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Rigidity versus flexibility for tight confoliations

THOMAS VOGEL

In their book [10] Y Eliashberg and W Thurston gave a definition of tight confoliations.
We give an example of a tight confoliation � on T 3 violating the Thurston–Bennequin
inequalities. This answers a question from [10] negatively. Despite this, it is still
possible to prove restrictions on homotopy classes of plane fields which contain tight
confoliations.

The failure of the Thurston–Bennequin inequalities for tight confoliations is due to
the presence of overtwisted stars. Overtwisted stars are particular configurations of
Legendrian curves which bound a disc with finitely many punctures on the bound-
ary. We prove that the Thurston–Bennequin inequalities hold for tight confoliations
without overtwisted stars and that symplectically fillable confoliations do not admit
overtwisted stars.

57R17, 57R30

1 Introduction

In [10] Eliashberg and Thurston explore the relationship between foliations and contact
structures, on oriented 3–manifolds. Foliations, respectively contact structures on an
oriented 3–manifold M are locally defined by 1–forms ˛ such that ˛ ^ d˛ � 0,
respectively ˛^ d˛ > 0 (more precisely this defines positive contact structures).

One of the main results of [10] is the following remarkable theorem.

Theorem 1.1 [10, Theorem 2.4.1] Suppose that a C 2 –foliation � on a closed ori-
ented 3–manifold is different from the product foliation of S1 �S2 by spheres. Then
� can be C 0 –approximated by a positive contact structure.

In the main part of the proof of this theorem a given foliation on M is modified so that
the resulting plane field is somewhere integrable while it is a positive contact structure
on other parts of M . This motivates the following definition.

Definition 1.2 A positive confoliation on a 3–manifold M is a smooth plane field
on M which is locally defined by a 1–form ˛ such that ˛^ d˛ � 0. We denote the
region where � is a contact structure by H.�/.
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Theorem 1.1 remains true when foliations are replaced by confoliations. Like in the case
of foliations and contact structures the definition of confoliations can be generalized to
higher dimensions (cf Altschuler and Wu [2] and [10]) but in this article we are only
concerned with dimension 3. All plane fields appearing in this article will be oriented,
in particular these plane fields have an Euler class e.�/ 2H 2.M IZ/.

In the last chapter of [10] Eliashberg and Thurston discuss several properties of foliations
(tautness, absence of Reeb components) and contact structures (symplectic fillability,
tightness) and what can be said about a contact structure approximating a taut or
Reebless foliation. For example, they establish the following theorem.

Theorem (Eliashberg–Thurston [10]) If a contact structure � on a closed 3–manifold
is sufficiently close to a taut foliation in the C 0 –topology, then � is symplectically
fillable and therefore tight.

Another result in this direction is due to V Colin.

Theorem (Colin [8]) A C 2 –foliation without Reeb components on a closed oriented
3–manifold can be C 0 –approximated by tight contact structures.

In [13] J Etnyre shows that every contact structure (tight or not) may be obtained by a
perturbation of a foliation with Reeb components. This result is implicitly contained
in Mori [25]. Moreover, Etnyre improved Theorem 1.1 by showing that C k –smooth
foliations can be C k –approximated by contact structures provided that k � 2, at least
when the foliation is not a foliation without holonomy (his written account [11] will
hopefully be available in the near future).

In order to understand better the relationship between geometric properties of foliations
and properties of the contact structures approximating them, it is interesting to ask
about properties of confoliations which appear in the approximation process. For
example, the notion of symplectic fillability can be extended to confoliations in an
obvious fashion.

The question how to generalize the notion of tightness is more complicated. One aim
of this article is to clarify this point. The following definition is suggested in [10].

Definition 1.3 A confoliation � on M is tight if for every embedded disc D �M

such that

(i) @D is tangent to � and

(ii) TD and � are transverse along @D ,
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and there is an embedded oriented disc D0 satisfying the following requirements:
(1) @D D @D0 with opposite orientations,

(2) D0 is everywhere tangent to � and

(3) e.�/ŒD[D0�D 0.

This definition is motivated by the following facts: If � is a contact structure, then
there are no surfaces tangent to � and Definition 1.3 reduces to a definition of tightness
for contact structures. In the case when � is a foliation on a closed manifold Definition
1.3 is equivalent to the absence Reeb components by a theorem of Novikov [27]. Thus
Definition 1.3 interpolates between tight contact structures and Reebless foliations.
Moreover, the fact that symplectically fillable contact structures are tight generalizes to
confoliations (we recall the definition of symplectic fillability in Section 2.4).

Theorem 1.4 [10, Theorem 3.5.1] Symplectically fillable confoliations are tight.

As pointed out in [10] there are inequalities imposing restrictions on the Euler class e.�/

of � when � is a tight contact structure or a Reebless foliation. Before we can state
these inequalities we need one more definition.

Definition 1.5 Let 
 be a null-homologous knot in a confoliated manifold .M; �/

which is positively transverse to � . For each choice F of an oriented Seifert surface
of 
 we define the self linking number sl.
;F / of 
 as follows. Choose a nowhere
vanishing section X of �jF and let 
 0 be the knot obtained by pushing 
 off itself
by X . Then

sl.
;F /D 
 0 �F:

One may easily show that sl.
;F / depends only on ŒF � 2H2.M; 
 IZ/.

In [4] D Bennequin proved an inequality between sl.
 / of a transverse knot in the
standard contact structure ker.dzC x dy/ on R3 and the Euler number of a Seifert
surface of 
 . This inequality was extended to all tight contact structures by Eliashberg
in [9]. From Thurston’s work in [31] it follows that the same inequalities hold for
surfaces in foliated manifolds without Reeb components. We summarize these results
as follows.

Theorem 1.6 (Eliashberg [9], Thurston [31]) Let � be a tight contact structure or a
foliation without Reeb components on a closed manifold M (different from a foliation
by spheres) and F �M an embedded oriented surface.

(a) If F ' S2 , then e.�/ŒF �D 0.

(b) If @F D∅ and F 6' S2 , then je.�/ŒF �j � ��.F /.

(c) If @F ¤∅ is positively transverse to � , then sl.
; ŒF �/� ��.F /.
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The inequalities stated in this theorem are referred to as Thurston–Bennequin inequali-
ties. In particular, they imply that only finitely many classes in H 2.M IZ/ are Euler
classes of tight contact structures or foliations without Reeb components. Foliations by
spheres violate (a) and we exclude such foliations from our discussion.

It was conjectured [10, Conjecture 3.4.5] that tight confoliations satisfy the Thurston–
Bennequin inequalities. In this article we show that (a) is true for tight confoliations
and (c) holds when F is a disc. On the other hand we give an example of a tight
confoliation � 0 on T 3 which violates (b) and (c) for surfaces which are not simply
connected. Therefore every contact structure which is close to � 0 must be overtwisted.
This yields a negative answer to Question 1 on page 63 of [10]. The construction of
.T 3; � 0/ is based on the classification of tight contact structures on T 2 � Œ0; 1� due to
E Giroux and the following:

Theorem 5.1 Let � be a tight confoliation on M and T0;T1 � @M two incompress-
ible tori such that � is a contact structure near Ti and Ti.�/, i D 0; 1, is linear. Let
 W T0! T1 be an orientation preserving diffeomorphism, where T0 , respectively T1 ,
is cooriented by the outward, respectively inward, pointing normal vector field.

The manifold M 0DM [T0� Œ0; 1�=�, where � identifies T0'T0�f0g, respectively
T1 ' T0 � f1g, using the identity, respectively  , carries a tight confoliation � 0 such
that � 0jM 0nT0�Œ0;1� is isomorphic to �jMnT0[T1

.

This indicates that tight confoliations are much more flexible objects than tight con-
tact structures or foliations without Reeb components. For example, infinitely many
elements of H 2.T 3IZ/ are Euler classes of tight confoliations. Nevertheless, tight
confoliations have some rigidity properties. In addition to the Thurston–Bennequin
inequalities for simply connected surfaces we show the following theorem.

Theorem 4.1 Let M be a manifold carrying a tight confoliation � and B �M a
closed embedded ball in M . There is a neighbourhood of � in the space of plane
fields with the C 0 –topology such that � 0jB is tight for every contact structure � 0 in this
neighbourhood of � .

This theorem leads to restrictions on the homotopy class of plane fields which contain
tight confoliations. For example, only one homotopy class of plane fields on S3

contains a tight confoliation by Eliashberg’s classification of tight contact structures
on balls together with Theorem 4.1. For the proof of Theorem 4.1 we study the
characteristic foliation S.�/D TS \ � on embedded spheres S �M (we generalize
the notion of taming functions introduced in [9] to confoliations and use results from
Giroux [17]).
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Motivated by the example .T 3; � 0/ we define the notion of an overtwisted star. Roughly
speaking, an overtwisted star on an embedded surface F is a domain in F whose
interior is homeomorphic to a disc, the boundary of this domain consists of Legendrian
curves and all singularities on the boundary have the same sign. The main difference
between overtwisted stars and overtwisted discs (ie discs D with the properties required
in Definition 1.3 which are not neutralized by an integral disc D0 ) is that the set theoretic
boundary of an overtwisted star may contain closed leaves or quasi-minimal sets of the
characteristic foliation.

An example of an overtwisted star is shown in Figure 16 in Section 5. It will be clear
from the definition of overtwisted stars that contact structures which admit overtwisted
stars are not tight, ie they are overtwisted in the usual sense. The following results
indicate that tightness in the sense of Definition 1.3 together with the absence of
overtwisted stars is the right generalization of tightness to confoliations and (since the
notion of strong tightness is already used [10]), we will call a tight confoliation without
overtwisted stars s-tight.

Theorem 6.2 Let � be an oriented s-tight confoliation which is not a foliation by
spheres. Every embedded surface F whose boundary is either empty or positively
transverse to � satisfies the following relations.

(a) If F ' S2 , then e.�/ŒF �D 0.

(b) If @F D∅ and F 6' S2 , then je.�/ŒF �j � ��.F /.

(c) If @F ¤∅ is positively transverse to � , then sl.
; ŒF �/� ��.F /.

Moreover, Theorem 1.4 can be refined as follows.

Theorem 6.9 Symplectically fillable confoliations are s-tight.

The proof of this theorem implies that a confoliation which admits overtwisted stars
can be approximated by an overtwisted contact structure.

This article is organized as follows: In Section 2 we recall facts about confoliations
and characteristic foliations. Section 3 contains a discussion of several methods for
the manipulation of characteristic foliation on embedded surfaces: We generalize the
elimination lemma to confoliations and we discuss several surgeries of surfaces when
integral discs of � intersect the surface in a cycle. In Section 4 we prove Theorem 4.1
and other rigidity results for tight confoliations. In Section 5 we develop a construction
of tight confoliations which yields a tight confoliation on T 3 violating the Thurston–
Bennequin inequalities.
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In Section 6 we discuss overtwisted stars and establish the Thurston–Bennequin in-
equalities for tight confoliations without overtwisted stars. Moreover, we prove that
symplectically fillable confoliations do not admit overtwisted stars.

Throughout this article M will be a closed connected oriented 3–manifold and � will
always denote a smooth oriented plane field on M .
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2 Characteristic foliations, nonintegrability and tightness

In this section we recall some definitions, notation and facts which will be used
throughout this paper. Most notions discussed here are generalizations of definitions
which are well-known in the context of contact structures and foliations (see for example
Aebischer et al [1], Candel and Conlon [5; 6], Etnyre [12], Geiges [15], Giroux [16]
and the references therein).

2.1 Characteristic foliations on surfaces

We consider an embedded oriented surface F in a confoliated 3–manifold .M; �/ and
we assume that � is cooriented. The singular foliation F.�/ WD � \TF is called the
characteristic foliation of F . The leaves of the characteristic foliation are examples of
Legendrian curves, ie curves tangent to � .

The following convention is used to orient F.�/: Consider p 2 F such that Fp.�/ is
one-dimensional. For X 2 Fp.�/ we choose Y 2 �.p/ and Z 2 TpF such that X;Y

represents the orientation of �.p/ and X;Z induces the orientation of the surface.
Then X represents the orientation of the characteristic foliation if and only if X;Y;Z

is a positive basis of TpM .

By this convention the characteristic foliation points out F along boundary components
of F which are positively transverse to � . An isolated singularity of F.�/ is called
elliptic respectively hyperbolic when its index is C1, respectively �1. A singularity is
positive if the orientation of � coincides with the orientation of F at the singular point
and negative otherwise. We denote the number of positive/negative elliptic singularities
by e˙.F / and the number of positive/negative hyperbolic singularities is h˙.F /.
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Because we shall frequently assume that a surface in M is in general position with
respect to a given confoliation let us recall the jet-transversality theorem (cf for example
Chapter 3 of [21]).

Theorem Let F;M be compact smooth manifolds and † a smooth submanifold of
the space of k –jets J k.F;M / of maps from F to M for k D 1; 2; : : : ;1. The set of
C l –maps f W F!M with l>k such that the k –jet extension j k.f /W F!J k.F;M /

of f (which maps q 2 F to the k –jet of f at q ) is transverse to † is residual in the
space of all C l –maps with respect to the strong C l –topology.

Recall that J kC1.F;M / is the total space of a fibration over J k.F;M / and that
J 0.F;M /DF �M . Given a smooth plane field � on a 3–manifold M we apply this
theorem to the submanifold †� � J 1.F;M / whose intersection with the fiber over
.q;p/ 2 F �M is

f1–jets of maps f W F !M with f .q/D p and Df .TqF /D �.p/g:

The codimension of †� � J 1.F;M / is two and the smoothness of � implies that
†� is smooth. Hence the characteristic foliation on an embedded surface has isolated
singularities if the 1–jet extension of the embedding is transverse to †� and generic
embeddings have this property when they are sufficiently smooth.

The jet-transversality theorem does also apply to 1–parameter families Ft ; t 2 Œ0; 1� of
embedded surfaces. Such a family may be perturbed such that the singularities of the
characteristic foliation on the resulting surfaces F 0t are all nondegenerate except for
finitely many times t1; : : : ; tk 2 Œ0; 1� and exactly one singularity on F 0ti

is of birth-death
type (and hence isolated) while all other singularities on F 0ti

are nondegenerate.

After an additional perturbation of an embedded surface we can assume that there are
no leaves connecting hyperbolic singularities. Similarly, after perturbing a 1–parameter
family we can achieve that leaves connecting hyperbolic singularities occur only finitely
many times and hyperbolic singularities are never connected with singularities of birth-
death type. We will frequently use these genericity properties.

2.2 Properties of foliations on surfaces

In this section we review basic definitions and properties of foliations on surfaces.
Details can be found in Nikolaev and Zhuzhoma [26] and Aranson, Belitsky and
Zhuzoma [3]. We will always assume that F is a closed oriented surface and F is an
oriented smooth foliation with isolated singularities, these assumptions are satisfied for
the characteristic foliation on generically embedded oriented surfaces in confoliated
manifolds (and also for surfaces from generic 1–parameter families).
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A subset U of F is saturated if it is a union of leaves and singularities of F . U is
minimal if it is closed and saturated and every subset V of U with the same properties
is either empty or U D V . Closed leaves and singularities of F are examples of
minimal sets.

A closed saturated set U is dynamically irreducible if it cannot be represented as a
union of two disjoint nonempty closed sets which are saturated. One distinguishes
two classes of dynamically irreducible sets: U is exceptional if for every point p 2 U

which is not a singularity of F , there is a neighbourhood V such that the only leaf in U

which intersects V is the leaf through p and this intersection consists of one segment
of that leaf. Examples of this type are cycles consisting of hyperbolic singularities and
stable/unstable leaves. If a dynamically irreducible set is not exceptional it is said to be
quasi-minimal.

The different types of saturated subsets arise as limit sets of leaves of F : Fix a vector
field orienting F and let  t be the corresponding flow. The !–limit �.x/ set of
x 2 F is defined by

�.x/ WD
\
f�>0g

 Œ�;1/.x/:

The ˛–limit set A.x/ of x is obtained when the orientation of F is reversed. Note
that �.x/ and A.x/ depend only on the leaf 
 through x , so we can also write �.
 /
and A.
 /. A leaf 
 of F is recurrent if 
 is contained in A.
 / and �.
 /.

We assumed that F is smooth with isolated singularities and F is compact. By Theorem
2.6.1 from [26] the limit set �.x/ belongs to one of the following classes:

� fixed points,

� closed leaves,

� cycles consisting of singular points and leaves connecting them and

� quasi-minimal sets.

Closures of nonperiodic recurrent trajectories are quasi-minimal sets. According to
Theorem 2.3.3 of [26] a quasi-minimal set U contains an uncountable number of
recurrent leaves all of which are dense in U .

The intersection between two different quasi-minimal sets cannot contain a recurrent
orbit by Maier’s theorem [26, Theorem 2.4.1] and the number of quasi-minimal sets of
F.�/ is bounded by the genus of F according to Theorem 2.4.5 in [26].
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2.3 (Non-)Integrability

The condition that � is a confoliation can be interpreted in geometric terms. The
following interpretation can be found in [10].

Let D be a closed disc of dimension 2 and � a positive confoliation transverse to the
fibers of � W D �R!D . Then � can be viewed as a connection. We assume in the
following that this connection is complete, ie for every differentiable curve � in D

there is a horizontal lift of � starting at a given point in the fiber over the starting point
of � .

We consider the holonomy of the characteristic foliation on ��1.@D/

(1) h@D W �
�1.p/'R!R' ��1.p/

where h@D.x/ is defined as the parallel transport of x 2R along @D .

Lemma 2.1 [10, Lemma 1.3.4] If the confoliation � on � W D �R! D defines a
complete connection, then h@D.x/� x for all x 2��1.p/ and p 2 @D . Equality holds
for all x 2 ��1.p/ if and only if � is integrable.

If D DD � f0g is tangent to � , then the germ of the holonomy is well defined without
any completeness assumption and h@D.x/ � x for all x in the domain of h@D . The
germ of h@D coincides with the germ of the identity if and only if a neighbourhood
of D is foliated by discs.

Of course, the second part of the lemma applies to the case when one considers only
the part lying above or below D � f0g �D �R. A consequence of Lemma 2.1 is the
following generalization of the Reeb stability theorem to confoliations.

Theorem 2.2 [10, Proposition 1.3.9] Let M be a closed oriented manifold carrying
a positive confoliation � . Suppose that S is an embedded sphere tangent to � . Then
.M; �/ is diffeomorphic to the product foliation on S2 �S1 by spheres.

Foliations by spheres appear as exceptional case in some theorems. They will therefore
be excluded from the discussion.

Another useful geometric interpretation of the confoliation condition can be found on
page 4 in [10] (and many other sources): Let X be a Legendrian vector field and F a
surface transverse to X . We consider the family Ft .�/ of foliations where Ft is the
image of F under the time–t –flow of X . Using this flow we identify Ft with F0 .
Then at each point the line Ft .�/ rotates in a monotone sense when t is increasing.
If � is a contact structure, then the rotation is strictly monotone. This interpretation
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is useful when one wants extends confoliations along leaves of a foliation of rank 1

which is Legendrian where the confoliation is already defined.

We define the fully foliated part of a confoliation � on M as the complement of

fx 2M j there is a Legendrian curve connecting x to H.�/g:

If 
 is a Legendrian curve in a leaf of � and A ' 
 � .�ı; ı/; ı > 0 an annulus
transverse to the leaf such that 
 D 
 � f0g, then we will consider several types of
holonomy h
 of the characteristic foliation on A (h
 is the Poincaré-return map
defined on a neighbourhood of 
 .0/ in 
 .0/� .�ı; ı/).

� We say that 
 has linear holonomy or nontrivial infinitesimal holonomy along 

if h0
 .0/¤ 0.

� The holonomy along 
 is sometimes attractive if there are sequences .xn/ and
.yn/ which converge to zero such that xn > 0> yn and

h
 .xn/ < xn; h
 .yn/ > yn for all n 2N:

2.4 Tightness of confoliations

In this section we summarize several facts about tight confoliations. We shall always
assume that � is a tight confoliation but it is not a foliation by spheres.

If .M; �/ is tight and D �M is an embedded disc such that @D is tangent to � and
�j@D is transverse to TD , then the disc D0 whose existence is guaranteed by Definition
1.3 is uniquely determined. Otherwise there would be a sphere tangent to � and �
would be a foliation by spheres by Theorem 2.2. But we explicitly excluded this case.

The definition of tightness refers to smoothly embedded discs but of course it has
implications for discs whose boundary contains corners and slightly more generally for
unions of such discs.

Lemma 2.3 Suppose that .M; �/ is a tight confoliation and S �M is an embedded
sphere such that the characteristic foliation S.�/ D TS \ � has only nondegenerate
hyperbolic singularities along a connected cycle 
 of S.�/. Then there are immersed
discs D0i ; i D 1; : : : k in M which are tangent to � and

@

 
k[

iD1

D0i

!
D 
:

Geometry & Topology, Volume 15 (2011)



Rigidity versus flexibility for tight confoliations 51

This follows by considering C1–small perturbations of S such that 
 is approximated
by closed leaves of the characteristic foliation of the perturbed sphere. More precisely,
let p be a corner of 
 . We want to perturb S in a neighbourhood of p such that we
obtain a cycle which is close to a part of 
 and containing less corners. For this we
view � as a connection on the normal bundle of a neighbourhood U of a hyperbolic
singularity p 2 
 . Let �; � � 
 \Up be segments of the stable or unstable leaf of p .
We will replace � [ � by a smooth Legendrian curve which coincides with � [ �
outside a small neighbourhood of p .

We will continue to say that a disc bounds the cycle 
 although the “disc” might have
corners or be a pinched annulus, for example.

The most important criterion to prove tightness is symplectic fillability; see Theorem
1.4. Let us recall the definition of symplectic fillability.

Definition 2.4 A positive confoliation � on a closed oriented manifold M is symplec-
tically fillable if there is a compact symplectic manifold .X; !/ such that

(i) !
ˇ̌
�

is nondegenerate and

(ii) @X DM as oriented manifolds where X is oriented by ! ^! .

In this definition we use the “outward normal first” convention for the orientation of
the boundary. There are several different notions of symplectic fillings and Definition
2.4 is often referred to as weak symplectic filling. It is clear from Theorem 1.4 (and
Theorem 6.9) that the existence of a symplectic filling is an important property of a
confoliation.

Theorem 1.4 can be applied to some noncompact manifolds.

Proposition 2.5 [10, Proposition 3.5.6] If a confoliation � is transverse to the fibers
of the projection R3!R2 and if the induced connection is complete, then � is tight.

In [10] one can find an example which shows that the completeness condition can not
be dropped. Note that if .M; �/ is symplectically fillable, then the same is true for
confoliations � 0 which are sufficiently close to � in the C 0 –topology.

3 Properties and modifications of characteristic foliations

The characteristic foliations on embedded surfaces in manifolds with contact structures
have several properties reflecting the positivity of the contact structure. Moreover,
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there are methods to manipulate the characteristic foliation by isotopies of the surface.
Similar remarks apply when � is a foliation. In this section we generalize this to
the case when � is a confoliation. If � is tight, then there are more restrictions on
characteristic foliation. Some of these additional restrictions shall be discussed in
Section 4.

3.1 Neighbourhoods of elliptic singularities

By our orientation convention positive elliptic singular points lying in the contact
region are sources. The following lemma shows how to interpret this statement for
confoliations.

Lemma 3.1 Let .M; �/ be a confoliated manifold and F an immersed surface whose
characteristic foliation has a nondegenerate positive elliptic singularity p .

There is an open disc p 2 D � F such that each leaf of the characteristic foliation
on D is either a circle or there is a closed transversal of F.�/ through the leaf. If p is
positive respectively negative and @D is transverse to F.�/, then F.�/ points outwards
respectively inwards.

Proof We fix a defining form ˛ for � on a neighbourhood of p and we denote the
restriction of ˛ to F by ˛F . If d˛F .p/¤ 0, then p lies in the interior of the contact
region and the claim follows from [16]. Now assume d˛F .p/D 0 and fix coordinates
x;y on F near p such that x.p/D y.p/D 0. The Taylor expansion for ˛F around p

is given by ˛F D .axCby/dxC.bxCcy/dyCo.x2Cy2/. Hence F.�/ is transverse
to the gradient vector field R of the Morse function F.x;y/D ax2=2CbxyC cy2=2

on a small neighbourhood of p in F (the index of p as critical point of F is 0).

In the following we assume that p is positive and R points away from p and coorients �
away from p (the other cases are similar). The Poincaré return map of the characteristic
foliation is well defined on a small neighbourhood of p in a fixed radial line starting
at the origin (see Marsden [24] for example) and F.�/ is oriented clockwise near
p by our orientation convention. We want to show that the Poincaré return map is
nondecreasing when the orientation of the radial line points away from p .

Fix a vector field Z coorienting both F and � . We write Dz for the image of F under
the time z–flow of Z . We may assume that the tangencies of Dz and � are exactly
the points on the flow line 
p of Z through p .

We extend R to a vector field on a neighbourhood of p tangent to Dz such that it
remains transverse to � on U n 
p . Then the vector field T D zZCR is transverse
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to � on fz � 0g n fpg � U . The flow of T exists for all negative times t and every
flow line of T approaches p as t !�1. Since d˛F .p/D 0 and p is elliptic there
are local coordinates x;y on D around p such that p corresponds to the origin and

(2) ˛ D dzC .xdxC�ydy/C z̨

where �> 0 and z̨ denotes a 1–form such that z̨ � .x2Cy2Cjzj/�1 remains bounded
when one approaches the origin.

We choose a closed embedded disc D0 in fz � 0g which is transverse to T and D

such that @D0D @D and D[D0 bound a closed half ball B . This half ball is identified
with a Euclidean half ball of radius 1 and we fix spherical coordinates �; #; � (where
� denotes the distance of a point from the origin, # is the angle between 
p and the
straight line connecting the point with the origin) such that T corresponds to �@� . In
this coordinate system

˛ D
�

cos.#/C � sin2.#/.cos2.'/C� sin2.'/
�
d�

C
�
� sin.#/C �2 cos.#/ sin.#/.cos2.'/C� sin2.'/

�
d#

C
�
�2 sin2.#/.�� 1/ cos.'/ sin.'/

�
d'C z̨

(3)

and z̨ �
�
�2 sin2.#/Cj� cos.#/j

��1 remains bounded when one approaches the origin.
Thus ˛ extends to a 1–form of class C1 on Œ0; 1�� Œ0; 2��� Œ0; �=2� (the first factor
corresponds to � , the second factor to ' and the third factor to # ).

Consider a closed disc D00 lying in the interior of D0 . We identify the union of all flow
lines of T which intersect D00 with D00�.0; 1� such that the second factor corresponds
to flow lines of T . On D00 � .0; 1� the factor cos.#/ is bounded away from 0. By (3)
the plane field ker.˛/ extends to a smooth plane field on D00� Œ0; 1� such that D00�f0g

is tangent to the extended plane field.

The holonomy of the characteristic foliation on @D00� Œ0; 1� is nonincreasing by Lemma
2.1 when @D00 � f0g is oriented as the boundary of D00 . Our orientation assumptions
at the beginning of the proof imply that the characteristic foliation on @D0 � .0; 1�
is oriented in the opposite sense. This implies that the Poincaré-return map of the
characteristic foliation around p is nondecreasing.

3.2 Legendrian polygons

In the proof of rigidity theorems for tight confoliations and also in Section 6 we will use
the notion of basins and Legendrian polygons. In this section we adapt the definitions
from Eliashberg [9].
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Definition 3.2 A Legendrian polygon .Q;V; ˛/ on a compact embedded surface F

in a confoliated manifold .M; �/ is a triple consisting of a connected oriented sur-
face Q with piecewise smooth boundary, a finite set V � @Q and a differentiable map
˛W Q nV ! F which is an orientation preserving embedding on the interior such that

(i) corners of Q are mapped to singular points of F.�/,

(ii) smooth pieces of @Q are mapped onto smooth Legendrian curves on F and

(iii) for points v 2 V the image ˛.b˙/ of the two segments b˙ � @Q n V which
end at v have the same !–limit set 
v and 
v is not a singular point of F.�/.

A point x 2 @Q nV is a vertex if ˛.x/ is a singular point of F.�/. It is

� a pseudovertex if ˛.x/ is a hyperbolic singularity and ˛j@Q is smooth at ˛.x/,

� a corner if ˛.x/ is a hyperbolic singularity and ˛ is not smooth near x and

� an elliptic vertex if ˛.x/ is elliptic.

The elements of V are called virtual vertices,

The points in V should be thought of as missing vertices in the boundary of Q.
Figure 1 shows the image ˛.Q/ of a Legendrian polygon .Q;V; ˛/ where Q is a
disc, V D fvg � @Q and the corresponding ends of @Q n fvg are mapped to leaves of
the characteristic foliation whose !–limit set is the closed leaf 
v . There are three
pseudovertices.


v

Figure 1

The following definition generalizes the notion of injectivity of a Legendrian polygon
to the context of confoliations.
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Definition 3.3 A Legendrian polygon .Q;V; ˛/ identifies pseudovertices if

� there are two pseudovertices w1; w2 with ˛.w1/D ˛.w2/ or
� there are pseudovertices w1; : : : ; wk and corners w0

1
; : : : ; w0

k
such that for each

i D 1; : : : ; k there is a segment of @Q whose interior contains only corners
and which connects wi to w0i , ˛.wi/ D ˛.w0

iC1
/ for i D 1; : : : ; k � 1 and

˛.wk/D ˛.w
0
1
/.

The union of stable and unstable separatrices connecting the hyperbolic singularities
wi to wiC1 , i D 1; : : : ; l and wl to w1 form a cycle 
w1:::wl

. (This cycle may or may
not be trivial of l D 2.)

A Legendrian polygon which does not identify pseudovertices is called injective.

Notice that ˛ may identify vertices even if .Q;V; ˛/ is injective. An example of a
nontrivial cycle 
w1w2w3

which can arise from a noninjective Legendrian polygon is
shown Figure 2. The bold curves correspond to the image of ˛.@Q/, the thin curves
represent the characteristic foliation on ˛.Q/.


w1w2w3

Figure 2

In the following lemma we require that the characteristic foliation F.�/ surface F �M

has the following properties:

� The singular points are isolated and either nondegenerate or of birth-death type.
There is at most one birth-death type singularity.

� A singularity of birth-death type is contained in the interior of H.�/ or in
the interior of M nH.�/. Moreover, the closure of stable or unstable leaf of
hyperbolic singularities do not contain singularities of birth-death type.

For example, these assumptions are satisfied by surfaces from generic 1–parameter
families of embedded surfaces.
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Lemma 3.4 Let F �M be a surface and � a confoliation on M such that @F is
transverse to � and the characteristic foliation points inwards along @F . Assume that
U � F is a submanifold of dimension 2 such that every component of @U is either is
tangent to F.�/ or transverse to � and the characteristic foliation points outwards.

Let B.U / be the union of all leaves of F.�/ which intersect U . Then B.U / is the
image ˛.Q nV / of a Legendrian polygon .Q;V; ˛/.

Proof A preliminary candidate for .Q;V; ˛/ is Q0 WDU;V0D∅ and ˛0 the inclusion
of Q0 . We will define vertices and edges of Q and we will glue 1–handles to
components of @Q0 . The existence of ˛ will be immediate once the correct polygon
with all pseudovertices, corners and elliptic singularities and V are defined.

Each intersection of @U with a stable leaf of a hyperbolic singularity of F.�/ defines
a vertex of Q0 . These vertices form a subset P0 � @Q0 which will serve as a first
approximation for the set of pseudovertices. For p 2 P0 we denote the corresponding
hyperbolic singularity of F.�/ by ˛.p/.

First, we consider the boundary components � of Q0 which are transverse to F.�/

and � \P0 D ∅. All leaves of F.�/ passing through � have the same !–limit set
�.�/ (cf Proposition 14.1.4 in Katok and Hasselblatt [23]).

We claim that �.�/ is an elliptic singularity or a cycle: Assume that �.�/ is quasi-
minimal. According to Theorem 2.3.3 in [26] there is a recurrent leaf 
 which is dense
in �.�/. There is a short transversal � of F.�/ such that j
 \ � j � 2 and there are
leaves of F.�/ passing through � which intersect � between two points p1;p2 of

 \ � . Because 
 is recurrent it cannot intersect � . Let I � � be the maximal open
segment lying between p1;p2 such that the leaves of F.�/ induce a map from I to � .
It follows (as in Proposition 14.1.4 in [23]) that the boundary points of I connect
to singular points of F.�/ which have to be hyperbolic by our assumptions. These
hyperbolic singularities are part of a path tangent to F.�/ which connects � with �
and this path passes only through hyperbolic singularities. This is a contradiction to
our assumption � \P0 D∅. Thus if P0\� D∅, then there are two cases depending
on the nature of �.�/.

If �.�/ is an elliptic singularity x , respectively a closed leaf 
 of F.�/, then we
place no vertices on � and ˛ maps � to the elliptic point, respectively the closed leaf
while ˛ D ˛0 outside a collar of � .

In order to fix ˛ on a collar of � we choose a collar � � Œ�1; 0� of � D � � f0g such
that ˛0.� � ftg/ is transverse to F.�/ for all t 2 Œ�1; 0�.

Now choose a disc Dx around x respectively a collar U
 ' 
 � .�1=2; 0� of 
 . On
� � .�1; 0� choose ˛ such that fyg � .�1;�1=2� is mapped to the segment of a leaf
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of F.�/ which connects y � f�1g to @Dx or 
 � f�1=2g. On Dx respectively U

we choose a foliation without closed leaves which coincides with F.�/ near @Dx

respectively 
 � f�1=2g and which coincides with the foliation by radial lines near
x 2Dx respectively the foliation induced by the second factor of 
 � .�1=2; 0� near

 D 
 � f0g. Now we extend the map ˛ from � � .�1; 1=2� to � � .�1; 0� such that
the foliation on � � Œ�1=2; 0� gets mapped to the chosen foliation on the disc or on

 � .�1=2; 0�.

If �.�/ is a cycle containing hyperbolic points, then we place a corner on � for each
time the cycle passes through a hyperbolic singularity. On a collar of � , the map ˛ is
defined in a similar fashion as in the previous case.

Next, we consider a boundary component � of Q0 which is transverse to F.�/ and
contains an element p of P0 \ � . Let � be an unstable leaf of the corresponding
hyperbolic singularity ˛.p/ of F.�/ and �.�/ the !–limit set of �. Depending on
the type of �.�/ we distinguish four cases.

(i) �.�/ is an elliptic singular point x . Then we place a vertex on � next to the
pseudovertex unless x already appeared in the construction and ˛ maps all
edges on � to unstable leaves of hyperbolic singularities. The edge between the
pseudovertex and the new vertex is mapped to � by ˛ .

(ii) �.�/ is a cycle of F.�/ or a quasi-minimal set. Then we place a vertex v on �
and add this vertex to the set of virtual vertices V0 .

(iii) �.�/ is a hyperbolic point and ˛.p/ is part of a cycle. Some possible configura-
tions in this case are shown in Figure 3 (except the top right part). More precisely,
the configurations in Figure 3 correspond to the case when there are at most two
different hyperbolic singularities of F.�/ which are connected. (This assumption
is satisfied for surfaces in a generic 1–parameter family of embeddings.)
We add a 1–handle to Q0 along � . This defines a new polygon Q1 . We define
˛1W Q1! F such that one of two new boundary components is mapped to the
cycle containing ˛.p/ and we place a corner on this connected component of
@Q1 for each time the cycle passes trough a hyperbolic singularity. In particular,
p is no longer a pseudovertex. Outside of a collar of � we require ˛1 D ˛0 .

(iv) �.�/ is a hyperbolic singularity and ˛.p/ is not part of a cycle. Then we place
a corner on � which corresponds to �.�/. We continue with the unstable leaf
�0�B!.�/ of �.�/ and place corners or vertices on � depending on the nature
of the !–limit set of �0 . One possible configuration is shown in the top right
part of Figure 3.

All unstable leaves of hyperbolic singularities in F.�/ which correspond to elements
of P0\� can be treated in this way.
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˛.p/
�

˛.p/
�

q �0

˛.p/ q
�0

˛.p/
�

q
�0

Figure 3

We iterate the procedure (starting from the choice of pseudovertices) until no new 1–
handles are added and we have treated all occurring boundary components and unstable
leaves of pseudovertices. This process is finite because each hyperbolic singularity can
induce the addition of at most one 1–handle and there are only finitely many hyperbolic
singularities on F . Once it is determined how boundary components of Q are mapped
to leaves of the characteristic foliation on F one obtains the embedding ˛ using F.�/

in a similar way as in the case when P0 D∅ above. In the end we obtain the desired
Legendrian polygon .Q;V; ˛/.

3.3 The elimination lemma

There are several possibilities to manipulate the characteristic foliation on an embedded
surface. Of course one can always perturb the embedding of the surface so that it
becomes generic and that the singularities lie in the interior of the contact region H.�/

or in the interior of its complement. In addition to such perturbations we shall use two
other methods.

The first method discussed in this section is called elimination of singularities and it is
well known in the context of contact structures. The second method will be described
in Section 3.4.
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By a C 0 –small isotopy of the surface F one can remove a hyperbolic and an elliptic
singularity which are connected by a leaf 
 of F.�/ if the signs of the singularities
agree. The characteristic foliation before the isotopy is depicted in Figure 4. The
segment 
 corresponds to the thickened segment in the middle.

+ +

Figure 4

After the isotopy the characteristic foliation on a neighbourhood of 
 looks like in
Figure 5. The elimination of singularities plays an important role in Eliashberg’s proof

Figure 5

of the Thurston–Bennequin inequalities (Theorem 1.6) for tight contact structures.

Below we give a proof of the elimination lemma which applies to confoliations under
a condition on the location of the singularities. Usually (see Aebischer et al [1] and
Geiges [15] for example) the elimination lemma is proved using Gray’s theorem but
this theorem is not available in the current setting.

Lemma 3.5 Let F be a surface in a confoliated manifold .M; �/. Assume that the
characteristic foliation on F has one hyperbolic singularity and one elliptic singularity
of the same sign which are connected by a leaf 
 of the characteristic foliation.
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If the elliptic singularity lies in H.�/, then there is a C 0 –small isotopy of F with
support in a small open neighborhood U of 
 such that the new characteristic foliation
has no singularities inside of U . The isotopy can be chosen such that 
 is contained in
the isotoped surface.

Proof We assume that both singularities are positive. There is a neighbourhood U of 

with coordinates x;y; z such that �jU is defined by the 1–form ˛D dzCa.x;y; z/dy

where the function a satisfies @xa� 0. We assume that @z is positively transverse to �
and F , fz D 0g � F and the x–axis of the coordinate system contains 
 .

Let U 0 � U be diffeomorphic to a closed ball such that @x is tangent to @U 0 along a
circle and U 0 contains 
 in its interior. We extend �jU 0 to a complete connection �c
on R3 by extending a to a function on R3 satisfying @xa�0 and a.x;y; z/ is constant
for jzj> C where C > supfzj.x;y; z/ 2 U 0g. Note that by our assumption on U 0 we
may assume that intersection of @x with U 0 is connected (or empty). The requirement
that a is constant when jzj is large ensures that �c is a complete connection.

We choose " > 0 so that p � .�"; "/ � U 0 (the second factor corresponds to the
z–coordinate) for all p in a neighbourhood V �F of 
 . Since every step in the proof
will take place in a fixed small neighbourhood of 
 we can apply Lemma 2.1 without
any restriction.

For a path � � V we will consider the hypersurface T� D � � .�"; "/. By our choices
T� .�/ is transverse to the second factor of T� .

Choose a smooth foliation I of a small neighbourhood (contained in V ) of 
 in F by
intervals Is; s 2 Œ�1; 1� as indicated by the dashed lines in Figure 4. We require I to
have the following properties.

(i) Two intervals Is0
; Is1

pass through the singularities. One of them is tangent to
the closure of the unstable separatrices of the hyperbolic singularity.

(ii) All intervals intersecting the interior of 
 have exactly two tangencies with the
characteristic foliation on F . The intervals which do not intersect the closure of

 are transverse to the characteristic foliation.

(iii) Let � by a path in F which is shorter than ı with respect to a fixed auxiliary
Riemannian metric. If ı > 0 is small enough, then the image of .�.0/; 0/ under
the holonomy along T� is defined. We assume that the length of each Is is
smaller than ı .

We parameterize the leaf Is by �sW Œ0; 1�! F such that the intersection of 
 with Is

is positive (or empty), ie in Figure 4 the leaves of I are oriented towards the upper
part of the picture.
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The following figures show neighbourhoods of Is in Ts WD T�s
for certain s 2 Œ�1; 1�.

In each of these figures the dashed line represents Is , it is oriented from left to right.
Figure 6 corresponds to a leaf Is which does not intersect 
 . Then Is is nowhere
tangent to the characteristic foliation on Ts . By our orientation conventions and the
choice of I the slope of � \Ts is negative along Is .

Figure 6

The leaves Is0
; Is1

contain the singular points of the characteristic foliation on F . As
shown in Figure 7 there is exactly one tangency of F and the characteristic foliation on
Ts0
;Ts1

. The slope of the characteristic foliation on Ts0
;Ts1

is negative along Is0
; Is1

except at the point of tangency.

Figure 7

Finally, the leaves Is; s 2 .s0; s1/ intersect the interior of 
 and Is is tangent to F.�/

in exactly two points. This is shown in Figure 8. Between the two points of tangency,
the slope of the characteristic foliation on Ts is positive along Is , it is zero at the
tangencies and negative at the remaining points of Is .

We want to find a smooth family of isotopies of the intervals Is within Ts such that

(i) for all s the isotopy is constant near the endpoints of Is and

(ii) after the isotopy, the intervals Is are transverse to the characteristic foliation
on Ts .
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Figure 8

This will produce the desired isotopy of F . Such a family of isotopies exists if and
only if the following condition C(s) is satisfied for all s 2 Œ�1; 1�.

Condition C(s) The image of �s.0/�f0g under the holonomy along �s lies below the
other endpoint �s.1/� f0g of Is or the leaf of Ts.�/ which passes through .�s.0/; 0/

exits Ts through .�s;�"/� @Ts .

Note that this condition is automatically satisfied for s2 Œ�1; 1� if Is does not intersect 

or this intersection point is close enough to a singularity of the characteristic foliation.

If C(s) is not satisfied for all s , then we will replace I by another foliation I 0 by
intervals I 0s (the corresponding embeddings of intervals are denoted by � 0s ) as follows:

(i) If Is does not intersect 
 , then �s D �
0
s . I 0s intersects 
 if and only if Is does.

(ii) I 0s is tangent to the characteristic foliation on F along two closed intervals
(which may be empty or points). The complement of these two intervals is the
union of three intervals such that each of these intervals is mapped to a curve of
length � ı .

(iii) Is and I 0s coincide on those intervals where the characteristic foliation on Ts

has negative slope for all s 2 Œ�1; 1�.

(iv) xIs [ I 0s bounds a positively oriented disc (here xIs denotes the interval Is with
the opposite orientation).

In Figure 9 the dashed line corresponds to I 0s while the thick solid line represents Is .

For s 2 .s0; s1/ we define a curve I 00s by replacing the segment of Is lying between
the tangencies with F.�/ by two segments of leaves of F.�/ whose ˛–limit set is the
elliptic singularity in V . Then the holonomy on I 00s � .�"; "/ satisfies the condition
C(s): The leaf of the characteristic foliation on I 00s � .�"; "/ starting at �s.0/� 0 can
never return to I 00s since at the starting point of the leaf, the slope of the leaf is negative
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+ +

Figure 9

while it is nonnegative along I 00s . This shows that for each s one can choose I 0s with
the desired properties.

Whenever Is satisfies C(s) then so does I 0s by Lemma 2.1. It follows that we can
choose the foliation I 0 such the leaf I 0s of I 0 satisfies C(s) for all s 2 Œ�1; 1�. The
desired isotopy of F can be constructed such that the surface is transversal to @z

throughout the isotopy.

The following lemma is a partial converse of the elimination lemma. Because it is only
concerned with the region where � is a contact structure we omit the proof. It can be
found in [9; 16].

Lemma 3.6 Let F �M be an embedded surface in a confoliated manifold and 
 �F

a compact segment of a nonsingular leaf of the characteristic foliation on F which lies
in the contact region of � .

Then there is a C 0 –small isotopy of F with support in a little neighbourhood of 

such that after the isotopy there is an additional pair of singularities (one hyperbolic
and one elliptic) having the same sign. The isotopy can be performed in such a way that

 is still tangent to the characteristic foliation and connects the two new singularities.

We end this section with mentioning a particular perturbation of an embedded surface F

which also appears in [9]. Consider an injective Legendrian polygon .Q;V; ˛/ such
that there is an elliptic singularity x of F.�/ such that ˛�1.x/ consists of more than
one vertex of Q. Since x appears as the limit set of leaves of the characteristic foliation,
x cannot lie in the interior of the foliated region and after a small perturbation we may
assume x 2H.�/.
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Then F can be deformed by a C 0 –small isotopy near x into a surface F 0 such that
there is a map ˛0W Q! F 0 with the same properties as ˛ which coincides with ˛
outside a neighbourhood of ˛�1.x/ and ˛0 maps all vertices in ˛�1.x/ to different
elliptic singularities of F 0.�/; see Figure 10.

Figure 10

3.4 Modifications in the neighbourhood of integral discs

The second method for the manipulation of the characteristic foliation on an embedded
surface F is by surgery of the surface along a cycle 
 which is part of an integral disc
of � . The latter condition is satisfied when the confoliation is tight and 
 bounds a
disc in F (for example when F is simply connected).

While the elimination lemma is used to prove the Thurston–Bennequin inequalities for
tight contact manifolds, the following lemmas adapt lemmas appearing in Roussarie [29]
and Thurston [31] (cf also Candel and Conlon [5]) from the proof of the existence of
the Roussarie–Thurston normal form for surfaces in 3–manifolds carrying a foliation
without Reeb components. The existence of this normal form implies the Thurston–
Bennequin inequalities for such foliations.

Lemma 3.7 Let F be a surface and 
 a closed leaf of the characteristic foliation on F

such that there is a disc D tangent to � which bounds 
 and F \D D 
 .

Then there is a surface F 0 which is obtained from F by removing an annulus around 

and gluing in two discs DC;D� contained in a tubular neighbourhood of D . The discs
can be chosen such that DC.�/;D�.�/ have exactly one elliptic singularity in their
interior and these singularities have opposite signs.

If the germ of the holonomy of h@D is non trivial along 
 on one side of 
 , then we
can arrange that the elliptic singularity on the disc on that side lies in the interior of the
contact region and every leaf of the characteristic foliation on the new discs connects
the singularity with the boundary of the disc.
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Proof We will construct DC in the presence of nontrivial holonomy on the upper
side of 
 � F . The construction of the other disc is analogous.

Fix a closed neighbourhood U ' D � .�"; "/; " > 0 of D such that the fibers of
D � .�"; "/!D are positively transverse to � . We assume F \U D @D � .�"; "/.
By Lemma 2.1 there is a point .x; �/ 2D � .0; "/ lying in the contact region and we
identify D � f0g with the unit disc in R2 such that x corresponds to the center.

On D we consider the singular foliation consisting of straight lines starting at the center.
For t 2 Œ�"; "� let Dt be the disc formed by horizontal lifts of leaves of the singular
foliation on D with initial point .x; t/. By construction, D�.�/ is diffeomorphic to
the singular foliation by radial lines on a neighbourhood of .x; �/ 2D� and the zero
.x; �/ of the restriction of a defining form ˛ of � is nondegenerate since .x; �/ lies in
the contact region. We assume that Dt .�/ has no other singularity lying above the disc
of radius 1=2 (otherwise we choose a smaller radius in the sequel).

Let �W Œ�; "�! Œ1=2; 1� be a monotone function which is smooth on .�; "� such that
��1 near " and the graph of � is C1–tangent to a vertical line at .�; 1=2/. We denote
the boundary of the disc of radius �.t/ in Dt by St . The union of all St ; t 2 Œ�; �0�,
with the part of D� which corresponds to the disc with radius 1=2 is the desired
disc DC . We remove the annulus @D � Œ0; �0� from F and add DC .

By construction the only singular point of DC.�/ is .x; �/, the singularity is elliptic
and contained in the contact region.

In order to show that all leaves of DC.�/ accumulate at the elliptic singularity it is
enough to show that there are no closed leaves on DC . Assume that � is a closed leaf
of DC.�/. Let D� be the disc formed by lifts of the leaves of the radial foliation on D

with initial point on � .

The restriction of � to D � Œ0; "� extends to a confoliation z� on R2 �R which is a
complete connection. By Proposition 2.5 z� is tight. Hence � must bound an integral
disc of � 0 . Now D� is the only possible candidate for such a disc. But D� cannot be
an integral disc of z� because it intersects the contact region of z� (or equivalently � ) in
an open set. This contradiction finishes the proof.

The following two lemmas are analogues to the elimination lemma in the sense that
we will remove pairs of singularities. However, new singularities can be introduced:
In Lemma 3.9 we will obtain a surface whose characteristic foliation is not generic.
However this will play no role in later applications since the locus of the nongeneric
singularities will be isolated by closed leaves of the characteristic foliation and these
singularities do not contribute to e.�/ŒF � or �.F /.
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Lemma 3.8 Let F be a surface in a confoliated manifold, D an embedded disc
tangent to � and D\F D 
 a cycle containing exactly one corner x0 .

Then there is a surface F 0 which is obtained from F by removing a tubular neighbour-
hood of 
 and gluing in two discs DC;D� . The characteristic foliation of F 0 has no
singularities on D� and one elliptic singularity on DC whose sign is the opposite of
the sign of x0 .

Proof The assumptions of the lemma imply that x0 has a stable and an unstable leaf
which do not lie on D . Fix a product neighbourhood U ' zD � .�"; "/ of D with the
following properties.

(i) D is contained in the interior of the disc zD � f0g.

(ii) There is a simple Legendrian curve � � zD containing x0 in its interior and
intersecting @D in two points and @ zD in two points such that 
 is nowhere
tangent to � and @ zD is transverse to � . The points in 
 \ � are denoted by
x0;x1 .

(iii) The fibers of � W zD � .�"; "/! zD are transverse to � and F .

Now consider T� D � � .�"; "/. The intersection T� \ F has a nondegenerate
tangency with T� .�/ in x0 and meets � � f0g transversely in x1 . We choose two
points y0;y1 2 T� \F such that x0 lies between �.y0/ and x1 and y1 lies on the
other side of zD (as indicated in Figure 11).

y0

x0

y1

x1
�

F�

F�

Figure 11

The points y0;y1 can be connected by a curve y� � T� transverse to the characteristic
foliation on T� provided that y0;y1 are close enough to zD . Moreover, we may assume
that y� is tangent to F near its endpoints (cf the lower dashed curve in Figure 11).

The curve y� is going to be part of D� . In order to finish the construction of D� we
choose a foliation of zD by a family Is; s 2 � of intervals that connect boundary points
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of zD and are transverse to � . The characteristic foliation on TIs
consists of lines

which are mapped diffeomorphically to Is by � .

If y� was chosen close enough to zD , then there is a smooth family of curves yIs �

Is � .�"; "/; s 2 � such that yIs

(i) intersects y� exactly once and is tangent to � in this point,

(ii) is transverse to � elsewhere and

(iii) is tangent to F near y0;y1 .

Note that the characteristic foliation on Is � .�"; "/ is a smooth family of lines which
are nearly parallel to Is if " > 0 is small enough and F is transverse to all these lines
except at the hyperbolic singularity.

The choices we made for y� and yIs; s 2 � ensure that the union of all curves yIs is
a disc D� which is transverse to � . The disc DC is obtained as in the proof of
Lemma 3.7. The statement about the sign of the singularity of DC.�/ follows from
the construction.

Lemma 3.9 Let F �M be an embedded surface in a manifold carrying a confolia-
tion � such that F.�/ contains a hyperbolic singularity x and the stable and unstable
leaves of x bound an annulus A � F which is pinched at x . We assume that the
pinched annulus is bounded by an integral disc D of � such that @AD F \D .

Then there is an embedded surface F 0 which is obtained from F by removing a
neighbourhood of 
 and gluing in an annulus A0 and a disc D0 such that A0.�/ has
one of the following properties.

(i) A0.�/ has no singularity.

(ii) The singularities of A0.�/ form a circle and a neighbourhood in F 0 of this circle
is foliated by closed leaves of F 0.�/.

The characteristic foliation on D0 has exactly one singularity which is elliptic and
whose sign is opposite to the sign of x .

Proof The disc D in the assumptions of the lemma is an immersed disc which is an
embedding away from two points in the boundary. These two points are identified to
the single point x . Let S1 ' � �D be a simple closed curve in D which meets x

exactly once.

We choose a solid torus C D � � Œ�1; 1� � Œ�1; 1� such that � D � � f.0; 0/g and
the foliation corresponding to the second factor is Legendrian while the foliation

Geometry & Topology, Volume 15 (2011)



68 Thomas Vogel

corresponding to the third factor is transverse to � . For s 2 Œ�1; 1� let As D � �

fsg � Œ�1; 1�. The torus is chosen such that D � � � Œ�1; 1�� f0g and F intersects
A�D��Œ�1; 1��f�1g in two circles bounding an annulus while F\.��Œ�1; 1��f1g/

is a circle which bounds is disc in � � Œ�1; 1�� f1g.

A disc D0 which bounds F \ .� � Œ�1; 1�� f1g/ with the desired properties can be
constructed as in the proof of Lemma 3.7.

Let Ps WD �.s/� Œ�1; 1�� Œ�1; 0�; s 2 S1 . The characteristic foliation on Ps consists
of lines transverse to the last factor of Ps and �.s/� Œ�1; 1�� f0g is a leaf of Ps.�/

If � one of the annuli � � ftg � .�1; 0�; t 2 .�1; 1/ has nontrivial holonomy along
� �f.t; 0/g or if � �f.t; 0/g is not Legendrian, then one can choose a curve � 0 in that
annulus which is transverse to � . The annulus A0 is the union of curves in Ps; s 2 S1

which connect the two points of F \ .�.s/� Œ�1; 1��f�1g and pass through � 0\Ps .
These curves can be chosen such that they are transverse to Ps.�/ everywhere except
in � 0\Ps . By construction A0.�/ has the property described in (i) of the lemma.

This construction also applies if we choose � 0 in annuli which are C1–close to
� � ftg � Œ�1; 0� for a suitable t 2 Œ�1; 1�. If all annuli of this type have trivial
holonomy along their boundary curve which is close to ��f.t; 0/g, then � is a foliation
on a neighbourhood of � in �� Œ�1; 1�� Œ�1; 0� by Lemma 2.1. The holonomy along �
is trivial. Choosing � 0 tangent to a leaf, the same construction as in the previous case
(with � 0 D � ) yields an annulus A0 with the properties described in (ii).

Lemma 3.7 and Lemma 3.8 suffice for Section 4 because the embedded surfaces in
that section are going to be simply connected.

In the lemmas of this section we have assumed that F \D D 
 . In general F and D

may intersect elsewhere. Since all singularities of the characteristic foliation on 
 are
nondegenerate or of birth-death type, there is a neighbourhood of 
 in D such that

 is the intersection of F with this neighbourhood. After a small perturbation with
support outside of a neighbourhood of 
 we may assume that F is transverse to D on
the interior of D . Now we can apply Lemma 3.7 a finite number of times to circles in
F \D in order to achieve that the resulting surface intersects D only along 
 . Then
we can apply the lemmas of this section.

4 Rigidity results for tight confoliations

In this section we establish some restrictions on the homotopy class of plane fields
which contain tight confoliations. One of them is Thurston–Bennequin inequality for
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simply connected surfaces. Note that this imposes no restriction on the Euler class e.�/

of a tight confoliation � on a closed manifold M unless the prime decomposition
of M contains .S1�S2/–summands. Further restrictions on the homotopy class of �
follow from:

Theorem 4.1 Let M be a manifold carrying a tight confoliation � and B �M a
closed embedded ball in M . There is a neighbourhood of � in the space of plane
fields with the C 0 –topology such that � 0jB is tight for every contact structure � 0 in this
neighbourhood.

The proof of this theorem is given in Section 4.2. Let us explain an application of
Theorem 4.1 which justifies the claim that Theorem 4.1 is a rigidity statement about
tight confoliations.

By Theorem 1.1 every confoliation on a closed manifold can be C 0 –approximated
by a contact structure unless it is a foliation by spheres. Hence Theorem 4.1 can be
applied to every confoliation. Recall the following theorem.

Theorem 4.2 (Eliashberg [9]) Two tight contact structures on the 3–ball B which
coincide on @B are isotopic relative to @B .

It follows from this theorem that two tight contact structures on S3 are isotopic
and therefore homotopic as plane fields. In contrast to this every homotopy class of
plane fields on S3 contains a contact structure which is not tight. Thus the following
consequence of Theorem 4.1 shows that there are restrictions on the homotopy classes
of plane fields containing tight confoliations.

Corollary 4.3 Only one homotopy class of plane fields on S3 contains a positive tight
confoliation.

Proof Let � be a tight confoliation on S3 . It is well known that every foliation of
rank 2 on S3 contains a Reeb component; see Novikov [27]. Thus H.�/ is not empty.
We choose p 2H.�/ and a ball B �H.�/ around p .

According to [10] � can be C 0 –approximated by a contact structure � 0 on S3 such that
� and � 0 coincide on B . By Theorem 4.1 the restriction of � 0 to S3 nB is tight and
by a result from [7] � 0 is a tight contact structure on S3 which is homotopic to � .

More generally, Theorem 4.1 together with Theorem 4.2 implies that the homotopy
class of a tight confoliation � as a plane field is completely determined by the restriction
of � to a neighbourhood of the 2–skeleton of a triangulation of the underlying manifold
(here we fix the distribution � and not the homotopy class of � as a plane field near
the 2–skeleton).
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4.1 The Thurston–Bennequin inequality for discs and spheres

In this section we prove the Thurston–Bennequin inequalities for a tight confoliation �
in the cases where F is a sphere or a disc (with transverse boundary). For this we adapt
the arguments in [9]. We shall discuss why Eliashberg’s proof cannot be adapted for non–
simply connected surfaces in tight confoliations after the proof Theorem 4.4. Recall
that the self-linking number sl.
;F / of a null-homologous knot 
 which is positively
transverse to � with respect to a Seifert surface F satisfies e.�/ŒF �D�sl.
;F / where
e.�/ŒF � corresponds to the obstruction for the extension of the characteristic foliation
near @F to a trivialization of �jF .

Theorem 4.4 Let .M; �/ be a manifold with a tight confoliation. Then

(a) e.�/ŒS2�D 0 for every embedded 2–sphere S2 �M and

(b) sl.@D;D/��1 for every embedded disc whose boundary is positively transverse
to � .

Proof We perturb the surface such that it becomes generic and the elliptic singularities
lie in the interior of H.�/ or in the interior of the foliated region. Furthermore, we
assume in the following that there are no connections between different hyperbolic
singularities of characteristic foliations.

If D is a disc as in (b), then by the Poincaré index theorem

�.D/D eC.D/C e�.D/� hC.D/� h�.D/

e.�/.D/D eC.D/� e�.D/� hC.D/C h�.D/:
(4)

Subtracting these equalities we obtain �.D/ � e.�/ŒD� D 2.e� � h�/. In order to
prove (b) it suffices to replace D by an embedded disc yD with e.�/ŒD�D e.�/Œ yD� and
@ yD D @D such that yD contains no negative elliptic singularities. Because � is tight
and D is simply connected each cycle of D.�/ is the boundary of an integral disc.

In order to apply Lemma 3.7 or Lemma 3.8, we have to show that these integral discs
do not intersect @D . So let D0 be an integral discs of � whose boundary lies on D

and assume that D0 intersects @D . Then D0\D contains a union of leaves of D.�/

which form a smooth arc � with endpoints on D . Because D.�/ points out of D at
both ends of � , this arc contains a singularity of D.�/. Note that no singularity of
D.�/ in D0\D can be elliptic since all elliptic singularities lie in the interior of H.�/

or in the interior of the complement of H.�/. Thus there is exactly one hyperbolic
singularity on � and D0 contains both unstable leaves. Because D0 is an integral disc,
D0 \D contains also both stable leaves together with their ˛–limit sets. Since D0
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and D are compact, D\D0 contains a positive elliptic singularity. But this is absurd
since D0 would intersect the interior of the contact region.

We now choose particular cycles of D.�/ to which we apply Lemma 3.7 and Lemma
3.8: Define 
 � 
 0 for two cycles 
; 
 0 of the characteristic foliation if 
 0 bounds
an embedded disc containing 
 . Let 
m be a cycle of D.�/ which is maximal with
respect to � and D0m the integral disc of � which bounds 
m . In order to apply Lemma
3.7 and Lemma 3.8 we have to show that D0m does not intersect @D . Note that the
boundary of D0m lies in the interior of D , so D\D0m consists of integral curves of
D.�/ which are cycles in the interior of or arcs whose endpoints lie on @D . This means
in particular, that the holonomy of maximal cycles which are closed leaves of D.�/ is
not trivial on the outer side of the cycle. The integral disc

Hence we obtain a disc yD whose characteristic foliation does not have closed cycles
and all elliptic singularities are contained in H.�/. In particular, there are no integral
discs of � which pass through elliptic singularities of the characteristic foliation of D .
Moreover, e.�/ŒD�D e.�/Œ yD�. From now on we will write D instead of yD .

Adapting arguments from [9] we eliminate one negative elliptic singularity y : Let
U be a disc such that @U is transverse to D.�/ and y 2 U . According to Lemma
3.4 there is a Legendrian polygon .Q;V; ˛/ covering B.U /. In the present situation
V D∅ since D.�/ has no cycles or quasi-minimal sets.

Note that B.U /�D because the characteristic foliation is pointing outwards along @D .
After a small perturbation of D we may assume that ˛ identifies vertices of @Q only
if adjacent edges are also identified (for elliptic vertices see Figure 10). In this situation
all boundary components of @B.y/ are embedded piecewise smooth circles.

By construction D.�/ contains no cycles. Then every boundary component 
o of
B.y/ contains an elliptic singularity (which has to be positive). If all singularities
of D.�/ on 
o are positive, then we obtain a contradiction to the tightness of � .
Hence 
o contains a negative singularity which has to be hyperbolic. According to our
assumptions it is a pseudovertex of the Legendrian polygon, ie its unstable leaf ends
at y while the other unstable leaf never meets B.y/.

Therefore the application of the elimination lemma (Lemma 3.5) does not create new
cycles. We continue with the elimination of negative elliptic singularities until e� D 0.
This finishes the proof of (b).

Now we prove of (a). First, we use Lemma 3.7 and Lemma 3.8 in order to decompose S

into a disjoint union of embedded spheres such that there are no cycles which contain
hyperbolic singularities. In the following we consider each sphere individually, so we
continue to write S . If S.�/ contains a closed leaf, then the claim follows immediately
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from the definition of tightness: Let D1;D2�S be the two discs with @D1D 
 D @D2 .
Then there is an integral disc D0 of � such that @D0 D 
 . We orient D0 such that
D1 [D0 is a cycle and denote by �D0 the disc with the opposite orientation. Then
ŒS � D ŒD1 [D0�C Œ.�D0/[D2� and the claim follows from (iii) of Definition 1.3
applied to D1;D2 :

e.�/ŒS �D e.�/ŒD1[D0�C e.�/Œ.�D0/[D2�D 0:

Finally, if S.�/ has neither closed leaves or cycles, then one can prove (a) using (b)
when one considers complements of small discs around positive or negative elliptic
singularities.

Consider a Legendrian polygon .Q;V; ˛/ in F �M when � is a contact structure
on M . Generically, the characteristic foliation on F is of Morse–Smale type (cf [16]).
In particular, there are no quasi-minimal sets. If the set of virtual vertices of the
Legendrian polygon .Q;V; ˛/ associated to U is not empty, then by Lemma 3.6 one
can create a canceling pair of singularities along on 
v for v 2 V such that all leaves
which accumulated on 
v now accumulate on an elliptic singularity.

For this reason the case V ¤∅ plays essentially no role when � is a contact structure.
If the !–limit set of 
 is contained in the fully foliated part of a confoliation, then it
not possible to apply Lemma 3.6 (cf Section 5) in general. It is at this point where the
proof of the Thurston–Bennequin inequalities for tight contact structures fails when
one tries to adapt the arguments from [9] to tight confoliations and surfaces which are
not simply connected.

We finish this section with a remark that will be useful later.

Remark 4.5 Let � be a tight confoliation. For an embedded surface F � M we
define d˙.F /D e˙.F /�h˙.F /. Note that if F is a sphere, then dC.F /Dd�.F /D 1

by Theorem 4.4 and �.F /D 2.

Part (b) Theorem 4.4 can be strengthened: Consider ˛–limit set of stable leaves of
positive hyperbolic singularities of D0 . Since D0.�/ contains no cycles the ˛–limit set
is generically a positive elliptic singularity. Thus we may eliminate all negative elliptic
and all positive hyperbolic singularities from D0.�/. This implies

d�.D/D e�.D/� h�.D/D e�.D
0/� h�.D

0/� 0

dC.D/D eC.D/� hC.D/D eC.D
0/� hC.D

0/� 0:

In a later application we shall consider discs such that @D is negatively transverse to � .
Then the two inequalities above will be interchanged.
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4.2 Perturbations of tight confoliations on balls

The proof Theorem 4.1 is given in the following sections. It has two main ingredients:
First, we generalize taming functions on spheres in contact manifolds to confoliations.
We show that the characteristic foliation on an embedded sphere S can be tamed if �
is tight and that this remains true for contact structures � 0 which are close enough to � .
Then we apply arguments from [17] to conclude that � 0jB is tight if � 0 is a contact
structure.

In the following sections � will always be an oriented tight confoliation on M and S

denotes an embedded oriented sphere. We do not consider foliations by spheres.

4.2.1 Properties of S.�/ for tight confoliations � In this section we prove a result
which will play an important role in the proof of Theorem 4.1. The following proposition
is a generalization of Lemma 4.2.1 in [9].

Proposition 4.6 Let S �M be an embedded sphere, � a tight confoliation and U �S

a connected submanifold of dimension 2 whose boundary is transverse to S.�/ and
S.�/ points out of U everywhere. Let .Q;V; ˛/ be the polygon covering the basin
of U and assume that @U and @Q have the same number of connected components.

For each connected component � of @Q one of the following is true.

(i) ˛.�/ is an elliptic singularity and ˛.Q/ is a neighbourhood of this singularity
or ˛.�/ is a cycle of S.�/ and ˛.Q/ is a one-sided neighbourhood of this cycle.

(ii) � contains a pseudovertex w such that ˛.w/ is a positive hyperbolic singularity
and one stable leaf of w is not contained in ˛.Q/.

(iii) .Q; ˛;V / identifies pseudovertices w1; : : : ; wk . If dC.U /D 1, then ˛.wi/ is
negative for all i D 1; : : : ; k .

Proof Assume that x 2F is a singularity of birth death type. We choose a neighbour-
hood V of x which has piecewise smooth boundary consisting of two segments which
are both transverse to the characteristic foliation. The characteristic foliation points
inwards along one smooth segment and outwards along the other smooth segment.
After a small perturbation of F in V we may assume that there are only nondegenerate
singularities. By the Poincaré index theorem, the number of hyperbolic singularities
equals the number of elliptic singularities (in V ). Moreover, all these singularities have
the same sign as x . Let us assume that x is negative.

At most one unstable leaf of a hyperbolic singularity can escape from V since otherwise
there must be a positive elliptic singularity. Using the elimination lemma and the
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Lemmas from Section 3.4 we can successively eliminate all hyperbolic singularities
from V and the resulting surface is C 0 –close to F (because a neighbourhood of x

in M is tight by Proposition 2.5, so all surgery discs are contained in the neighbourhood
of x ). Now V contains no singularities at all. If one chooses V to be disjoint from all
stable and unstable leaves of hyperbolic singularities of F.�/, then the basin B.U / is
unchanged after this operation, but the birth-death type singularity disappeared.

It was shown in Lemma 3.4 that B.U / is covered by a Legendrian polygon .Q;V; ˛/.
Recall that ˛ is defined only on � n .� \ V /, but we shall denote ˛.� n .� \ V //

by ˛.�/.

First, we reduce the situation to the case when V D∅. By the theorem of Poincaré–
Bendixon, the !–limit sets 
v; v 2V are cycles. Because � is tight, these cycles bound
integral discs Dv; v 2 V of � and we can apply Lemma 3.7 or Lemma 3.8. Since Dv

may intersect U it is also necessary to consider cycles in U .

Let 
i be a cycle of S.�/ which is contained in Dv . We assume that the disc Di �Dv

bounded by 
i intersects S only along 
i . The cycle 
i is either contained in U or in
the complement of U .

We begin with the case 
i � U . We obtain two embedded spheres S 0;S 00 by cutting
along 
i . When we use Lemma 3.7, the subset U � S induces two subsets U 0 � S 0 ,
U 00�S 00 such that U 0 respectively U 00 contains one positive respectively one negative
singularity in addition to singularities which were already present in S , @U 0 respec-
tively @U 00 is transverse to S 0.�/ respectively S 00.�/ and the characteristic foliation
points outwards. The pseudovertices of the Legendrian polygons associated to the
basins of U 0;U 00 coincide with the pseudovertices of .Q; ˛;V /. If dC.U /D 1, then

dC.U
0/C dC.U

00/D dC.U /C 1

dC.S
0
nU 0/C dC.U

0/D dC.S
0/D 1

dC.S
00
nU 00/C dC.U

00/D dC.S
00/D 1:

(5)

Notice that .S 0 nU 0/[.S 00 nU 00/DS nU and @.S nU / is negatively transverse to S� .
It follows from Remark 4.5 that dC.S

0 nU 0/ � 0 and dC.S
00 nU 00/ � 0. Together

with (5) this implies dC.U
0/D dC.U

00/D 1.

If we applied Lemma 3.8 and the hyperbolic singularity was positive, respectively
negative, then hC.U

0[U 00/D hC.U /� 1, respectively eC.U
0[U 00/D eC.U /C 1.

Hence dC.U
0/C dC.U

00/ D dC.U /C 1 and dC.U / D 1 implies dC.U
00/ D 1 as

above.

When 
i lies in the complement of U , cutting along 
i will not affect U or dC.U /

but the basin of U can change: We might replace a virtual vertex by a vertex which
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corresponds to an elliptic singularity, or after the surgery process some boundary
components of the Legendrian polygon might be mapped to a negative elliptic singularity
while they accumulated on a cycle before. The pseudovertices are not affected. Note
also that if ˛.Q/ is a one-sided neighbourhood of a cycle 
v , then the Legendrian
polygon which results from the surgery along 
v will be a neighbourhood of the
negative elliptic singularity which results from surgery process.

After finitely many steps we obtain a finite union of embedded spheres Sj and sub-
sets Uj with the same properties as U � S or Uj D Sj . The associated Legendrian
polygons .Qj ;Vj ; j̨ / have no virtual vertices, ie Vj D ∅. Therefore it suffices to
prove the claim when V D∅. Let � be a boundary component of Q. If � contains
no pseudovertex, then we have the following:

(1) Either ˛.�/ is an elliptic singularity x of S.�/ and ˛.Q/ is a neighbourhood
of x , or ˛.�/ is a cycle and ˛.Q/ is a one-sided neighbourhood of the cycle.
These cases correspond to (i).

(2) There is a pseudovertex w on � such that a stable leaf �w of ˛.w/ is not
contained in ˛.Q/. In this case we will obtain cycles as in case (ii).

(3) Both stable leaves of all pseudovertices on � are contained in ˛.Q/. These
cycles will turn out to have the property described in (iii).

Consider case (2). Let W be the connected component of S n˛.Q/ containing �w .
The boundary of W is a finite union of Legendrian segments of S.�/. Since two
Legendrian segments of @W point away from ˛.w/ 2 @W there must be a point
y 2 @W which is the !–limit set of two Legendrian segments of @W .

Assume that we can choose y to be elliptic. Then y is negative and we may assume
that y lies in the interior of the contact region of � , @W contains no corners and this
perturbation does note affect the image of the pseudovertices on @W . If all hyperbolic
singularities on @W which correspond to pseudovertices were negative, then @W

would bound a disc in S and (after eliminating pairs of negative singularities using
Lemma 3.5 removing corners from @W by perturbations of S ) one would obtain a
disc D satisfying all requirements from Definition 1.3 but for which there is no integral
disc D0 . Thus the tightness of � ensures the existence of a positive pseudovertex w0

on � such that one stable leaf of ˛.w0/ is not contained in ˛.Q/.

Now assume that y has to be hyperbolic. In this case, one unstable leaf is contained
in W while the other unstable leaf is contained in ˛.Q/. By Lemma 3.7 and Lemma 3.8
we may assume that the !–limit set of the latter unstable leaf is an elliptic singularity,
again this singularity of S.�/ has to be negative. By a small perturbation of S

near y we can arrange that the part of @W which ended at y now ends at the elliptic
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singularity. Thus we have reduced the present situation to the situation of the previous
paragraph without introducing new pseudovertices. Hence we conclude that there is a
pseudovertex w0 on � such that one stable leaf of w0 is not contained in ˛.Q/ and
˛.w0/ is positive.

It remains to treat case (3). Let w1 2 � be a pseudovertex on � . Both stable leaves
of ˛.w1/ are contained in ˛.Q/, thus there is another vertex w2 2 � such that
˛.w1/D ˛.w2/. If w2 is a pseudovertex, then ˛ identifies pseudovertices. Otherwise
w2 is a corner and we denote it by w0

2
. Let W be the connected component of

S n˛.Q/ which contains ˛.w1/ in its closure. As before, the boundary of W is a
finite union of segments of S.�/. In particular, it is piecewise smooth. By assumption
W does not contain any stable leaf of a hyperbolic singularity of S.�/ in its interior.
Since all elliptic singularities on @W � ˛.Q/ have to be negative, all points on @W
from which two segments of @W point away have to be hyperbolic and one stable
leaf of such a hyperbolic singularity would be contained in W and not in ˛.Q/. This
contradicts our hypothesis on � . Hence .Q; ˛;V / is not injective in this case.

Assume dC.U /D 1 and let w1; : : : ; wk ; k � 2 be the pseudovertices on � such that
˛.wi/ lies on @W for i D 1; : : : ; k .

We first treat the case k D 2 and ˛.w1/D ˛.w2/. After a small perturbation of S in
the complement of U we may assume that the ˛–limit sets of the stable leaves �; �0

of ˛.w1/ are contained in U .

We may assume that neither A.�/ or A.�0/ is a hyperbolic singularity or a singularity
of birth-death type. By the Poincaré-Bendixon theorem A.�/ is either an elliptic
singularity or a cycle. The same is true for A.�0/. Using Lemma 3.7 and Lemma
3.8 we can ensure that A.�/ is an elliptic singularity, which has to be positive (again
this does not affect the hypotheses on dC ). Note that �; �0 lie in the same connected
component of the two spheres obtained by the surgery along cycles in U .

For the same reason we may assume that the ˛–limit set of each stable leaf of hyperbolic
singularities in U is an elliptic singularity in U . Under these conditions the hypotheses
dC.U /D 1 implies that the graph formed by positive singularities (except birth-death
type singularities) and stable leaves of hyperbolic singularities is a connected tree TC .
In particular, the stable leaves of ˛.w1/ together with edges of TC forms a closed
Legendrian curve 
 . If ˛.w1/ is positive, 
 bounds a disc and all singularities on 

are positive and 
 contains an elliptic singularity. Then we can arrange that this elliptic
singularity lies in the contact region to obtain a contradiction to the tightness of � .
Thus ˛.w1/ is negative.

A very similar argument applies when w1; : : : ; wk lie on a nontrivial cycle 
w1:::wk
.

Let � be the stable leaf of wi which is contained in the interior of ˛.Q/ and let �0
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be the other stable leaf. Without loss of generality we assume i > 1. Now �0 can be
connected by Legendrian segments in @W to ˛.wi�1/ such that no pseudovertices
are mapped to points lying between ˛.wi/ and ˛.wi�1/. We extend �0 by this piece
of @W and the stable leaf of ˛.wi�1/ which is contained in ˛.Q/. As above, we
obtain a simple closed Legendrian curve passing through ˛.wi/ and ˛.wi�1/. By
construction, one Legendrian segment of 
 is a stable leaf of ˛.wi�1/ while the other
Legendrian segment of 
 which ends on ˛.wi�1/ is an unstable leaf. Thus we can
perturb S outside of a neighbourhood of ˛.wi/ such that we obtain a cycle 
 0 which
contains only positive hyperbolic singularities unless ˛.wi/ is negative. As above, the
tightness of � implies that ˛.wi/ is negative.

Since every connected component of Q belongs to one of the types (1),(2) or (3) this
proves the claim.

Note that we did not really use the assumption that @Q and @U have the same number
of connected components. However, the main use of the lemma will be the construction
of a taming function on S . In that construction additional (ie those arising from adding
1–handles in the proof of Lemma 3.4) components of @Q have to be treated in a slightly
different fashion.

4.2.2 Taming functions for characteristic foliations on spheres Taming functions
for characteristic foliations were introduced by Eliashberg in [9]. In this section we
extend the definition of taming functions so that it can be applied to spheres embedded
in manifolds carrying a tight confoliation.

Let S be an embedded sphere in a confoliated manifold such that the singularities of the
characteristic foliation S.�/ are nondegenerate or of birth-death type. This assumption
holds in particular for spheres in a generic 1–parameter family of embeddings. In order
to define taming functions we still need to introduce more terminology.

Definition 4.7 A cycle 
 of S.�/ is an internal subcycle if there is another cycle 
 0

of S.�/ such that 
 \ 
 0 is not empty and the integral disc which bounds 
 0 contains
the integral disc which bounds 
 . A leaf 
 of S.�/ is called internal if it contained
in an internal cycle. We say that a hyperbolic singularity on 
 is essential if it is not
lying on an internal subcycle of 
 .

The union of singular points and cycles of S.�/ will be denoted by †.S/.

The set †.S/ is compact. An example of an internal subcycle is shown in Figure 12.
Note that one can create internal cycles intersecting a fixed cycle of S.�/ with arbitrary
sign using an inverse of the construction explained in Lemma 3.8.
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Let U � S be a compact submanifold of dimension 2 in S whose boundary is
piecewise smooth and does not intersect †.S/. Moreover, we assume that every
connected component � � @U satisfies one of the following conditions:

(1) � is smooth and either transverse or tangent to S.�/.

(2) � is piecewise smooth, each smooth segment is transverse to S.�/ and intersects
one separatrix of a hyperbolic singularity in U .

(3) U is a disc and a neighbourhood of a birth-death type singularity of S.�/ such
that @U consists of two smooth segments transverse to S.�/.

Definition 4.8 A function f W U ! R is a taming function for S.�/ if it has the
following properties.

(o) If a component � � @U belongs to the class (1), then f is constant along � . If
� is of class (2) or (3) we require that f j� has exactly one critical point in the
interior of each of the smooth segments of � .

(i) The union of the singular points of S.�/ with all points on internal leaves
coincides with the set of critical points of f . The function is strictly increasing
along leaves of S.�/ which are not part of a cycle and f is constant along cycles
of S.�/.

(ii) Positive respectively negative elliptic points of S.�/ are local minima respectively
maxima of f .

(iii) If the level set ff DC g contains only hyperbolic singularities, then as a increases
from C �" to CC" for sufficiently small " > 0 the number of closed connected
components of ff D C g changes by h�.ff D C g/� hC.ff D C g/.

Requirement (i) in Definition 4.8 is slightly more complicated than one might expect.
Figure 12 gives an example of a sphere S in R3 equipped with the foliation by
horizontal planes and cooriented by dz where z is the vertical coordinate: The left
part of the figure shows the intersection of S with a vertical plane while the right
part depicts a part of S.�/. The internal subcycle is the interior part of the thickened
curve. If one requires that only singular points of S.�/ are critical points of the taming
function, then S.�/ cannot be tamed although the confoliation in question is tight.

Assume that .X; !/ is a symplectic filling of .M; �/ and a compatible almost complex
structure on M is fixed such that � consists of complex lines. By Theorem 1 of
Hind [20] an embedded 2–sphere S �M can be filled by holomorphic discs when
the embedding of S satisfies several technical conditions. The singular foliation in the
formulation of Theorem 1 in [20] is very similar to the singular foliation formed by
level sets of a taming function. The appearance of internal cycles should be compared
with Remark 2 in [20].
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4.2.3 Construction and perturbations of taming functions Let S � M an em-
bedded oriented 2–sphere. The tightness of � leads to several restrictions on the
combinatorics of the cycles of S.�/ and their holonomy. This will be used to construct
a taming function for S.�/.

Recall that the orientations of S and � induce an orientation of S.�/ and integral
surfaces of � are oriented by the orientation of � . If 
 is a cycle of S.�/, then by
tightness there is an integral disc D
 of � such that @D
 D 
 but the orientation
of @D
 as boundary of D
 does not coincide with the orientation of 
 in general.
Recall also that D
 is uniquely determined because � is not a foliation by spheres.

For a 2–dimensional submanifold U � S with piecewise smooth boundary we define
the following quantities:

dC.U /D eC.U /� hC.U /

N�.U /D number of connected components � of @U where S.�/ points
transversally into U or � is tangent to S.�/ and � is potentially
repulsive on the side of U

Ns.U /D number of boundary components of @U through which stable
leaves of negative hyperbolic singularities enter

Ps.U /D number of stable leaves of positive hyperbolic singularities in U
which intersect @U

Lemma 4.9 For each path connected component †0 of †.S/ there is a neighbour-
hood U0 of †0 and a taming function f W U0!R such that no connected component
of @U0 is tangent to S.�/ and

(6) dC.U0/D 1�N�.U0/�Ps.U0/�Ns.U0/:

Proof We will construct U0 and f W U0 ! R inductively. The starting point are
connected cycles 
 and singularities of S.�/ in †0 which belong to the following
classes.
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(i) Positive elliptic singularities and hyperbolic or birth-death type singularities
which do not belong to a cycle.

(ii) Closed leaves with sometimes attractive (nontrivial) one-sided holonomy.

(iii) Cycles containing hyperbolic singularities which satisfy the following conditions:
– The only cycle of S.�/ containing 
 is 
 .
– If 
0 � 
 is a subcycle with potentially attractive one-sided holonomy, then

this one-sided holonomy is not trivial.

If the positive elliptic singularity y in (i) is dynamically hyperbolic, then it is a source
and there is a taming function on a neighbourhood U whose boundary is transverse
to S.�/. If the elliptic singularity is not dynamically hyperbolic, then one obtains a
taming function using the holonomy of an interval Œ0; �/; � > 0 which is transverse
to S.�/ except at y and y corresponds 0 (cf Lemma 3.1). If the holonomy is nontrivial,
then we can choose the domain U of the taming function such that @U is transverse
to S.�/ and U0 D U . Otherwise we choose U such that @U is a closed leaf of S.�/.
The domain U satisfies (6).

If x is a hyperbolic singularity or a singularity of birth-death type, then the existence
of a taming function on a neighbourhood U0 which satisfies (6) is obvious.

For a closed leaf 
 of S.�/ as in (ii) we choose an embedded interval .��; �/; � > 0

transverse to S.�/ such that 0 corresponds to a point in 
 and .��; 0� corresponds
to the side where the holonomy of 
 is sometimes attractive. This choice deter-
mines f along the transverse segment and f can be extended to a taming function on
a neighbourhood of 
 . If the holonomy on the side ff � 0g is nontrivial (respectively
trivial) we choose U to be an annulus with transverse boundary (respectively such
that @U \ ff > 0g is a leaf of S.�/ and the other component of @U0 is transverse
to S.�/). Thus N�.U /D 1 and U contains no singular points of S.�/. This means
that (6) holds for U . If @U is transverse to S.�/ we set U0 D U .

Now let 
 be a cycle as in (iii). For each subcycle with potentially attractive (respectively
repelling) one-sided holonomy fix a transversal .�"; 0� (respectively Œ0; "/) with 0

lying on 
 and construct taming functions on collars of discs bounding the subcycle.

Assume that 
 contains a corner such that only one stable leaf of the hyperbolic
singularity is part of a cycle. Then the level sets of f near 
 can be chosen as
suggested in Figure 13. The thick curve represents a critical level of f while the
dashed curve corresponds to a regular level of f . In Figure 13 the one-sided holonomy
along the cycle is repulsive.

Whenever the germ of the one-sided holonomy is nontrivial, we choose the boundary
corresponding boundary component of the domain U of f to be transverse to S.�/,
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Figure 13

otherwise we choose the boundary of the domain to be tangent to a leaf of S.�/. In
this way, we obtain a function f W U !R on a neighbourhood of 
 .

Before we continue with the construction of U0 , we show that f W U !R satisfies the
requirements (i) and (iii) from Definition 4.8 and (6).

By construction, f is constant along cycles and increasing along leaves of S.�/ which
are not part of cycles. Singular points of S.�/ clearly are critical points of f and all
critical points of f lie on cycles of S.�/. In order to show that requirement (i) of
Definition 4.8 is satisfied by f we first consider an internal leaf 
0 � 
 .

Let D0;1;D0;2 � S be discs with disjoint interiors such that 
0 � @D0;i for i D 1; 2

and whose interiors contain no subcycle of 
 . By tightness @D0;1; @D0;2 bound integral
discs D0

0;1
;D0

0;2
of � whose intersection with S consists of cycles which also lie in

the interior of D0;1 and D0;2 . By our assumptions this intersection is empty, therefore
the one-sided holonomy along @D0;1; @D0;2 is well defined.

Now one of the cycles, say @D0;1 , is oriented as the boundary of D0
0;1

while the
orientation of the other cycle, say @D0;2 , is the opposite of the orientation of the
integral disc bounding it. Moreover, the collars of @D0;1 and @D0;2 lie on opposite
sides of D0

0;1
[D0

0;2
. It follows from Lemma 2.1 that the one-sided holonomy along

@D0;1 is potentially attractive (repulsive) if and only if the same is true for D0;2 . Hence
all points of 
0 are critical points of f .

Conversely, if 
0 is not an internal leaf, then there are cycles 
0;1; 
0;2 such that the
one-sided holonomy along these cycles is well defined on opposite sides of 
0 . Again
there are integral discs D0

0;1
;D0

0;2
of � which bound 
0;1; 
0;2 , but now one of these

discs is contained in the other one. In contrast to the previous case, both 
0;1; 
0;2 are
oriented as the boundary of the corresponding integral disc or their orientations are
opposite to that orientation. Therefore Lemma 2.1 implies that the holonomy along

0;1 is potentially attractive if and only if 
0;2 is potentially repelling and vice versa.
This implies (i) from Definition 4.8 for f W U !R.
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Using induction on the number of hyperbolic singularities in 
 we now prove (iii)
from Definition 4.8 and (6) for f W U !R. We have already treated the case when 

contains no hyperbolic singularity.

Given a cycle 
 and a fixed hyperbolic singularity x0 we isotope S in a neighbourhood
of x0 , the resulting sphere will be denoted by S 0 . We want to achieve that segments
of S.�/ in S \S 0 which ended at x0 before the perturbation are now connected be
nonsingular segments of S 0.�/. In this way obtain a cycle 
 0 or a pair of cycles 
 0; 
 00

on S 0 containing one singularity less than 
 .

In order to construct the desired isotopy one moves x0 away from the integral sur-
face of � which contains the cycle 
 . If x0 is part of an internal cycle or not all
stable/unstable leaves of x0 are contained in 
 , then we move x0 into the interior of an
integral surface of � and then slightly above or below the integral surface with respect
to the coorientation of � . Choosing to push upwards or downwards one can make sure
that one obtains a cycle on the perturbed surface which is contained in the interior of
the integral surface of � which contains 
 . Figure 14 shows one particular instance of
the isotopy in a neighbourhood of x0 . In that figure, we move x0 downwards. In the
left part of the figure all lines are part of S while in the right part the straight lines do
not belong to S 0 . The cycles 
 respectively 
 0 correspond to the thickened lines in
the left respectively right part of Figure 14.

x0




integral
surface

S
integral
surface


 0

S 0


 0

Figure 14

In the following we explain the relation between properties of 
 and the perturbed
cycle.

If there is a hyperbolic singularity x0 2 
 such that 
 contains only one stable leaf 
0

of x0 (as in Figure 13, for example), then x0 is automatically an essential singularity
on 
 . Because � is tight, there is an integral disc D0 of � whose boundary is contained
in 
 and 
0 � @D

0 . As before, 
0 is contained in a cycle 
 c
0

with well defined
one-sided holonomy (on the side of 
 which does not contain the stable leaf of x ).

The following table contains the sign of x0 depending on the nature of the holonomy
along 
 c

0
and the orientation of 
 c

0
compared with the orientation of @D0 . We also
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indicate the side of D0 (with respect to the coorientation given by the coorientation of � )
on which the holonomy along 
 c

0
is well defined, this information follows immediately

from Lemma 2.1. Using this, the sign of x0 is easily determined by our orientation
convention for S.�/.


0 oriented as @D0 
0 oriented as �@D0


 c
0

attractive domain of holonomy
above D0, x0 is positive

domain of holonomy
below D0, x0 is positive


 c
0

repulsive domain of holonomy
below D0, x0 is negative

domain of holonomy
above D0, x0 is negative

This table shows that when 
 c
0

has attractive holonomy, then x0 is positive. It follows
from he construction of f that two components of the level set f �1.c/ merge when c

passes f .
 /. This finishes the inductive step for this case.

Now assume that there are exactly two integral discs D0
1
;D0

2
of � with x02@D

0
i ; iD1; 2

whose boundaries are cycles 
 0
1
; 
 0

2
with well defined one-sided holonomy of S.�/. In

this case, x0 is essential. An example of this configuration is a cycle in the form of a
figure-eight and the subcycles bound integral discs with disjoint interior.

Each stable leaf of x0 is contained in exactly one of the discs D0
1
;D0

2
. In particular,

the one-sided holonomy of @D0
1

is potentially attractive if and only if the same is
true for @D0

2
and the domains of the one-sided holonomies lie on the same side of

D0
1
[D0

2
DWD0 .

The following table summarizes the relationship between the sign of x0 , the one-sided
holonomies and the orientation of 
i respectively D0i . It shows that two connected
components of f �1.c/ merge at x0 when c passes the critical value f .
 / if and only
if x0 is positive. Otherwise the level set splits into two connected components at x0 .


i oriented as @D0i 
i oriented as �@D0i


i attractive domain of holonomy
above D0i , x0 is positive

domain of holonomy
below D0i , x0 is positive


i repulsive domain of holonomy
below D0i , x0 is negative

domain of holonomy
above D0i , x0 is negative

In order to show that f W U !R satisfies (iii) of Definition 4.8 we now treat the case
when one stable leaf of x0 is part of a cycle 
b D @D

0
b

with one-sided holonomy while
the other stable leaf is also part of a cycle 
in D @D

0
in with well defined one-sided

holonomy such that D0in �D0
b

and D0in contains exactly one stable leaf of x0 . An
example of such a configuration is the thickened curve in the right part of Figure 12.
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Now the domains of the one-sided holonomy of 
b and 
 0in lie on the same side of Db

while 
in D�@D
0
in if and only if 
b D @D

0
b

and the holonomy along 
in is attractive
if and only if the holonomy along 
b is repulsive.


in oriented as @D0in ) 
b oriented as �@D0
b


in attractive
) 
b repulsive

domain of the holonomy of 
in above D0
b

domain of the holonomy of 
b above D0
b

x0 positive


in repulsive
) 
b attractive

domain of the holonomy of 
i below D0
b

domain of the holonomy of 
b below D0
b

x0 negative


in oriented as �@D0in ) 
b oriented as @D0
b


in attractive
) 
b repulsive

domain of the holonomy of 
in below D0
b

domain of the holonomy of 
b below D0
b

x0 positive


i repulsive
) 
b attractive

domain of the holonomy of 
in above D0
b

domain of the holonomy of 
b above D0
b

x0 negative

The perturbation of S can be arranged such that the stable respectively unstable leaf
of x0 lying in 
in gets connected to the unstable respectively stable leaf of x0 which
is part of 
b . The resulting cycle 
 0 � S 0 is then connected and is close to the union

in [ 
b . Let #.f; c/ WD

ˇ̌
�0

�
f �1.c/

�ˇ̌
for c 2 R. Near 
 0 we construct a taming

function f 0 with f 0.
 0/D f .
 / WD c as before. The following table summarizes the
relation between f 0 and f , we fix " > 0 such that the level set of f; f 0 corresponding
to the value c˙ " is a closed submanifold of U;U 0 .


i attractive
x0 positive

#.f 0; c � "/D #.f; c � "/� 1

#.f 0; cC "/D #.f; cC "/

hC.U
0/D hC.U /� 1

h�.U
0/D h�.U /


i repulsive
x0 negative

#.f 0; c � "/D #.f; c � "/

#.f 0; cC "/D #.f; cC "/� 1

hC.U
0/D hC.U /

h�.U
0/D h�.U /� 1

This table implies that f W U !R satisfies (iii) of Definition 4.8 if and only if the same
is true for f 0W U 0!R. Because 
 was assumed to be connected it is not necessary to
treat the case when each stable leaf of x0 lies in an integral disc of � with the same
properties as D0

1
;D0m above. By induction, this finishes the proof of (iii) of Definition

4.8 for f W U !R.
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We use a similar procedure to prove (6). We start with the case that x0 is a hyperbolic
singularity such that exactly one stable leaf of x0 is a part of a cycle. After an isotopy
of S in a neighbourhood of x0 we obtain a cycle 
 0 which contains one singularity
less than 
 . The following table summarizes the relations between dC;Ns;N�;Ps

for U and U 0 if x0 is positive or negative. When x0 is negative, one has to consider
two cases: Either (Case 1) the stable leaf of x0 is the only stable leaf of a negative
hyperbolic singularity intersecting the connected component of @U or not (Case 2).

x0 is positive
dC.U

0/D dC.U /C 1

N�.U
0/DN�.U /

Ns.U
0/DNs.U /

Ps.U
0/D Ps.U /� 1

x0 is negative
(Case 1)

dC.U
0/D dC.U /

N�.U
0/DN�.U /C 1

Ns.U
0/DNs.U /� 1

Ps.U
0/D Ps.U /

x0 is negative
(Case 2)

dC.U
0/D dC.U /

N�.U
0/DN�.U /

Ns.U
0/DNs.U /

Ps.U
0/D Ps.U /

The validity of (6) for U follows from (6) for U 0 . We may assume from now on that
all stable and unstable leaves of all hyperbolic singularities on 
 are contained in 
 .
In particular, Ns D Ps D 0 in the sequel.

Now assume that x0 2 
 is a hyperbolic singularity such that both stable leaves are
contained in exactly one integral disc of � whose boundary is a cycle of S.�/ with
well defined one-sided holonomy. In this case, the cycle on S 0 obtained by a controlled
isotopy of � consists of two connected components 
 0

1
; 
 0

2
. As before, we define

functions f 0i W U
0
i ! R; i D 1; 2. The following table contains the relations between

dC.U /; dC.U
0
i / and N�.U /;N�.U

0
i / with i D 1; 2.

x0 is positive
dC.U /D dC.U

0
1/C dC.U

0
2/� 1

N�.U /DN�.U
0
1/CN�.U

0
2/

x0 is negative
dC.U /D dC.U

0
1/C dC.U

0
2/

N�.U /DN�.U
0
1/CN�.U

0
2/� 1

It follows that (6) is true for U because it is satisfied for U 0
1
;U 0

2
.

Now we assume that x0 is a hyperbolic singularity such that one stable leaf is part of
an internal cycle 
in and the other one is part of a subcycle 
b which has well defined
one-sided holonomy, contains x0 and bounds a disc D0

b
with 
in �Db .

We isotope S as before; in particular 
 0 is connected. The following table contains the
relations between dC.U /; dC.U

0/ and N�.U /;N�.U
0/ depending on the sign of x0 .
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x0 is positive
dC.U

0/D dC.U /C 1

N�.U
0/DN�.U

0/

x0 is negative
dC.U

0/D dC.U /

N�.U
0/DN�.U /

As above, this shows (6) for the neighbourhood U of 
 and f W U !R has the desired
properties.

This finishes the first step in the construction of a taming function on a neighbourhood
of †0 . If all components of @U are transverse to S.�/, then U0 WD U and f tames
S.�/ on U0 . Otherwise we proceed as follows.

Assume we have constructed a taming function f W U !R and � � @U is a closed leaf
of S.�/ with trivial holonomy. By construction the holonomy is potentially attractive
on the side of � which is contained in U . Then there is a cylinder S1 � .0; 1/ � S

such that S.�/ corresponds to the foliation by the first factor and xC consists of two
cycles 
0; 
1 such that 
0 � U and 
1 lies in the complement of U . We choose C

maximal among cylinders with these properties. Then 
1 can not be a closed leaf with
trivial holonomy. Therefore 
1 belongs to one of the following classes.

(i) 
1 is a negative elliptic singularity or a closed leaf such that the holonomy on
the side which is not contained in C is nontrivial and potentially repulsive. In
this case it is easy to extend f to a taming function on U [ xC such that (6) is
satisfied.

(ii) 
1 is a cycle containing hyperbolic singularities. If we did not yet define a
taming function near 
1 , then we apply the above procedure to construct a
taming function gW V ! R on a set V with U \ V D ∅. In particular, V

satisfies (6). We add a constant to g to ensure that gj
1
> f j� . Then we

extend g [ f W U [ V ! R to a taming function on U [ V [ C . Note that
N�.U [V [C /DN�.U /CN�.V /� 1. Therefore (6) holds for U [V [C .

After finitely many steps we have constructed a taming function on a neighbourhood U0

of †0 with the desired properties.

If there †0 contains a birth-death type singularity x only minor modifications are
necessary. According to our genericity assumptions x lies in the interior or the contact
region or in the interior of the foliated region and since x 2†0 , this singularity can only
lie in the interior of the foliated region. In order to construct the taming function we
can first ignore x and than modify the resulting function on a neighbourhood of x .
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The following lemma implies that the existence of a taming function on a neighbour-
hood U of † is a property which is stable under C 0 –small perturbations of � if U is
small enough. This lemma is the key ingredient in the proof of Theorem 4.1.

Lemma 4.10 Let †0 be a path connected component of †.S/ and z†0 the union
of all critical points in †0 and discs tangent to � which bound cycles in †0 . There
is an embedded ball W containing z†0 in its interior and " > 0 such that for every
confoliation � 0 on M which is "–close (in the C 0 –topology) to � there is a confolia-
tion � 0c on R3 which is transverse to the fibers of R3!R2 and complete as connection
together with an embedding

'W .W; � 0jW /! .R3; � 0c/

such that '�.� 0/D � 0c and � 0jW is tight.

Proof The integral discs which bound cycles depend continuously on the cycle because
the integral discs are uniquely determined. On z†0 we define an equivalence relation
as follows: x � y for x;y 2 z†0 if and only if there is a piecewise smooth path in z†0

tangent to � which connects x and y .

The space T WD z†0=� should be thought of as a directed graph: Discs bounding
singular cycles and closed leaves with nontrivial holonomy correspond to vertices
while edges of T correspond to families of integral discs of � which bound a maximal
connected cycle in †0 . (Because a disc in z†0 may be part of a bigger disc in z†0 , a
point in T does not correspond to a unique cycle of S.�/ in general. This happens for
example in Figure 12.) The orientation of an edge is induced by the coorientation of � .

The space T is a connected tree because z†0 is connected and S is a sphere. We
embed T in the y; z–plane in R3 such that dz is consistent with the orientation of
the edges of T .

Let L be the foliation on R3 by straight lines parallel to the x–axis and Z the foliation
by planes parallel to the x;y –plane. We replace T by a family of discs tangent to Z :
For each vertex of T we choose a collection of discs Di such that

� each Di is tangent to the leaf of Z containing the vertex and

�
S

i Di is diffeomorphic to the union of integral discs in M which bound the
corresponding cycle in M and

S
i Di intersects the original tree T in exactly

one point.

Then we connect the discs which correspond to vertices of T by families of discs
tangent to Z as prescribed by the edges of T , ie by the configuration of integral discs
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in M . This is done in such a way that outside of a small neighbourhood of the discs
which correspond to vertices of the tree each leaf of L intersects at most one disc and
this intersection is connected. (In the presence of some configurations of critical points
on cycles in †0 , eg two hyperbolic singularities on a cycle 
 � †0 such that each
stable leaf of one singularity is an unstable leaf of the other, it may impossible these
requirements near the largest integral disc containing 
 .)

So far we have obtained an embedding '0W
z†0 ! R3 with '0�.�/ D Z and the

Legendrian foliation '�1
0�
.L/ on z†0 . We extend this foliation to a Legendrian fo-

liation L0 on an open neighbourhood z† of z†0 and we extend the embedding '0

such that the extended Legendrian foliation is mapped to L, the extension of '0 is
the desired embedding 'W z†! R3 but we still have to fix the right domain and the
neighbourhood W .

For this we choose z† such that the intersection of each leaf of L with '.z†/ is connected
and '�.�/ is transverse to @z . By construction '� .�jz†/ is the kernel of the 1–form
˛ D dzCf .x;y; z/dy with @xf � 0 and f � 0 on z†0 .

By extending f to a function on R3 we can extend ˛ to a 1–form ˛c on R3 whose
kernel is a confoliation �c with the desired properties: If we extend f to a function on
R3 with @xf � 0 and f � 0 for jzj big enough, then �c is a complete connection.

For each plane field � on '.z†/ such that � is transverse to @z we define a foliation L.�/
which is tangent to the projection of @x to � along @z . There is a neighbourhood
W �M of z†0 and " > 0 with the following properties:

� @W is piecewise smooth and never tangent to @x .

� If � 0 is "–close to � , then '�.�/ is transverse to @z .

� For every plane field � 0 which is "–close to � there is an open set W 0 with
z†0�W �W 0�U such that the intersection of '.W 0/ with leaves of L.'�.� 0//
is connected.

We can choose W to be an embedded ball since its image under ' is a neighbourhood
of a tree were the edges correspond to families of embedded disc while the vertices
correspond to union of discs identified at boundary points such that the resulting union
of discs is simply connected.

This implies the claim of the lemma: If a confoliation � 0 is sufficiently close to � in
the C 0 –topology, then we can extend '�.� 0jW / by extending (as above) the confolia-
tion '�.�jW 0/ along leaves of a foliation L0 of R3 by lines transverse to the planes
fx D const.g and which coincides with L outside of '.z†/. Thus we have found a
confoliation � 0c on R3 with the desired properties.
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The statement about the tightness of � 0jW follows from Proposition 2.5. Note that
we can choose @xf > 0 outside of W . Therefore no integral disc intersects the
complement of W .

Next we show that the taming functions which we have constructed on pieces of S

in Lemma 4.9 can be combined to obtain a taming function on a given generically
embedded sphere.

Proposition 4.11 If .M; �/ is tight and S is an embedded sphere such that S.�/ has
isolated singularities which are either nondegenerate or of birth-death type, then S

admits a taming function.

Proof We construct f in a finite number of steps. By Lemma 4.9 we can cover
the compact set †.S/ by a finite collection U0 of pairwise disjoint submanifolds
U1; : : : ;Ul such that @Ui is transverse to S.�/ and there are taming functions fj W Uj!

R for i D 1; : : : ; l . Recall that

(7) dC.Uj /D 1�N�.Uj /�Ps.Uj /�Ns.Uj /

for all j D 1; : : : ; l .

We define a partial order � on U0 as follows: Uj � Uk if and only if either j D k

or Uk has a boundary component which bounds a disc in S not containing Uk and a
leaf of the characteristic foliation coming from Uj enters Uk through this boundary
component.

By definition, every cycle of S.�/ which intersects Uj is completely contained in Uj .
This implies that Uj �Uk and Uk �Uj if and only if j D k and there is a set Uj 2U0

which is minimal with respect to �. All connected components of @Uj are transverse
to S.�/, the characteristic foliation points outwards along the boundary and (7) implies
dC.Uj /D 1.

Let fj be a taming function on Uj and consider the basin B.Uj / of Uj . According to
Lemma 3.4 B.Uj / is covered by a Legendrian polygon .Qj ;Vj ; j̨ /. We consider the
following cases:

(o) Qj has more boundary components than Uj .

(i) A boundary component of Qj is mapped to an elliptic singularity respectively
closed cycle and j̨ .Qj / is a neighbourhood of the elliptic singularity respec-
tively a one-sided neighbourhood of the cycle.

(ii) A boundary component of Qj contains a positive pseudovertex w such that
j̨ .w/ has a stable leaf which is not contained in j̨ .Qj /.

(iii) j̨ identifies pseudovertices w1; : : : ; wl and j̨ .wi/ is negative for i D 1; : : : ; l .
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According to Proposition 4.6 and the assumption on dC , .Qj ;Vj ; j̨ / belongs to at
least one of these classes (o)–(iii). In the cases (i),(ii) and (iii) we assume in addition,
that .Qj ;Vj ; j̨ / does not satisfy the hypotheses (o).

In order to simplify the presentation, we assume that j̨ .Qj / contains no singularities
of birth-death type.

Case (o) Assume first that 
j is the stable leaf of a hyperbolic singularity hj such
that 
j leaves Uj and hj is a corner in a cycle �. This cycle is contained in one of
the sets Ui.�/ 2U0 with i.�/¤ j . Using the taming function fi.�/ we extend fj to a
taming function on a neighbourhood U 0j of 
j [Uj [Ui.�/ (it may be necessary to
add a sufficiently large constant to fi.�/ ).

The extended function tames the characteristic foliation on its domain and U 0j can be
chosen transverse to S.�/. By construction

N�.U
0

j /DN�.Ui.�//

Ps.U
0

j /D

(
Ps.Ui.�//� 1 if hj is positive,

Ps.Ui.�// if hj is negative,

Ns.U
0

j /D

(
Ns.Ui.�// if hj is positive,

Ns.Ui.�//� 1 if hj is negative.

This implies dC.U
0

j /D 1�N�.U
0

j /�Ps.U
0

j /�Ns.U
0

j /.

In the following cases we consider a fixed connected component � � @Qj .

Case (i) j̨ .�/ is an elliptic singularity (and j̨ .Qj / is a neighbourhood of x ) or
j̨ .�/ is a cycle and j̨ .Qj / is a one-sided neighbourhood of that cycle.

Let us start with the case when j̨ .�/ is an elliptic singularity. Because it is attractive, it
must be negative and it is contained in Ui.�/ with i.�/¤ j . One can easily extend fj

to a taming function on the union U 0j of Uj [Ui.�/ with all leaves passing through � .
Obviously (7) holds for U 0j .

If j̨ .�/ is a closed leaf or a cycle, then j̨ .�/ belongs to one of the sets Ui.�/ with
i.�/ ¤ j . After eventually adding a constant to the taming function on Ui.�/ one
obtains a taming function on the union of leaves of S.�/ exiting Uj through � with
Uj and Ui.�/ . As before we denote the new domain by U 0j . From

N�.U
0

j /DN�.Ui.�//� 1

Ps.U
0

j /D Ps.Ui.�//

Ns.U
0

j /DNs.Ui.�//;

it follows that dC.U
0

j /D 1�U�.U
0

j /�Ps.U
0

j /�Ns.U
0

j /.
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Case (ii) Let � be the stable leaf of x which is not contained in j̨ .Qj /. The ˛–limit
set of � is contained in a set Ui.�/ while x 2 Ui.x/ . We obtain a taming function on
the union of U 0j of Uj [Ui.�/[Ui.x/ with a neighbourhood of the stable leaves of x

(after adding a constant to fi.x/ ).

Because x is positive the requirements in the definition of taming functions are sat-
isfied. Moreover, we can choose the domain U 0j of the taming function such that
its the new boundary component is transverse to S.�/. The equality dC.U

0
j / D

1�N�.U
0

j /�Ps.U
0

j /�Ns.U
0

j / follows from the fact that x is positive and

N�.U
0

j /DN�.Ui.�//

Ps.U
0

j /D Ps.Ui.�//

Ns.U
0

j /DNs.Ui.�//:

Case (iii) Let w1; : : : ; wl 2 � be the pseudovertices which are identified. Let us
assume for simplicity that all hyperbolic singularities on � WD 
w1:::wl

are images
of pseudovertices (the proof without this assumption is essentially the same, but the
notation is more complicated).

The cycle � WD 
w1:::wl
is contained in Ui.�/ 2U0 and we denote the stable leaves of

the pseudovertices on � which are not part of � by �1; : : : ; �l . Let U 0j be the union of
Uj [Ui.�/ with neighbourhoods of �1; : : : ; �l . No other stable leaves of hyperbolic
singularities on � enter Ui.�/ and all pseudovertices on � are negative. After we add a
sufficiently big constant to fi.�/ we obtain a taming function f 0j on U 0j . The following
relations imply (6):

N�.U
0

j /DN�.Ui.�//

Ps.U
0

j /D Ps.Ui.�//

Ns.U
0

j /DNs.Ui.�//� 1:

Finally, we treat the assumption that there is not birth-death type singularity. Assume
that in one of the steps above, we encounter a birth-death type singularity x . Then
x is contained in a set Ui.x/ from U0 . In an intermediate step we extend f to the
union U int

j of U [Ui.x/ with the leaves of S.�/ which connect Ui.x/ to U . Then we
continue as before with U int

j instead of Uj .

At this point, we remove Uj together with all Ui which are contained in U 0j from the
collection U0 and we add U 0j . This yields a new collection of subsets U1 such that
each domain in U1 admits a taming function. Notice that the number of sets in U1 is
strictly smaller than the number of sets in U0 .

We iterate the procedure after replacing U0 with U1 . After finitely many steps we
obtain a taming function on S .
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So far we have established the existence of a taming function on embedded spheres such
that S.�/ has only nondegenerate or birth-death type singularities. Now we consider
an embedding of S2� Œ0; 1� in M and a C 0 –approximation of � by a confoliation � 0 .

Proposition 4.12 There is a C 0 –neighbourhood of � such that for every confolia-
tion � 0 in that neighbourhood St .�

0/ admits a taming function for all t 2 Œ0; 1� if St is
generic with respect to � 0 for all t .

If � 0 is a contact structure, then St .�
0/ admits a taming function which is strictly

increasing along all leaves of St .�
0/.

Proof We show that if � 0 is close enough to � in the C 0 –topology and St .�
0/ has

only nondegenerate singularities or singularities of birth death type, then the iteration
process used for the construction of a taming function in Proposition 4.11 can be carried
out to yield a taming function for St .�

0/ for each t 2 Œ0; 1�. For this we first reconsider
the proof of Proposition 4.11.

Let † be the union of all singular points, closed leafs and cycles of St .�/ (for all
t 2 Œ0; 1�). We cover † by open subsets U �M which have the following properties:

(i) U \St is a submanifold of St with piecewise smooth boundary such that each
smooth segment of @U is transverse to St .�/ for some t 2 Œ0; 1�. Since this is
an open condition we may assume that U \St has this transversality property
for all t 2 Œ0; 1� such that St \U is not empty.

(ii) For each U there is a subset W .U /�M containing U such that W .U / is a
ball with the stability property from Lemma 4.10 for ".U / > 0.

Since † � S2 � Œ0; 1� is compact we need only finitely many sets Ui ; i D 1; : : : ; l

which are contained in balls Wi such that � 0jWi
is tight if � 0 is "i –close to � with

"i > 0. Let 0< "0 < "i for all i D 1; : : : ; l .

If � 0 is "0–close to � , then by Lemma 4.10 the characteristic foliation St .�
0/; t 2 Œ0; 1�;

admits a taming function on Ui \ St if St .�
0/ is a generic family of characteristic

foliations.

In Proposition 4.11 we connected sets Ui \St by leaves of the characteristic foliation
of St .�/. All these leaves intersect @Ui \St transversely and connect different sets
Ui\St . Hence there is "00 > 0 with the property that if � 0 is "00–close to � , then leaves
of St .�

0/ have the same property (eg no new singular points or cycles appear outside
of
S

i Ui ).

Therefore we can carry out the first step of the proof of Proposition 4.11 to obtain
taming functions on a new collection of submanifolds. Now we continue with the
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iteration process. At each step of the iteration we make "00 smaller. Since there is only
a finite number of sets Ui the iteration terminates after finitely many steps. We have
obtained a taming function for St .�

0/ for all t 2 Œ0; 1� and choose " > 0 to be smaller
than any "00 appearing in the iteration steps.

Note that on each of the sets Ui\St the number of singular points or closed leaves can
change when � is C 0 –approximated by a confoliation � , but we know from Lemma
4.10 that on Ui\St there is a taming function for St .�/ provided that St .�

0/ is generic
and � 0 is sufficiently close to � (with respect to the C 0 –topology on the space of plane
fields on M .) Proposition 4.12 enables us to prove the following theorem.

4.2.4 Proof of Theorem 4.1 For the proof of Theorem 4.1 we combine the results
from the previous sections with results from [17].

Proof of Theorem 4.1 Let B�B1�M be an embedded closed ball in a manifold M

with a tight confoliation � . We assume that the interior of B1 contains points where �
is a contact structure since otherwise Theorem 4.1 follows immediately from Lemma
4.10. Moreover, we assume that @B1 is generic.

Let B0 be a ball in the contact region whose characteristic foliation has exactly two
singular points and the leaves of the characteristic foliation connect the two singularities.
The existence of such a ball follows from the fact that every contact structure is locally
equivalent to the standard contact structure ker.dzCxdy/ on R3 . Moreover, there is
an open neighbourhood of �jB0

such that every confoliation in this neighbourhood is
tight on B0 . Let " > 0 be the constant from Proposition 4.12.

We fix an identification B1 n B̊0 ' S2 � Œ0; 1� such that @Bi D Si ; i D 0; 1 such that
St .�/ is a generic 1–parameter family of characteristic foliations. Assume that � 0 is a
contact structure on M which is "=2 close to � with respect to the C 0 –topology.

In order to ensure that St .�
0/ is a generic 1–parameter family of foliations, we push

forward � 0 by a diffeomorphism ' of M with '.@Bi/D @Bi which is so close to the
identity in the C 1 –topology, that '�.� 0/ is "–close to � in the C 0 –topology. From now
on we will write � 0 instead of '�.� 0/. According to Proposition 4.12 the characteristic
foliations St .�

0/ admits a taming function for all t 2 Œ0; 1�.

Recall that an embedded surface in a contact manifold is called convex if there is a
vector field transverse to the surface such that the flow of the vector field preserves the
contact structure. According to [16] convexity is a C1–generic property on orientable
surfaces, so we may assume that @B0 and @B1 are convex with respect to � 0 .

We will show that � 0 can be isotoped on S2 � Œ0; 1� relative to the boundary such that
all leaves of the product foliation on S2 � Œ0; 1� become convex with respect to the
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isotoped contact structure. Since @B0 is convex and � 0 is tight on a neighbourhood
of @B0 this implies that � 0jB is tight by Theorem 2.19 in [17] (and the gluing result
in [7]).

In order to prove the existence of the desired isotopy of � 0 we use the following lemma.
Our formulation is a slight modification of Lemma 2.17 in [17] in the case F ' S2 .

Lemma 4.13 Let .M; � 0/ be a contact manifold. Assume that the characteristic
foliation on each sphere St from the family S2 � Œ0; 1��M admits a taming function
and S0;S1 are convex. Then there is a contact structure � 00 such that

� � 0 and � 00 are isotopic relative to the boundary and

� the characteristic foliation of � 00 on St has exactly �.S/D 2 singular points and
St is convex with respect to � 00 for all t 2 Œ0; 1�.

The original statement of Giroux of this lemma contains tightness as an assumption.
However the proof of Lemma 2.17 of [17] requires only properties of the characteristic
foliation on St ; t 2 Œ0; 1� which follow from the existence of taming functions.

More specifically, the proof of Lemma 2.17 in [16] yields a proof of Lemma 4.13 after
the following modification: As we have already explained we may assume that the
characteristic foliation of � 0 on St can also be tamed for all t 2 Œ0; 1� by Proposition 4.12.
Moreover, because � 0 is a contact structure, the taming functions are strictly increasing
along leaves of the characteristic foliation. Therefore the following statements hold:

(1) There is no closed cycle on S � ftg; t 2 Œ0; 1�.

(2) The graph �Ct (��t ) on F � ftg formed by positive (negative) singular points
and stable (unstable) leaves of positive (negative) hyperbolic singularities is a
tree.

Using these two observations one obtains a proof of Lemma 4.13 from the proof of
Lemma 2.17 in [17].

5 Tight confoliations violating the Thurston–Bennequin in-
equalities

In this section we describe a construction of tight confoliations starting from a tight
contact structure � on a 3–manifold whose boundary contains two incompressible
tori T0;T1 such that Ti.�/; i D 0; 1; is linear. Using this construction and the classifica-
tion of tight contact structures on T 2� Œ0; 1� from [17] we obtain a tight confoliation � 0

Geometry & Topology, Volume 15 (2011)



Rigidity versus flexibility for tight confoliations 95

on T 3 and a torus T � T 3 such that e.� 0/ŒT � ¤ 0, ie � 0 violates the Thurston–
Bennequin inequalities.

The results of this section indicate that tightness (as defined in Definition 1.3) is a much
weaker condition for confoliations compared to the rigidity of tight contact structures
or foliations without Reeb components.

Theorem 5.1 Let � be a tight confoliation on M and T0;T1 � @M two incompress-
ible tori such that � is a contact structure near Ti and Ti.�/, i D 0; 1 is linear. Let
 W T0! T1 be an orientation preserving diffeomorphism, where T0 , respectively T1 ,
is cooriented by an outward, respectively inward, pointing normal vector field.

The manifold M 0DM [T0� Œ0; 1�=�, where � identifies T0' T0�f0g respectively
T1 ' T0 � f1g using the identity respectively  , carries a tight confoliation � 0 such
that � 0jM 0nT0�Œ0;1� is isomorphic to �jMnT0[T1

.

Proof Because the characteristic foliation on T0 is linear we may assume that � is
defined by ˛ D cos.t C ˇ0/dx � sin.t C ˇ0/dy for coordinates x;y; t on a collar
U0 D T0 � .�"; 0�; " > 0; such that x;y are coordinates on the first factor while t

corresponds to the second factor (cf [16]), ˇ0 2R is a constant and @x; @y ; @t induces
the orientation of M .

Now let �W .�"; 0�! .�"; 0� be a smooth homeomorphism which is a diffeomorphism
on .�"; 0/ such that all derivatives of � at t D 0 vanish. Moreover, we assume that
�.t/D t for all t 2 .�";�"=2/. Then the map .x;y; t/ 7�! .x;y; ��1.t// extends to a
diffeomorphism of M nT0 and it maps � to a confoliation � 00 which coincides with �
outside of U0 and is defined by ˛00

0
D cos.�.t/Cˇ/dx� sin.�.t/Cˇ/dy on U0 . In

particular, � 00 extends to a smooth confoliation on M . We now extend this confoliation
to a confoliation on M [T0� Œ0; 1=2�=� where � identifies T0 � @M with T0�f0g

using the identity map.

On T0 � Œ0; 1=2� consider the foliation �0 defined by

˛0 D d� C .1=2� �/.cos.ˇ0/dx� sin.ˇ0/dy/

where we use the same coordinates x;y on T0 as before, the coordinate � corresponds
to the second factor of T0 � Œ0; 1=2�. The characteristic foliation on T0 � f0g is linear
and coincides with T0.�/.

Hence we obtain a smooth confoliation � 00 on M [T0 � Œ0; 1=2�=� after identifying
T0 � @M with T0 � f0g (the differentiable structure in directions transverse to @M
is such that @t together with @� � .1=2� �/�1.cos.ˇ/@x � sin.ˇ/@y/ is smooth on
a neighbourhood of T0 ). The coorientation of � 00 is given by ˛0 and ˛ . Note that
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T0 � f1=2g is a closed leaf of � 0 which is cooriented by @� , ie by an outward pointing
vector field.

A similar construction can be applied to T1 . So we obtain an oriented confoliation � 00 on

M 00
D .T0 � Œ0; 1=2�/[T0�f0gM [T1�f1g .T1 � Œ1=2; 1�/

such that T 00
0
D T0 � f1=2g and T 00

1
D T1 � f1=2g are closed leaves in the boundary

of M 00 and T 00
0

respectively T 00
1

are cooriented by a vector field which points out
of M 00 respectively into M 00 .

Identifying T 00
0

with T 00
1

using  one obtains a plane field on the resulting manifold M 0 ,
but this plane field is only continuous in general. In order to ensure that the resulting
plane field is smooth one modifies the foliations on T0 � Œ0; 1=2� and T1 � Œ1=2; 1� on
a neighbourhood of T 00

0
and T 00

1
as follows.

For fixed generators c; c0 of �1.T
00
0
/ and small enough " > 0 the holonomy along

c; c0 is defined on .1=2� "; 1=2�. Fix a smooth homeomorphism ˆW .1=2� "; 1=2�!

.1=2� "; 1=2� such that all derivatives of ˆ vanish at 1=2 and which is the identity
near 1=2� ". Conjugating the holonomy diffeomorphisms along c; c0 with ˆıˆ, one
obtains a foliation on T0 � Œ0; 1=2� which coincides with the original foliation near
T0 � f0g, T 00

0
is a closed leaf and along T0 � f1=2g the new foliation is C1–tangent

to the product foliation on T0 � Œ0; 1=2�.

Applying this modification to T1� Œ1=2; 1� we obtain a smooth confoliation � 0 on M 0 .
This manifold contains a layer T0 � Œ0; 1� where � 0 is a foliation with a unique closed
leaf T1=2 WD T0 � f1=2g.

In order to prove that � 0 is tight we show that the contrary contradicts the tightness of �
on M . Let 
 �M 0 be a Legendrian curve which bounds an embedded disc D such that
� 0 is nowhere tangent to D along 
 and which violates the requirements of Definition
1.3. Because � is tight, 
 must intersect the layer T0 � Œ0; 1� which we added to M .

Note that 
 cannot intersect T1=2 , since otherwise the 
 is contained in T1=2 and 

bounds a disc D0 in T1=2 because both T0 and T1 were incompressible.The cycle
D[D0 is homologous to a union of embedded spheres in M , thus e.� 0/ŒD[D0�D 0

by Theorem 4.4.

Now we assume that 
 \ T1=2 D ∅. If 
 is contained in T0 � Œ0; 1� n T1=2 , then 

bounds a disc D0 in the leaf of the foliation because all leaves of the foliation on
T0 � Œ0; 1� are either incompressible cylinders or planes. As before e.� 0/ŒD[D0�D 0.

It remains to treat the case when 
 intersects both the contact region and T0 � Œ0; 1�.
All leaves of � 0 in T0 � Œ0; 1� nT1=2 are incompressible cylinders or planes which can
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be retracted into M . First, we show that there is a Legendrian isotopy of 
 such that
the resulting curve is transverse to T0 [T1 . Because a similar isotopy will be used
later we describe it in detail:

Fix a tubular neighbourhood T0 � .�"; "/; " > 0; of T0 in M 0 and coordinates x;y

on T0 , t on .�"; "/ such that � 0 is defined by

˛ D dx�fdy:

By the construction of � 0 we may assume that f depends only on t and f 0 � 0 since
� 0 is a positive confoliation. Consider the projection prW T0 � .�"; "/! S1 � .�"; "/

such that the fibers are tangent to @x and hence transverse to � 0 . Then d˛0 is the
pullback of ! D �f 0.z/dy ^ dt . Let y
 be a segment of 
 which is contained in
T 2 � Œ0; "� and whose endpoints do not lie on T0 � f0g.

If y
 is contained in the foliated part of � 0 , then we isotope y
 within its leaf such that
the resulting curve is disjoint from T0 � f0g and the isotopy does not affect the curve
on a neighbourhood of its endpoints.

Now assume that some pieces of y
 are contained in the contact region of � 0 . Then
pr.y
 / passes through S1� .�"; 0/ where ! is nonvanishing. We choose an isotopy of
the projection of y
 which is fixed near the endpoints and the area of the region bounded
by y
 and each curve in the isotopy is zero. Then one obtains closed Legendrian curves
when y
 is replaced by horizontal lifts of curves of the isotopy (with starting point on 
 ).

Hence we may assume that 
 is transverse to T0 � f0g and 
 is decomposed into
finitely many segments whose interior is completely contained in either the contact
region or the foliated region of � 0 .

Let 
0 � 
 be an arc with endpoints in the contact region of � such that 
0 contains
exactly one subarc of 
 lying in the foliated region. Because 
0 is embedded, its union
with a segment of T0.�

0/ bounds a compact half disc in a leaf tangent to � 0 and we
can choose 
0 such that the half disc does not contain any other segment of 
 .

Now we isotope 
0 relative to its endpoints such that after the isotopy this segment lies
completely in the contact region of � . As above we deform pr.
0/ through immersions
such that the resulting arc y
0 has the following properties:

� The integral of ! over the region bounded by y
0 and pr.
0/ is zero and the
same condition applies to every curve in the isotopy.

� y
0 is completely contained in S1 � .�"; 0/.

Then the horizontal lift of y
0 can be chosen to have the same endpoints as 
0 and we
can replace 
0 by this horizontal lift. The resulting curve is Legendrian isotopic to 
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but the number of pieces which lie in the foliated region has decreased by one. The
segments of 
 in T1 � .1=2; 1� can be treated in the same fashion.

After finitely many steps we obtain a Legendrian isotopy between 
 and a Legendrian
unknot which lies completely in the interior of M . The resulting unknot still bounds
a disc with the properties of D in Definition 1.3 but it intersects the contact region.
Therefore there is no disc D0 with the properties from Definition 1.3. This contradiction
shows that � 0 is tight.

The construction above should be compared with the following result by V Colin [8]:
If � is a contact structure on M and T �M an incompressible torus such that T .�/

is linear and the induced contact structure on the universal cover of M nT is tight,
then � is tight on M . In Theorem 5.1 we do not require tightness on the universal
cover and we do not prescribe how T0 and T1 are identified.

Theorem 5.1 can be used to construct tight confoliations violating the Thurston–
Bennequin inequalities. For this let M DT 2� Œ0; 1�;T0DT 2�f0g and T1DT 2�f1g.
According to Giroux [17] there is a unique tight contact structure � on T 2� Œ0; 1� such
that

(i) the characteristic foliation on @.T 2�I/ is a pair of linear foliations whose slope
is 2, respectively 1=2, on T0 , respectively T1 , and

(ii) the obstruction for the extension of the vector fields which span the characteristic
foliation on @.T 2 � I/ is Poincaré-dual to .2; 2/ 2H1.T

2IZ/' Z2 .

Using Theorem 5.1 one obtains a tight confoliation on the manifold M 0DT 3 obtained
by gluing two copies of T 2 � Œ0; 1� along the boundary. In order to show that the
resulting confoliation � 0 violates inequality (b) of Theorem 1.6 and also to obtain an
indication how Definition 1.3 could be improved, we study this confoliation in more
detail. For this we will use the notation from the proof of Theorem 5.1.

Figure 15 shows the characteristic foliation of the contact structure � on T 2�ftg �M

for various t 2 Œ0; 1� together with its orientation. The two curves in T 2 � f1=2g �M

where the characteristic foliation is singular represent the homology class .2; 2/ 2
H1.T

2IZ/.

The trivialization of � induced by the characteristic foliation on T 2�f0; 1g extends to
the complement of M in T 3 . The obstruction for the extension of the trivialization
from @M to M is Poincaré-dual to .2; 2/ 2H1.M /. Hence e.� 0/ is Poincare-dual to
.2; 2; 0/ 2H 1.T 2/˚Z where the second factor corresponds to the homology of the
second factor of T 3 ' T 2 �S1 . This means that � 0 violates the Thurston–Bennequin
inequalities since these inequalities would imply e.� 0/D 0.
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An example of a torus in .T 3; � 0/ which violates the Thurston–Bennequin inequality
can be described explicitly. Let T be the torus which is invariant under the S1 –action
transverse to the fibers of T 2 �S1! S1 and which intersects each fiber in a curve of
slope �1, hence this curve represents .1;�1/ 2H1.T

2/ when T is suitably oriented.

It follows from the construction in the proof of Theorem 5.1 that T .� 0/ contains two
closed Legendrian curves: One corresponds to the closed leaf of � 0 introduced in the
proof of Theorem 5.1 while the other one corresponds to the Legendrian curves in
Figure 15 (t D 1=2) of slope �1. The latter Legendrian curve contains exactly four
singularities of T .� 0/ and these singularities have alternating signs. Moreover � 0 is
transverse to all tori T 2�ftg; t 2S1 except the closed leaf of � 0 and T 2�f1=2g �M .
This determines the T .� 0/: Figure 16 shows a singular foliation homeomorphic to the
one on T . We choose the orientation of T such that e.T /D�4. In order to find an
example of a surface with boundary which violates the inequality (c) from Theorem
1.6 it suffices to remove a small disc containing one of the elliptic singularities in T .

According to [10] every positive confoliation can be approximated (in the C 0 –topology)
by a contact structure. From this it follows that tightness is not an open condition in
the space of confoliations with the C 0 –topology. Actually � 0 can be approximated by
contact structures which are C1–close to � 0 . This can be seen by going through the
proofs of Theorem 2.4.1 and Proposition 2.5.1 in [10]: By construction the holonomy of
the closed leaf on T satisfies conditions which imply the conclusion of Proposition 2.5.1
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of [10] (despite of the fact that the infinitesimal holonomy is trivial). The main part of
this proposition is stated in Lemma 6.3 together with an outline of the proof.

Thus tightness is not an open condition for confoliations in general. This answers
Question 1 from the Section 3.7 in [10] (when tightness is defined as in Definition 1.3).

6 Overtwisted stars

In this section we introduce overtwisted stars. Their definition is given in the next
section and it is motivated by the discussion of the confoliation .T 3; � 0/ in Section 5.
The absence of overtwisted stars in a tight confoliations implies all Thurston–Bennequin
inequalities and we show that symplectically fillable confoliations do not admit over-
twisted stars (in addition to the fact that they are tight).

6.1 Overtwisted stars and the Thurston–Bennequin inequalities

As we have already mentioned the point where the proof of the Thurston–Bennequin
inequalities for tight confoliations fails is the following: Given an embedded surface F

and a tight confoliation .M; �/, there may be leaves of F.�/ which come from an
elliptic singularity and accumulate on closed leaves 
 (or on quasi-minimal sets) of
the characteristic foliation such that 
 is part of the fully foliated set of � . Even if all
singular points on @B.x/ have the same sign it may be impossible to construct a disc
from B.x/ which has the properties of the disc D appearing in Definition 1.3.

This suggests the following definition of overtwisted stars on generically embedded
surfaces F .
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Definition 6.1 An overtwisted star in the interior of a generically embedded compact
surface F 6' S2 is the image of a Legendrian polygon .Q;V; ˛/ with the following
properties.

(i) Q is homeomorphic to a disc and ˛.@Q/ contains singularities of F.�/.

(ii) All singularities of F.�/ on ˛.@Q nV / have the same sign. There is a single
singularity in the interior of ˛.Q/; it is elliptic and its sign is opposite to the
sign of the singularities on ˛.@Q/.

(iii) If v 2 V and 
v is a cycle, then 
v does not bound an integral disc of � in M .

A confoliation is s-tight if it is tight such that no embedded surface contains an
overtwisted star.

The torus shown Figure 16 contains two overtwisted stars. Note that the polygon is not
required to be injective. Requirement (i) implies that either V ¤∅ or ˛.@Q/ contains
an elliptic singularity of F.�/ and we may assume that this singularity is contained in
H.�/ after a small perturbation of S . In particular, discs with the properties of D in
Definition 1.3 are not overtwisted stars.

If � is a contact structure and F � M is a generically embedded closed surface
containing an overtwisted star .Q;V; ˛/, then � cannot be tight since � is convex by
the genericity assumption (therefore all 
v; v 2 V are cycles) and has a homotopically
trivial dividing curve (this terminology is standard in contact topology; because we
shall not really use it we refer the reader to [15; 16; 22]). This argument does not
apply when F ' S2 . Since the definition of tightness in Definition 1.3 can be applied
efficiently to spheres and discs, the exceptional role of spheres in Definition 6.1 will
not play a role.

The following theorem is proved using Eliashberg’s strategy from [9] and Theorem 4.4.

Theorem 6.2 Let .M; �/ be an oriented s-tight confoliation which is not a foliation
by spheres. Every compact embedded surface F whose boundary is either empty or
positively transverse to � satisfies the following relations.

(a) If F ' S2 , then e.�/ŒF �D 0.

(b) If @F D∅ and F 6' S2 , then je.�/ŒF �j � ��.F /.

(c) If @F ¤∅ is positively transverse to � , then sl.
; ŒF �/� ��.F /.
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Proof Claim (a) was already proved in Theorem 4.4. For the proofs of (b) and (c) we
may assume that F is a generic representative of the homology class ŒF �2H2.M; @F /

which is incompressible (this means that the map �1.F /! �1.M / induced by the
inclusion F ,!M is injective). Recall that if @F is positively transverse to � , then
F.�/ points out of F along @F and

�.F /� e.�/ŒF �D 2.e�� h�/

by Equation (4). If there is no negative elliptic singularity, then �e.�/ŒF ����.F /. If
there is a negative elliptic singularity x , then we shall use the absence of overtwisted
stars to eliminate x without creating new negative elliptic singularities. Let Dx be the
maximal open disc in F such that

� @Dx D
xDx nDx is a cycle of F.�/ and

� x is the only singularity of F.�/ in the interior of Dx .

Unless @DxD∅ there is an integral disc D0x of � whose boundary is @Dx because � is
tight. Moreover, the intersection of the interior of D0x with F consists of homotopically
trivial curves in F (otherwise we get a contradiction to the incompressibility of F ).

Thus we can cut F using Lemma 3.7, Lemma 3.8 and Lemma 3.9 so that the resulting
surface F 0 is the union of spheres and a surface which is diffeomorphic to F and in-
compressible (as shown in the proof of Theorem 4.4, integral discs do not intersect @F ).
Because e.�/ŒS �D 0 for embedded spheres S we can ignore the spherical components
and we denote the remaining surface by F 0 . This surface satisfies e.�/ŒF �D e.�/ŒF 0�.

If we used Lemma 3.8 or Lemma 3.9, then we have reduced the number of negative
elliptic singularities by one. Note that if we have applied Lemma 3.9, then F 0 might
contain a circle of singularities. This means that F 0 is nongeneric near that circle.
Since this circle is isolated from the rest of F 0 by closed leaves of F 0.�/ and the
singularities on this circle do not contribute to e.�/ŒF 0� or �.F 0/ we can pretend that
F 0 is generic and continue to eliminate the remaining negative elliptic singularities.

If we used Lemma 3.7, then F 0 contains a negative elliptic singularity x0 which lies in
H.�/. In the following we shall denote x0 again by x .

The basin of x is covered by a Legendrian polygon .Q0;V 0; ˛0/ on F 0 . By the
maximality property of Dx the boundary of Q0 is not mapped to a cycle of F 0.�/. If
@Q0 has more than one connected component, then there is a hyperbolic singularity y

on ˛0.@Q0/ which is the corner of a cycle 
y . If y is negative, then we can eliminate
the pair x;y .

Now assume that y is positive. If 
y does intersect H.�/, then we can perturb F 0

in a small neighbourhood of a point on the cycle such that y is no longer part of a
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cycle after the perturbation. If 
y does not intersect H.�/, then we push a part of
the cycle into H.�/ by an isotopy of F 0 without introducing new singularities of the
characteristic foliation.

The isotopy is constructed as follows. Let L be the maximal connected integral surface
of � which contains the cycle through y . We choose a simple curve � tangent to �
which connects the cycle to H.�/ and is disjoint from F 0 . This curve can be chosen
close to the stable leaf of y which is connected to x 2 H.�/. We choose a vector
field X tangent to � with support in a small neighbourhood of � such that � is a flow
line of X and F 0 is transverse to X . We use the flow of X to isotope F 0 such that all
unstable leaves of y are connected to H.�/ after the isotopy. Since X is transverse
to F 0 and tangent to X the isotopy creates no new singular points of the characteristic
foliation. Figure 17 shows L together with a part of the intersection F 0 \L. The
curve � is represented by the thickened line while the shaded disc represents another
part of H.�/ or nontrivial topology of L.

+y

L

�

H.�/

Figure 17

By this process we modified the basin of x . Note that there are finitely many hyper-
bolic singularities on F and the procedure described above does not create new ones.
Therefore finitely many applications of the entire procedure lead to a surface F 00 with
e.�/ŒF �D e.�/ŒF 00� such that the hyperbolic singularities of F 00.�/ are also hyperbolic
singularities of F.�/ and the basin of x is homeomorphic to a disc. Also, the number
of negative elliptic singularities did not increase and F 00 is diffeomorphic to F , so
F 6' S2 .

The basin of x is covered by a Legendrian polygon .Q00;V 00; ˛00/ on F 00 such that Q00

is a disc and ˛00.Q00/ is not an elliptic singularity or a cycle of F 00.�/. If necessary, we
eliminate all elements of v00 2 V with the property that 
v00 is null homotopic in F 00 .

Now the absence of overtwisted stars implies that @Q00 contains a negative pseudover-
tex. By Lemma 3.5 we can isotope F 00 to a surface containing less negative elliptic
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singularities than F respectively F 00 . After finitely many steps we have eliminated all
negative elliptic singularities. This finishes the proof of (c) and one of the inequalities
in (b). The remaining inequality in (b) can be proved by eliminating all positive elliptic
singularities.

6.2 Overtwisted stars and symplectic fillings

In this section we show that symplectically fillable confoliations do not admit over-
twisted stars. In the proof we C 0 –approximate a confoliation by another confoliation
(cf Theorem 1.1). Several techniques used in the proof are adaptations of constructions
in [10]. Other useful references are Petronio [28] (where the proofs of Proposition
2.5.1 c) and Lemma 2.5.3 from [10] are carried out) and Etnyre [14]. For later use we
summarize the proof of a lemma used to show Theorem 1.1.

Lemma 6.3 [10, Proposition 2.5.1 c)] Let 
 be a simple closed curve in the interior
of an integral surface L of � . If 
 has sometimes attractive holonomy, then in every
C 0 –neighbourhood of � there is a confoliation � 0 which

(i) is a contact structure on a neighbourhood of 
 and

(ii) coincides with � outside a slightly larger neighbourhood.

Proof We only indicate the main stages of the construction. Fix a neighbourhood
V ' S1

x � Œ�1; 1�y � Œ�1; 1�z and coordinates x;y; z such that the foliation by the
second factor is Legendrian, S1 � Œ�1;�1�� f0g �L and S1 � f.0; 0/g corresponds
to 
 . We assume that 
 has sometimes attractive holonomy. As shown in Lemma
2.1.1 of [28] the coordinates can be chosen such that

� � is defined by the 1–form ˛ D dzC a.x;y; z/ dx with @ya� 0 and

� there are sequences �0n < 0< �n converging to zero such that a.x; 0; �0n/ < 0<

a.x; 0; �n/ for all x .

At this point we use the assumption that the holonomy along 
 is sometimes attractive.
We fix a pair �; �0 of numbers from the sequences .�n/; .�0n/.

According to Lemma 2.2.1 in [28] and Lemma 2.5.3 in [10] there is a diffeomorphism
gW Œ�1; 1�! Œ�1; 1� such that

(i) g is the identity outside of V WD .�0; �/ and

(ii) g0.z/a.x; 0; z/ < a.x; 0;g.z// for all .x; 0; z/ 2 S1 � f0g �V .
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It follows that g converges uniformly to the identity as �; �0! 0, but no claim is made
with respect to the C 1 –topology. A typical graph of g is given in Figure 18 (cf [28]).
The parameters a; b with �0 < a< 0< b < � are chosen such that a.x; 0; z/¤ 0 for
z 2 Œ�0; a�[ Œb; ��.

In order to obtain the desired confoliation in a C 0 –neighbourhood of � , one proceeds
as follows.

Step 1 Replace � on S1 � Œ�1=2;�1=4� � V by the push forward of � with the
map G which is defined by

G.x;y; z/ WD .x;y;u.y/g.z/C .1�u.y//z/

where u is a smooth nonnegative function on Œ�1=2;�1=4� such that u� 0 near �1=2

and u� 1 near �1=4. The dashed respectively the solid lines in Figure 19 show the
characteristic foliations of � 0 on neighbourhoods of 
 in fy D�1=4g respectively on
fy D 1=2g using dashed respectively solid lines when 
 has attractive holonomy.

We extend G to M n .S1 � Œ�1=4; 1=2� � V / by the identity. As �; �0 ! 0 the
corresponding diffeomorphism G converges to the identity uniformly but not with
respect to the C 1 –topology in general. Therefore G�.�/ might not be C 0 –close to �
on S1 � Œ�1=2;�1=4��V . This will be achieved in the third step (at this point we
follow the exposition on [28] closely).

Step 2 From G�.�/ we construct a smooth confoliation � 00 on M such that @y remains
Legendrian: The plane field � 00 contains the foliation induced by the second factor
of S1 � Œ�1=4; 1=2��V and rotates around these lines. This can be done such that
the characteristic foliation on S1 � f�1=4; 1=2g �V coincides with the characteristic
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foliation of G�.�/ on these annuli. This is possible by (ii) using the interpretation of
the confoliation condition mentioned in Section 2.3 (cf Figure 19). Note that � 00 is a
contact structure on the interior of S1 � Œ�1=4; 1=2��V DW zV .

Step 3 We want to construct a diffeomorphism � of M with support in V such that
���
00 is C 0 –close to � . For this one has to choose V more carefully. This is carried

out on pages 31–33 of [28]. The argument can be outlined as follows; cf page 16
in [28]: Assume that r is chosen such that V � Œ�r=2; r=2� and � is "–close to the
horizontal distribution on S1 � Œ�1; 1�� Œ�r; r �. As we already mentioned � 00 might
be very far away from the horizontal distribution. Choose a very small number ı > 0

and a diffeomorphism 'W Œ�r; r �! Œ�r; r � such that '.Œ�r=2; r=2�/ � Œ�ı; ı�. Then
the push forward of the restriction of � 00 to S1 � Œ�1=2; 1=2�� Œ�r; r � is 3"–close to
the horizontal distribution. One has to extend ' such that this property is preserved.

We will need not only the statement of the lemma, but also the construction outlined in
the proof since we need to understand how the modification of � near a curve 
 with
sometimes attractive holonomy affects the presence of overtwisted stars on embedded
surfaces in M . The third step of the above proof is of course irrelevant for this.

Figure 20 shows F.� 00/ near a closed curve of F.� 00/ in an embedded surface F

transverse to 
 after the second step of the proof of Lemma 6.3. The dot in the
center of the figure represents F \ 
 while the left inner rectangle represents the
support of G . Finally, � 00 is a contact structure in the inner rectangle on the right (this
rectangle corresponds to the region zV \F in the proof of Lemma 6.3). Recall that the
characteristic foliation F.�/ was nearly horizontal in the region shown in Figure 20.

Note that if 
 has nontrivial infinitesimal (or only attractive) holonomy, then the
statement of Lemma 6.3 can be sharpened in the sense that the lemma remains true for
C1–neighbourhoods of � because the function gW Œ�1; 1�! Œ�1; 1� can be chosen
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C1–close to the identity. In the following we will consider only C 0 –approximations.
This allows us to choose the approximation of � more freely. In particular, we can
preserve qualitative features of the characteristic foliation on surfaces transverse to 
 .

Lemma 6.4 Let � be a C k –confoliation, k � 1, and 
 a simple Legendrian segment
such that both endpoints of 
 lie in the contact region and 
 intersects F transversely
and at most once.

Then every C k –neighbourhood of � contains a confoliation � 0 such that � 0D � outside
a neighbourhood of 
 and � 0 is a contact structure on a neighbourhood of 
 . Moreover,
F.�/D F.� 0/.

Proof The case 
 \F D∅ corresponds to Lemma 2.8.2 in [10], the case 
 \F Dfpg

is very similar and only this case uses the assumption that both endpoints of � lie
in H.�/.

The following lemma is standard in the setting of foliations: One can thicken a closed
leaf to obtain a smooth foliation which is close to the original one and contains a family
of closed leaves. The new difficulty in the context of confoliations is the fact that now
compact leaves of � may have boundary.

Lemma 6.5 Let � be a confoliation on M , L �M a compact embedded surface
tangent to � and F �M a closed oriented surface which is generically embedded
and does not intersect @L. We require that each connected component of @L can be
connected to H.�/ by a Legendrian curve which is disjoint from L̊[F .

Then there is a smooth confoliation � 0 which is C 0 –close to � such that F.� 0/ is
homeomorphic to the singular foliation obtained from F.�/ by thickening the closed
leaves of cycles of F.�/ which are also contained in L.
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Proof Let I D Œ�1; 1� and J D Œ�1; 0�. We fix a tubular neighbourhood U 'L� I

of LDL� f0g.

For each boundary component Bi of L we choose Ui ' S1 � J � I � M in the
complement of L̊ [ F . We assume that the third factor of Ui is transverse to �

while the foliation J whose fibers correspond to the second factor is Legendrian
and that S1 � f.0; 0/g D B0;i and S1 � f.�1; 0/g D B�1;i intersect H.�/. Let
Aj ;i D S1 � fj g � I � @Ui for j 2 f�1; 0g.

Without loss of generality we may assume that B�1;i is completely contained in the
contact region and transverse to � . (Otherwise apply Lemma 6.4 to segments of B�1;i

and replace Ui with a new set U 0i with the desired property.)

We will now construct a confoliation � 0 on U [
S

i Ui which coincides with � near @U
and has the desired properties.

The restriction of � 0 to U is defined in two steps. First, we flatten � in a neighbourhood
U 'L�I using the push forward of � by gıg where g is a smooth homeomorphism
of I which is C1–tangent to the zero map and coincides with the identity outside a
neighbourhood of 0.

We push forward � on L� Œ0; 1� respectively L� Œ�1; 0� using orientation preserving
homeomorphism Œ0; 1�! Œ"; 1� respectively Œ�1; 0�! Œ�1;�"� which is smooth away
from 0. The confoliation on .L� Œ�1;�"�/[ .L� Œ�"; "�/[ .L� Œ"; 1�/' U (with
" > 0), which is the product foliation on L� Œ�"; "�, is smooth and contains a family
of compact leaves. We can choose the diffeomorphisms appearing in the construction
such that �jU is as close to � 0jU in the C 0 –topology as we want. As in the third step
of the proof of Lemma 6.3 one can ensure that the resulting distribution is C 0 –close
to the original confoliation.

We can choose � 0jU such that A0;i.�/ and A0;i.�
0/ coincide outside of the region where

the slope of A0;i.�/ is very small compared to the slope of A�1;i.�/. By construction
the slope of A0;i.�

0/ is much smaller than the slope of A�1;i.�/DA�1;i.�/. As in the
second step in the proof of Lemma 6.3 (or Proposition 2.5.1 of [10]) one can extend � 0

to a smooth confoliation on M such that � 0 is close to � (the foliation J corresponds
to the y–coordinate in [10]). The claim about F.� 0/ follows immediately from the
construction.

Remark 6.6 After a trivially foliated bundle L� Œ�"; "� is added to the confoliation,
it is possible to replace the trivially foliated piece by a foliation on L� Œ�"; "� such
that the boundary leaves L� f˙"g have sometimes attractive holonomy on side lying
in L� Œ�"; "�. The following statements follow from the construction explained in

Geometry & Topology, Volume 15 (2011)



Rigidity versus flexibility for tight confoliations 109

[10, page 39]. (This construction carries over to surfaces with boundary after the
surface is doubled.)

When the Euler characteristic of L is negative, then one can replace the product foliation
on L� Œ�"; "� by a foliation such that the holonomy along every homotopically non
trivial curve in L� f"g or L� f�"g is sometimes attractive on the side in L� Œ�"; "�.

If the Euler characteristic of the compact surface with boundary L is not negative,
then L is diffeomorphic to S2;D2;T 2 or S1 � I . The case S2 will not occur unless
the confoliation in question is actually a product foliation by spheres. But these are
excluded. If L ' S1 � I , then the suspension of a suitable diffeomorphism yields
the same result as in the case of �.L/ < 0 (without doubling the surface). The case
L'D2 will be excluded by the last requirement of Definition 6.1 in the application
we have in mind. Finally, the case L' T 2 is exceptional because of Kopell’s lemma
(cf the footnote on page 39 of [10]). But if LD T 2 , then it is easy to arrange that the
holonomy is attractive along a given homotopically nontrivial curve.

This modification changes the characteristic foliation on F , but only an open set
which was foliated by closed leaves and cycles before the perturbation. In particular,
overtwisted stars are not affected.

The following proposition from [10] adapts a famous result of Sacksteder [30] to
laminations so that it can be applied to the fully foliated part of confoliations.

Proposition 6.7 [10, Proposition 1.2.13] Let .M; �/ be a C k –confoliation, k � 2,
which is not a foliation with dense leaves. All minimal sets of the fully foliated part
of � are either closed leaves or exceptional minimal sets. Each exceptional minimal set
contains a simple closed curve along which � has nontrivial infinitesimal holonomy.

In particular, exceptional minimal sets are isolated and there are only finitely many of
them.

We denote the finite set consisting of exceptional minimal sets of the fully foliated part
of � by E.�/.

In the following F will be an embedded surface containing an overtwisted star
.Q;V; ˛/. We write �Q for

S
v2V 
v . We will be mostly concerned with limit

sets 
v; v 2 V which are contained in compact leaves (with or without boundary) or
in exceptional minimal sets of the fully foliated part of M . By Lemma 6.5 and the
remark following it, we may assume that if 
v; v 2 V is a cycle lying in a compact
leaf, then 
v contains no hyperbolic singularities.
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Lemma 6.8 Let � be a confoliation and F an embedded connected surface containing
an overtwisted star .Q;V; ˛/ and v 2 V . The space of plane fields on M carries the
C 0 –topology.

(a) If 
v is contained in a closed leaf of � , then in every neighbourhood of � there is
a confoliation � 0 such that F.� 0/ contains an overtwisted star .Q0;V 0; ˛0/ which
is naturally identified with .Q;V; ˛/ and 
 0v; .v 2 V 0 ' V / passes through the
contact region of � 0 .

(b) Assume that 
 is contained in an exceptional minimal set, 
 has attractive
linear holonomy, and 
 is transverse to F . Then every C 0 –neighbourhood of �
contains a confoliation � 0 such that F.� 0/ contains an overtwisted star which
can be naturally identified with .Q;V; ˛/ and jE.� 0/j< jE.�/j.

Proof First, we prove (a). Let L be the closed leaf containing 
v . Since 
v is the
!–limit set of leaves in F.�/ it has attractive holonomy on one side and F\L consists
of a family of cycles. In particular, L\˛.Q/D∅ because an overtwisted star with
virtual vertices does not contain closed cycles of the characteristic foliation.

We use Lemma 6.5 and Remark 6.6 to ensure that 
v has sometimes attractive holonomy
on both sides. Unfortunately this property is not stable under arbitrary isotopies
of 
v in general. But by Lemma 2.1 there is an annulus A ' 
v � Œ0; 1� such that

v D 
v�f0gDF \A and all curves in A have attracting holonomy on the side where
˛.Q/ approaches 
v while isotopies do not change the nature of the holonomy on the
other side of L since by construction the confoliation is actually a foliation there.

Therefore there is a small isotopy of F which maps .Q;V; ˛/ to an overtwisted star
.Q0;V 0; ˛0/ on the isotoped surface F 0 such that 
v is mapped to 
v � f"g where
0< " < 1=2. Then we can apply Lemma 6.3 to 
v � f0g and 
v � f2"g.

Now there is a Legendrian arc intersecting F 0 exactly once in a point of 
v and both
endpoints of this arc lie in the contact region. Hence this arc satisfies the assumptions
of Lemma 6.4. This yields a confoliation � 0 with the desired properties such that
F 0.�/D F 0.� 0/. This finishes the proof of (a).

Now we prove (b). We shall use notation from the proof of Lemma 6.3. In the proof
we will use the freedom in the choice of the function g in the proof of Lemma 6.3.
For this we need the fact that 
 has nontrivial infinitesimal holonomy, since then there
are only very few restrictions on g in the proof of Lemma 6.3; cf also Lemma 2.5.2
in [10].

Fix a neighbourhood U ' S1
x � Œ�1; 1�y � Œ�1; 1�z such that 
 D S1�f.0; 0/g and the

coordinates x;y; z have all properties used in the proof of Lemma 6.3. In particular,
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the foliation by the second factor is Legendrian and coincides with F.�/ on F \U

while the third factor is positively transverse to � . We require that U intersects F only
in neighbourhoods of points in 
 \�Q DWX .

Let us make an orientation assumption in order to simplify the presentation: We assume
that the orientation of the Legendrian foliation on S1 � Œ�1; 1�� Œ�1; 1� given by the
second factor coincides with the orientation of F.�/ near points of 
 \ 
v; v 2 V , ie
in Figure 20 the foliation is oriented from left to right. When this assumption is not
satisfied for some y 2 
 \�Q , then one has to interchange the roles of y��.y/ and
y�C.y/ in some of the following arguments.

By transversality 
 intersects F in a finite number of points. Since 
 is contained
in the fully foliated part of � , 
 cannot intersect ˛.Q/ since every point of ˛.Q/ is
connected to H.�/ by a Legendrian arc. We can ignore the points in F \ 
 which do
not belong to ˛.Q/ if we deform � on a neighbourhood of 
 which is small enough.

Because F is smoothly embedded and � is smooth, F.�/ is also smooth. As we
have already mentioned in Section 3.2 the !–limit set 
v with v 2 V is either a
quasi-minimal set or we may assume that 
v is a closed leaf of F.�/. We distinguish
the following cases.

(i) 
v is quasi-minimal. Since there are interior points of ˛.Q/ arbitrarily close
to 
v , there is no segment � transverse to F.�/ such that � \ 
v is dense in � .
Then 
v\� is a Cantor set (cf [18]). Recall from Section 2.2 that the intersection
between two different quasi-minimal sets cannot contain a recurrent orbit and
the number of quasi-minimal sets of F.�/ is bounded by the genus of F .

(ii) 
v is a closed leaf of F.�/ whose holonomy is attractive on the side from which
˛.Q/ accumulates on 
v while it is repulsive on the other side and ˛.Q/ spirals
onto 
v on the attractive side. In this case, ˛.Q/ cannot enter a one-sided
neighbourhood of 
v on the side where the holonomy is repulsive.

(iii) 
v is a closed leaf of F.�/ whose holonomy is attractive on one side and either
there is a sequence of closed leaves of F.�/ on the other side of 
v which
converge to 
v or 
v has attractive holonomy on both sides.

If 
v belongs to class (iii) and U is small enough (ie contained in the interior of
an annulus each of whose boundary is tangent to F.�/ or transverse to F.�/ such
that F.�/ points into the annulus along the boundary), then any modification of F.�/

with support in U \ F will result in a singular foliation on F such that all leaves
of the characteristic foliation which enter a neighbourhood of 
v containing U will
remain in U forever even after the modification. When no singularities are created
during the modification, then the modification replaces .Q;V; ˛/ by an overtwisted star
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.Q0;V 0; ˛0/ such that jV j D jV 0j. In this case 
v ¤ 
 0v but 
 0v is a closed leaf of F.� 0/

which passes through H.� 0/ (by the proof of Lemma 6.3. We keep this case separated
from the others although all three of them may occur in one single perturbation of � .

The following argument is complicated by a difficulty in case (ii). If ˛.Q/ accumulates
on 
v and the holonomy of 
v is repulsive on the side where points of 
 are pushed to
by the diffeomorphism G appearing in the proof of Lemma 6.3, then it is impossible
to say something about the new !–limit set of leaves in ˛.Q/ which accumulated
on 
v unless G is chosen carefully: It is possible that leaves which accumulated on 
v
accumulate on 
v0 when the characteristic foliation is modified near 
v . However it is
possible that 
v0 is also changed when � is replaced by � 0 . Therefore one has to treat
all v 2 V such that 
v belongs to (i),(ii) simultaneously.

For nonempty open intervals �� � Œ�1; 0/ and �C � .0; 1� we write y�˙.y/ WD fyg �
Œ�1; 1�� �˙ for y 2 
 . We will fix �˙ in the following.

We require that �C is chosen such that the !–limit of a leaf intersecting y�C.y/ is never
a hyperbolic singularity for all y 2X . Because

� there are only finitely many hyperbolic singularities on F ,
� ˛.Q/ intersects every interval transverse to 
v in an open set (note that there

are singular foliations on surfaces with dense quasi-minimal sets; in particular
stable leaves of hyperbolic singularities in such quasi-minimal sets may be dense
in the surface) and

� ˛.@Q/ is disjoint from those 
v; v 2 V which intersect 
 even if 
v is quasi-
minimal (this is true because every point of ˛.Q/ is connected to H.�/ by a
Legendrian curve while 
 is part of the fully foliated set),

this condition can be satisfied. Next we impose additional restrictions on �� :

We choose �� such that no point in y�C.x/ is connected to y��.y/ for x;y 2X by a
leaf of F.�/ which is disjoint from f.y; 0/g � Œsup.��/; sup.�C/�. In other words, we
require that leaves of F.�/ which come from y�C.x/ do not intersect y��.y/ when they
meet the piece of f.y;�1/g� Œ�1; 1�� .U \F / which lies between the lower endpoint
of y��.y/ and the upper endpoint of y�C.y/ for the first time. In order to satisfy this
condition it might be necessary to shorten �C .

There is a choice for �C; �� which satisfies these requirements for x;y 2X whenever
the limit set 
v which corresponds to y is not the !–limit set of leaves intersect-
ing y�C.x/.

If y is contained in a closed leaf of F.�/, then one can also satisfy the requirement
for x;y 2 X provided that �C is so short that the translates of y�C.x/ along leaves
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of F.�/ do not cover the segment y��.y/). We shorten �C whenever this is necessary.
Finally, when y is part of a quasi-minimal set and the leaves of F.�/ which intersect
y�C.x/ accumulate on this quasi-minimal set the above requirement can be satisfied
by shortening �˙ again. Now one can construct �� in a finite number of steps and
shortening �˙ at each step.

Let t� 2 �� . We fix the diffeomorphism gW Œ�1; 1�! Œ�1; 1� in the proof of Lemma
6.3 such that g maps the entire interval .t�; sup.�C// into �C and the support of g

is contained in .inf.��/; sup.�C//. The role of the parameters �; �0 from the proof of
Lemma 6.3 is now played by sup.�C/; inf.��/.

If � is modified by the procedure described in the proof of Lemma 6.3 using the
diffeomorphism g chosen above, then one obtains a confoliation � 0 such that all leaves
of F.� 0/ starting at the elliptic singularity in the center of the original overtwisted
whose !–limit set was 
v such that 
v \ 
 ¤∅ never meet a hyperbolic singularity
of F.� 0/.

Since all elliptic singularities on the boundary of the basin of the elliptic singularity in
˛.Q/ are automatically negative and all hyperbolic singularities on the boundary of
the basin where already present in ˛.@Q/ there is an overtwisted star .Q0;V 0; ˛0/ and
V 0 can be viewed as a subset of V by construction. Moreover, jE.� 0/j< jE.�/j.

Now we can finally show that there are no overtwisted stars when � is symplectically
fillable.

Theorem 6.9 Let .M; �/ be a C k –confoliation, k � 2, which is symplectically
fillable. Then � is s-tight.

Proof Let .X; !/ be a symplectic filling of � . According to Theorem 1.4 xi is tight
(below we will outline a proof of Theorem 1.4). Assume that F is an embedded surface
containing an overtwisted star .Q;V; ˛/. It is sufficient to treat only the case of closed
surfaces when the elliptic singularity in the interior of ˛.Q/ is positive.

In the first part of the proof we show how to reduce the number of virtual vertices.
Because overtwisted stars are not required to be injective as Legendrian polygons, we
show in a second step how to obtain an embedded disc D such that @D is Legendrian and
TDj@D is transverse to �j@D violating Definition 1.3 starting from an overtwisted star
.Q;∅; ˛/. The confoliation is modified several times but all confoliations appearing in
the proof will be C 0 –close to � . In particular, they are symplectically fillable. Therefore
the assumption that .M; �/ admits an overtwisted star contradicts Theorem 1.4.
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Notice that in the presence of an overtwisted star � cannot be a foliation everywhere.
Therefore M is not a minimal set of the fully foliated part of � and � is not a foliation
without holonomy.

Step 1 If V ¤ ∅, then � can be approximated by a confoliation which admits an
overtwisted star with less virtual vertices than .Q;V; ˛/.

We fix v0 2 V . If 
0 WD 
v0
intersects H.�/, then an application of Lemma 3.6

yields a surface carrying an overtwisted star with less virtual vertices. Now assume

0\H.�/D∅.

Let L be the maximal connected open immersed hypersurface of M which is tangent
to � and contains 
0 . If LD∅, then there is a Legendrian segment � satisfying the
hypothesis of Lemma 6.4. After applying this lemma, 
v intersects the contact region
of the modified confoliation and we are done.

Now assume L¤∅ and let L1 be the space of ends of L. We say that an end e 2L1

lies in H.�/ if for every compact set K �L there is a Legendrian curve from H.�/

to the connected component of L nK corresponding to e and the curve avoids K .

Step 1a If L1 ¤∅, then we approximate � such that all ends of L lies in the contact
region of the modified confoliation.

The set of ends in H.�/ is open in L1 , therefore its complement L1fol is compact. To
each e 2L1fol we associate a minimal set M.e/� lime L of the fully foliated part of
� (this is explained in [5, page 115]). Recall that M cannot be a minimal set of the
fully foliated part of � . Hence according to [19, page 19], all minimal sets are either
closed leaves or exceptional minimal sets. Note that L may be contained in M.e/.

If M.e/ is a closed leaf of � whose holonomy along a curve 
 transverse to F is
sometimes attractive, then we can apply Lemma 6.8 (a) to 
v if there is v 2 V with

v �M.e/. If L contains no limit set of ˛.Q/, then the procedure from the proof of
Lemma 6.3 can be applied directly to any curve 
 �M.e/ with sometimes attractive
holonomy. We can ensure the existence of such a curve by Lemma 6.5 and Remark 6.6.

If M.e/ is an exceptional minimal set, then according to Proposition 6.7 there is a sim-
ple closed curve 
 in a leaf L
 �M.e/ with nontrivial infinitesimal holonomy. Every
curve in L
 which is isotopic to 
 through Legendrian curves has the same property by
Lemma 1.3.17 in [10]. In particular, we may assume that 
 is transverse to F . Using
Lemma 6.8 (b) we approximate � by a confoliation � 0 such that L
 meets H.� 0/.
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If M.e/ was an exceptional minimal set, this process might have changed the over-
twisted star in the sense that type of the !–limit sets of virtual vertices may have
changed. But recall that by the proof of Lemma 6.8 we can view V 0 as a subset of V .
We use 
 0v to denote the !–limit set of leaves which start at the elliptic singularity in
the center of the overtwisted star and accumulated on 
v; v 2V before the modification.

We iterate the procedure from the very beginning with v0 2 V 0 and with an integral
surface of � 0 containing 
 0

0
. Since E.�/ is finite and jE.� 0/j< jE.�/j this phenomenon

can occur only finitely many times.

In later applications of the above construction 
 0
0
D 
0 and the maximal integral surface

of � 0 containing 
 0
0

is contained in the maximal integral surface of � containing 
0 .
Because the inclusion induces a continuous mapping between the spaces of ends and by
the compactness of L1fol we are done after finitely many steps. We continue to write F

for the embedded surface, � for the confoliation, .Q;V; ˛/ for the overtwisted star, etc.

Step 1b We isotope F such that all quasi-minimal sets of the characteristic foliation
on the resulting surface pass through the contact region.

As we have already noted in the proof of Lemma 6.8, F.�/ has only finitely many
quasi-minimal sets (this number is bounded by the genus of F ). Let 
w; w 2 V be
a quasi-minimal set of F.�/ which is disjoint from H.�/.

According to Theorem 2.3.3 in [26] there is an uncountable number of leaves of F.�/

which are recurrent (in both directions) and dense in 
w while .Q;V; ˛/ has only a
finite number of pseudovertices and jV j<1. Therefore there is pw 2 
w which can
be connected to H.�/ by a Legendrian arc � transverse to F such that � does not
meet ˛.@Q/ and � never intersects cyclic components of �Q . At this point we use
that every end of the union of integral hypersurfaces containing 
w lies in H.�/. If �
intersects �Q in some other quasi-minimal set 
w0 ; w0 2V before it meets H.�/, then
we replace 
w by 
w0 . Thus we may assume that � meets F in pw and nowhere else.

By Lemma 2.8.2 in [10] there is a confoliation � 0 C k –close to � such that F.� 0/DF.�/,
� is tangent to � and � 0 and a neighbourhood of pw in F lies in H.� 0/. We will
denote � 0 again by � .

Choose a neighbourhood U ' � � Œ�1; 1�� Œ�1; 1� of � such that � D � � f.0; 0/g
and .fpwg� Œ�1; 1�� Œ�1; 1�/� F . Moreover, we require that the foliation by the first
factor is Legendrian while the foliation corresponding to the second factor is transverse
to � and Ů �H.�/. Finally we assume that the foliation which corresponds to the
second factor is Legendrian when it is restricted to F .
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Now we apply an isotopy to F whose effect on the characteristic foliation on F is
the same as the effect of the map G appearing in the proof of Lemma 6.3. We
explain this under the following orientation assumptions (the other cases can be
treated in the same way): The orientation of F.�/ coincides with the second factor of
U ' � � Œ�1; 1�� Œ�1; 1� and the coorientation of F points away from U .

In Figure 20 the left respectively right edge of the rectangle corresponds to f.pw;�1/g�

Œ�1; 1� respectively f.pw; 1/g � Œ�1; 1�, the foliation is oriented from left to right, the
coorientation of � points upwards and the coorientation of F points towards the reader.

Choose �1< x < 0< y < 1 such that the points .pw;�1;x/; .pw; 1;y/ 2 F

(i) do not lie on a stable or unstable leaf of a hyperbolic singularity and they are
not connected by a leaf of F.�/ and

(ii) can be connected by a smooth Legendrian arc � in U whose projection to
� � Œ�1; 1� is embedded and � is C1 tangent to F . Moreover, we assume that
the projection of � to � � Œ�1; 1� is transverse to the first factor.

The curve � and the points x;y exist because of the orientation assumptions and
Lemma 2.1. Now fix x0;y0 close to x;y such that x < x0 < 0< y0 < y .

Using a flow along the first factor of U we can move fpwg � Œ�1; 1� to a curve which
is close to the projection of � to �� Œ�1; 1�. When we apply this flow to F , the surface
is pulled into U and we obtain a surface F 0 isotopic to F which coincides with F

outside of fpwg � .�1; 1/� .x;y/.

By the assumptions on � we can choose F 0 such that the holonomy of F 0.�/ maps the
transverse segment f.pw;�1/g � .x0;y/ onto f.pw; 1/g � .y0;y/ such that no leaf of
intersecting f.pw; 1/g � .y0;y/ is part of a stable or unstable leaf of F.�/. Moreover,
we may assume that leaves which start at points of f.pw; 1/g�.y0;y/ meet the segment
f.pw;�1/g � Œx0;y� before the enter the region where F 0 ¤ F for the first time. The
new !–limit set is now a closed leaf of F 0.�/ which passes through f.pw; 1/g�.y0;y/.

This modification may have created quasi-minimal sets on F 0 which were not present
in F.�/. But if this happens, then the new quasi-minimal sets intersect the contact
region by construction. After a finite number of steps (bounded by the genus of F )
we have isotoped F such that all quasi-minimal sets of the characteristic foliation on
the resulting surface pass through the contact region. Now we apply Lemma 3.6. We
obtain a surface F 00 containing an overtwisted star .Q00;V 00; ˛00/ such that there is a
natural inclusion V 00 � V and all 
v; v 2 V 00 are cycles of F 00.�/. We will denote F 00

by F , Q00 by Q, etc.
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Step 1c In this step we reduce the number of virtual vertices.

Let 
0 be the limit set which corresponds to the virtual vertex v0 2V of an overtwisted
star .Q;V; ˛/. We assume that 
v is a cycle for all v 2 V and all ends of the maximal
integral surface L0 containing 
0 lie in the contact region.

Choose a submanifold L0
0
� L0 of dimension 2 such that L0

0
contains all closed

components of �Q\L0 . Since each end of L0 lies in H.�/ we can choose L0
0

so
that each boundary component is connected to H.�/ by a Legendrian curve which does
not intersect the interior of L0

0
. After a C1–small perturbation (we use again Lemma

2.8.1 from [10]) of � we may assume that the boundary of L0
0

is contained in the contact
region of the resulting confoliation � 0 . This perturbation might affect the characteristic
foliation on F , but since the modification of the confoliation does not affect �Q and
all components of �Q are cycles of F.�/ which are also present in F.� 0/, there still
is an overtwisted star .Q0;V 0˛0/ on F together with a natural inclusion V 0 ,! V .

Now we can apply Lemma 6.5 and Remark 6.6. From Lemma 6.8 (a) we obtain a
confoliation � 00 which is C 0 –close to � 0 such that F.� 00/ contains an overtwisted star
.Q00;V 00; ˛00/ with V 00 � V 0 and all !–limit sets 
 00w; w 2 V 00 which were contained
in L0 now intersect the contact region of � 00 . Using Lemma 3.6 we reduce the number
of virtual vertices.

Step 2 We show that we can assume that the map ˛ associated to the overtwisted star
.Q;∅; ˛/ in F is injective.

Assume that the Legendrian polygon .Q;∅; ˛/ is not injective. We first treat the case,
that there is a nontrivial cycle 
w1:::wl

. In order to simplify the notation in the following
we assume that 
w1:::wl

contains no corners except ˛.wi/, i D 1; : : : l . Let � be the
stable leaf of ˛.w1/ which is contained in
w1:::wl

of ˛.w1/, by our assumption � is
also an unstable leaf of ˛.w2/. We choose a Legendrian curve �� such that

� �� intersects ˛.@Q/ exactly once,

� this intersection lies on � and it is transverse to F and

� both end points of �� lie in the contact region.

Because both unstable leaves of ˛w1
on 
w1:::wl

can be extended to Legendrian curves
connecting the pseudovertex to H.�/ such an arc �� exists. Now apply (the proof of)
Lemma 6.4 to �� : After a C1–small perturbation we obtain a confoliation such that
�� is in the contact region and the characteristic foliation on F near �� \ � remains
unchanged. The characteristic foliation has changed near other intersection points of F
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with �� . By the choice of �� these changes affect only the characteristic foliation of F

away from ˛.Q/ and therefore preserve the overtwisted star.

After a small modification of F near �� \ � we can achieve that the unstable leaf of
˛.w2/ which corresponded to � before the perturbation of F now ends at the negative
elliptic singularity which is connected to ˛.w1/ by a Legendrian path containing an
unstable leaf of ˛.w1/ which does not meet 
w1:::wl

except at the endpoints. This
reduces the number of pseudovertices which are identified by ˛ while the overtwisted
star is preserved.

It remains to deal with pseudovertices w1; w2 such that ˛.w1/D ˛.w2/DW y . The
!–limit sets of the stable leaves of y are negative elliptic singularities y1;y2 in ˛.@Q/
and we may assume that these singularities are contained in H.�/ (because they are
!–limit sets, they do not lie in the interior of the foliated part of � ).

We eliminate y1 and y using Lemma 3.5. This reduces the number of edges of the
polygon which are identified unless y1D y2 . The case when y1D y2 requires slightly
more work:

After perturbing the surface on a neighbourhood of y1 we may assume that the two unsta-
ble leaves of y form a smooth closed Legendrian curve 
 0 . We eliminate y1;y such that

 0 is a closed leaf of the characteristic foliation on the resulting surface. We obtained a
Legendrian polygon .Q0;V 0; ˛0/ on a surface F 0 with Q0'D2 and V 0 consists of all
vertices of Q0 which were mapped to y1 by ˛0 . By construction 
v0D
 0 for all v02V 0 .

Since y1 2H.� 0/ we can approximate � 0 by a confoliation � 00 which coincides with � 0

outside a tubular neighbourhood of 
 0 and is a contact structure near 
 0 . This can be
done without changing the characteristic foliation on the surface by Lemma 6.4.

Next we apply a standard procedure from contact topology called folding to 
 0 . This
is described in [22, page 325]. We obtain a surface F 00 which contains an overtwisted
star .Q00;V 00; ˛00/ such that V 0 consists of two elements with Q00'Q0 , V 00D V 0 but
now elements of V 00 correspond to different !–limit sets depending on which side
of 
 0 the corresponding leaves of ˛.Q/ accumulated.

In order to continue we create a pair of negative singularities along the closed leaves in
˛00.Q00/. We eliminate all pseudovertices successively and we obtain a confoliation z�
on M together with an overtwisted star . zQ; zV D∅; z̨/ on a surface zF which has no
virtual vertices and is injective as a Legendrian polygon. z̨ becomes injective after
finitely many perturbations of zF as in Figure 10.

Because z̨.@ zQ/ passes through the contact region of e� 0 the disc D D z̨. zQ/ violates
Definition 1.3. This concludes the proof of the theorem.
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This proof can be modified to yield a proof of Theorem 1.4 using only the well known
fact that symplectically fillable contact structures are tight without referring to results
of R Hind in [20] which are used in [10]. Let us outline the argument.

Given a disc D as in Definition 1.3 assume first that the holonomy of @D in D is
nontrivial. We try to follow the construction above to find a confoliation � 0 such
that @D remains Legendrian and � 0 is C 0 –close to � . This attempt must fail since
otherwise we could continue to modify � 0 into a symplectically fillable contact structure
such that D becomes an overtwisted disc. This contradicts the fact that symplectically
fillable contact structures are tight.

The point at which the above construction breaks down is the application of Remark
6.6 in the case when @D bounds a disc D0 in the maximal surface which contains @D
and is tangent to the confoliation. In order to show that e.�/ŒD[D0�D 0 one chooses
an embedded sphere S close (and homologous) to D[D0 . Then e.�/ŒS �D 0 follows
from the tightness of contact structures that are C 0 –close to the original confoliation.

It remains to treat the case when the holonomy of @D in D is trivial. Then one has to
show that either @D is a vanishing cycle (cf Chapter 9 in [6]) or one can replace D

by a smaller disc which has Legendrian boundary along which the holonomy of the
characteristic foliation on the disc is not trivial. If @D is a vanishing cycle, then one uses
results due to Novikov [27] to establish the existence of a solid torus whose boundary T

is a leaf of the confoliation. This contradicts
R

T ! > 0 because this inequality means
that T represents a nontrivial homology class.
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ometry, Progress in Math. 124, Birkhäuser Verlag, Basel (1994) MR1296462 An
introduction based on the seminar in Bern, 1992

[2] S J Altschuler, L F Wu, On deforming confoliations, J. Differential Geom. 54 (2000)
75–97 MR1815412

[3] S K Aranson, G R Belitsky, E V Zhuzhoma, Introduction to the qualitative theory of
dynamical systems on surfaces, Translations of Math. Monogr. 153, Amer. Math. Soc.
(1996) MR1400885 Translated from the Russian manuscript by H H McFaden
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