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Madsen–Weiss for geometrically minded topologists

YAKOV ELIASHBERG

SØREN GALATIUS

NIKOLAI MISHACHEV

We give an alternative proof of the Madsen–Weiss generalized Mumford conjecture;
see Theorem 1.8. At the heart of the argument is a geometric version of Harer
stability, which we formulate as a theorem about folded maps. A technical ingredient
in the proof is an h–principle type statement, called the “wrinkling theorem” by the
first and third authors [4]. Let us stress the point that we are neither proving the
wrinkling theorem nor the Harer stability theorem.

Dedicated to D B Fuchs on the occasion of his 70th birthday

1 Introduction and statement of results

The Madsen–Weiss generalized Mumford conjecture says that a certain map

(1) Z�B�1!�1CP1
�1

is a homology equivalence, ie induces an isomorphism in integral homology. The map
and the spaces Z�B�1 and �1CP1

�1
will be defined below. The theorem was proved

by Madsen and Weiss in [10] using homotopy theoretic techniques, such as simplicial
spaces and homotopy colimits. In this paper we give an alternative proof of the Madsen–
Weiss theorem, based on ideas similar to the original proof, but more geometrical and
less homotopy theoretical in flavor. Instead of the homotopy theoretical techniques,
we work directly with the underlying manifolds. After reformulating Harer’s stability
theorem [6] in a geometric form (see Theorem 1.9 below) as a statement about fibrations
f W M !X , the heart of our proof consists of generalizing this to a statement about
certain folded maps (see Theorem 4.1) and applying a consequence of the wrinkling
theorem (see Eliashberg and Mishachev [4]).

The geometric form of our main theorem gives a relation between fibrations (or surface
bundles) and a related notion of formal fibrations. By a fibration we mean a smooth map
f W M ! X , where M and X are smooth, oriented, compact manifolds and f is a
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submersion (ie df W TM ! f �TX is surjective). A cobordism between two fibrations
f0W M0!X0 and f1W M1!X1 is a triple .W;Y;F / where W is a cobordism from
M0 to M1 , Y is a cobordism from X0 to X1 , and F W W ! Y is a submersion which
extends f0qf1 .

Definition 1.1 (i) An unstable formal fibration is a pair .f; '/, where f W M !X

is a smooth proper map, and 'W TM ! f �TX is a bundle epimorphism.

(ii) A stable formal fibration (henceforth just a formal fibration) is a pair .f; '/,
where f is as before, but ' is defined only as a stable bundle map. Thus for
large enough j there is given an epimorphism 'W TM ˚ �j ! f �TX ˚ �j ,
and we identify ' with its stabilization '˚ �1 . A cobordism between formal
fibrations .f0; '0/ and .f1; '1/ is a quadruple .W;Y;F; ˆ/ which restricts to
.f0; '0/q .f1; '1/.

(iii) The formal fibration induced by a fibration f W M !X is the pair .f; df /, and
a formal fibration is integrable if it is of this form.

Our main theorem is about the case where d D dim M � dim X D 2. It relates the set
of cobordism classes of fibrations with the set of cobordism classes of formal fibrations.
Let us first discuss the stabilization process (or more precisely “stabilization with
respect to genus”. This should not be confused with the use of “stable” in “stable
formal fibration”. In the former, “stabilization” refers to increasing genus; in the latter
it refers to increasing the dimension of vector bundles.) Suppose f W M ! X is a
formal fibration (we will often suppress the bundle epimorphism ' from the notation)
and j W X �D2!M is an embedding over X (ie f ı j D IdW X ! X ), such that
f is integrable on the image of j . Then we can stabilize f by taking the fiberwise
connected sum of M with X �T (along j ), where T D S1 �S1 is the torus. If f
happens to be integrable, this process increases the genus of each fiber by 1.

Our main theorem is the following.

Theorem 1.2 Let f W M !X be a formal fibration with dim M D 2Cdim X , which
is integrable over the image of a fiberwise embedding j W X �D2!M . Then, after
possibly stabilizing a finite number of times, f is cobordant to an integrable fibration
with connected fibers.

We will also prove a relative version of the theorem. Namely, if X has boundary and
f is already integrable, with connected fibers, over a neighborhood of @X , then the
cobordism in the theorem can be also be assumed integrable over a neighborhood of
the boundary.
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Theorem 1.2 is equivalent to the Madsen–Weiss “generalized Mumford conjecture” [10]
(ie the homology equivalence (1)). In the rest of this introduction we will explain why
these are equivalent and introduce the methods that go into our proof of Theorem 1.2.
Our proof is somewhat similar in ideas to the original proof, but quite different in details
and language. The general scheme for reducing some algebro-topological problem to a
problem of existence of bordisms between formal and genuine (integrable) fibrations
was first proposed by D B Fuchs in [5]. That one might prove the Madsen–Weiss
theorem in the form of Theorem 1.2 was also suggested by I Madsen and U Tillmann
in [9].

The authors are very grateful to the referee for the careful reading of the manuscript
and numerous useful remarks and suggestions.

1.1 Diffeomorphism groups and mapping class groups

Let F be a compact oriented surface, possibly with boundary @F D S . Let Diff.F /
denote the topological group of diffeomorphisms of F which restrict to the identity on
the boundary. The classifying space B Diff.F / can be defined as the orbit space

B Diff.F /D Emb.F;R1/=Diff.F /;

and it is a classifying space for fibrations: for a manifold X , there is a natural bijection
between isomorphism classes of smooth surface bundles E! X with fiber F and
trivialized boundary @E DX �S , and homotopy classes of maps X ! B Diff.F /.

The mapping class group is defined as �.F / D �0 Diff.F /, ie the group of isotopy
classes of diffeomorphisms of the surface. It is known that the identity component of
Diff.F / is contractible (as long as g� 2 or @F ¤¿), so B Diff.F / is also a classifying
space for �.F / (ie an Eilenberg–Mac Lane space K.�.F /; 1/). When @F D¿, this
is also related to the moduli space of Riemann surfaces (ie the space of isomorphism
classes of Riemann surfaces of genus g ) via a map

(2) B Diff.F /!Mg

which induces an isomorphism in rational homology and cohomology. Mumford
defined characteristic classes �i 2 H 2i.MgIQ/ for i � 1 and conjectured that the
resulting map

QŒ�1; �2; : : : �!H�.MgIQ/

is an isomorphism in degrees less than .g � 1/=2. This is the original Mumford
Conjecture.

It is convenient to take the limit g!1. Geometrically, that can be interpreted as
follows. Pick a surface Fg;1 of genus g and with one boundary component. Also
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pick an inclusion Fg;1! FgC1;1 . Let T1 be the union of the Fg;1 over all g , ie a
countably infinite connected sum of tori. We will consider fibrations E ! X with
trivialized “T1 ends”.

Figure 1: Surface with T1–end

Such a fibration is a pair .f; j / where f W E ! X is a smooth fiber bundle with
fiber T1 , and

(3) j W X �T1 E

is a germ at infinity of an embedding over X . This means, for X compact, that
representatives of j are defined on the complement of some compact set in X �T1 ,
and their images contain the complement of some compact set in E .

Let us describe a classifying space for fibrations with T1 ends. Let B�1 be the
mapping telescope (alias homotopy colimit) of the direct system

(4) B Diff.F0;1/! B Diff.F1;1/! B Diff.F2;1/! � � � :

Lemma 1.3 Z�B�1 is a classifying space for fibrations with T1 ends.

Proof Any compact K � T1 is contained in Fg;1 � T1 for some finite g . Let
T

g
1 � T1 be the complement of Fg;1 . Let us consider for a moment fibrations with

fiber T1 and an embedding as in (3), but which is actually defined on T k
1 . Call

such bundles k –trivialized. Specifying a k –trivialized bundle is the same thing as
specifying a fibration E0!X with connected, compact fibers, and trivialized boundary
@E0 DX �S1 (namely E0 is the complement of the image of j ). Thus, the disjoint
union

(5) B D
a
g

B Diff.Fg;1/
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is a classifying space for k –trivialized bundles (notice B is independent of k ). A
k –trivialized bundle is also a .kC1/–trivialized bundle, and increasing k is represented
by a “stabilization” self-map sW B!B . In the representation (5), s maps B Diff.Fg;1/

to B Diff.FgC1;1/ and this is induced by the same map as in (4).

Now the statement follows by taking the direct limit as k !1, and noticing that
Z�B�1 is the homotopy colimit of the direct system

B
s
�! B

s
�! � � � :

1.2 A Thom spectrum

In this section we define a space �1CP1
�1

and interpret it as a classifying space
for formal fibrations. The forgetful functor from fibrations to formal fibrations is
represented by a map

(6) B Diff.F /!�1CP1
�1 :

We then consider the same situation, but where fibrations and formal fibrations have
T1 ends. This changes the source of the map (6) to Z�B�1 , but turns out to not
change the homotopy type of the target. We get a map

Z�B�1!�1CP1
�1 ;

representing the forgetful functor from fibrations with T1 ends to formal fibrations
with T1 ends.

The space �1CP1
�1

is defined as the Thom spectrum of the negative of the canonical
complex line bundle over CP1 . In more detail, let GrC

2
.RN / be the Grassmannian

manifold of oriented 2–planes in RN . It supports a canonical 2–dimensional vector
bundle 
N with an .N�2/–dimensional complement 
?

N
such that 
N ˚ 


?
N
D �N .

There is a canonical identification

(7) 
?NC1jGrC
2
.RN /D 
?N ˚ �

1:

The Thom space Th.
?
N
/ is defined as the one-point compactification of the total space

of 
?
N

, and the identification (7) induces a map S1^Th.
?
N
/!Th.
?

NC1
/. The space

�1CP1
�1

is defined as the direct limit

�1CP1
�1 D lim

N!1
�N Th.
?N /:

Like we did for B Diff.F /, we shall think of �1CP1
�1

as a classifying space, ie
interpret homotopy classes of maps X !�1CP1

�1
from a smooth manifold X in

terms of certain geometric objects over X . Recall the notion of formal fibration from
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Definition 1.1 above. A cobordism .W;Y;F; ˆ/ of formal fibrations is a concordance
if the target cobordism is a cylinder: Y DX � Œ0; 1�.

Lemma 1.4 There is a natural bijection between set

ŒX; �1CP1
�1�

of homotopy classes of maps, and the set of concordance classes of formal fibrations
over X .

Proof sketch This is the standard argument of Pontryagin–Thom theory. In one
direction, given a map X !�N Th.
?

N
/, one makes the adjoint map gW X �RN !

Th.
?
N
/ transverse to the zero section of 
?

N
and sets M D g�1.zero-section/. Then

M comes with a map cW M ! GrC
2
.RN / and the normal bundle of M � X �RN

is c�.
?
N
/. This gives a stable isomorphism TM Šst f

�TX ˚ c�.
N / and hence a
stable epimorphism TM ! TX .

In the other direction, given a formal fibration .f; '/ with f W M ! X , we pick an
embedding M �X �RN . Letting � be the normal bundle of this embedding, we get
a “collapse” map

(8) XC ^SN
! Th.�/:

We also get an isomorphism of vector bundles over M

(9) TM ˚ � Š f �TX ˚ �N :

Let �W M ! GrC
2
.RN / be a classifying map for the kernel of the stable epimor-

phism 'W TM ! f �TX (this is a two-dimensional vector bundle with orientation
induced by the orientations of X and M ), so we have a stable isomorphism TM Šst

f �TX ˚ ��
N . Combining with (9) we get a stable isomorphism ��
N ˚ � Šst �
N .

By adding ��.
?
N
/ we get a stable isomorphism � Šst �

�.
?
N
/˚ �N which we can

assume is induced by an unstable isomorphism (since we can assume N � dim M )

(10) � Š ��
?N :

This gives a proper map �! 
?
N

and hence a map of Thom spaces Th.�/! Th.
?
N
/.

Compose with (8) and take the adjoint to get a map X ! �N Th.
?
N
/. Finally let

N !1 to get a map X !�1CP1
�1

.

The homotopy class of the resulting map X !�1CP1
�1

is well defined and depends
only on the concordance class of the formal fibration f W M !X .
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A fibration naturally gives rise to a formal fibration, and this association gives rise
to a map of classifying spaces which is the map (2). We would like to make this
process compatible with the stabilization procedure explained in Section 1.1 above. To
this end we consider formal fibrations with k –trivialized T1 ends. This means that
f W M !X is equipped with an embedding over X

j W X �T k
1!M;

and that .f; '/ is integrable on the image of j . Of course, we also replace the
requirement that M be compact by the requirement that the complement of the image
of j be compact.

Lemma 1.5 Formal fibrations with k –trivialized ends are represented by the space
�1CP1

�1
.

Proof sketch This is similar to the proof of Lemma 1.4 above. Applying the
Pontryagin–Thom construction from the proof of that lemma to the projection X�T k

1!

X gives a path ˛0W Œk;1/! �N�1Th.
?
N
/. Applying the Pontryagin–Thom con-

struction to an arbitrary k –trivialized formal fibration gives a path ˛W Œ0;1/ !

�N�1Th.
?
N
/ whose restriction to Œk;1/ is ˛0 . The space of all such paths is

homotopy equivalent to the loop space �N Th.
?
N
/.

Increasing k gives a diagram of stabilization maps`
g B Diff.Fg;1/

s

��

// �1CP1
�1

s

��`
g B Diff.Fg;1/ // �1CP1

�1
:

On the right hand “formal” side, the stabilization map is up to homotopy described
as multiplication by a fixed element (multiplication in the loop space structure. See
the proof of Lemma 1.5.) This is a homotopy equivalence, with inverse given by
multiplication by a point in the path component of �1CP1

�1
which is inverse to

Œs�2�0.�
1CP1

�1
/. Therefore the direct limit has the same homotopy type �1CP1

�1
.

Taking the direct limit we get the desired map

Z�B�1!�1CP1
�1 :

This is the map (1). The target of this map should be thought of as the homotopy direct
limit of the system

�1CP1
�1

s
�!�1CP1

�1

s
�! � � �
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and as a classifying space for formal fibrations with T1 ends. (It is a “coincidence”
that the classifying space for formal fibrations and the classifying space for formal
fibrations with T1 ends have the same homotopy type).

1.3 Oriented bordism

For a pair .A;B/ of spaces, oriented bordism �n.A;B/D�
SO
n .A;B/ is defined as

the set of bordism classes of continuous maps of pairs

f W .X; @X /! .A;B/

for smooth oriented compact n–manifolds X with boundary @X . To be precise, a
bordism between two maps f˙W .X˙; @X˙/ ! .A;B/ is a map F W .W; @0W / !

.A;B/, where W is a compact, oriented manifold with boundary with corners, so
that @W D @�W [ @0W [ @CW , where @˙W D X˙ and @0W is a cobordism
between closed manifolds @X� and @XC , and the map F W .W; @0W /! .A;B/ such
that F j@˙W D f˙ . In particular, a map f W .X; @X /! .A;B/ represents the zero
element of �n.A;B/ if and only if there exists F W W nC1! A with X � @W and
F.@W � Int X /� B .

For a single space A set �n.A/ D �n.A;¿/. Oriented bordism is a generalized
homology theory. This means that it satisfies the usual Eilenberg–Steenrod axioms
for homology (long exact sequence etc) except for the dimension axiom. In particular
a map B! A induces an isomorphism ��.B/!��.A/ if and only if the relative
groups ��.A;B/ all vanish. The following result is well known to follow from the
Atiyah–Hirzebruch spectral sequence (for completeness we give a geometric proof in
Appendix B).

Lemma 1.6 Let f W B ! A be a continuous map of topological spaces. Then the
following statements are equivalent.

(i) f�W Hk.B/! Hk.A/ is an isomorphism for k < n and an epimorphism for
k D n.

(ii) f�W �k.B/! �k.A/ is an isomorphism for k < n and an epimorphism for
k D n.

In particular, f induces an isomorphism in homology in all degrees if and only if it
does so in oriented bordism.

We apply this lemma to the map Z�B�1!�1CP1
�1

. Interpreting Z�B�1 and
�1CP1

�1
as classifying spaces for fibrations, resp. formal fibrations, with T1 ends,

we get the following interpretation (using that �n.A;B/ can also be defined in terms
of maps f W X !A such that f �1.B/ is a neighborhood of @X �X ).
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Lemma 1.7 There is a natural bijection between the relative oriented bordism groups
��.�

1CP1
�1
;Z �B�1/ and cobordism classes of formal fibrations f W M ! X

with T1 ends. The formal fibration is required to be integrable over a neighborhood
of @X , and cobordisms F W E!W are required to be integrable over a neighborhood
of @0W .

That (1) induces an isomorphism in integral homology (the Madsen–Weiss theorem) is
now, by Lemma 1.6, equivalent to the statement that the relative groups

��.�
1CP1

�1;Z�B�1/

all vanish. By Lemma 1.7 this is equivalent to:

Theorem 1.8 Any formal fibration f W M ! X with T1 ends is cobordant to an
integrable one. More precisely, there exists a formal fibration F W E!W with T1
ends, which restricts to f over X � @W , and which is integrable over @W � Int.X /.

Theorem 1.8 is our main result. It is a geometric version of the Madsen–Weiss theorem.
It is obviously equivalent to Theorem 1.2 above (with its relative form).

1.4 Harer stability

J Harer proved a homological stability theorem in [6] which implies precise bounds on
the number of stabilizations needed in Theorem 1.2. At the same time, it will play an
important role in the proof of that theorem (as it does in [10]).

Roughly it says that the homology of the mapping class group of a surface F is
independent of the topological type of F , as long as the genus is high enough. The
result was later improved by Ivanov [7; 8] and then by Boldsen [2]. We state the precise
result.

Consider an inclusion F!F 0 of compact, connected, oriented surfaces. Let S D @F 0 ,
and let †�F 0 denote the complement of F . Thus F 0DF[@F†. There is an induced
map of classifying spaces

(11) B Diff.F /! B Diff.F 0/:

A map f W X ! B Diff.F 0/ classifies a fibration E!X with fiber F 0 and boundary
@EDX �S , where S D @F 0 . Lifting it to a map into B Diff.F / amounts to extending
the embedding X �S !E to an embedding

X �†!E

over X .
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The most general form of Harer stability states that the map (11) induces an isomorphism
in Hk.�IZ/ for k < 2.g � 1/=3, where g is the genus of F . Consequently, by
Lemma 1.6, it induces an isomorphism in oriented bordism �n.�/ for n< 2.g�1/=3

or, equivalently, the relative bordism group

�n.B Diff.F 0/;B Diff.F //

vanishes for n< 2.g� 1/=3. Thus, Harer stability has the following very geometric
interpretation: For any fibration f W E!X with fiber F 0 and boundary @E DX �S ,
f is cobordant to a fibration f 0W E0!X 0 via a cobordism F W W !M (a fibration
with trivialized boundary M �S ) where the trivialization X 0�S D @E0!E0 extends
to an embedding

(12) X 0 �†!E0:

Moreover, the trivialization (12) can be assumed compatible with any given extension
.@X / �† ! E over @X D @X 0 . Here we assume F 0 D F [@F † as above, that
F and F 0 are connected, and that F has large genus. If the fibration has T1 ends,
the genus assumption is automatically satisfied, and we get the following geometric
consequence of Harer’s theorem. (We remind the reader that we have merely rephrased
Harer’s theorem [6], we have not given an independent proof.)

Theorem 1.9 (Geometric form of Harer stability) Let †1 �†2 be compact surfaces
with boundary (the surfaces are not assumed connected). Let f W M !X be a fibration
with T1 ends, and let

j W .@X �†2/[ .X �†1/!M

be a fiberwise embedding over X , such that in each fiber the complement of its image
is connected. Then, after possibly changing f W M ! X by a bordism which is the
trivial bordism over @X , the embedding j extends to an embedding of X �†2 .

†1

†2

Figure 2: †1 �†2 � F
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Explicitly, the bordism in the theorem is a fibration F W W ! Y with T1 ends, where
the boundary @Y is partitioned as @Y D X [ X 0 with @X D @X 0 D X \ X 0 and
FjX D f . The extension of j is a fiberwise embedding

J W .Y �†1/[ .X
0
�†2/!W

over Y .

1.5 Outline of proof of Theorem 1.8

1.5.1 From formal fibrations to folded maps The overall aim given a formal fibra-
tion .f W M !X; '/ with T1 ends, is to get rid of all singularities of f after changing
it via bordisms. Our first task will be to simplify the singularities of f as much as
possible using only homotopies. The simplest generic singularities of a map f W M!X

are folds. A map with only fold singularities is called a folded map. The fold locus
†.f / consists of points where the rank of f is equal to dim X�1, while the restriction
f j†.f /W †.f /!M is an immersion. In the case when dim M D dim X C2D nC2,
which is the case we consider in this paper, we have dim†.f / D n� 1. A certain
additional structure on folded maps, called an enrichment, allows one to define a homo-
topically canonical suspension, ie a bundle epimorphism 'D'f W TM˚�1!TX˚�1 ,
such that .f; '/ is a formal fibration. The enrichment of a folded map f consists of

� an n–dimensional submanifold V �M such that @V D†.f /, and the restriction
of f to each connected component of Vi � V is an embedding Int Vi!X ;

� a trivialization of the bundle Ker df jInt V with a certain additional condition on
the behavior of this trivialization on @V D†.f /.

Of course, existence of an enrichment is a strong additional condition on the fold map.
In Section 2.3, we explain how to associate to an enriched folded map .f; "/ a formal
fibration .f;L.f; "//, where L.f; "/W TM ˚ �1! TX ˚ �1 is a bundle epimorphism
associated to the enrichment � . The main result of Section 2 is Theorem 2.17, which
proves that any formal fibration can be represented in this way (plus a corresponding
relative statement). This is proved using an h–principle type result, the “wrinkling
theorem”, proven by the first and third authors [4]. Note that Theorem 2.17 is a variation
of the main result of the first author [3] and can also be proven by the methods of
that paper. Also in Section 2 we recall some basic facts about folds and other simple
singularities of smooth maps, and discuss certain surgery constructions needed for the
rest of the proof of Theorem 1.8. This part works independently of the codimension
d D dim N � dim M , and hence the exposition in this section is done for arbitrary
d > 0.

Geometry & Topology, Volume 15 (2011)



422 Yakov Eliashberg, Søren Galatius and Nikolai Mishachev

1.5.2 Getting rid of elliptic folds For a folded map f W M !X with folds †.f /�
M , each path component of †.f / has an index which is well defined provided that the
immersion †.f /!X is cooriented (ie there is a chosen trivialization of the normal
bundle). Assuming this is done, folds in the case d D 2 can be of index 0; 1; 2 and 3.
We call folds of index 1; 2 hyperbolic and folds of index 0; 3 elliptic. It is generally
impossible to get rid of elliptic folds by a homotopy of the map f . However, it is easy
to do so if one allows to change f to a bordant map zf W �M !X . This bordism trades
each elliptic fold component by a parallel copy of a hyperbolic fold; see Figure 15 and
Section 3.3 below. A similar argument allows one to make all fibers zf �1.x/;x 2X ,
connected.

1.5.3 Generalized Harer stability theorem A generalization of Harer’s stability
theorem, in the geometric form Theorem 1.9, plays an important role in our proof.
The generalization consists of allowing the map f W M !X to have fold singularities.
We still require that f has T1 ends, that the nonsingular fibers f �1.x/�†.f / are
connected, and that the folds are enriched (as in Section 1.5.1 above). The generalized
Harer stability theorem (Theorem 4.1 below) is similar to Theorem 1.9, but starts with
an enriched folded map f .

In Section 4.3 below we deduce Theorem 4.1 from Harer’s Theorem 1.9. The idea
of the proof is not hard to explain. Given a folded map f W M ! X , the restriction
of f to the fold †.f / � M is a codimension 1 immersion †.f /! X . After a
small perturbation we can assume that †.f /!X is self-transverse and has normal
crossings, and we get a stratification of X by multiplicity of self-intersection. The map
f W M !X restricts to a fiber bundle over each open stratum, the fiber is a surface with
as many singularities as the codimension of the stratum. The proof of the generalized
Harer stability theorem proceeds by induction over the strata. Over each stratum we
apply Theorem 1.9 to produce a bordism of the stratum, which by a gluing procedure
gives a cobordism of f W M !X .

The generalized Harer stability theorem is used in a crucial way in the next step, getting
rid of hyperbolic folds. This is explained in outline in a very special case in the next
section.

1.5.4 Getting rid of hyperbolic folds Let f be an enriched folded map with hy-
perbolic folds and with connected fibers. Let C be one of the fold components and
xC Df .C /�X its image (the enrichment ensures that xC has no self-intersections). For
the purpose of this introduction we will consider only the following special case. First,
we will assume that C is homologically trivial. As we will see, when dim X > 1 this
will always be possible to arrange. In particular, xC bounds a domain UC �X . Next,
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we will assume that the fold C has index 1 with respect to the outward coorientation
of the boundary of the domain UC . In other words, when the point x 2 X travels
across xC into UC then one of the circles in the fiber f �1.x/ collapses to a point,
so locally the fiber gets disconnected to two disks; see Figure 3. The inverse index 1
surgery makes a connected sum of two disks at their centers. Note that on an open collar

M S�.x/; SC.x/

X
coorientation

xC UC

Figure 3: Fibers of an index 1 fold

�D @UC �.0; 1/� Int UC along C in UC there exists two sections S˙W �!M such
that the 0–sphere fS�.x/;SC.x/g is the “vanishing cycle”, for the index 1 surgery
when x travels across xC . Moreover, the enrichment structure ensures that the vertical
bundle along these sections is trivial. If one could extend the sections S˙ to all of UC

preserving all these properties, then the fiberwise index 1 surgery, attaching 1–handle
along small disks surrounding S˙.x/ and S˙.x/, x 2UC , would eliminate the fold xC .
This is one of the fold surgeries described in detail in Section 3.2.

Though such extensions S˙.x/W Int UC !M need not exist for our original folded
map f , Harer’s stability theorem in the form of Theorem 1.9 states that there is an
enriched folded map zf W �M ! zX , bordant to f , for which such sections do exist, and
hence the fold xC could be eliminated.

1.6 Organization of the paper

As already mentioned, Section 2 recalls basic definitions and necessary results and
constructions involving fold singularities. In Section 2.1 we define folded maps. The
goal of Section 2.2 is Theorem 2.4 which is an h–principle for constructing so-called
special folded maps, whose folds are organized in pairs of spheres. This theorem is a
reformulation of the wrinkling theorem from [4]. We deduce Theorem 2.4 from the
wrinkling theorem in Appendix A. In Section 2.3 we define the notion of enrichment for
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folded maps and prove that an enriched folded map admits a homotopically canonical
suspension and hence gives rise to a formal fibration. The rest of Section 2 will prove
that any formal fibration is cobordant to one induced by an enriched folded map.

The input of Theorem 2.4 is a map f W M ! X and a fiberwise surjective map
'W TM ! TX between the nonstabilized tangent bundles. Formal fibrations are
defined in terms of stable epimorphisms, and in Section 2.4 we explain the modifications
necessary in the stable case. In Section 2.5 we formulate and prove Theorem 2.17
which reduces formal fibrations to enriched folded maps.

In Section 3.1 we introduce several special bordism categories and formulate the two
remaining steps of the proof: Proposition 3.6 which allows us to get rid of elliptic folds,
and Proposition 3.7 which eliminates the remaining hyperbolic folds. Section 3.2 is
devoted to fold surgery constructions which are needed in the proof of Propositions 3.6
and 3.7. These are just fiberwise Morse surgeries, in the spirit of surgery of singularities
techniques developed in [3]. Proposition 3.6 is proved in Section 3.3.

Section 4 begins with the proof of our generalized Harer stability theorem for folded
maps (Theorem 4.1) in Section 4.1 and Section 4.2. We conclude the proof of our
main result, Theorem 1.8, by proving Proposition 3.7 about eliminating of hyperbolic
folds in Section 4.4. In Section 5 we collect two Appendices. In Appendix A we
deduce Theorem 2.4 from the wrinkling theorem from [4]. Appendix B is devoted to a
geometric proof of Lemma 1.6.

2 Folded maps

2.1 Folds

Let M and X be smooth manifolds of dimension m D nC d and n, respectively.
Although the applications in this paper require only the case d D 2, the discussion is
Section 2 (except for Section 3.2.4) applies equally well for any d � 0. For a smooth
map f W M !X we will denote by †.f / the set of singular points, ie

†.f /D
˚
p 2M; rank dpf < n

	
:

A point p2†.f / is called a fold of index k if near the point p the map f is equivalent
to the map

Rn�1
�RdC1

!Rn�1
�R1

given by the formula

(13) .y;x/ 7!

 
y; Q.x/D�

kX
1

x2
i C

dC1X
kC1

x2
j

!
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where x D .x1; : : : ;xdC1/ 2 RdC1 and y D .y1; : : : ;yn�1/ 2 Rn�1 . We will also
denote x�D .x1; : : : ;xk/; xCD .kkC1; : : : ;xdC1/ and write Q.x/D�jx�j

2CjxCj
2 .

For M D R1 this is just a nondegenerate index k critical point of the function
f W V !R1 . By a folded map we will mean a map with only fold singularities. Given
y 2Rn�1 and an � > 0, the .k�1/–dimensional sphere y �fQ.x/D��;xC D 0g �

Rn�1 �RdC1 is the vanishing cycle of the fold over the point .y;��/.

Let C � †.f / be a path component of the folds of f W M ! X . The restriction
f W C ! X is an immersion and the normal bundle is a real line bundle over C .
A coorientation of xC D f .C / is a trivialization of this line bundle. A choice of
coorientation allows one to provide each fold component C with a well-defined index s ,
which changes from s to d C 1� s with a switch of the coorientation. The normal
bundle of C �M is Ker df , and the second derivatives of f gives an invariantly
defined nondegenerate quadratic form d2f W Ker df jC !Coker df . The coorientation
of C yields a trivialization of Coker.df / and thus d2f can be viewed as a real-valued
quadratic form on Ker df . We shall write Cone˙.C /� Ker.df jC / for the open sets
fz 2 Ker df I˙d2f .z/ > 0g. There is a splitting of vector bundles

Ker df jC D Ker�.C /˚KerC.C /;

defined uniquely up to homotopy by the condition Ker˙.C / n 0� Cone˙.C /.

2.2 Double folds and special folded mappings

Given an orientable .n�1/–dimensional manifold C , let us consider the map

(14) wC .nC d; n; k/W C �R1
�Rd

! C �R1

given by the formula

(15) .y; z;x/ 7!

 
y; z3

� 3z�

kX
1

x2
i C

dX
kC1

x2
j

!
;

where y 2 C; z 2R1 and x 2Rd . This is a folded map, with folds given by

†.wC /D C �S0
� f0g � C �R1

�Rd ;

two copies of the manifold C . The manifold C � f1g is a fold of index k , while
C � f�1g is a fold of index k C 1, with respect to the coorientation of the folds in
the image given by the vector field @=@u where u is the coordinate C �R!R. It is
important to notice that the restriction of the map wC .nC d; n; k/ to the annulus

AD C � Int D1
D C � Int D1

� 0� C �R1
�Rd

is an embedding. Figure 4 illustrates the case C D S1 .
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Figure 4: The radial projection to the cylinder has a double fold along C D S1

Although the differential

dwC .nC d; n; k/W T .C �R1
�Rd /! T .C �R1/

degenerates over †.wC /, it can be canonically regularized over Op.C �D1/, an open
neighborhood of the annulus C �D1 . Namely, we can change the element 3.z2� 1/

in the Jacobi matrix of wC .nCd; n; k/ to a positive function 
 , which coincides with
3.z2� 1/ on R1 n Œ�1� ı; 1C ı� for sufficiently small ı . The new bundle map

R.dwC /W T .C �R1
�Rd /! T .C �R1/

provides a homotopically canonical extension of the map

dwC W T .C �R1
�Rd

nOp.C �D1//! T .C �R1/

to an epimorphism (fiberwise surjective bundle map)

T .C �R1
�Rd /! T .C �R1/:

We call R.dwC / the regularized differential of the map wC .nC d; n; k/.

A map f W U !X defined on an open set U �M is called a double C –fold of index
k C 1=2 if it is equivalent to the restriction of the map wC .nC d; n; k/ to an open
neighborhood of C �D1 . For instance, when X D R and C is a point, a double
C –fold is a Morse function given in a neighborhood of a gradient trajectory connecting
two critical points of neighboring indices. In the case of general n, a double C –fold is
called a spherical double fold if C D Sn�1 .

It is always easy to create a double C –fold as the following lemma shows. The lemma
is a parametric version of the creation of a canceling pair of critical points of a Morse
function.
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Lemma 2.1 Given a submersion f W U !X of a manifold U , a closed submanifold
C � U of dimension n� 1 such that f jC W C ! X is an embedding with trivialized
normal bundle, and a splitting K�˚KC of the vertical bundle VertDKer df into two
trivialized subbundles KC;K� �K over Op C , one can construct a map zf W U !X

such that

� zf coincides with f near @U ;
� in a neighborhood of C the map zf has a double C –fold, ie it is equivalent to

the map (15) restricted to an open neighborhood of AD C �D1 , such that the
frames �

@

@x1

; : : : ;
@

@xk

�
and

�
@

@xkC1

; : : : ;
@

@xd

�
along A provide the given trivializations of the bundles K� and KC ;

� df and R.d zf / are homotopic via a homotopy of epimorphisms fixed near @U .

Proof There exist neighborhoods U1 �C and U2 �
xC D f .C / and parametrizations

U1 D C � Œ�2; 2��Dd , U2 D
xC � Œ�2; 2�, such that f has the form

C � Œ�2; 2�� Œ�1; 1�d 3 .v; z;x D .x1; : : : ;xd // 7! .xv D f .v/; z/ 2 xC � Œ�2; 2�;

and the frames .@=@x1; : : : ; @=@xk/ and .@=@xkC1; : : : ; @=@xd / along A provide the
given trivializations of the bundles K� and KC . Consider a C1 function �W Œ�2; 2�!

Œ�2; 2� which coincides with z3� 3z on Œ�1; 1�, with z near ˙2, and such that ˙1

are its only critical points. Take two cut-off C1–functions ˛; ˇW RC! Œ0; 1� such
that ˛ D 1 on Œ0; 1=4�, ˛ D 0 on Œ1=2; 1�, ˇ D 1 on Œ0; 1=2� and ˇ D 0 on Œ3=4; 1�.
Set Q.x/D�

Pk
1 x2

i C
Pd

kC1 x2
j and define first a map yf W U1!U2 by the formula

yf .v; z;x/D .f .v/; ˛.jxj/�.z/C .1�˛.jxj//zCˇ.jxj/Q.x// ;

and then extend it to M , being equal to f outside U1�U . The regularized differential
of a linear deformation between f an yf provides the required homotopy between df

and R.d zf /.

Remark 2.2 It could be difficult to eliminate a double C –fold. Even in the case nD 1

this is one of the central problems of Morse theory, leading to eg the h–cobordism
theorem.

Definition 2.3 A map f W M ! X is called special folded, if there exist disjoint
open subsets U1; : : : ;Ul � M such that the restriction f jMnU ; U D

Sl
1 Ui ; is a

submersion (ie has rank equal n) and for each i D 1; : : : ; l the restriction f jUi
is a

spherical double fold. In addition, we require that the images of all fold components
bound balls in X .
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The singular locus †.f / of a special folded map f is a union of .n�1/–dimensional
double spheres Sn�1 � S0

.i/
D †.f jUi

/ � Ui . By definition, each double sphere
Sn�1�S0

i is the boundary of an annulus Ai D Sn�1�D1 �Ui . Notice that although
the restriction of f to each annulus Sn�1 � Int D1

.i/
is an embedding, the restriction

of f to the union of all the annuli Sn�1 � Int D1
.i/

is, in general, only an immersion,
because the images of the annuli may intersect each other. Using an appropriate version
of the transversality theorem we can arrange by a C1–small perturbation of f that all
combinations of images of its fold components intersect transversally. The differential
df W TM ! TX can be regularized to obtain an epimorphism R.df /W TM ! TX .
To get R.df / we regularize df jUi

for each double fold f jUi
.

In our proof of Theorem 1.8 we will use the following result about special folded
maps, which is a modification of the wrinkling theorem from [4]. Its proof is given in
Appendix A, where we derive it from the wrinkling theorem (see Theorem 5.1).

Theorem 2.4 (Special folded mappings) Let F W TM ! TX be a fiberwise epi-
morphism which covers a map f W M ! X . Suppose that f is a submersion on a
neighborhood of a closed subset K � M , and that F coincides with df over that
neighborhood. Then if dim M > dim X there exists a special folded map gW M !X

which coincides with f near K and such that R.dg/ and F are homotopic rel TM jK
through fiberwise surjective bundle homomorphisms TM ! TX . Moreover, the
map g can be chosen arbitrarily C 0 –close to f and with double folds contained in
arbitrarily small balls.

Remark 2.5 Recall that a special folded map f W M ! X by definition has only
spherical double folds, each fold component C �M is a sphere whose image xC �X

is embedded and bounds a ball in X . In the equidimensional case (d D 0) it is not
possible, in general, to make images of fold components embedded. See Appendix A
below.

Special folded mappings give a nice representation of (unstable) formal fibrations. As a
class of maps, it turns out to be too small for our purposes. Namely, we wish to perform
certain constructions (eg surgery) which does not preserve the class of special folded
maps. Hence we consider a larger class of maps which allow for these constructions to
be performed, and still small enough to admit a homotopically canonical extension to a
formal fibration. This is the class of enriched folded maps.

2.3 Enriched folded maps and their suspensions

Recall that a folded map is, by definition, a map f W M nCd !X n which locally is of
the form (13). In this section we study a certain extra structure on folded maps which
we dub framed membranes.
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Cone�

ConeC

ind 1

V; ind 1

KC

K�

Cone�

ind 1

ConeC

ConeC

Cone�

ind 2

V; ind 1

K�

KC

ConeC

ind 2

Cone�

Cone�

ConeC

ind 1

V;
ind 0

KC ConeC

ind 1

Cone�

ConeC

Cone�

ind 2

V;
ind 2

K� Cone�

ind 2

ConeC

f

f

f

f

Figure 5: Pure membranes (nD 1 , d D 2)
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ConeC

Cone�

ConeC

Cone�

KC

K�

V; ind 0

V; ind 2

ind 0 ind 0

ind 3 ind 3

f

f

Figure 6: Pure membranes, continuation (nD 1 , d D 2)

Definition 2.6 Let M nCd ;X n be closed manifolds and f W M !X be a folded map.
A framed membrane of index k , k D 0; : : : ; d , for f is a compact n–dimensional
submanifold V � M with boundary @V D V \ †.f /, together with a framing
KD .K�;KC/ where K�;KC are trivialized subbundles of .Ker df /jV of dimension
k and d � k , respectively, such that

(i) the restrictions f jInt V W Int V !X and f j@V W @V !X are disjoint embeddings;

(ii) K˙ are transversal to each other and to T V ;

(iii) there exists a coorientation of the image xC of each fold component C � @V

such that K˙jC � Cone˙.C /;

Thus, over Int V we have Ker df DK�˚KC , while over @V the bundle Ker df splits
as K�˚KC˚�, where �D�.C / is a line bundle contained in ConeC.C /[Cone�.C /.
Note that the restriction f jV W V !X is a topological embedding onto a smooth codi-
mension 0 submanifold of X with boundary. However, f is not a smooth embedding
because its rank drops at the boundary points.
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ind 1
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Cone� ConeC
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ind 0 ind 1

V; ind 0

Cone�

ConeC Cone�

K�

V; ind 2

ind 2 ind 3

f

f

f

Figure 7: Mixed membranes (nD 1 , d D 2)

A boundary component of a membrane V is called positive if �.C /� ConeC.C /, and
negative otherwise. The union of the positive boundary components will be denoted
@C.V;K/ and the union of the negative ones @�.V;K/. Note that the coorientation of a
component xC � @ xV implied by the definition of a framed membrane is given by inward
normals to @ xV if C � @C.V;K/, and by outward normals to @ xV if C � @�.V;K/.
The index of the fold component C is equal to k in the former case, and to kC 1 in
the latter one.
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We will call a framed membrane .V;K/ pure if either @C.V;K/D¿ or @�.V;K/D¿.
Otherwise we call it mixed. See Figures 5, 6 and 7.

Switching the roles of the subbundles KC and K� gives a dual framing xK D
. xK� D KC; xKC D K�/. The index of the framed membrane .V; xK/ equals d � k ,
and we also have @˙.V; xK/D @�.V;K/.

Definition 2.7 An enriched folded map is a pair .f; e/ where f W M !X is a folded
map and e is an enrichment of f , consisting of finitely many disjoint framed membranes
.V1;K1/; : : : ; .VN ;KN / in M such that @V D†.f /, where V is the union of the Vi .
If nD dim X > 1, we require in addition that @CVi is null homologous in X (ie the
image of the fundamental class in Hn�1.X / vanishes).

The last condition implies that @� xVi is also null-homologous, since the membrane
gives a cobordism between them. Let us also point out that the different Vi ’s are part
of the structure (ie not just the union V D

`
Vi ). The Vi need not be connected, but

f is injective on each Vi . The images f .Vi/ need not be disjoint.

Example 2.8 The double C –fold wC .nCd; n; k/ defined by (15) is enriched folded
in the following way. The annulus AD C �D1 � 0� V �R�Rd is the membrane,
and the trivialized bundles K� and KC are defined as the span of�

@

@x1

; : : : ;
@

@xk

�
and

�
@

@xkC1

; : : : ;
@

@xd

�
:

This is the canonical enrichment of the double C –fold wC .nC d; n; k/. In particular,
any special folded map has a canonical enrichment. Note that we have @CADA�f�1g

and @�ADA� f1g.

From the tubular neighborhood theorem and a parametrized version of Morse’s lemma,
we get:

Lemma 2.9 Let .V;K/ be a connected framed membrane for an enriched folded
map .f; e/. Let C D @V and let xC D f .C / be its image (recall that we assumed xC
has no self-intersections). Then there is a tubular neighborhood UC �M of C with
coordinate functions

.y;u;x/W UC ! C �R�Rd

and a tubular neighborhood U xC �X with coordinate functions

.y; t/W U xC ! C �R;

such that we have
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� @=@u 2 �.C / along C ;
� the vector field @=@t defines the coorientation of xC implied by the framing of V ;
� the vector fields @=@x1; : : : ; @=@xk , restricted to a neighborhood of C in V ,

belong to K� and provide its given trivialization, while @=@xkC1; : : : ; @=@xd

provide the given trivialization of KC ;
� in these local coordinates, f is given by

f .y;u;x/D .y; t.x;u//;

t.x;u/DQk.x/˙u2
D�

kX
iD1

x2
i C

dX
iDkC1

x2
i ˙u2;where

and V \ UC coincides with fx D 0;˙u � 0g, where the signs in the above
formulas coincide with the sign of the boundary component C of the framed
membrane .V;K/.

A suspension of a folded map f W M!X is a surjective homomorphismˆW TM˚�1!

f �TX˚�1 such that �X ıˆjTM ı iM D df , where �X is the projection TX˚�1!

TX and iM W TX ! TX ˚ 0 ,! TX ˚ �1 is the inclusion. The following proposition
is our main motivation for studying enrichments.

Proposition 2.10 To an enriched folded map .f; e/ we can associate a homotopically
well defined suspension L.f; e/.

Proof The suspension TM ˚ �1! f �TX ˚ �1 will be of the form

(16)
�

df v

˛ q

�
;

where ˛W TM ! �1 is a 1–form, v is a section of f �TX , and q is a function.

The 1–form ˛ is defined as ˛D du near @V , using the local coordinate u on UC . To
extend it to a 1–form on all of M , we will extend the function u. We first construct
convenient local coordinates near V .

The map f W M !X restricts to a local diffeomorphism on Int.V /. The local coordi-
nate functions x D .x1; : : : ;xd / near @V from the normal form Lemma 2.9 extend
to Op V in such a way that the vector fields @=@x1; : : : ; @=@xk along V generate
the bundle K� , while @=@xkC1; : : : ; @=@xk along V generate the bundle KC . The
tubular neighborhood theorem then gives a neighborhood UInt V �M with coordinate
functions

(17) .z;x/W UInt V ! Int V �Rd
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satisfying f .z;x/D f .z; 0/. After possibly reparametrizing in the x–coordinate, we
may assume that the function xW UInt V !Rd agrees with the function from Lemma 2.9
(their first derivatives already agree on Int V ). On the overlap UInt V \UC , we can
write the function uW UC !R from Lemma 2.9 in the local coordinates (17). Indeed,
we have f .z;x/DQ.x/˙u.z;x/2 , so

˙u.z;x/2 D f .z;x/�Q.x/D f .z; 0/�Q.x/D˙u.z; 0/2�Q.x/

u.z;x/D
p

u.z; 0/2�Q.x/:so

If we Taylor expand the square root, we get

(18) u.z;x/D 
 .z/� ı.z/Q.x/C o.jxj2/:

for positive functions 
; ı . The function Q extends over UInt V (use the same formula
in the local coordinates of the tubular neighborhood of Int V ), and hence we can also
extend u to a neighborhood of V inside UV D UC [UInt V , such that on UInt V it
satisfies (18). Extend u to all of M in any way, and let ˛ D du.

We have defined a bundle map .df; ˛/W TM!f �TX˚�1 which is surjective precisely
when ˛jKer df ¤ 0. Near V , ˛jKer df D 0 precisely when x D 0 2Rd . It remains to
define the section .v; q/ of f �TX ˚ �1 . Pick a function � W UV ! Œ��; �� such that
uD� sin � near @V , is negative on Int V and equal to �� on V �UC , and which is
equal to � outside a small neighborhood of V . Then setting

v.u/D .cos �/
@

@u
(19)

q.u/D sin �(20)

completes the proof.

Remark 2.11 Changing the sign of v.u/ in the formula (19) provides another suspen-
sion of the enriched folded map .f; e/ which we will denote by L�.f; e/. If n is even
then the two suspensions L.f; e/ and L�.f; e/ are homotopic.

Remark 2.12 Most (but not all) of the data of an enrichment e of a folded map
f W M ! X can be reconstructed from the suspension ˆ D L.f; e/. If we write
ˆ in the matrix form (16), the manifold V is the set of points with q � 0 and
.df; ˛/W TM ! f �TX ˚ �1 not surjective. The partition of @V into @˙.V;K/ is
determined by the coorientation of images of the fold components. On the other hand,
the splitting VertDKC˚K� cannot be reconstructed from the suspension.

Geometry & Topology, Volume 15 (2011)



Madsen–Weiss for geometrically minded topologists 435

Lemma 2.13 Let f W M !X be a special folded map. Then the suspension L.f; e/
(as well as the suspension L�.f; e/) of the canonically enriched folded map .f; e/ is
homotopic to its stabilized regularized differential Rdf .

Proof This can be seen in the local models.

2.4 Destabilization

So far (in Theorem 2.4 and Lemma 2.13) we have related unstable formal fibrations to
(enriched) folded maps. In Theorem 1.8 we need to work with stable formal fibrations
(because that is what �1CP1

�1
classifies). In this section we study the question of

whether an epimorphism ˆW TM˚�1!TX˚�1 can be “destabilized”, ie homotoped
to be of the form x̂ ˚ Id for some unstable epimorphism x̂ W TM ! TX . This is not
possible in general of course (the obstruction is an Euler class). Instead we prove the
following.

Proposition 2.14 Let ˆW TM ˚ �1 ! TX ˚ �1 be a bundle epimorphism with
underlying map f W M ! X . Assume M and X are connected. Then there is a
compact codimension 0 submanifold M0 �M which is homotopy equivalent to a
simplicial complex of dimension at most 1, such that the following properties hold,
after changing f and ˆ by a homotopy (in the class of bundle epimorphisms).

(i) f jM0
is folded and has an enrichment e such that

� ˆjM0
D L.fjM0

; e/ if nD dim X > 1;
� ˆjM0

D L.f jM0
; e/ or ˆjM0

D L�.fjM0
; e/ in the case nD 1;

(ii) ˆ is integrable near @M0 , ie it equals Df ˚ �1 there.

(iii) ˆ destabilizes outside M0 , ie it equals x̂ ˚ �1 there, for some bundle epimor-
phism x̂ W TM jMnM0

! TX .

The strategy of the proof of the proposition is as follows. First we forget about (iii)
in the proposition, and only worry about how f and ˆ look like on M0 . We prove
that this can be done for a large class of possible M0 ’s. After that, we consider the
obstruction to destabilizing ˆ outside M0 without changing it on M0 . This obstruction
is essentially an integer, and we prove that M0 can be chosen so that the obstruction
vanishes.

We first give a local model for the enriched folded map M0!X . Let I D Œ�1; 1� be
the interval, and let K� Int.In/ be a simplicial complex. We will consider In� InCd

as the subset In � f0g. Let U0 � In be a regular neighborhood of K � In , and
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let U � InCd be a regular neighborhood of K � InCd . Let � W InCd ! In be the
projection. In order to avoid confusion we will write xU0 D U0 � f0g � InCd , and
hence U0 D �. xU0/. We can assume that �j@U W @U ! In is a folded map, with fold
@ xU0 � @U which has index 0 with respect to the inward coorientation of @U0 � U0 .

Let N D @U � Œ�1; 1� be a bicollar of @U , ie an embedding N ! InCd , which maps
.u; 0/ 7!u2 @U and @U � Œ�1; 0� to U . Let M0DU [N . We construct a folded map
M0!M0 in the following way. First pick a map ' D .'1; '2/W Œ�1; 1�! Œ�1; 1��R
with the following properties.

(i) '.˙s/D .�s; 0/ for s > 1=2;

(ii) '0
1
.s/ > 0 for s < 0, '0

1
.s/ < 0 for s > 0, and '00

1
.0/ < 0;

(iii) '0
2
.0/ < 0.

In particular ' is an immersion of codimension 1, and '1W Œ�1; 1�! Œ�1; 1� is a folded
map with fold f0g. Extend to an immersion 'W Œ�1; 1��R! Œ�1; 1��R with the
property that

'.˙s; t/D .�s;˙t/

for s > 1=2. Recall that N D @U � Œ�1; 1� and construct a codimension 0 immersion

0W N �R!N �R by


0.u; s; t/D .u; '.s; t//;

for u 2 @U . Extend to a codimension 0 immersion 
1W M0 �R!M0 �R by


1.x; t/D .x;�t/

for x 2M0 nN . For m 2M0 , let 
1.m/ 2M0 be the first coordinate of 
1.m; 0/ 2

M0 �R. Differentiating 
1 then gives a bundle map

(21) �W TM0˚ �
1
! TM0˚ �

1

with underlying map 
 W M0!M0 . We record some of its properties in a lemma.

Lemma 2.15 (i) The map 
1 is homotopic in the class of submersions (Dimmer-
sions) to the map Id� .�1/W M0 �R!M0 �R.

(ii) Let M0 � InCd and 
 and � be as above. Then 
 is a folded map. The fold is
@U � N �M0 , and the image of the fold is also @U . Near @M0 , the bundle
map � is integrable, ie � DD
 ˚ �1 .
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(iii) Let � W InCd ! In be the projection and define a bundle map

H W TM0˚ �
1
! T .In/˚ �1

by H D .D� ˚ �1/ ı� . It covers the folded map hD � ı 
 W M0! In , which
has fold @ xU0� @U �M0 . The image of the fold is @U0� In , and it has index 0

with respect to the inward coorientation of U0 .

(iv) A membrane for the underlying map h can be defined as V D xU0 with the
framing K D .KC D Span.@=@xnC1; : : : ; @=@xnCd , and Ker�.V //;K� D f0g.
This defines an enrichment e for h. Finally, H is integrable over @M0 and
H D L.h; e/.

Proof We leave this as an easy exercise for the reader. See also Section 3.2.3 and the
proof of Proposition 2.10.

Let us also point out that we could equally well have based the construction on a map
'�W Œ�1; 1�! Œ�1; 1��R defined as ' above, except that we replace the condition
'0

2
.0/ < 0 by '0

2
.0/ > 0. Using this map as a basis for the construction gives a bundle

epimorphism
H�W TM0˚ �

1
! T .In/˚ �1

which also satisfies the conclusion of Lemma 2.15, except that (iv) gets replaced by
H D L�.h; e/.

Proof of Proposition 2.14 (i) and (ii) Let ˆW TM ˚ �1 ! TX ˚ �1 be as in the
proposition. We will prove that given any M0 �M which is a regular neighborhood
in M of a simplicial complex K � In � f0g � InCd �M , there is a homotopy of f
and ˆ in the class of bundle epimorphisms, after which (i) and (ii) hold.

By Phillips’ theorem [12] we can assume that ˆ is induced by a submersion

‰W M �R!X �R:

Pick cubes D D InCd � M and In � X . We regard M0 � D � M and let
� W D ! In denote the projection to the first n coordinates. We can assume that
‰.D � R/ � In � R. The space of submersions D � R ! In � R is homotopy
equivalent to O.nCd C 1/=O.d/ which is connected, and hence we may assume that
‰jD D��.�1/. (Here we used d � 1. In the case d D 0, we get O.nCdC1/ which
has two path components, but after possibly permuting coordinates on D D InCd , we
may assume that ‰jD is in the same path component as � � .�1/.) Hence, after a
homotopy of ‰ in the class of submersions, we may assume that ‰jM0

D � � .�1/.
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By Lemma 2.15(i), we can assume that ‰ agrees with the map .� �R/ ı 
1 , possibly
after a further deformation of ‰ in a neighborhood of M0 �D . This proves (i) and
(ii) in the proposition.

It remains to prove that for a suitably chosen of K (and hence M0 ), we can destabilize ˆ
outside M0 . There is an obstruction to doing this, which is essentially an integer,
depending on the homotopy class of ˆ and on the Euler characteristic of K . So far,
the simplicial complex K could be arbitrary, the only restriction being that it embeds
into In . Here, nD dim X > 1, so K can be any 1–dimensional simplicial complex
and in particular �.K/ can be any integer. Using this, we pick a K for which the
obstruction to destabilizing outside M0 vanishes. Let us explain these ideas more
explicitly.

Let s denote a section of TM ˚ �1 such that ˆ ı s is the constant section .0; 1/ 2
f �.TX /˚ �1 . This defines s uniquely up to homotopy (in fact s is unique up to
translation by vectors in the kernel of ˆ). Over M0 the epimorphism ˆ is induced by
a composition

M0 �R

1
�!M0 �R

proj
��!X �R;

and on M0 we may choose s so that D
1 takes s to a unit vector in the R–direction.
Another relevant section is the constant section s1.x/D .0; 1/ 2 S.TM ˚ �1/. We
have s.x/D s1.x/ for x 2 @M0 . Our aim is to change ˆ by a homotopy and achieve
s.x/D s1.x/ for all x outside M0 . In each fiber, s.x/ 2 S.TxM ˚R/D SnCd , so
by induction on cells of M nD , we can assume that s.x/D s1.x/ outside D , since
M nD can be built using cells of dimension at most nCd � 1. It remains to consider
D nM0 . Let sK be the section which agrees with s on M0 and with s1 outside M0 .
Thus s and sK are both sections of S.TM ˚ �1/ which equal s1 outside D . We
study their homotopy classes in the space of such sections.

Using stereographic projection, the fiber of S.TM ˚ �1/ at a point x 2M can be
identified with the one-point compactification of TxM . Hence we can think of sections
as continuous vector fields on M , which are allowed to be infinite. The section at
infinity is s1.x/D .0; 1/ 2 S.TxM ˚R/. In this picture we have the following way
of thinking of sK : For x 2 @U , sK .x/ is a unit vector orthogonal to @U pointing
outwards. Moving x away from @U to the inside makes sK .x/ smaller and it gets
zero as we get far away from @U . Moving x away from @U to the outside makes
sK .x/ larger and it gets infinite as we get far away from @U . The section sK depends
up to homotopy only on the simplicial complex K � In , hence the notation.

Lemma 2.16 There is a bijection between Z and sections of S.TM ˚ �1/ which
agree with s1 outside D . The bijection takes sK to �.K/ 2 Z.
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Proof The tangent bundle TM is trivial over D , so the space of such sections is just
the space of pointed maps SnCd ! SnCd and homotopy classes of such are classified
by their degree, which is an integer.

We have assumed U �D D InCd so using the standard embedding D �RnCd we
can work entirely inside RnCd . The geometric interpretation of sK given above can
then be rephrased even more conveniently. Let r W U ! K be the retraction in the
tubular neighborhood, and let

(22) zsK .x/D x� r.x/

for x 2 U . Pick any continuous extension of zsK to D with the property that when
x 62 U , we have

zsK .x/ 2 .TxM �f0g/[f1g:

Up to homotopy there is a unique such extension because we are picking a point zsK .x/

in a contractible space. Then zsK ' sK .

To calculate the degree of the corresponding map we perturb even further. Remember
that any simplicial complex K has a standard vector field with the following property:
The stationary points are the barycenters of simplices and the flowline starting at a
point x converges to the barycenter of the open cell containing x . Let  �W K!K be
the time � flow of this vector field, and define a vector field ysK just like zsK , except
that we replace the right hand side of (22) by x� � ı r.x/ for some small � > 0.

The resulting vector field vanishes precisely at the barycenters of K , and the index of
the vector field at the barycenter of a simplex � is .�1/dim.�/ . The claim now follows
from the Poincaré–Hopf theorem.

Proof of Proposition 2.14 (iii) Let us first consider the case n> 1. We have proved
that all possible sections of S.TM ˚ �1/ which agree with s1 outside D , are ho-
motopic to sK for some K . Then we can choose K such that sK ' s . Since sK

and s agree on M0 there is a homotopy of s , fixed over M0 , so that s.x/D s1.x/

for all x 2M �M0 . This homotopy lifts to a homotopy of bundle epimorphisms
ˆW TM ˚ �1! TX ˚ �1 , and then (iii) is satisfied.

For nD 1 we may not be able to choose a K�X with the required Euler characteristic,
since subcomplexes of 1–manifolds always have nonnegative Euler characteristic.
However, vector fields of negative index can be achieved as �sK , and that is the vector
field that arises if we use the negative suspension L�.f; e/.
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2.5 From formal epimorphisms to enriched folded maps

The following theorem summarizes the results of Section 2.

Theorem 2.17 Let ˆW TM ˚ �1 ! TX ˚ �1 be a bundle epimorphism and write
n D dim X and d D dim M � dim X . Suppose that d > 0 and ˆ is integrable in
a neighborhood of a closed set A �M (when X and M has boundary, we assume
'�1.@X /D @M �A). Then there is a homotopy of epimorphisms ˆt W TM ˚ �1!

TX ˚ �1 , t 2 Œ0; 1�, fixed near A, which covers a homotopy 't W M ! X , such that
'1W M !X is folded, and ˆ1 D L.'1; e/ for some enrichment e of '1 . If n> 1 then
the image xC �X of each fold component C �M of '1 bounds a domain in X .

Proof First use Proposition 2.14 to make ' enriched folded over a domain M0 , such
that ˆ destabilizes outside M0 . Then use Theorem 2.4 and Lemma 2.13 to make
.';ˆ/ special enriched outside M0 .

3 Beginning of the proof of Theorem 1.8

With the exception of Section 3.2 we shall assume from now on that d D 2.

3.1 Cobordisms of folded maps

Let us rephrase the results of the previous section more systematically, and put them in
the context of the overall goal of the paper. So far we have mainly studied the relation
between formal fibrations and enriched folded maps. Let us formalize the result. We
consider various bordism categories of maps f W M ! X such that M and X are
both oriented and X is a compact manifold, possibly with boundary, and which satisfy
the following two conditions:

(C1) f has T1 ends, ie there is (as part of the structure) a germ at infinity of a
diffeomorphism j W T1 �X  M such that f ı j D � , where � is a germ at
infinity of the projection X �T1!X . This trivialized end will be called the
standard end of M .

(C2) There is a neighborhood U of @X such that f �1.U /! U is a fibration (ie
smooth fiber bundle) with fiber T1 .

In all the categories introduced below, morphisms are maps F W W ! Y to oriented
cobordisms Y between manifolds X˙D @˙Y . The manifolds X˙ are allowed to have
nonempty boundary, and in this case the cobordism is required to be trivial and trivialized
over the boundary, ie Y is an oriented manifold with boundary @Y D @�Y [ @CY

satisfying @�Y \ @CY D @XC D @X�

Geometry & Topology, Volume 15 (2011)



Madsen–Weiss for geometrically minded topologists 441

Definition 3.1 (i) Fib is the category of fibrations (smooth fiber bundles) with
fiber T1 , which satisfy (C1) and (C2).

(ii) Fold$ is the category of enriched folded maps, satisfying (C1) and (C2).

(iii) FFib is the category of formal fibrations, ie bundle epimorphisms ˆW TM˚�1!

TX ˚�1 with underlying map f W M !X , such that f satisfies (C1) and (C2),
and such that ˆD df ˚ �1 near f �1.@X /.

We have functors
Fib! Fold$ L

�! FFib:

The functor Fib!Fold$ is the obvious inclusion. Everything we said in Section 2 works
just as well with the conditions (C1) and (C2) imposed, and hence Proposition 2.10
gives the functor LW Fold$

! FFib.

In this setup, the main goal of the paper is to prove that any object in FFib is cobordant
to one in Fib. Note that Theorem 2.17 is formulated as an extension result, and hence
it is applicable to manifolds with boundary and implies the following corollary.

Corollary 3.2 Any object in FFib is cobordant in FFib to an object in the image of
the functor L.

It remains to see that any object of Fold$ is cobordant to one in Fib. In fact Theorem 2.17
is a little stronger: any object of FFib is cobordant to one in the image of L using
only homotopies of the underlying maps, ie no cobordisms of M and X . In contrast,
comparing Fib to Fold$ involves changing M and X by surgery. The surgery uses the
membranes in the enrichment, and also makes crucial use of a form of Harer’s stability
theorem.

In fact, it is convenient to work with a slight modification of the category Fold$ .

Definition 3.3 Let eFold$ be the category with the same objects as Fold$ , but where
we formally add morphisms which create double folds along a submanifold C , ie
singularities of the form (15). More precisely, by Example 2.8, the double C fold has
a canonical enrichment, and we formally add morphisms in eFold$ in both directions
between the map f W M !X and the same map f 0W M !X with a double C –fold
singularity created. When n> 1 we require in addition that C be homologically trivial.

Remark 3.4 It turns out that when n> 1 there is, in fact, no real difference between
the categories Fold$ and eFold$ : if two objects in eFold$ are cobordant, then they are
already cobordant in Fold$ . We shall not need this fact and leave its proof to the reader
as an exercise.
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According to Lemma 2.13, adding a double C –fold together with its canonical en-
richment changes L.f; e/ only by a homotopy. Hence the functor LW Fold$

! FFib
extends to a functor zLW eFold$ ! FFib. In the proof of our main theorem, Fold$ is
just a middle step, and it turns out to be more convenient to work with the modified
category eFold$ .

We prove that any object of eFold$ is cobordant to one in Fib in two steps.

Definition 3.5 Let Fold$
h
� Fold$ be the subcategory where objects and morphisms

are required to satisfy the following conditions.

(i) Folds are hyperbolic, ie have no folds of index 0 and 3.
(ii) For all x 2X , the manifold f �1.x/�†.f /, ie the fiber minus its singularities,

is connected.

Let eFold$
h

be the category with the same objects, but where we formally add morphisms
(in both directions) which create double folds.

Our main result, Theorem 1.8, follows from Corollary 3.2 and the following two
propositions.

Proposition 3.6 Any enriched folded map .f W M !X; e/ 2 Fold$ is bordant in the
category eFold$ to an element in Fold$

h
.

Proposition 3.7 Any enriched folded map .f W M !X; e/ 2 Fold$
h

is bordant in the
category eFold$

h
to a fibration from Fib� Fold$ .

The proof of the latter uses Harer’s stability Theorem 1.9. This is the only part of the
whole story in which the condition d D 2 is used in an essential way.

The next diagram summarizes all the categories we introduced, as well as relations
among them. Here i;zi ; j ; zj ; k; kh are inclusion maps.

FFib
Corollary 3:2

��

Fold$

L

OO

k

// eFold$

zL
cc

Proposition 3:6
||

Fold$
h

i

OO

kh

// eFold$
h

zi

OO

Proposition 3:7llFib
zj

;;

j

OO
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3.2 Fold surgery

In this section we develop a technique of surgery of fold singularities which will be
an essential tool in our proof of Propositions 3.6 and 3.7. We shall only need the case
d D 2, but it is natural to describe the surgery technique for a general d � 0.

Let f W M !X be a folded map with cooriented folds. Let C �†.f / be a connected
component of index k , and let xC � X be its image. For p 2 xC , the fiber f �1.p/

has a singularity. There are two directions in which we can move p away from xC

to resolve the singularity and get a manifold. The manifold we get by moving p to
the positive side (with respect to the coorientation) differs from the manifold we get
by moving p to the negative side by a surgery of index k , ie it has an embedded
Dk � @Dd�k instead of a @Dk �Dd�k . If xC bounds an embedded domain xP �X ,
then one can try to prevent the surgery from happening by performing an inverse Morse
surgery fiberwise in each fiber f �1.p/;p 2 xP . This process is called fold eliminating
surgery and we proceed to describe it in more detail.

3.2.1 Surgery template We begin with a local model for the surgery. Let P be
an n–dimensional oriented manifold with collared boundary @P . The collar consists
of an embedding @P � Œ�1; 0�! P ; mapping .p; 0/ 7! p . Extend P by a bicollar
U D @P � Œ�1; 1�, and set

(23) zP D P [
@P�Œ�1;0�

U:

Let Q be a quadratic form of index k on RdC1 :

Q.x/D�kx�k
2
CkxCk

2;

where x D .x1; : : : ;xdC1/ 2RdC1; x� D .x1; : : : ;xk/; xC D .xkC1; : : : ;xdC1/.

Let H �RdC1 be the domain (see Figure 8)

H D fjQj � 1; kxCk � 2g :

We are going to use the map QW H ! Œ�1; 1� as a prototype of a fold. The boundary
of the (possibly singular) fiber Q�1.t/ can be identified with Sk�1 �Sd�k�1 via the
diffeomorphism

fQD t; kxCk D 2g ! Sk�1
�Sd�k�1(24)

.x�;xC/ 7!

�
x�

kx�k
;

xC

kxCk

�
:(25)

The map Id�QW zP �H ! zP � Œ�1; 1� is a folded map with fold P � 0 � P �H

which has index k with respect to the coorientation of the fold defined by the second
coordinate of the product zP � Œ�1; 1�.
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x1

x2

k D 1; d D 1

x2

x3

k D 1; d D 2

x2

x3

k D 2; d D 2

x1 x1

Figure 8: The domain H

Given a smooth function 'W zP ! Œ�1; 1� we define (see Figure 9)

zP'
D f.p;x/ 2 zP �H jQ.x/D '.p/g ;

Z'
D f.p;x/ 2 @ zP �H jQ.x/D '.p/g ;

R'
D zP'

\fkxCk D 2g:

(26)

We then have @ zP' DZ' [R' .

The restriction � W zP' ! zP is our “template” for the result of the surgery. The next
lemma records its properties.

Lemma 3.8 Suppose that 0 is not a critical value of ' . Then zP' is a smooth manifold
of dimension nC d , and the projection �j zP' W zP' ! zP is a folded map with fold
C D zP' \ . zP � f0g/, which projects to xC D �.C /D '�1.0/� zP . In particular, the
map �j zP' is nonsingular if ' does not take the value 0. The fold C has index k

with respect to the coorientation of xC by an outward normal vector field to the domain
f' � 0g.
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'W zP ! Œ�1; 1�

zP

Z' zP' Z'

R'

Z'
Z'

zP'

R'

Figure 9: The manifold zP' for k D 0; d D 1; nD 1 and k D 1; d D 1; nD 1

Given a one-parameter family of functions 't W
zP ! Œ�1; 1�, t 2 Œ0; 1�, we denote (see

Figure 10)
zP't D f.p;x; t/ 2 zP �H � Œ0; 1� jQ.x/D 't .p/g ;

Z't D f.p;x; t/ 2 @ zP �H � Œ0; 1� jQ.x/D 't .p/g ;

R't D P't \fkxCk D 2g:

(27)

We have @ zP't DZ't [R't \ zP'0 [ zP'1 . We will consider the projection

� W zP �H � Œ0; 1�! zP � Œ0; 1�

and especially its restriction to the subsets (27). Using (24), the set R't can be identified
with . zP � Œ0; 1�/�Sk�1�Sd�k�1 via a diffeomorphism over zP � Œ0; 1�. In particular
we get a diffeomorphism

(28) R'0 � Œ0; 1�!R't ;

which scales the x� coordinates. In fact it can be seen to be given by the formula

.p; .x�;xC/; t/ 7!

 
p;

 s
4�'t .p/

4�'0.p/
x�;xC

!
; t

!
;

although we shall not need this explicit formula.
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The restriction � W zP't ! zP � Œ0; 1� is our “template cobordism”. The next lemma
records its properties.

Lemma 3.9 Let 't W
zP ! Œ�1; 1�, t 2 Œ0; 1�, be a one-parameter family of functions

such that 0 is not a critical value of '0 or '1 or of the function zP � Œ0; 1�! Œ�1; 1�

defined by .p; t/ 7! 't .p/, p 2 zP , t 2 Œ0; 1�. We also assume 't .p/ is independent
of t for p near @P . Then �j zP't W zP't ! zP � Œ0; 1� is a folded cobordism between
the folded maps zP'0 ! zP and zP'1 ! zP . We have Z't DZ'0 � Œ0; 1�, so together
with (28) we get a diffeomorphism

(29) .Z'0 [R'0/� Œ0; 1�!Z't [R't :

't W
zP ! Œ�1; 1�

zP't

Figure 10: The functions 't and the cobordism zP't for k D 0; d D 0; nD 1

We will need to apply the above lemma to two particular functions on zP . Recall that
U D @P � Œ�1; 1�� zP denotes the bicollar. Take '0 � 1 and pick a function '1 with
the following properties:

� '1 D 1 near @ zP ,

� '1 D�1 on zP nU ,

� For .p; v/ 2 U , '1.p; v/ is a nondecreasing function of v ,

� '1.p; v/D v for jvj< 1=2.
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We will write zP0 and zP1 for zP'0 and zP'1 , and denote by �0 and �1 the respective
projections zP0! zP and zP1! zP . Similarly, we will use the notation Z0 , Z1 , R0

and R1 instead of Z'0 , Z'1 , R'0 and R'1 . The map zP0! zP is nonsingular, while
the map zP1! zP has a fold singularity with image @P � zP . The index of this fold
with respect of the outward coorientation to the boundary of P is equal to k .

Taking linear interpolations between '0 and '1 in one order or the other, we get
folded cobordisms in two directions between the map zP0! zP and zP1! zP . We will
denote the corresponding cobordisms by zP01 and zP10 , respectively. The projections
�01W zP01! zP�Œ0; 1� and �10W zP10! zP�Œ0; 1� are folded bordisms in two directions
between �0W zP0 ! zP and �1W zP1 ! zP . We think of zP't as a one-parameter
family of (possibly singular) manifolds, interpolating between zP0 and zP1 . Using the
trivialization (29), these manifolds all have the same boundary, so �01 and �10 may
be used as local models for cobordisms. They allow us to create, or annihilate a fold
component, respectively. We describe the fold eliminating surgery more formally in
the next section and leave the formal description of the inverse process of fold creating
surgery to the reader. In fact fold creating surgery will not be needed for the proof of
the main theorem.

In the context of enriched folded maps there are two versions of fold eliminating surgery.
One will be referred to as membrane eliminating. In this case the membrane will be
eliminated together with the fold. The second one will be referred to as membrane
expanding. In that case, surgery will spread the membrane over xP , the image of P in
the target.

For the membrane eliminating case we choose the submanifold

V� D f.x2; : : : ;xdC1/D 0;x1 � 0g\ zP10
� zP �H � Œ0; 1�

as a template membrane for the folded bordism �10W zP10 ! xP . Next we choose
the subbundles K� and KC spanned by the vector fields @=@x2; : : : ; @=@xk and
@=@xkC1; : : : ; @=@xdC1 , respectively, as a template framing. Note that with this choice
we have @V� D @�.V�;K/ and the index of the membrane V� is equal to k � 1.

For the membrane expanding surgery we choose as a template membrane the submani-
fold

VC D f.x1; : : : ;xk ;xkC2; : : : ;xdC1/D 0;xkC1 � 0g\ zP10
� zP �H � Œ0; 1�

with boundary †.�10/ as the membrane for the folded bordism �10W zP10! zP� Œ0; 1�.
We choose the subbundles K� and KC spanned by vector fields @=@x1; : : : ; @=@xk

and @=@xkC2; : : : ; @=@xdC1 , respectively, as a template framing. Note that with this
choice we have @VC D @C.VC;K/ and the index of the membrane VC is equal to k .
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Note that in the membrane eliminating case the restriction of the membrane V� to zP1

projects diffeomorphically onto P � zP , while in the membrane expanding case the
restriction of the membrane VC to zP1 projects diffeomorphically onto zP n Int P � zP .

3.2.2 Surgery (1) Membrane eliminating surgery: Let .f W M ! X; e/ be an
enriched folded map and .V;K/ one of its membranes. Suppose that the framed
membrane .V;K/ is pure and assume first that @C.V;K/D¿, and that the index of
the membrane is equal to k � 1� 0. Note that in this case the boundary fold @V has
index k with respect to the outward coorientation of @ xV . Consider the model enriched
folded map �1W zP1 ! zP where P is diffeomorphic to V . Fix a diffeomorphism
 W P ! xV D f .V /�X . Let U 1 denote a neighborhood of @P � zP1 . According to
Lemma 2.9 there exists an extension z W zP!X of the embedding  and an embedding
‰W U 1!M such that

� the diagram

(30)
U 1

‰ //

�1

��

M

f

��
U

z // X

commutes;

� ‰�1.V /D V�\U 1 ;

� the canonical framing of the membrane V� \ U 1 is sent by ‰ to the given
framing of the membrane V .

The data needed for eliminating the fold @V by surgery consists of an extension of ‰
to all of zP1 such that

� the diagram

(31)

zP1
‰ //

�1

��

M

f

��
zP

z // X

commutes;

� ‰�1.V /D V 1
� WD V�\ zP

1 ;

� the canonical framing of the membrane V 1
� is sent by ‰ to the given framing of

the membrane V .
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Construction 3.10 Fold eliminating surgery (see Figures 11–12) consists of replac-
ing zP1 by zP0 with the projection �0 . More precisely, cut out ‰. zP1/� Œ0; 1� from
M � Œ0; 1� and glue in zP10 along the identification (29). This gives an enriched folded
map W ! X � Œ0; 1� which is a cobordism starting at f , and ending in an enriched
folded map where the fold @V , together with its membrane V , has been removed.

Figure 11: Fold eliminating surgery .nD 2; d D 0/

Figure 12: Fold eliminating surgery .nD 1; d D 2/

The case @�.V;K/D¿ can be reduced to the previous one by the following procedure.
Let xK be the dual framing of V ; see Section 2.3 above. Then @V D @�.V; xK/,
@C.V; xK/D ¿, d > k , and the membrane .V; xK/ has index d � k � 1. Hence, we
can use for the membrane eliminating surgery the above template of index d � k , and
then switch the framing of the constructed membrane in the cobordism to the dual one.
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(2) Membrane expanding case: Let P be a domain in X bounded by the image xC
of a fold C of index k with respect to the outward orientation of xC D @P . Suppose
that the membrane V adjacent to C projects to the complement of P in X , ie
xV D f .V /�X n Int P , and C � @C.V;K/. The case C � @�.V;K/ can be reduced
to the positive by passing to the dual framing as it was explained above in the membrane
eliminating case.

Consider the template enriched folded map �1W zP1! zP as in Section 3.2.1. Let  
denote the inclusion P ,! X . According to Lemma 2.9, there exists an extension
z W zP !X of the embedding  and an embedding ‰W U 1!M such that

� the diagram

(32)
U 1

‰ //

�1

��

M

f

��
U

z // X

commutes;

� ‰�1.V /D VC\U 1 ;

� the canonical framing of the membrane VC \ U 1 is sent by ‰ to the given
framing of the membrane V .

In this case the data needed for eliminating the fold @V by surgery consists of an
extension of ‰ to all of zP1 such that

� the diagram

(33)

zP1
‰ //

�1

��

M

f

��
zP

z // X

commutes;

� the canonical framing of the membrane VC \ zP
1 is sent by ‰ to the given

framing of the membrane V .

Construction 3.11 Fold eliminating surgery consists of replacing zP1 by zP0 with
the projection �0 . Exactly as in Construction 3.10 we get an enriched folded map
W !X � Œ0; 1� which is a cobordism starting at f , and ending in an enriched folded
map where the fold @V has been removed.
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Both constructions eliminate the fold @V . The difference between them is that in
the membrane expanding case, the above surgery spreads the membrane V over the
domain P .

3.2.3 Bases for fold surgeries The embedding ‰W zP1!M required for the surg-
eries in Constructions 3.10 and 3.11 is determined up to isotopy by slightly simpler
data which we now describe. To any smooth manifold P with collared boundary, let
'1W P ! Œ�1; 1� be the function defined in Section 3.2.1 and let

Sk�1P D f.p;x�/ 2 zP �Dk
j '1.p/D�kx�k

2
g:

This is a closed manifold, which up to diffeomorphism depends only on P . In fact, it
is diffeomorphic to the boundary of P �Dk (after smoothing the corners of P �Dk ).
The projection .p;x�/ 7! p restricts to a folded map � W Sk�1P ! P with fold @P
of index k with respect to the outward orientation of the boundary of P . We have an
embedding

Sk�1P ! zP1
� zP �H

given by .p;x�/ 7! .p;x�; 0/. The normal bundle of this embedding has a canonical
frame given by projections of the frame

@

@xC
D

�
@

@xkC1

; : : : ;
@

@xdC1

�
to TSk�1P .

We also have an embedding @P ! Sk�1P as p 7! .p; 0/, which identifies @P with
the folds of the projection Sk�1P ! P , and the normal bundle of @P � Sk�1P is
framed by

@

@x�
D

�
@

@x1

; : : : ;
@

@xk

�
:

If we write P� D V�\Sk�1P , we thus have

P� D Sk�1P \f.x2; : : : ;xk/D 0;x1 � 0g D f.x2; : : : ;xk/D 0;x1 D�
p
�'1.p/g:

Definition 3.12 Let .f W M nCd !X n; e/ be an enriched folded map.

(a) Membrane eliminating case: Suppose .V;K/ � M is a framed membrane
with @C.V;K/ D ¿. A basis for membrane-eliminating surgery consists of a pair
.hW Sk�1P!M; �/, where P is a compact n–manifold with boundary, hW Sk�1P!

M is an embedding, and �D .�kC1; : : : ; �dC1/ is a framing of the normal bundle
of h, such that the following conditions are satisfied.
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� h.P�/D V .

� The map f ıh factors through an embedding gW P !X , ie f ıhD g ı� , and
hence f .h.Sk�1P //D xV D f .V /.

� The vectors �kC1; : : : ; �dC1 belong to Ker df jh.Sk�1P/ and along h.P�/ they
coincide with the given framing of the bundle zKerCdf .

� The vectors dh.@=@x2/; : : : ; dh.@=@xk/ define the prescribed framing of the
bundle zKer�jV .T

� h.Sk�1P / is disjoint from membranes of e, other than V .

Figure 13: The oval is the image h.Sk�1P / , where k D 1 , P D I

(b) Membrane expanding case: Let P be a domain in X bounded by folds of
index k with respect to the outward orientation of xC D @P . Let C be the union of the
corresponding fold components, and .V;K/ the union of framed membranes adjacent
to C . Suppose that C � @C.V;K/ and f .V / � X n Int P . A basis for membrane-
expanding surgery consists of a pair .hW Sk�1P !M; �/, where hW Sk�1P !M is
an embedding, and �D .�kC1; : : : ; �dC1/ is a framing of the normal bundle of h,
such that the following conditions are satisfied.

� The map f ı h factors through an embedding gW P ,!X , ie f ı hD g ı� .

� dh.@=@xC
ˇ̌
@P
/� Ker� df and coincides with the given framing of the bundle

Ker� over the fold C D h.@P /.

� h.Sk�1P / \ V D C and h.Sk�1P / is disjoint from any other membranes
different from V .

� The vector field

dh

�
.�1/k

@

@xkC1

� ˇ̌̌
C

is tangent to V and inward transversal to @V .

Note that in both cases it follows from the above definitions that f ı hW Sk�1P !X

is a folded map with the definite fold †.f ı h/D h.@P /.
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Given a basis .h; �/, the embedding h can be extended, uniquely up to homotopy, to
an embedding ‰W zP1!M such that the diagram (31) or (33) commutes. This, in
turn, enables us to perform a membrane eliminating or membrane expanding surgery.

Remark 3.13 (Fold creating surgeries) Fold creating surgeries are inverse to fold
eliminating surgeries. For our purposes we will need only one such surgery which cre-
ates a fold of index 1 with respect to the inward coorientation of its membrane. A basis of
such a surgery is given by a pair .h; �/, where h is an embedding hW P�f�1; 1g!M

over a domain P �X disjoint from the folds of the map f , and � is a framing of the
vertical bundle Ker df jh.P�f�1;1g/ . See Figure 14.

Figure 14: Fold creating surgery

3.2.4 The case d D 2 Let us review fold eliminating surgeries in the case d D 2.
These surgeries can be of index 0, 1, 2 or 3. Let C be a union of fold components
whose projections bound a domain P �X . In the membrane eliminating case, P is the
projection xV D f .V / of the membrane which spans C . In the membrane expanding
case the membranes adjacent to C projects to the complement of the domain P . All
fold indices below are with respect to the outward coorientation of the boundary of the
domain P .
� Index 0: We have S�1P D@P , ie the basis of the surgery in this case is a framed

embedding hW @P !M which sends @P to the fold C . Only the membrane
expanding surgery is possible in this case. When a point p 2X approaches @P
from outside, a spherical components of the fiber f �1.p/ dies. The surgery
prevents it from dying end prolongs its existence over all points of P .
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� Index 1: The surgery basis in this case consists of 2 sections s˙W P ! M ,
together with framings of the bundle Ker df over them. As p 2P approaches a
point xz 2 @P , the sections s˙.p/ converge to the same point z 2 C , f .z/D xz .
In the membrane eliminating case, one of these sections is the membrane V .
The manifold M 0 is obtained by a fiberwise index 1 surgery (ie the connected
sum) along the framed points sC.p/ and s�.p/, p 2 P . This eliminates the
fold C together with the membrane V in the membrane eliminating case, and
spreads the membrane over P in the membrane expanding case. In the latter
case the newly created membrane is a section over P which takes values in the
circle bundle over P formed by central circles of added cylinders S1 � Œ�1; 1�.

� Index 2: The surgery basis in this case is a circle-subbundle over the domain
P �X , ie a family of circles in fibers f �1.p/; p 2P , which collapse to points
in C when p converges to a boundary point of P . In the fold eliminating case,
the membrane V is a section over P of this circle bundle.
The surgery consists of fiberwise index 2 surgery of fibers along these circles,
which eliminates the fold C together with its membrane in the eliminating case,
and spreads it over P in the expanding one.

� Index 3: The basis of the surgery in this case is a connected component of M

which forms an S2 –bundle over P . The 2–spheres collapse to points of C when
approaching the boundary of P . The surgery eliminates this whole connected
component, in particular removing the fold and its membrane. The membrane
expanding case is not possible for k D 3.

3.3 Elimination of elliptic folds (proof of Proposition 3.6)

Let .f; e/ be an enriched folded map with f W M ! X . First, we get rid of nonhy-
perbolic folds. Let Z be a nonhyperbolic fold component. The following procedure,
which is illustrated in Figure 15, replaces Z by a parallel hyperbolic fold.

Let V be the membrane of Z , and N D xZ � Œ�2; 0� � X be an interior collar of
xZ D xZ � 0 in X n Int xV . Let us recall that according to Condition (C1) the map f
has a standard end, where it is equivalent to the trivial fibration T1 �X ! X . Let
xA D xZ � Œ�2;�1� � N and xB D xZ � Œ�1; 0� � N , so that N D xA[ xB . Let us lift
xA to an annulus AD z �A�M , z 2 T1 . Write xZ1 DZ � .�1/, xZ2 DZ � .�2/,

Z1 D z � xZ1 , Z2 D z � xZ2 , so that @ xA D xZ1 [
xZ2 and @A D Z1 [Z2 . Using

Lemma 2.1 we can create a double fold with the membrane A and folds Z2 of index
1 and Z1 of index 0 with respect to the coorientation of xZ1 and xZ2 by the second
coordinate of the splitting N D Z � Œ�2; 0�. The folds Z1 and Z have index 0

with respect to the outward coorientation of @ xB , and hence we can use a membrane
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expanding surgery to kill both folds, Z and Z1 , and spread their membranes over xB .
As a result of this procedure we have replaced Z by a hyperbolic fold Z2 .

Figure 15: Replacing an elliptic fold by a hyperbolic one

It remains to make the fibers of f jMn†.f / connected. We begin with the following
lemma from [10].

Lemma 3.14 Let M !X be an enriched folded map without folds of index 0. Then
there exist disjoint n–disks Di , i D 1; : : : ;K , embedded into M , such that

� f jDi
is embedding Di! Int X for each i D 1; : : :K ;

� V \
SK

1 Di D¿, where V �M is the union of all membranes;
� for each x 2X each irreducible component of ��1.x/ intersects at least one of

the disks Di at an interior point.

Proof Note first, that the statement is evident for any fixed x 2 X . Hence, without
controlling the disjointness of the disks Di the statement just follows from the com-
pactness of X . One can choose the required disjoint disks Di using the following trick:
fix a function hW M !R and take the disks Di such that each disk belongs to its own
level hypersurface of h. When we choose such disks for x 2X one needs to avoid the
points z 2 Fx D f

�1.x/ where the level hypersurface is tangent to the fiber Fx . It
can be done by a small perturbation of disks, if the complement of all “bad” points
(for all x 2X ) is open and dense in Fx for all x 2X . But Thom’s jet transversality
theorem asserts that this is a generic situation for functions hW M !R.
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Let the disks Di �M be as in Lemma 3.14. Let us also consider disks �i D
xDi �yi ,

i D 1; : : : ;K , where y1; : : :yK are disjoint points at the end xT1 of the fiber F . Next,
using each pair .Di ; �i/, i D 1; : : : ;K , as a basis for an index 1 fold creating surgery
we create new folds †i D @ zDi of index 1 with the disks xDi serving as membranes,
while making all the fibers connected; see Remark 3.13.

As a result of this step we arrange all fibers Fx D f �1.x/ n †.f /;x 2 X , to be
connected. This completes the proof of Proposition 3.6.

4 Generalized Harer stability theorem. The end of the proof
of Theorem 1.8

In this section we show how to deduce Theorem 4.1, the generalized Harer stability
theorem, from Theorem 1.9, the ordinary Harer stability theorem. In Section 4.4 below
we will use Theorem 4.1 to prove Proposition 3.7 and complete the proof of our main
result Theorem 1.8.

4.1 Harer stability for enriched folded maps

The following theorem is the main result of this section. It will be proved in Section 4.3,
after some necessary preliminary constructions are introduced in Section 4.2.

Theorem 4.1 Let .f W M ! X; e/ 2 Fold$
h

be an enriched folded map. Let U � X

be a closed domain with smooth boundary transversal to the images of the folds and
†1 �†2 be compact surfaces with boundary. Let

j W .@U �†2/[ .U �†1/!M

be a fiberwise embedding over U whose image does not intersect any fold or membrane
and such that the complement of its image in each fiber is connected, even after
removing the folds of f .

Then, after possibly changing .f; e/ by a bordism in Fold$
h

which is constant out-
side Int U , the embedding j extends to an embedding of U �†2 into M , whose
complement in each fiber is connected, even after removing folds.

The following corollary of Theorem 4.1 will be the key ingredient in the proof of
Proposition 3.7.
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Corollary 4.2 Let .f W M !X; e/ 2 Fold$
h

be an enriched folded map. Let V �M

be one of its membranes and let C � @V be a union of fold components, all of the
same sign. Assume that xC D f .C /D @P , for some domain P � X and that one of
the following conditions hold.

(M1) P is a union of components of V .

(M2) P �X n Int V .

Then .f; e/ is bordant in the category eFold$
h

to an element . zf ;ze/ such that

� the bordism is constant over the complement of Int P ;

� . zf ;ze/ has no more membranes than .f; e/;

� zf admits a basis for a surgery eliminating the fold C .

The surgery eliminates the membrane of C in case (M1) and spreads it over P in
case (M2).

Proof Consider a slightly smaller domain U � Int P , so that P n Int U is an interior
collar of @P in P . If the index of C with respect to the outward coorientation of xC
is 1 then the 0–dimensional vanishing cycles over points of @U form two sections
s˙W @U!M of the map f . In case (M1) we can assume that one of these sections, say
s� , consists of points of the membrane V . The local structure near the membrane allows
us to construct fiberwise embeddings S�W U �D2!M and SCW @U �D2!M such
that S�jU�0 extends the section s� , SCj@U�0 D sC and S�.U � 0/� V . Applying
Theorem 4.1 with †1DD2 , †2D†1qD2 , and j D SCqS� , we construct a basis
for a membrane eliminating surgery which removes the fold C . In the case (M2), the
enrichment structure for the membranes adjacent to C provides an extension of the
sections s˙ and sC to disjoint fiberwise embeddings S˙W @U �D2!M such that
S˙j@U 0�0D s˙ . To conclude the proof in this case we apply Theorem 4.1 with †1D¿,
†2 DD2qD2 , and j D SCqS� . Suppose now that the index of C is 2. Consider
first the case (M2). Then the vanishing cycles over @U define a fiberwise embedding
@U �S1!M over @U which extends to a fiberwise embedding j W @U �A!M

disjoint from all folds and their membranes, where A is the annulus S1 � Œ�1; 1�. It
follows from the definition of the category Fold$

h
that the complement of the image

of j is fiberwise connected, even after all singularities are removed. Hence we can
apply Theorem 4.1 with †1 D ¿ and †2 D A to construct a basis for a membrane
expanding surgery eliminating the fold C . Finally, in the case (M1) each vanishing
cycle j .x�.S1�0//;x 2 @U , has a unique point px which is also in the membrane V

of the fold C . This point is the center of an embedded disk D2!A, and the framed
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membrane gives a fiberwise embedding j1W U �D2!M over U , which over the
boundary extends to a fiberwise embedding j2W @U �A!M over @U . Hence, we
are in a position to apply Theorem 4.1 with †1 DD2 and †2 DA.

4.2 Nodal surfaces and their unfolding

Let QW R3!R be the quadratic form

(34) Q.x/D x2
1 Cx2

2 �x2
3 ;

let H D fx 2 R3jjQj � 1I jx3j � 2g and denote by Kt the level set fQ D tg \H ,
t 2 Œ�1; 1�. When passing through the critical value 0, the level set Kt experiences a
surgery of index 1, ie changes from a 2–sheeted to a 1–sheeted hyperboloid. The critical
level set K0 is the cone fx2

1
Cx2

2
�x2

3
D 0; jx3j � 2g. Let us fix diffeomorphisms

ˇ˙W @˙H DH \fx3 D˙2g ! S1 � Œ�1; 1� which send the boundary circles of Kt

to S1 � ftg, t 2 I D Œ�1; 1�. We will write ˇ˙.x/D .ˇS
˙
.x/; ˇI

˙
.x// 2 S1 � Œ�1; 1�

for x 2 @˙H .

We will call the singularity of K0 a node and call surfaces with such singularities nodal.
A singular surface S is called k –nodal if it is a smooth surface in the complement of
k points p1; : : : ;pk 2S , while each of these points has a neighborhood diffeomorphic
to K0 .

Figure 16: Nodal surface and its unfolding

The function Q is a folded map H !R with a single fold point at the origin 0 2H .
If we want to promote it to an enriched folded map, there are four local possibilities
for the choice of an enriched membrane depending on the membrane index and the
sign of † as the membrane boundary component:
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(i) Index 0 membrane with negative boundary: V �
0
D fx1;x2 D 0;x3 � 0g,

K� D f0g;KC D Span.@=@x1; @=@x2/;

(ii) Index 1 membrane with positive boundary: V C
1
D fx2;x3D 0;x1 � 0g, K�D

Span.@=@x3/;KC D Span.@=@x2/;

(iii) Index 1 membrane with negative boundary: V �
1
D fx2;x3 D 0;x1 � 0g,

K� D Span.@=@x2/;KC D Span.@=@x3/

(iv) Index 2 membrane with positive boundary: V C
2
Dfx1;x2D 0;x3� 0g, KCD

f0g;K� D Span.@=@x1; @=@x2/.

In the cases (i)–(ii), the fold has index 1 and in the cases (iii)–(iv) it has index 2, with
respect to the outward orientation of the boundary of the projection xV of V .

A k –nodal fibration f W Y !Z is a fiber bundle whose fibers are k –nodal surfaces,
equipped with k disjoint fiberwise embeddings  i W Z �K0! Y over Y , such that
the complement of the images of the  i forms a smooth fiber bundle over Z .

Let f W Y ! Z be a k –nodal fibration and write yZ D Z � Ik . We construct a
manifold yY together with a map yf W yY ! yZ as follows. Set

yY D

 
Y n

k[
1

 i.Z �K0/

!
� Ik

[
�1

.Z �H � Ik�1/ [
�2

� � � [
�k

.Z �H � Ik�1/;

where �i W Z� .@CH [ @�H /� Ik�1!  i.Z� @K0/� Ik , i D 1; : : : ; k , are gluing
diffeomorphisms defined by the formula

�i.z;x; t1; : : : ; tk�1/D  i.z; ˇ
S
˙.x/; t1; : : : ; ti�1; ˇ

I
˙.x/; ti ; : : : ; tk�1/

for x 2 @˙H , z 2Z and tj 2 I for j D 1; : : : ; k�1. The map f W Y !Z extends to
a map yf W yY ! yZ which is equal to the projection .y; t/ 7! .f .y/; t/ 2 yZ DZ � Ik

for .y; t/ 2
�
Y n

Sk
1  i.K0 �Z/

�
� Ik and equal to the map

.z;x; t1; : : : ; tk�1/ 7! .z; t1; : : : ; ti�1;Q.x/; ti ; : : : ; tk/

on the i –th copy of Z�H �Ik�1 glued with the attaching map �i . Note that the map
yf has k fold components which are mapped to the hypersurfaces Ci Dfti D 0g� yZD

Z � Ik . Thus Z DZ � 0D
Tk

1
xCi is the locus of k –fold intersection of images of

fold components of yf . We will call the folded map yf W yY ! yZ the universal unfolding
of the k –nodal fibration f W Y !Z ; see Figure 16.

The following lemma, which follows from the local description of an enriched folded
map in a neighborhood of its fold; see Lemma 2.9, shows that the universal unfolding
describes the structure of a folded map over a neighborhood of the locus of maximal
multiplicity of fold intersection.
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Lemma 4.3 Let f W M ! X be a folded map with cooriented hyperbolic folds.
Suppose that all combinations of (projections of) fold components intersect transver-
sally among themselves and with @X . Let k be the maximal multiplicity of the fold
intersection and let Z be one of the components of the k –fold intersection. Then Z�X

is a submanifold with boundary @Z � @X , and the restriction f jYDf �1.Z/W Y !Z

is a k –nodal fibration. Let yf W yY ! yZ D Z � Ik be the universal unfolding of the
k –nodal fibration f jY . Then there exist embeddings 'W yZ ! X and ˆW yY !M

which extend the inclusions Z ,!X and Y ,!M such that the diagram

(35)

yY
ˆ //

yf
��

M

f

��
yZ

' // X

commutes. If the folded map is enriched then one can arrange that the preimages of
the membranes and their framings under the embedding ˆW yY !M coincide with
the submanifolds Z � V ˙j � Ik�1 , and their model framings defined above (where
j 2 f0; 1; 2g and the sign ˙ depends on the index of the membrane and the sign of the
folds), in the corresponding copies of Z �H � Ik�1 in yY .

Harer’s stability theorem, in the form of Theorem 1.9 implies the following statement
for k –nodal fibrations.

Theorem 4.4 (Geometric form of Harer stability for nodal fibrations) Let †1 �†2

be compact surfaces with boundary (not necessarily connected). Let f W M !X be a
k –nodal fibration with T1 ends, and let

j W .@X �†2/[ .X �†1/!M

be a fiberwise embedding over X , such that its image in each fiber is disjoint from
the nodes, and that in each fiber the complement of its image is connected, even after
removing all nodes.

Then, after possibly changing f W M !X by a bordism which is the trivial bordism
over @X , the embedding j extends to an embedding of X �†2 , still disjoint from
nodes and with connected complement.

4.3 Proof of Theorem 4.1

Let .f W M !X; e/ be an enriched folded map from Fold$
h

. Let U �X be a compact
domain with smooth boundary. We assume that all combinations of (projections of)
fold components intersect transversally among themselves and with @U . Let k be the
maximal multiplicity of the fold intersection. We denote by Uj , j D 1; : : : ; k , the
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set of intersection points of multiplicity � j in U , and set U0 D U . Thus we get
a stratification U D

Sk
0 Uj nUjC1 . Set Mj D f

�1.Uj /. Note that Uk is a closed
submanifold of U with boundary @Uk � @U . The map fk D f jMk

W Mk ! Uk

is a k –nodal fibration. The membranes which are not adjacent to the fold compo-
nents intersecting along Uk , together with their framings define fiberwise embeddings
s1; : : : ; sl W Uk�D2!Mk over Uk , disjoint from the image of j and from each other.

Let us apply Theorem 4.4, the nodal version of Harer’s stability theorem, to the nodal
fibration fk and the fiberwise embedding

zj D j t

l[
1

si W .@Uk �
z†2/[ .Uk �

z†1/!Mk ;

where z†1 and z†2 are disjoint unions of †1 and †2 , respectively, with l copies
of the disk D2 . As a result, we find a bordism Fk W Wk ! Yk (in the class of k –
nodal fibrations) between the k –nodal fibrations fk W Mk ! Uk and f 0

k
W M 0

k
! U 0

k
.

Precisely, we have a partition @Yk D @�Yk [ @CYk , where @�Yk D Uk , @CYk D U 0
k

,
and @�Yk\@CYk D @Uk D @U

0
k

, and the fiberwise embedding zj extends to a fiberwise
embedding over Uk

J W .@CYk �
z†2/[ .Yk [

z†1/!Wk :

In addition, we can arrange that �0.Uk/!�0.Yk/ is injective (for example, this could
be arranged by applying Theorem 4.4 to each path component of Uk separately).

Let yFk W
�Wk !

yYk D Yk � Ik be the universal unfolding of the k –nodal fibra-
tion Fk W Wk ! Yk . We view yFk as a bordism between the universal unfoldings
yfk W

�Mk !
yUk D Uk � Ik and yf 0

k
W �Mk !

yU 0
k
D U 0

k
� Ik of the k –nodal fibrations

fk and f 0
k

. The embedding J extends to a fiberwise embedding

yJ W .@C yYk �
z†2/[ . yYk �

z†1/! �Wk

over yYk . According to Lemma 4.3 the restriction of f to a tubular neighborhood of Uk

is isomorphic to the universal unfolding yfk W
�Mk !

yUk of the k –nodal fibration fk .
In other words, there exist embeddings 'k W

yUk!X and ˆk W
�Mk!M which extend

the inclusions Uk ,!X and Mk ,!M such that the diagram

(36)

�Mk

ˆk //

yfk��

M

f

��
yXk

'k // X

commutes. Moreover, .'k ; ˆk/ can be chosen in such a way that the framed membranes
adjacent to intersecting folds correspond to model framed membranes of Lemma 4.3.
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Let us glue the bordism yFk W
�Wk !

yYk to the trivial bordism F D f � IdW W D

M � I ! Y DX � I using the attaching maps .'k ; ˆk/. We get a cobordism

zF W �Wk [
ˆk�1

M � I ! yYk [
'k�1

X � I:

Strictly speaking, the gluing produces a manifold with corners, but we smooth these
in the usual way. The folded map zF W �W ! zY resulting from this construction is a
bordism between f W M !X and f 0W M 0!X 0 , which is trivial over the complement
of 'k. yUk/ � X . The model framed membranes of Lemma 4.3 give us a canonical
extension of the framed membranes adjacent to Yk to all of �Wk . On the other hand,
the restriction of yJ to yYk �

`l
D2 � yYk � †2 allows us to extend all the other

framed membranes. It remains to see that the new membranes V �M 0 have @CV

null homologous in X , but this follows from the assumption that �0.Uk/! �0.Yk/

is injective. Thus we have constructed a map zF W �W ! zY which together with the
enrichment is a bordism in the category Fold$

h
.

The fiberwise embedding yJ W U 0
k
�†2!M 0

k
extends to a closed neighborhood ��U 0

k

in M 0 . In the domain U 00DU 0 n Int�, the maximal multiplicity of fold intersection is
now k � 1. Hence, we can repeat the previous argument to extend yJ over the stratum
U 00

k�1
, possibly after changing it by another bordism in the category Fold$

h
. Continuing

inductively we find the required extension to the whole domain bounded by @U .

Now we are ready to prove Proposition 3.7. Together with Proposition 3.6, this will
complete our proof of Theorem 1.8.

4.4 Elimination of hyperbolic folds (proof of Proposition 3.7)

Let V1; : : : ;VN be the collection of framed membranes of fD .f; e/. We are going
to inductively remove all of them. If the membrane V1 is pure then, in view of
Corollary 4.2, we can assume, after a possible change of f by a bordism in the
category Fold$

h
, that there is a basis for the fold surgery which removes @V1 together

with the membrane.

Suppose now that the membrane V1 is mixed. Consider first the case n> 1

Let’s write S1 D R=4Z. A membrane V in X gives rise to a smooth function

 W .X; @X /! .S1;�/, with the property that V D 
�1.Œ1; 3�/ and that 
 is trans-
verse to f1; 3g and that @˙V D 
�1.2˙ 1/. These properties determine the map 

uniquely up to homotopy, and therefore gives a class in Hn�1.X /DH 1.X; @X /D

Œ.X; @X /; .S1;�/�. This class is just the image of the fundamental class of @CV (or
equivalently of @�V ), so 
 is null-homotopic. Therefore we get a lift of 
 to a map
gW .X; @X /! .R; 0/ into the universal cover of S1 . This map is transverse to the
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odd numbers, and @V is the union of the submanifolds Ck D g�1.1C 2k/. The sign
of the fold C � @V is determined by the parity of k . Pick k 2 Z such that Ck ¤∅
but that Ck0 D∅ whenever jk 0j> jkj. If 1C 2k is positive, Ck is then the boundary
of the domain P D fg � 1C 2kg and if 1C 2k is negative, Ck bounds the domain
P Dfg� 1C2kg. In either case we can use Corollary 4.2 to create a basis for a surgery
eliminating this part of the fold. (The parity of k and sign of 2kC1 determines whether
the surgery eliminates the fold or spreads it over P .) After applying this process finitely
many times, the membrane becomes pure and then eliminated. This completes the
proof of Proposition 3.7 when n> 1.

Finally consider the case nD 1, ie X D I or X D S1 . We assume for determinacy
that X D I D Œ0; 3�, ie f is a Morse function. A mixed framed membrane of f
connects two critical points p1;p2 of f of index 1 and 2, and with critical values
c1;C2; c1 < c2 , respectively. We may assume c1 D 1 and c2 D 2 and that xV D Œ1; 2�.
For a small � > 0 let us consider vanishing circles S1 � F1C�;S2 � F2�� of critical
points p1 and p2 , where Ft denotes the fiber f �1.t/, t 2 R. The embedding of
S2! F2�� extends to an embedding

j W †2 D S1
� Œ�1; 1�! F2��

which maps S1�f0g to S2 . Suppose first that it is possible to extend j to a fiberwise
embedding

zj W Œ1C �; 2� ���†2!M

over Œ1C �; 2� ��, such that the circle zj W f1C �g �S1 � f0g ! F1C� intersects S1

transversally in exactly one point, we could apply the standard Morse theory cancellation
lemma [11] to kill both critical points.

If such an extension is not immediately possible, we can use Theorem 4.1 to change
f W M ! I by a bordism, after which it will hold. More precisely, we apply the
theorem with U D Œ1C �; 2� ��, †1 DD2 and †2 D S1 � Œ�1; 1�. Then we have a
fiberwise embedding

.@U �†2/[ .U �†1/!M;

which on U �†1DU �D2 is given by the membrane and its framing, on f2��g�†2

is given by the map j above, and on f1C�g�†2 it maps the circle f1C�g�S1�f0g

to some circle in F1C� which intersects the vanishing circle S1 transversally in exactly
one point. Applying Theorem 4.1 to this situation brings us back to the previous
situation.

This completes the proof of Theorem 1.8.
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5 Miscellaneous

5.1 Appendix A: From wrinkles to double folds

5.1.1 Cusps Let n > 1. Given a map f W M ! X , a point p 2 †.f / is called a
cusp type singularity or a cusp of index s C 1=2 if near the point p the map f is
equivalent to the map

Rn�1
�R1

�Rd
!Rn�1

�R1

given by the formula

(37) .y; z;x/ 7!

 
y; z3

C 3y1z�

sX
1

x2
i C

dX
sC1

x2
j

!

where x D .x1; : : : ;xd / 2Rd ; z 2R1; y D .y1; : : : ;yn�1/ 2Rn�1 .

The set of cusp points is denoted by †11.f /. It is a codimension 1 submanifold of
†.f / which is in the above canonical coordinates is given by x D .x1; : : : ;xd /D 0,
y1 D z D 0: The vector field @=@y1 along †11.f / is called the characteristic vector
field of the cusp locus. It can be invariantly defined as follows. Note that for any point
p 2†11.f / there exists a neighborhood � 3 f .p/ in X such that �\f .†.f // can
be presented as a union of two manifolds x†˙ with the common boundary @x†˙ D
� \ f .†11.f //, the common tangent space T D Tf .p/ x†˙ D df .TpM / at the
point f .p/, and the common outward coorientation � of T 0 D Tp@x†˙ � T . On
the other hand, the differential df defines an isomorphism

TpM=.Ker dpf CTp†.f //! T=T 0:

Hence, there exists a vector field Y transversal to Ker df C T†.f / in TM along
†11.f /, whose projection defines the coorientation � of T 0 in T for all points
p 2†11.f /. One can show that any vector field Y defined that way coincides with
the vector field @=@y1 for some local coordinate system in which the map f has the
canonical form (37).

Note that the line bundle �DKer df \T†.f / over †11.f / is always trivial. Indeed,
� can be equivalently defined as the kernel of the quadratic form d2f W Ker df !

Coker df , and thus one has an invariantly defined cubic form d3f W �! Coker df

which does not vanish. The bundle Ker df j†11.f / can be split as KerC˚Ker�˚�,
so that the quadratic form d2f is positive definite on KerC and negative definite
on Ker� .
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5.1.2 Wrinkles and wrinkled mappings Consider the map

w.nC d; n; s/W Rn�1
�R1

�Rd
!Rn�1

�R1

given by the formula

.y; z;x/ 7!

 
y; z3

C 3.jyj2� 1/z�

sX
1

x2
i C

dX
sC1

x2
j

!
;

where y 2Rn�1; z 2R1; x 2Rd and jyj2 D
Pn�1

1 y2
i .

The singularity †.w.nC d; n; s// is the .n�1/–dimensional sphere

Sn�1
D Sn�1

� 0�Rn
�Rd

whose equator †11.f /Dfjyj D 1; zD 0;xD 0g �†.w.nCd; n; s// consists of cusp
points of index sC 1=2 . The upper hemisphere †.w/\fz > 0g consists of folds of
index s , while the lower one †.w/\ fz < 0g consists of folds of index sC 1. The
radial vector field Y D

Pn�1
1 yj .@=@yj / serves as a characteristic vector field of the

cusp locus.

Figure 17: Wrinkle in the source and in the image

Although the differential dw.nC d; n; s/W T .RnCd /! T .Rn/ degenerates at points
of †.w/, it can be canonically regularized over OpRnCd Dn , an open neighbor-
hood of the disk Dn D Dn � 0 � Rn � Rd . Namely, we can substitute for the
element 3.z2C jyj2 � 1/ in the Jacobi matrix of w.nC d; n; s/ a function 
 which
coincides with 3.z2C jyj2 � 1/ on RnCd nOpRnCd Dn and does not vanish along
the n–dimensional subspace fx D 0g D Rn � 0 � RnCd . The new bundle map
R.dw/W T .RnCd /!T .Rn/ provides a homotopically canonical extension of the map
dwW T .RnCd nOpRnCd Dn/!T .Rn/ to an epimorphism (fiberwise surjective bundle
map) T .RnCd /! T .Rn/. We call R.dw/ the regularized differential of the map
w.nC d; n; s/.
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A map f W U !X defined on an open ball U �M is called a wrinkle of index sC1=2

if it is equivalent to the restriction w.nC d; n; s/jOpRnCd Dn . We will use the term
“wrinkle” also for the singularity †.f / of a wrinkle f .

Notice that for nD 1 the wrinkle is a function with two nondegenerate critical points
of indices s and sC1 given in a neighborhood of a gradient trajectory which connects
the two points. Thus in this case a wrinkle is the same as a double fold.

A map f W M!X is called wrinkled if there exist disjoint open subsets U1; : : : ;Ul�M

such that the restriction f jMnU ; U D
Sl

1 Ui ; is a submersion (ie has rank equal n)
and for each i D 1; : : : ; l the restriction f jUi

is a wrinkle.

The singular locus †.f / of a wrinkled map f is a union of .n�1/–dimensional spheres
(wrinkles) Si D†.f jUi

/� Ui . Each Si has a .n�2/–dimensional equator S 0i � Si

of cusps which divides Si into two hemispheres of folds of two neighboring indices.
The differential df W T .M /! T .X / can be regularized to obtain an epimorphism
R.df /W T .M /! T .X /. To get R.df / we regularize df jUi

for each wrinkle f jUi
.

The following theorem is the main result of the paper [4]:

Theorem 5.1 (Wrinkled mappings) Let F W T .M / ! T .X / be an epimorphism
which covers a map f W M !X . Suppose that f is a submersion on a neighborhood
of a closed subset K �M , and F coincides with df over that neighborhood. Then
there exists a wrinkled map gW M ! X which coincides with f near K and such
that R.dg/ and F are homotopic rel. T .M /jK . Moreover, the map g can be chosen
arbitrarily C 0 –close to f and with wrinkles contained in an arbitrarily small balls.

5.1.3 Cusp eliminating surgery We are going to modify each wrinkle to a spherical
double fold using cusp elimination surgery, which is one of the surgery operations
studied in [3]. Unlike fold elimination surgeries described above in Section 3.2 cusp
elimination surgery does not affect the underlying manifold and changes a map by a
homotopic one. For maps R2!R2 the operation is shown on Figure 18.

Definition 5.2 Let C � †.f / be a connected component of the cusp locus. Let Y

be the characteristic vector field of C . Suppose that the bundles Ker�;KerC and �
over C are trivialized, respectively, by the frames�

@

@x1

; : : : ;
@

@xs

�
;

�
@

@xsC1

; : : : ;
@

@xd

�
and

@

@z
:

A basis for a cusp eliminating surgery consists of an .n�1/–dimensional subman-
ifold A �M bounded by C , together with an extension of the above framing as a
trivialization of the normal bundle � of A in M , such that
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Figure 18: Cusp eliminating surgery in the case nD 2; d D 0

� f jInt AW Int A!X is an immersion;
� the characteristic vector field Y is tangent to A along C , and inward transversal

to C D @A;
� @=@xj 2 Ker df for all j D 1; : : : ; d .

Let us extend A to a slightly bigger manifold zA (dim zAD dim A) such that Int zA�A,
and extend the framing over zA. One can show (see [3; 1]) that there exists a splitting
U ! zA�R�Rd of a tubular neighborhood of zA in M , such that in the corresponding
local coordinates y 2 zA; z 2R and xD .x1; : : : ;xd /2Rd the map f can be presented
as a composition

U
F
! zA�R

h
!X;

where h is an immersion and F has the form

F.y; z;x/D

 
y; z3

C 3'0.y/�

 
1

�

 
z2
C

dX
1

x2
j

!!
z�

sX
1

x2
i C

dX
sC1

x2
j

!
;

where the function '0W R!R satisfies '0 > 0 on Int A� zA and '0 < 0 on zA nA,
� W Œ0; 1�! Œ0; 1� is a cut-off function equal to 1 near 0 and to 0 near 1, and � > 0 is
small enough.

Consider another function '1W
zA! .�1; 0/ which coincides with '0 outside Op A�

zA and such that j'1j � j'0j: Let 't D .1 � t/'0 C t'1 , t 2 Œ0; 1�, and consider
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homotopies

Ft .y; z;x/D

 
y; z3

C 3't .y/�

 
1

�

 
z2
C

dX
1

x2
j

!!
z�

sX
1

x2
i C

dX
sC1

x2
j

!
;

.y; z;x/ 2 U , and ft D h ıFt W U ! X . The homotopy ft is supported in U and
hence can be extended to the whole manifold M as equal to f on M nU . The next
proposition is straightforward.

Proposition 5.3 (1) The homotopy ft removes the cusp component C . The
map f1 coincides with f0 outside U , has only fold type singularities in U ,
and

†.f1jU /D fx D 0; z2
D�'1.y/g:

(2) Suppose that †.f /nC consists of only fold points and that the restriction of the
map f to †[A is an embedding. Then the restriction f1j†.f1/W †.f1/!X is
an embedding provided that the neighborhood U �A in the surgery construction
is chosen small enough.

5.1.4 From wrinkles to double folds

Proposition 5.4 Let

w.nC d; n; s/W Rn�1
�R1

�Rd
!Rn�1

�R1

be the standard wrinkled map with the wrinkle Sn�1 �Rn �Rd . Suppose that n> 1.
Then

(a) there exists an embedding

hW Dn�1
!OpRnCd Dn

and a framing � of the normal bundle to AD h.Dn�1/�Rn�Rd such that the
pair .A; �/ forms a basis for a surgery eliminating the cusp †11.w/D Sn�2 �

Sn�1 of the wrinkle;

(b) if d > 0 then one can arrange that the map w.nC d; n; s/ restricted to the
union †.w.nC d; n; s//[A is an embedding.

Proof It is easy to construct an embedding hD h0 and a framing � to satisfy (a). The
construction is clear from Figure 19. The manifold A in this case is obtained from the
boundary of the upper semiball fjyj2C z2 � 1C ı; z � 0g �Rn�1 �R by removing
the open disk Dn�1 D fz D 0; jyj < 1g, and then smoothing the corner. Here ı > 0
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Figure 19: The embeddings h0 and g0 D w ı h0 (thin lines)

should be chosen small enough so that A lie in the prescribed neighborhood of the
wrinkle. The framing � is given by @=@x1; : : : ; @=@xd and the normal vector field
to A in Rn�1 �R which coincides with @=@z near @A.

Unfortunately the embedding h0 does not satisfies property (b). However, if d > 0

this can be corrected as follows. We suppose that the index s > 0 (if s D 0 then one
should start with an embedding h0 obtained by smoothing the boundary of the lower
semiball). Let us denote by g0 the composition w ı h0W D

n�1!Rn�1 �R, and by
gn�1

0
and g1

0
the projections of g0 to the first and second factors, respectively.

Figure 20: The embedding g

For any � > 0 one can choose ı in the construction of h0 small enough to guarantee
existence of a function ˛W Dn�1! Œ0; �/ such that

� ˛ vanishes along @Dn�1 together with all its derivatives;

� ˛jInt Dn�1 > 0;

� the function g1 D g1
0
�˛ has a unique interior critical point, the minimum, at

0 2Dn�1 ;

� the map g D .gn�1
0

;g1/W Dn�1!Rn�1 �R is an embedding, and the image
g.Int Dn�1/ does not intersect the image of the wrinkle; see Figure 20.
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Next, take an embedding hW Dn�1!Rn�1 �R�Rd given by

.y; z/D h0.u/; x1 D
p
˛.u/; xj D 0; j D 2; : : : ; d;

y 2Rn�1; z 2R; x D .x1; : : : ;xd / 2Rd : Then we have g D w ı h, and hence the
embedding h satisfies property (b) of Proposition 5.4.

Recall Definition 2.3 of a special folded map. Combining Propositions 5.3 and 5.4
we get

Proposition 5.5 Let d > 0. There exists a C 0 –small perturbation of the map
w.nC d; n; s/jOpRnCd Dn in an arbitrarily small neighborhood of the embedded disk
h.Dn�1/ constructed in Proposition 5.4 such that the resulting map zw.nC d; d; s/ is
a special folded map with only one double fold (of index s C 1=2). Moreover, the
regularized differentials of w.nC d; n; s/ and zw.nC d; d; s/ are homotopic.

Theorem 5.1 and Proposition 5.5 yield Theorem 2.4.

5.2 Appendix B: Hurewicz theorem for oriented bordism

Recall that oriented bordism assigns to a pair .X;A/ of spaces the groups �n.X;A/D

�SO
n .X;A/, defined as the set of bordism classes of continuous maps of pairs

f W .M n; @M n/! .X;A/

for smooth oriented compact manifolds M n with boundary @M . For A empty we
write �n.X /D�n.X;∅/. �� is a “generalized homology theory”, ie it satisfies the
same formal properties as singular homology (the Eilenberg–Steenrod axioms except
the dimension axiom). In particular, it is homotopy invariant, and there is a long exact
sequence for pairs of spaces.

In this appendix we give a geometric proof of the following well known lemma.

Lemma 5.6 Let f W X ! Y be a continuous map of topological spaces. Then the
following statements are equivalent.

(i) f�W Hk.X /! Hk.Y / is an isomorphism for k < n and an epimorphism for
k D n.

(ii) f�W �k.X /! �k.Y / is an isomorphism for k < n and an epimorphism for
k D n.

In particular, f induces an isomorphism in homology in all degrees if and only if it
does so in oriented bordism.
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The starting point is the observation that for any base point a 2A, the Hurewicz map
�n.X;A/!Hn.X;A/ factors as

�n.X;A/!�n.X;A/!Hn.X;A/;

where the first map sends the homotopy class of a map .Dn; @Dn/! .X;A/ to its
bordism class, and the second map sends the bordism class of a map f W .M n; @M n/!

.X;A/ to the element f�.ŒM �/ 2 Hn.X;A/. We first prove a bordism version of
Whitehead’s theorem.

Lemma 5.7 If .Y;A/ is an .n�1/–connected pair, then the maps above induce iso-
morphisms �n.Y;A/Š�n.Y;A/ŠHn.Y;A/.

Proof of Lemma 5.7 The classical Whitehead theorem says that the composite is
an isomorphism, so it suffices to prove that �n.Y;A/! �n.Y;A/ is surjective. If
f W .M; @M /! .Y;A/ is a representative, we can first assume M is path connected
and pick a CW structure with only one n–cell. Let eW Dn !M the characteristic
map of that cell. By induction on cells, we can use that .Y;A/ is .n�1/–connected
to homotope f to a map gW .M;M n�1/! .Y;A/ that maps .n�1/–skeleton into A.
Then f is cobordant to the map e ı gW .Dn; @Dn/! .Y;A/ which (after a further
homotopy to make it basepoint preserving) represents an element of �n.Y;A/.

Proof of Lemma 5.6 Both H� and �� are homotopy invariant, so we can use mapping
cylinders to reduce to the case where f W X ! Y is the inclusion of a subspace A� Y .
Using the long exact sequence for H� and �� we must prove that Hk.Y;A/D 0 for
all k � n if and only if �k.Y;A/ for all k � n. We first treat the case where Y and
A are simply connected. This case follows from Lemma 5.7 and induction on n.

Ordinary homology satisfies HkC1.†Y; †A/DHk.Y;A/, where † denotes the unre-
duced suspension. The proof of this fact uses only the axioms, so in the same way we
get �kC1.†Y; †A/DHk.Y;A/. The general case then follows by observing that the
double suspension of any space is simply connected.
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