lemmas 3.13 and 3.14 Write D51 = D¢ +7'/%¢g % (+). The operator
Deg1 has its version of (3-67), (3-68) and Lemma 3.8 with Dg, = Dgeyq, with
P« =po1 and pi = p2>1 , and with Ay = A . It is important to note with regard to
Lemma 3.8 that each C € C version of Vy¢ and Vi¢ can be taken to be a complex
vector space. As noted, this is because each version of D¢y is C-linear. By the way,
no generality lost by assuming that at most one of Vy¢c and V¢ is nontrivial for any
given C. As done in Lemma 3.8, set Vo = @ e Voc and set Vi = Peee Vic-

Now fix o €0, 1] so as to consider

~ 1 | .

Thus, the 0 = 0 version is D¢ and the 0 = 1 version is D¢, . The (3-67) analog
for © is written schematically as

(1-Te)Df = Deo1) -+ p*(0) + .

(3_89) T */ el /
t(Def) =p" () + Ap10 +10.
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By virtue of (3-68), the terms p* and p* obey

(3-90)  lp" @)z <cor® (8l and (¥ (H)lIz2 < cor T2 .
Meanwhile, what are written as v and v’ obey

(3-91) Ief*l2 < collf*ll2 and  [[¥0ll2 < cor /2570

With regard to these last bounds, the v bound follows from the fact that Dy —Dxo1
is a zero—th order operator. The v/ bound is a consequence of the fact that Agq is
nearly C-linear; this because each C € C and y € Ex_ version of (2-78) for Dy
has p+« = 0.

It follows from the bound on t and the first bullet in (3-68) that ’)3% o1 4+t is invertible as

a map from Hé‘ to Lg- with inverse whose norm is bounded by c¢. As a consequence,
Step 1 of the proof of Lemma 3.5 can be repeated with only notational changes to prove
the following two assertions: The kernel of D is canonically isomorphic to the kernel
of Ay + ¢* +t'; and the cokernel of D is canonically isomorphic to the cokernel
of Ay + e* +1t'. Here, ¢* obeys the same bound as does ex = ¢ in (3-70). As a
consequence, there is a canonical isomorphism

(3-92) det(D) &~ det(A g + * + 7).

Given the small norm for ¢* and for v/ when v is large, Step 2 in the proof of Lemma
3.5 can be repeated with only notational changes to see that D is Fredholm when r and
R are large. This gives Lemma 3.13. By the same token, Step 3 in the proof of Lemma
3.5 can be repeated to obtain a canonical isomorphism between det(A ¢ + e* +1') and
(A*PVy) ® (APV7)*. This with (3-92) implies what is asserted by Lemma 3.14. O

Part 14 This part completes the proof of the second bullet in Theorem 1.2. There are
two claims to address. The first is the claim that o(c—, c4+) gives the same orientation on
the W” image as does the pushforward of oec. This follows directly from Lemma 3.6.

The second issue is the claim the collection {o(c—, ¢4+)}c_ ¢ cimage(er) has the form
{o(c—, c4) = o(c—)o(ct)*}c_ e, cimage(@r) With any given o(c) an element in A(c).
This claim is verified in the three steps that follow.

Step 1 The Z/27 module A(c) has the form A(c, cg) where ¢ can be any fixed,
element in Conn(E) x C°° (M ;S) whose version of (1-9) has trivial kernel. Choose
co = (Ao, Vo) with Yo = (g, Bo =0). Write T*M &R as T*(R x M) and use J
to view the latter as the underlying real bundle of a complex C%—bundle, V — M .
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This done, view £, as symmetric operator, R—linear operator on C*®°(M;V & S).
Mimic what is done in (3-87) to define the C —linear operator

1
(3-93) Loy = E(QCO —i L, (+))).

This operator is symmetric and C-linear. Moreover, it differs from £( by a zero—th
order endomorphism of V. If (Ag, &p) is suitably generic, then £¢ has trivial kernel.
Assume that such is the case.

Now introduce D, = 9/ds + £, and Do, = d/ds + Lo . View both as operators
that map LI(Rx M: V& S) to L2 (Rx M;V & S). Both are Fredholm operators.
Define

(3-94) Dox = (1 = Y)Do + xDo¢-

This operator is identical to D, where s >> 1 and it is identical to D¢, where s K —1.
The operator Dy is also a Fredholm operator. This understood, fix once and for all an
orientation for its determinant line.

For T > 0, define Dg«7 by replacing y in (3-95) by x((-)—T).

Step2 Let c€ Conn(E)x C% (M ;S) denote a solution to (1-8) that gives an element
in the image of ®”. Choose a smooth map 0: R — Conn(E) x C*®(M;S) that is
equal to ¢ for s < —1 and equal to ¢¢ for s > 1. Let D, denote the corresponding
version of (1-12). An element in A(c, ¢g) is specified by an orientation of det(Dy).

To obtain such an orientation, fix 7" >> 1 and define the operator D, 7 as follows: For
—1 <s <1, this operator is D;. For s > 1 where Dy = D,,, write

(3-95) Do, 1 = x2D¢p + (1 = x2)Doxr
and where s < —1 where D, agrees with ®, = d/ds + £, set
(3-96) Do, = (1= x-2)Dc+ x2((1 = x-7)D- + x-19D)

where © is defined as in Part 11 using ¢ for what is denoted there by c¢—. Note that
the latter has the form as depicted in (3-66).

Denote by ©;¢ the operator that is defined as follows: For —1 < <1, it is the same
as Dp¢. For s < —1, itis

(3-97) (1= x=2)Dc + x—2((1 = x=1)D— + x-1D).
For s > 1, the operator Dy is
(3-98) Dao = X-2D¢p + (1 = x-2)Doo-

The operator D¢ is obtained by taking 7" — oo in the definition of Dy 7.
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Step 3 It follows from Lemma 3.4 that there is a canonical isomorphism
(3-99) det(Ds) = det((1 — Y)D— + xD.) @ det(Dy¢) ® det(Do).

An orientation for det(®Dg) has already been selected. As will now be explained,
the line det(Dy¢) has a canonical orientation. Indeed, such is the case because it is
homotopic through a path of Fredholm operators to one that is C—linear. A homotopy
of this sort exists because D¢ was constructed so as to be C-linear where |s| > 1.
Granted what was just said, it follows that det(®;) is oriented by a choosing an
orientation for the determinant line bundle of (1 — )®_ + x®.. It follows from
Lemmas 3.5 and 3.6 that an orientation for the latter is obtained from an orientation of
det(®-).

Write ¢’s image in M” as ®”(®). Note that the first bullet of Lemma 3.11 has the
following consequence: The line det(®_) is oriented by the following data: First, an
orientation for the kernel of the various versions of the operator _ in (3-56) that are
associated to the hyperbolic Reeb orbits with even rotation number that appear in ®.

Second, an ordering of this same set of Reeb orbits.
Given what just been said, the claim
(3-100) {U(C—’ c+)}c_,c+ Eimage(®") = {U(C—)U(C+)*}c_,c+ cimage(®")

follows jointly from (3-99) and the final two assertions of Lemma 3.11.

Index to the notation

a: the contact 1-form Part 1 of Section 1.a
K~ the kernel of a, oriented by —da Part 1 of Section 1.a
¢1(K): the first Chern class of K Part 1 of Section 1.a
v: the Reeb vector field Part 1 of Section 1.a

Reeb orbit: aclosed integral curve of v, typically Part 1 of Section 1.a
denoted by y

I': aclassin H{(M;Z) Part 1 of Section 1.a
©®: a finite set of pairs (y,m) with y a Reeb Part 1 of Section 1.a
orbit and m a positive integer

Z: aset of ®@’s as above satisfying particular Part 1 of Section 1.a
constraints

£,: when y is a Reeb orbit, the integral of @ Part 1 of Section 1.a
along y
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ZL: asubset of Z with a length bound given Part 1 of Section 1.a

by L on the Reeb orbits.

(v, i) defined for a given Reeb orbit Equation (1-1)

L: a differential operator associated to a Reeb Equation (1-2)

orbit

elliptic, hyperbolic Step 2 of Part 2 in Section 1.a
rotation number R: the rotation number for an Step 2 of Part 2 in Section 1.a
elliptic Reeb orbit

Conley—Zehnder index Step 3 of Part 2 in Section 1.a
1(0_,04,7) Equation (1-4)

deg..,(®) Step 6 of Part 2 in Section 1.a
& the vortex moduli space Step 1 of Part 3 in Section 1.a
the vortex equations Equation (1-5)

h Equation (1-6)

Ciy,m) Step 1 of Part 3 in Section 1.a
nondegenerate map from S to ¢, Step 2 of Part 3 in Section 1.a
€O, CO* Step 2 of Part 3 of Section 1.a
symmetric vortex Step 3 of Part 3 in Section 1.a
R Step 3 of Part 3 of Section 1.a
dege(c) Step 3 of Part 3 of Section 1.a
the Riemannian metric Part 4 of Section 1.a

S: the bundle of spinors for a Spin(c—structure Part 4 of Section 1.a
Conn(FE): the Hermitian connections on £ Part 4 of Section 1.a

w: a chosen 1-form with bounded derivatives Part 4 of Section 1.a
of all orders

Ag: achosen Hermitian connection on K ! Part 4 of Section 1.a
B 4: the metric Hodge dual of the curvature of Part 4 of Section 1.a
a connection A

Y asection of S Part 4 of Section 1.a
D 4: the Dirac operator Part 4 of Section 1.a
wTrw Part 4 of Section 1.a
cl(-): the Clifford multiplication map Part 4 of Section 1.a

M the space of equivalence classes of solu- Part 4 of Section 1.a
tions to (1-8)

L Equation (1-9)

nondegenerate solution to (1-8) Part 4 of Section 1.a

deggw(c) Part 4 of Section 1.a

ez the paragraph prior to Theorem

1.1 in Section 1.a
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Ja: a certain set of almost complex structures
Zech: a particular subset of Z

Zefgh: a particular subset of Zp,
M(O-,04)

Ocech

Dc

(ve, pe)

instanton

Do

H in Section 2

H in Section 3
I - Iz in Section 2

| - |l in Section 3

nondegenerate instanton

Mi(c—, ct)

Ple—. c4)

orientation sheaf in the Seiberg—Witten context
orientation sheaf in the embedded contact ho-
mology context

A(e—, cy)

A(c)

M

coherent orientations in the Seiberg—Witten con-
text

coherent system of orientations in the embedded
contact homology context

x: a cut-off function chosen for eternity

co: a constant that is greater than 1 and is in-
dependent of what ever relevant data is under
consideration. The precise value of ¢y can in-
crease between subsequent appearances

(A3, ¥3)

(by.13.93)

Sy

b(¢)

oy (A3, ¥3)
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Part 1 of Section 1.b
Part 1 of Section 1.b
Part 1 of Section 1.b
Part 1 of Section 1.b
Part 2 of Section 1.b
Equation (1-10)

Part 2 of Section 1.b
Part 3 of Section 1.b
Equation (1-12)

2811

Step 4 of Section 2.a, Step 1 of

Section 3.b in [14]

Part 2 of Section 3.a, Part 1 of

Section 6.a in [14]

Step 4 of Section 2.a, (3-7)

in [14]

Equation (1-13), (6-2) in [14]

Part 3 of Section 1.b
Part 4 of Section 1.b
Part 5 of Section 1.b
Part 5 of Section 1.b
Section 3.b

Part 5 of Section 1.b
Part 5 of Section 1.b
Part 6 of Section 1.b
Part 6 of Section 1.b

Section 3.b

Section 1.c

Section 2.a, Section 3.a of [14]

Section 2.a, Lemma 3.10 of [14]
Section 2.a, Lemma 3.10 of [14]
Section 2.a, Lemma 3.10 of [14]

Section 2.a
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bl * bz
UV

Vo, Vi
Xy

Py,o

(b, %)

(A", ¥™)

L

U

[Ty, IT¢ in the context of Equation (1-1)
L in Section 2

L in Section 3

]LJ_

t in the context of Theorem 1.1
Px

H- in the context of Theorem 1.1
b*é’
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Equation (2-1), Section 3.c
of [14]

Equation (2-2)

Step 2 of Section 2.a, Step 1 in
Section 3.a of [14]

Step 2 of Section 2.a, Step 3 in
Section 3.b of [14]

Step 2 of Section 2.a, Step 2 of
Section 3.a of [14]

Step 2 of Section 2.a, Step 3 in
Section 3b of [14]

Step 2 of Section 2.a

Step 2 of Section 2.a

Step 2 of Section 2.a

Equation (2-4), Equation (2-6)
of [14]

Step 4 of Section 2.a, Step 4 of
Section 3.b in [14]

Step 4 of Section 2.a, Step 1 of
Section 3.b in [14]

Part 2 of Section 3.a, Part 1 of
Section 6.a in [14]

Step 4 of Section 2.a, Step 4 of
Section 3.b in [14]

Equations (2-5) and (2-6)

Step 4 of Section 2.a, Step 1 of
Section 3.a plus (4-8) in [14]
Step 4 of Section 2.a

Step 5 of Section 2.a, Lemma
3.10 of [14]

Step 5 of Section 2.a, Lemma
3.10 of [14]

Step 5 of Section 2.a

Step 5 of Section 2.a

Equation (2-19), Step 7 of Sec-
tion 2.a

Equation (2-19), Step 7 of Sec-
tion 2.a
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D, Dy

hy, Ay
w: the function s — 3|z|> on R x C
R: alarge positive constant

ZE

(1)

Us

Uy,_, Uy, in Section 2
Uy_, Uy, in Section 3

N in the context of Theorem 1.1: the normal

bundle to X

Y g: the |s| <4R part of X

Ni: afixed radius subbundle of N
Wy

wg =ds Na—+ xa

s: the tautological section of 7* N
Z: the zero locus of wx,

T': a tubular neighborhood of Z

Xz

X

wx

self-dual and anti self-dual spinor bundles
S1.Sr,x

Ky, L

Si+,.SE+

x> the Euler characteristic of
ks

deg(Nx)

(A*x ’ W*x)

by_. by,

C: the set of components of X
Uc in Section 2

Uc in Section 3

Geometry € Topology, Volume 14 (2010)

Equation (2-19), Step 7 of Sec-
tion 2.a

Equation (2-41)

Part 1 of Section 2.b

Part 1 of Section 2.b, Equation
(4-8) in [14]

Part 1 of Section 2.b

Part 1 of Section 2.b

Part 1 of Section 2.b

Part 1 of Section 2.b

Part 2 of Section 3.a, Equation
(5-3) in [14]

Part 2 of Section 2.b

Part 2 of Section 2.b

Part 2 of Section 2.b

Part 2 of Section 2.b, Equation
(2-57), Equation (2-58)

Part 2 of Section 2.b

Part 2 of Section 2.b

Part 2 of Section 2.b

Part 3 of Section 2.b

Part 3 of Section 2.b

Part 3 of Section 2.b

Part 3 of Section 2.b

Part 4 of Section 2.b

Part 4 of Section 2.b

Equation (2-60)

Part 4 of Section 2.b

Part 5 of Section 2.b

Part 5 of Section 2.b

Part 5 of Section 2.b

Part 6 of Section 2.b

Part 6 of Section 2.b

Part 6 of Section 2.b

Part 6 of Section 2.b, Equation
(5-3) of [14]

Part 2 of Section 3.a, Equation
(5-3) of [14]
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be

b
Ec: the set of ends of C

ec: an exponential map on C’s normal bundle

oz

R

XEc

(A.X k) Wx)

SE_: an anti-self-dual spinor bundle
A2t the bundle of self-dual 2—forms
Agy
DE

(A—y-), (A, ¥4)
Hy, Hx

I lle,x

ICf in Section 2

IC% in Section 3

txy

115

Ly, Ly

£? in Section 2
£? in Section 3

o: a small positive constant

Px. Py
A in Section 2

A in Section 3

Ag

ry: Thisis (€, /2m)r.

{04}1<g<m: complex coordinates for &,

Geometry & Topology, Volume 14 (2010)
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Part 6 of Section 2.b, Part 3 of
the proof of Lemma 6.3 in [14]
Equation (2-60)

Part 6 of Section 2.b

Part 6 of Section 2.b, Part 2 of
Section 4.a in [14]

Part 6 of Section 2.b, Equation
(4-8) of [14]

Part 6 of Section 2.b, Equation
(4-8) of [14]

Part 6 of Section 2.b

Part 6 of Section 2.b

Part 7 of Section 2.b

Part 7 of Section 2.b

Part 7 of Section 2.b, Equation
(2-61)

Part 7 of Section 2.b

Part 8 of Section 2.b

Part 1 of Section 2.c

Equation (2-62)

Part 1 of Section 2.c

Part 2 of Section 3.a, Step 4 of
Section 5.b of [14]

Part 1 of Section 2.c

Part 1 of Section 2.c

Part 1 of Section 2.c

Part 1 of Section 2.c

Part 2 of Section 3.a, Part 7 of
Section 6.a in [14]

Part 1 of Section 2.c, Section 4.c
of [14]

Equation (2-64)

Equation (2-64)

Equation (3-11)

Equation (2-69)

Part 3 of Section 2.c

Part 3 of Section 2.c, Equation
(1-5) of [14]
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p(w)
I, ks
QE*
ARV

h()
q(8)

A(O_,04)
det(A) for a family, A, of Fredholm operators

Dc;r,1
D¢y

nc+

(veos 1eo)

nt
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Part 3 of Section 2.c

Part 3 of Section 2.c

Part 4 of Section 2.c

Part 1 of Section 3.a, Equation
(5-15) in [14]

Part 1 of Section 3.a, Section 6.d
of [14]

Part 1 of Section 3.a, Proposition
6.4 of [14]

Part 1 of Section 3.a

Part 1 of Section 3.a

Part 1 of Section 3.a

Part 1 of Section 3.a

Equation (3-1)

Part 2 of Section 3.a

Part 2 of Section 3.a, Equation
(6-9) in [14]

Part 2 of Section 3.a

Part 2 of Section 3.a, Section 5.a
of [14]

Step 2 of Part 1 of Section 5.a
in [14]

Part 4 of Section 3.a

Part 4 of Section 3.a

Equation (3-11)

Section 3.b and (3-52)
Equation (3-7)

Equation (3-56)

Equation (3-57)

Part 3 of Section 3.b

Part 3 of Section 3.b, Equation
(3-58)

Part 4 of Section 3.b

Part 5 of Section 3.b

Part 5 of Section 3.b

Part 5 of Section 3.b, Equation
(3-64)

Part 6 of Section 3.b
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Dro Part 6 of Section 3.b
Dyx Part 7 of Section 3.b
Dex Part 7 of Section 3.b
D« Part 8 of Section 3.b
P i Equation (3-67)
Ax Equation (3-67)
Ds.1,1 Part 11 of Section 3.b
D, Dxo Part 11 of Section 3.b, Equation
(3-83)
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