Volume 15, issue 1 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
The topology of toric symplectic manifolds

Dusa McDuff

Geometry & Topology 15 (2011) 145–190
Bibliography
1 V V Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981) 704, 927 MR631434
2 S Choi, M Masuda, D Y Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010) 1097 MR2551516
3 S Choi, T Panov, D Y Suh, Toric cohomological rigidity of simple convex polytopes, to appear in J. London Math. Soc. arXiv:0807.4800
4 M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417 MR1104531
5 T Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) 315 MR984900
6 R Fintushel, R J Stern, Knots, links, and $4$–manifolds, Invent. Math. 134 (1998) 363 MR1650308
7 K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010) 23 MR2573826
8 C Haase, I V Melnikov, The reflexive dimension of a lattice polytope, Ann. Comb. 10 (2006) 211 MR2258235
9 Y Karshon, L Kessler, M Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom. 5 (2007) 139 MR2377250
10 J Kȩdra, D McDuff, Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121 MR2115670
11 F Lalonde, D McDuff, L Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369 MR1666763
12 E Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995) 247 MR1338784
13 M Masuda, Symmetry of a symplectic toric manifold, to appear in J. Symp. Geom. arXiv:0906.4479
14 M Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math. 218 (2008) 2005 MR2431667
15 M Masuda, D Y Suh, Classification problems of toric manifolds via topology, from: "Toric topology" (editors M Harada, Y Karson, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 273 MR2428362
16 D McDuff, Displacing Lagrangian toric fibers via probes, to appear in Geom. Topol. arXiv:0904.1686
17 D McDuff, Examples of symplectic structures, Invent. Math. 89 (1987) 13 MR892186
18 D McDuff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665 MR1780735
19 D McDuff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405 MR1262938
20 D McDuff, D Salamon, $J$–holomorphic curves and quantum cohomology, Univ. Lecture Series 6, Amer. Math. Soc. (1994) MR1286255
21 D McDuff, S Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) MR2210662
22 D McDuff, S Tolman, Polytopes with mass linear functions. I, Int. Math. Res. Not. (2010) 1506 MR2628835
23 D McDuff, S Tolman, Polytopes with mass linear functions. II, in preparation
24 A Paffenholz, Private communication (2009)
25 A Pelayo, Topology of spaces of equivariant symplectic embeddings, Proc. Amer. Math. Soc. 135 (2007) 277 MR2280203
26 A Pelayo, S Tolman, Fixed points of symplectic periodic flows, to appear in Ergod. Theory Dynam. Systems arXiv:1003.4787
27 M Pinsonnault, Maximal compact tori in the Hamiltonian group of $4$–dimensional symplectic manifolds, J. Mod. Dyn. 2 (2008) 431 MR2417479
28 Y Ruan, Symplectic topology on algebraic $3$–folds, J. Differential Geom. 39 (1994) 215 MR1258920
29 E Shelukhin, Remarks on invariants of Hamiltonian loops, J. Topol. Anal. 2 (2010) 277 MR2718126
30 V A Timorin, An analogue of the Hodge–Riemann relations for simple convex polyhedra, Uspekhi Mat. Nauk 54 (1999) 113 MR1711255
31 K Watanabe, M Watanabe, The classification of Fano $3$–folds with torus embeddings, Tokyo J. Math. 5 (1982) 37 MR670903