Volume 15, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 2, 533–1073
Issue 1, 1–532

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Topological obstructions to fatness

Luis A Florit and Wolfgang Ziller

Geometry & Topology 15 (2011) 891–925
Bibliography
1 L Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniens, Compositio Math. 30 (1975) 43 MR0370432
2 A L Besse, Einstein manifolds, Ergebnisse der Math. und ihrer Grenzgebiete (3) 10, Springer (1987) MR867684
3 A Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. $(2)$ 57 (1953) 115 MR0051508
4 L M Chaves, A theorem of finiteness for fat bundles, Topology 33 (1994) 493 MR1286927
5 A Derdziński, A Rigas, Unflat connections in $3$–sphere bundles over $S^{4}$, Trans. Amer. Math. Soc. 265 (1981) 485 MR610960
6 M Feshbach, The image of $H^{*} (BG, \mathbf{Z})$ in $H^{*} (BT, \mathbf{Z})$ for $G$ a compact Lie group with maximal torus $T$, Topology 20 (1981) 93 MR592571
7 L A Florit, W Ziller, Orbifold fibrations of Eschenburg spaces, Geom. Dedicata 127 (2007) 159 MR2338524
8 W Fulton, J Harris, Representation theory: A first course, Graduate Texts in Math. 129, Springer (1991) MR1153249
9 D Gromoll, G Walschap, Metric foliations and curvature, Progress in Math. 268, Birkhäuser Verlag (2009) MR2500106
10 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
11 M Kerin, Some new examples with almost positive curvature, Geom. Topol. 15 (2011) 217
12 I G Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (1979) MR553598
13 M Mimura, H Toda, Topology of Lie groups. I, II, Transl. of Math. Monogr. 91, Amer. Math. Soc. (1991) MR1122592
14 J D Moore, Submanifolds of constant positive curvature. I, Duke Math. J. 44 (1977) 449 MR0438256
15 G F Paechter, The groups $\pi _{r}(V_{n, m})$. I, Quart. J. Math. Oxford Ser. $(2)$ 7 (1956) 249 MR0131878
16 N Shimada, Differentiable structures on the $15$–sphere and Pontrjagin classes of certain manifolds, Nagoya Math. J. 12 (1957) 59 MR0096223
17 K Tapp, Quasi-positive curvature on homogeneous bundles, J. Differential Geom. 65 (2003) 273 MR2058263
18 G Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grund. der math. Wissenschaften 188, Springer (1972) MR0498999
19 A Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980) 239 MR591728
20 B Wilking, Manifolds with positive sectional curvature almost everywhere, Invent. Math. 148 (2002) 117 MR1892845
21 W Ziller, Fatness revisited, Lecture notes, University of Pennsylvania (2001)
22 W Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press, Somerville, MA (2007) 63 MR2408264