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Central extensions of smooth 2-groups
and a finite-dimensional string 2—group

CHRISTOPHER J SCHOMMER-PRIES

We provide a model of the String group as a central extension of finite-dimensional
2—groups in the bicategory of Lie groupoids, left-principal bibundles, and bibundle
maps. This bicategory is a geometric incarnation of the bicategory of smooth stacks
and generalizes the more naive 2—category of Lie groupoids, smooth functors and
smooth natural transformations. In particular this notion of smooth 2—group subsumes
the notion of Lie 2—group introduced by Baez and Lauda [5]. More precisely we
classify a large family of these central extensions in terms of the topological group
cohomology introduced by Segal [56], and our String 2—group is a special case
of such extensions. There is a nerve construction which can be applied to these
2—groups to obtain a simplicial manifold, allowing comparison with the model of
Henriques [23]. The geometric realization is an A, —space, and in the case of our
model, has the correct homotopy type of String(n). Unlike all previous models [58;
60; 33; 23; 7] our construction takes place entirely within the framework of finite-
dimensional manifolds and Lie groupoids. Moreover within this context our model
is characterized by a strong uniqueness result. It is a canonical central extension
of Spin(n).

57T10, 22A22, 53C08; 18D10

1 Introduction

The String group is a group (or A,—space) which is a 3—connected cover of Spin(n).
It has connections to string theory, the generalized cohomology theory fopological
modular forms (tmf'), and to the geometry and topology of loop space. Many of these
relationships can be explored homotopy theoretically, but a geometric model of the
String group would help provide a better understanding of these subjects and their
interconnections. Over the past decade there have been several attempts to provide
geometric models of the String group; see Stolz [58], Stolz and Teichner [60], Jurco [33],
Henriques [23] and Baez, Stevenson, Crans and Schreiber [7]. The most recent of these
use the language of higher categories, and consequently string differential geometry also
provides a test case for the emerging field of higher categorical differential geometry;
see Waldorf [64] and Sati, Schreiber and Stasheff [51; 52].
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Nevertheless, progress towards the hard differential geometry questions, such as a
geometric understanding of the connection to elliptic cohomology or the Hohn—Stolz
Conjecture [58], remains slow. Perhaps one reason is that all previous models of
the string group, including the higher categorical ones, are fundamentally infinite-
dimensional. In a certain sense, which will be made more precise below, it is impossible
to find a finite-dimensional model of String(n) as a group. However, there remains the
possibility that String(n) can be modeled as a finite-dimensional, but higher categorical
object, namely as a finite-dimensional 2—group. This idea is not new, and models for
the string group as a Lie 2—group have been given by Henriques [23] and Baez et al [7].
However, these models are also infinite-dimensional.

In this paper we consider 2—groups in the bicategory of finite-dimensional Lie groupoids,
left principal bibundles and bibundle maps. This bicategory, which is equivalent to
the bicategory of smooth stacks, is an enhancement of the usual bicategory of Lie
groupoids, smooth functors and smooth natural transformations. We call such 2—groups
smooth 2—groups. We classify a large family of central extensions of smooth 2—groups
in terms of easily computed cohomological data. Our model of the string group comes
from such a finite-dimensional central extension. We begin this paper with a more
detailed look at the string group and the ideas needed for constructing our model. The
main ingredients are, of course, the above mentioned bicategory and also a certain
notion of topological group cohomology introduced by Graeme Segal in the late 60s.

What is the String group?

The String group is best understood in relation to the Whitehead tower of the orthogonal
group O(n). The Whitehead tower of a space X consists of a sequence of spaces
X{n+1) - X(n) - --- - X, which generalize the notion of universal cover. A
(homotopy theorist’s) universal cover of a connected space X is a space X (2) with
a map to X, which induces an isomorphism on all homotopy groups except 7wy,
and such that 71 (X (2)) = 0. For more highly connected spaces, there is an obvi-
ous generalization, and the Whitehead tower assembles these together. The maps
X{n+1) - X(n) - --- - X induce isomorphisms 7; (X (n)) = 7;(X) for i > n,
and each space satisfies 7; (X (n)) =0 for i <n.

For large n, the orthogonal group O(n) has the following homotopy groups:
i |0 1 234567
7i(0m)|2/22/202 000 2

The first few spaces in the Whitehead tower of O(n) are the familiar Lie groups SO(n)
and Spin(n). These are close cousins to the String group, String(#). The maps in the
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Whitehead tower are realized by Lie group homomorphisms

SO(n) < O(n)
7./27. — Spin(n) — SO(n).

This raises the question: can we realize the remaining spaces in the Whitehead tower
of O(n) as Lie groups? or as topological groups? The next in the sequence would be
O(n){4) =---= Om)(7), a space which now goes under the name String(n). It is the
3—connected! cover of Spin(n). Since ; and 73 of this space are zero, it cannot be
realized by a finite-dimensional Lie group?. Moreover, since this hypothetical group is
characterized homotopy-theoretically, it is not surprising that there are many models
for this group.

The easiest candidates arise from the machinery of homotopy theory. If we relax our
assumption that String(n) be a topological group and allow it to be an A, —space?
then there is an obvious model. First we look at the classifying space BO(n). We
can mimic our discussion above and construct the Whitehead tower of BO(n). The
homotopy groups of BO(n) are the same as those of O(n), but shifted:

i \01 2 345678
7i(BO) |0 Z/2 /20 Z 000 Z

It is well known that the pointed loop space of a classifying space satisfies Q(BG) ~ G
for topological groups G . It then follows that the space Q2(BO(n)(8)) is an Ao—space
with the right homotopy type. With more care, the homomorphism to Spin(x) can also
be constructed*.

If one insists on getting an actual group, then more sophisticated but similar homotopy
theoretic techniques succeed. One replaces the space BO(n)(8) with its singular simpli-
cial set and applies Kan’s simplicial loop group (see for example Goerss and Jardine [21,
Chapter 5.5]). This produces a simplicial group, which models Q(BO(n)(8)). Taking
the geometric realization gives an honest topological group with the correct homotopy
type. Needless to say, this construction is not very geometric.

IFor n > 7 String(n) is 6—connected.

2This often cited fact follows from two classical results: A theorem of Malcev which states that
any connected Lie group deformation retracts onto a compact subgroup [41; 42] (see also Iwasawa [31,
Theorem 6]), and the classification of finite-dimensional compact simply connected Lie groups, which
may be found in many standard text books on Lie groups.

3Since String(n) is connected, having an Ao —space structure is equivalent to having the homotopy
type of a loop space.

4For Lie groups G, the map QBG — G may be constructed as the holonomy map of the universal
connection on EG over BG. Thus the composite Q(BSpin(n)(8)) — Q BSpin(n) — Spin(n) is one
way to construct the desired map.
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In both of these approaches the homomorphism String(n) — Spin(n) realizes the String
group as a fiber bundle whose fiber is an Eilenberg—Mac Lane space K(Z, 2). This is
a general feature of all approaches. Suppose that we are given a model of String(n) as
a topological group equipped with a continuous homomorphism to Spin(n), realizing
it as the 3—connected cover. Let K be the kernel of this map and suppose that this
forms a fiber bundle
K — String(n) — Spin(n).

By the long exact sequence of homotopy groups associated to this bundle, we have
K~ K(Z,2).

The primary method of building models of the String group is consequently finding
group extensions where the kernel is topologically an Eilenberg—-Mac Lane K(Z,2)-
space. The first geometric models, constructed by Stolz and Teichner [58; 60], were of
this kind. Any CW-complex with the homotopy type of a K(Z, 2) must have cells of
arbitrarily high dimension, and is thus infinite-dimensional®. Although the groups K
used in these models were not CW—complexes, they too were infinite-dimensional and
hence resulted in infinite-dimensional models of the String group.

While K(Z,2) is infinite-dimensional, it still has a well known finite-dimensional
description, but at the cost of working higher categorically (or equivalently through the
language of .S 1 —gerbes; see Giraud [20], Murray [45] and Behrend and Xu [10]). This
suggests that there might be a finite-dimensional model of String(n), but as a higher
categorical object. This idea is not new and goes back to the work of Baez and Lauda [5],
Henriques [23] and Baez et al [7]. The latter were able to construct a Lie 2—group
modeling String(n) in a precise sense, but their model is also infinite-dimensional.

Baez and Lauda [5] considered (weak) group objects in the bicategory LieGpd of Lie
groupoids®, smooth functors and smooth natural transformations. These objects are
now commonly called Lie 2—groups, and the finite-dimensional incarnation of K(Z, 2)
in this context is the Lie 2—group we call [pt/S!]. The Lie group Spin(n) also provides
a basic example of a Lie 2—group. We will elaborate on this in due course.

Baez and Lauda [5] considered certain “extensions" [pt/S!]— E — Spin(n), and under
certain restrictive assumptions (which can be removed), they proved that such central
extensions are in bijection with smooth group cohomology Hg3rp(G; A). Herein lies the
problem. Since the work of Hu [30; 29], van Est [17; 18] and Mostow [25] we have that
for all compact 1—connected simple Lie groups G, Hg’rp(G; Sy =0. Thus in LieGpd,

3In fact an easy Serre spectral sequence argument shows that String(n) itself has cohomology in
arbitrarily high degrees and hence has no finite-dimensional CW-model.

6 A Lie groupoid is the common name for a groupoid object internal to the category of smooth manifolds,
in which the source and target maps are surjective submersions.
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the only such central extension is the trivial one. This is why Baez et al [7] were led to
infinite-dimensional groups. Essentially, they replace G = Spin(n) with an infinite-
dimensional 2—group for which the above central extension exists. This Lie 2—group
is not equivalent to Spin(n), but nevertheless its geometric realization is homotopy
equivalent to Spin(n), and the resulting central extension does model String(n). The
model of Henriques [23] uses different techniques but produces essentially the same
object as [7], but cast in the language of simplicial spaces.

In this paper we work entirely within the context of finite-dimensional manifolds and
Lie groupoids, never passing into the infinite-dimensional setting. As a result our
model is fundamentally finite dimensional. The cost is that we must consider groups
not in LieGpd, but in the bicategory Bibun of Lie groupoids, left-principal bibundles
and bibundle maps. This bicategory is a natural generalization of LieGpd, in which
the 1-morphisms have a simple geometric description. Hence, this notion of 2—group,
which we call smooth 2—group, subsumes the notion previously introduced by Baez and
Lauda. The bicategory Bibun has other familiar guises. It is equivalent to the bicategory
of smooth stacks and also to the (derived) localization of LieGpd with respect to the
local equivalences; see Pronk [47] and Lerman [37]. This later has a description in
terms of “smooth anafunctors” by Bartels [9].

The structure and results of this paper

The bicategory Bibun, sadly, does not appear to be widely known, and so we provide a
brief review of some key results about this bicategory that we will use. We then review
the notion of weak group object (and also weak abelian group object) in a general
bicategory. These are commonly called 2—groups. More importantly we make precise
the notion of extension and central extension of 2—groups, particularly in the context
of the bicategory Bibun. This generalizes those central extensions

l-A4A—FE—->G—1

of topological groups in which the A—action on E realizes it as an A—principal bundle
over G. We also show that the geometric realization of a group object in Bibun is
naturally a (group-like) A,—space.

To make the notion of central extension precise in the context of Bibun, we must consider
certain pullbacks. However, just like the category of smooth manifolds, Bibun does not
admit all pullbacks. Nevertheless if two maps of smooth manifolds are transverse, then
the fiber product exists. We extend this notion to Bibun, introducing transversality
for bibundles in a way which generalizes the usual notion of transversality for smooth
maps. We prove that for transverse bibundles the fiber product indeed exists. To our
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knowledge this is the first time such a result has appeared in the literature. We also
introduce a notion of surjective submersion for bibundles, generalizing the usual notion.
This permits us to make precise the central extensions of 2—groups we wish to consider.

Given an abelian 2—group A and a 2—group G (both in Bibun) there is a bicategory of
central extensions of G by A, Ext(G; A). This bicategory is contravariantly functorial
in G and covariantly functorial in A, and so the Baer sum equips Ext(G; A) with
the structure of a symmetric monoidal bicategory (see Gordon, Power and Street [22],
Kapranov and Voevodsky [35; 34], Baez and Neuchl [6], Day and Street [16] and
especially the author’s thesis [54, Chapter 3]). In this paper we prove the following
theorem (Theorem 99):

Theorem 1 Let G be a Lie group and A an abelian Lie group, viewed as a trivial G —
module. Then we have an (unnatural) equivalence of symmetric monoidal bicategories

Ext(G; [pt/A]) =~ Hg\(G; A) x Hay(G; A)[1] x Hgy(G: A)[2],

where HS’;M(G; A) denotes the smooth version Segal-Mitchison topological group
cohomology [56]. Moreover, isomorphism classes of central extensions

A Iy G
1 W W W 1
pt Iy G

are in natural bijection with HS3M(G; A).

In the above theorem an abelian group M is regarded as a symmetric monoidal
bicategory in three ways. It can be viewed as a symmetric monoidal bicategory M
with only identity 1-morphisms and 2—morphisms. It can be viewed as a symmetric
monoidal bicategory M [1] with one object, M many 1-morphisms and only identity
2—morphisms. Finally, it may be viewed as M [2], a symmetric monoidal bicategory
with one object, one 1-morphism, and M many 2—morphisms. Specializing to the

case relevant to the String group we obtain the following Theorem:

Theorem2 Ifn>5, A=S"' and G = Spin(n), we have
i : 1 i+1 : Z i=3,

Hgy\(Spin(n); S7) = H'™ (BSpin(n); Z) = 0 i—12

i=1,2.

Thus for each class [\] € HS3M (Spin(n); S') = Z the bicategory of central extensions
with that class is contractible’, hence such extensions are coherently unique. Moreover,
the central extension corresponding to a generator of HS3M (Spin(n); S') gives a finite-
dimensional model for String(n).

7equivalent to the terminal bicategory
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The uniqueness in the above theorem is the strongest possible given the category
number of the problem. It has the following interpretation. Given a class [A] €
HS3M (Spin(n); S1), there exists a central extension realizing that class. Any two such
extensions are isomorphic, and moreover any two 1-morphisms realizing such an
isomorphism are isomorphic by a unique 2—isomorphism.

Importance of the String group

The importance of the String group was first noticed in physics. It is well known
that in order to define the 1—dimensional supersymmetric sigma model with target
space a manifold X, one needs X to be a spin manifold. A similar problem for the
2—dimensional supersymmetric sigma model was studied by Killingback [36] and
later by Witten [65]. They realized that the 2—dimensional supersymmetric sigma
model in a space X requires a “spin structure on the free loop space LX . Witten’s
investigations eventually lead him to what is now called the Witten genus, which
associates to an oriented manifold a formal power series whose coefficients are given
by certain combinations of characteristic numbers. For string manifolds, this is the
g—expansion of an integral modular form.

One way to understand spin structures on a manifold X is homotopy-theoretically. The
stable normal bundle induces a classifying map X — BO, and a homotopy-theoretic
spin structure is a lift of this map to BSpin. Classical obstruction theory arguments
show such a lift exists only if the first and second Stiefel-Whitney classes vanish.
If both w; and w, vanish, then there is a new characteristic class p;/2, such that
2-(p1/2) = pp is the first Pontryagin class. A further lift to BO(8) exists if and only
if p1/2 vanishes. Such a lift is the homotopy theoretic version of a string structure.
A “spin structure on loop space” exists if the transgression of p;/2 vanishes, and it
satisfies a further locality property if pi/2 itself vanishes; see Stolz and Teichner [61].

Standard techniques allow one to construct for each of the spaces BO(n) a correspond-
ing bordism theory of BO (n)-manifolds. These bordism theories gives rise to general-
ized cohomology theories, or more precisely Eoo—ring spectra, M O(n). The Witten
genus is an BO(8)-bordism invariant, and thus gives rise to a map M O(8)(pt) — MF,
where MF is the ring of integral modular forms.

The Witten genus has a refinement as a map of cohomology theories (see Ando, Hopkins
and Strickland [2], Ando, Hopkins and Rezk [1] and Henriques [24]):

MO(8) — tmf.

Here #mf is the theory constructed by Hopkins and Miller of fopological modular
forms [26; 27]. There is a map of graded rings tmf™(pt) — MF, which factors the
Witten genus. This map is rationally an isomorphism, but is not surjective or injective,
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integrally. The ring mf™(pt) contains a significant amount of torsion. The refinement
of the Witten genus is similar to the refinement of the A—genus, which can also be
viewed as a map of cohomology theories,

M Spin — KO.

Here KO is real K—theory. These refinements have the following consequences. If
E — X is a family of string manifolds parametrized by X', then there is a family
Witten genus which lives in #mf™ (X). Similarly a family of spin manifolds has a family
version of the A —genus, which lives in KO*(X'). While there are homotopy theoretic
descriptions of both of these based on the Thom isomorphisms for string and spin
vector bundles, respectively, the A —genus also has an analytic/geometric interpretation
derived from the concrete geometric model of Spin(m).

Given a manifold with a geometric spin structure, we can form the associated bundle
of spinors and the corresponding Clifford-linear Dirac operator. If we have a family of
spin manifolds parametrized by a space X, we get a corresponding family of Fredholm
operators. This represents the class in KO*(X). The Witten genus has no corre-
sponding geometric definition®, and nor does the cohomology theory tmf. A suitable
geometric model for the String group will lead to a better geometric understanding of
string structures and might provide insight into these problems.

Finally, we should mention an as yet unresolved conjecture due independently to Hohn
and Stolz relating string structures and Riemannian geometry. Stolz conjectures in [58]
that a 4k —dimensional string manifold which admits a positive Ricci curvature metric
necessarily has vanishing Witten genus. Some progress has been made towards this
(and related conjectures [59]) in the dissertation of Redden [49], but a clear answer
remains out of reach. A better geometric understanding of string structures would
doubtless shed light on this problem as well.
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2 Lie groupoids and smooth stacks

2.1 Lie groupoids

Definition 3 A Lie groupoid is a groupoid object, I' = (I'y = I'y), in the category of
(finite-dimensional) smooth manifolds in which the source and target maps

s,t: 'y =T

are surjective submersions. (In particular the iterated fiber products I'y X, I'; and
I't X, I't X1y 'y exist as smooth manifolds). Functors and natural transformations
are defined as functors and natural transformations internal to the category of smooth
manifolds.

Together Lie groupoids, functors and natural transformations form a 2—category, LieGpd.
There are many examples of Lie groupoids. The most common are special cases of the
following two kinds:

Example 4 (G-Spaces) Let G be a Lie group acting smoothly (say, on the right)
on a manifold X . Then we can form the action groupoid T' = [X /G]. The objects are
'y = X and morphisms are I'j = X x G. The target map is projection, and the source
is the action map. Composition

m: (X xG)xy (X xG)=XxGxG—>XxG

is given by multiplication in G . The identity map is x — (x, ¢) and the inverse map is
(x,8) = (xg.g7").

When the group is trivial, this allows any smooth manifold X to be viewed as a Lie
groupoid with Xy = X7 = X and all maps identity maps. When the manifold X = pt
is trivial, this allows any Lie group G to be viewed as a Lie groupoid with Gy = pt
and G| = G. In this case the composition is the group multiplication, with the usual
identities and inverses.

Example 5 (Cech groupoids) If Y — X is a submersion, then we can form the Cech
groupoid Xy . We have objects (Xy)o =Y and morphisms (Xy); = Y=y xyv.
The source and target maps are the canonical projections, the identities come from the
diagonal. Inversion comes from the flip map and composition comes from forgetting
the middle factor. We will only be interested in the case where Y is a surjective
submersion, and in particular when ¥ = U — X is an ordinary cover. The special
case Y = M — pt = X yields a Lie groupoid known as the pair groupoid EX .
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There are also many examples of functors and natural transformations:

Example 6 (Smooth maps) Let X, Y be manifolds viewed as Lie groupoids. Smooth
functors from X to Y are the same as smooth maps X — Y . Given two such functors
f, g there are no natural transformations unless we have equality f = g. In that case
there is just the identity natural transformation. This gives a (fully faithful) inclusion
functor Man — LieGpd.

Example 7 (Lie homomorphisms) Let G and H be Lie groups viewed as Lie
groupoids. The functors from G to H are precisely the Lie group homomorphisms. A
natural transformation between f and g is the same as an element of H , conjugating f
into g.

Example 8 Let X be a manifold and let EX be the corresponding pair groupoid.
There is a unique functor to the one-point groupoid pt. A choice of point x¢ € X,
determines a functor xo: pt = EX . The composition pt - EX — pt is the identity
functor. The other composition £EX — pt — EX sends every object to xo and every
morphism to ¢(xg). This is naturally isomorphic to the identity functor via the natural
transformation

n: x = (x, Xp).

Thus EX and pt are equivalent as Lie groupoids.

Let U — X be a cover, and let Xy be the resulting Cech groupoid. Recall that the
Cech groupoid can be thought of as the pair groupoid, but in the category of spaces
over X . Again there is a canonical functor Xy — X, and X serves the same role
as the point, but in the category of spaces over X. Thinking in this line, one is
tempted to guess that Xy — X is an equivalence. However, usually this is false. The
canonical functor Xy — X 1is an equivalence if and only if the cover admits a global
section s: X — U . More precisely, we have the following lemma, whose proof is a
straightforward calculation left to the reader.

Lemma9 LetY — X and Z — X be spaces over X. Then the corresponding
Cech groupoids are equivalent if and only if there exist maps over X, f: Y — Z and
g: Z — Y . In that case the equivalence is given by the canonically induced functors
and the natural transformations are given by

Y >YB o ye ()
7 — Z[Z], z(z, fg(2)).

In particular, Xy is equivalent to X if and only if the cover U — X admits a global
section.
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The last example highlights one of the well-known deficiencies of the 2—category of
Lie groupoids. The functor Xy — X is both fully faithful and essentially surjective
(in fact, actually surjective), but it fails to be an equivalence.

2.2 Bibundles and smooth stacks

In the following let Many denote the category of manifolds over X , that is the category
whose objects are manifolds ¥ equipped with a smooth map ¥ — X, and whose
morphisms are smooth maps ¥ — Y’ making the following triangle commute.

Y —— Y/

NS

X

Definition 10 Let G = (G = Go) and H = (H; = Hj) be Lie groupoids. A (left
principal) bibundle from H to G is a smooth manifold P together with
(1) amap t: P — Gy, and a surjective submersion o: P — Hj,
(2) action maps in Mang,x H,
Gy XSGS P—P
P XZ’,(’) H, — P

which we denote on elements as (g, p) — g-p and (p,h)— p-h,

such that

s,

() g1-(g2-p) = (€1€2)-p forall (g1, g2, p) € Gy x5, G1 X, P,
(i) (p-h1)-ha=p-(hihy) forall (p,hy, ha) € P X3 Hy x3 Hi,
(i) p-wg(o(p)) = p and 1g(z(p))-p=p forall pe P,

(iv) g (p-h)=(g-p)-hforall (g.p.h) € Gy xgl PG H,

(v) The map

GlxégPanZ;gP
(g.p)—>(g-p.p)

is an isomorphism. (The G —action is simply transitive.)

Bibundles combine several widely used notions into a single useful concept, as these
examples illustrate.
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Example 11 (Smooth maps) Let X and Y be smooth manifolds, viewed as Lie
groupoids. Let P be a (left principal) bibundle from X to Y. Then o: P — X is an
isomorphism. Thus P is “the same” as a smooth map 7: X — Y.

Example 12 (Lie homomorphisms) Let G and H be Lie groups, thought of as
Lie groupoids as in Example 4. Let P be a bibundle from H to G. Then P is
(noncanonically) isomorphic to G with its left G —action. After identifying P with G,
the right action of H on P is equivalent to a Lie group homomorphism H — G. Thus
Lie homomorphisms are “the same” as bibundles. (More precisely, as we will see
shortly, conjugacy classes of Lie homomorphisms correspond to isomorphism classes
of bibundles).

This next example shows where bibundles derive their name.

Example 13 (Principal bundles) A (left principal) bibundle from a manifold X to a
Lie group G, viewed as Lie groupoids as in Example 4, is the same as a (left) principal
G —bundle over X .

Example 14 Generalizing this last example, let Y be a manifold with a (left) action
of a Lie group G . Denote the associated action Lie groupoid by [Y/G]. Let X be a
manifold. A (left principal) bibundle from X to [Y/G] consists of a (left) principal
G-bundle P over X together with a G—equivariant map to Y . In particular, we may
take the action of G on Y = Aut(G) to be by left multiplication by the conjugation
automorphism, ie for 1 € Aut(G), g-h = cg o h, where cg(g') = gg’g™! is the
conjugation automorphism. A (left principal) bibundle from X to [Aut(G)/G] is a
“G -bibundle” in the sense of Aschieri, Cantini and Jurco [3].

Example 15 (Identities) Let G be a Lie groupoid. There is a G-G bibundle given
by P = G with t =1,0 = s and the obvious action maps. This is called the identity
bibundle for reasons which will become obvious later.

Example 16 If f: X — Gy is a map, then we can form the pullback bibundle.
f*Gi=X xés G1 — X . The induced action of G{ on f™*G; makes this a bibundle
from the trivial groupoid X (with only identity morphisms) to the groupoid G .

Example 17 Let f/: H — G be a functor of Lie groupoids. Then we form the
bibundle (/') as follows. As a space we have {f) = f; G, which we’ve already seen
is a bibundle from Hy to G. We need only supply the action of H;. This is given
by applying fi: Hy — G and using right action of G; on f*G. Thus any functor
gives rise to a bibundle. The association f + { /) is known as bundlization.
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Example 18 If f: U — G is a submersion, then we may form the pullback groupoid
/*G. The objects consist of U, the morphisms consist of (U x U) xg,xG, G1 With
source and target the natural projections. Composition is defined in the obvious way, as
a confluence of the composition the pair groupoid of U and of the composition of G.
There is a functor from f*G to G which on object is the original map U — G and
on morphisms is the projection f*G — G . In particular, there is a canonical bibundle
from f*G to G given by the bundlization of this functor.

Remark 19 Right principal bibundles can be defined in a similar manner. The only
difference being that now t, instead of o, is required to be a surjective submersion
and the action of H is simply transitive, ie

o,t ~ T,T
PXHOHl ~ PxGO P.
In particular any left-principal bibundle P from H to G gives rise to a right-principal

bibundle P from G to H, given by swapping the maps o and 7, and precomposing
the action maps with the inverse maps.

Definition 20 A bibundle map is a map P — P’ over Hy x Gy which commutes with
the G- and H —actions, ie the following diagrams commute.

Gixgo P — P Pxp Hy — P
Gy xg P — p/ P' X3 Hy — P/

Thus for each pair of groupoids we have a category Bibun(H, G) of bibundles from H
to G. If f,g: H — G are two smooth functors between Lie groupoids, then the
bibundle maps from ( /) to (g) are in natural correspondence with the smooth natural
transformations from f to g. In this sense the category LieGpd(H, G) is a subcategory
of Bibun(H, G).

Example 21 A left principal bibundle from a Lie group H to a Lie group G always
arises as ( /) for some functor f: H — G.

Example 22 A left principal bibundle whose target is a space is also always of the
form (/) for some functor f: X — Y. Hence if X and Y are spaces this is the same
as a map of spaces. If X is an action groupoid, then this is just a G —invariant map.

Proposition 23 (Lerman [37]) A bibundle P from H to G admits a section of
o0: P— Hy ifand only if P = (f) for some smooth functor f .
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Bibundles can be composed, and this gives us a bicategory Bibun. If P is a bibundle
from H to G and Q is a bibundle from K to H, then we define the bibundle P o Q
as the coequalizer

P X Hy X 0= Pxg O — PoQ.
Since o is a surjective submersion, these pullbacks are manifolds and since our action
on @ is simply transitive this coequalizer exists as a smooth manifold. In fact it
is a bibundle from K to G. See [37] for details. Equivalence in this bicategory is
sometimes referred to as Morita equivalence. They are characterized as those bibundles
which are simultaneously left principal and right principal. The identity bibundle of
Example 15 above serves as the identity 1-morphism. If the submersion in Example 18

is surjective, then the pullback groupoid is easily seen to be Morita equivalent to the
original groupoid via the constructed bibundle.

Example 24 Let G and H be Lie groupoids and P: H — G a left-principal bibundle.
If P is also a right-principal bibundle, then we may form a new left principal bibundle
P~!: G— H. P! isthe space P with 7 and o switched, and with a right (resp. left)
action of G (resp. H ) induced by the composition of the inversion map and the original
action on P. In this case we have that Po P~! and P~!o P are isomorphic to identity
bibundles. Is this case P and P~! are Morita equivalences, and this characterizes
Morita equivalences.

Example 25 As a special case of the above, suppose that G is a Lie group with a free
and transitive action on the manifold X . Suppose further that the quotient space Y is
a manifold, with smooth quotient map, ¢: X — Y . If the quotient map admits local
sections (so that X is a fiber bundle over Y '), then we have a bibundle

X xG

Y X
|

with the obvious induced actions. This bibundle, which is the bundlization (g) of
the induced quotient functor, is simultaneously a left- and right-principal bibundle
and hence Y and [X/G] are equivalent in Bibun. Conversely, if ¥ and [X/G] are
equivalent in Bibun, then the quotient map g: X — Y necessarily admits local sections.

Theorem 26 (Pronk [47]) There are canonical equivalences of bicategories between
Bibun, Stackp and LieGpd[W ~1], where Stackpre Is the 2—category of (presentable)
smooth stacks (in the surjective submersion topology) and LieGpd[W ~!] is the (derived)
localization of the 2—category of Lie groupoids, functors, and natural transformations
with respect to the essential equivalences.
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Remark 27 There is a forgetful 2—functor LieGpd — Gpd which forgets the topology
of the Lie groupoid. This functor sends essential equivalences to equivalences and hence
extends in an essentially unique way to a 2—functor Bibun — Gpd. This 2—functor is
product preserving.

2.3 Transversality for stacks

Definition 28 Let X, Y, Z be Lie groupoids and let G: X — Y and F: Z — Y be
two left-principal bibundles. F and G are transverse (written F ( G) if the maps
F — Y, and G — Y, are transverse.

This extends the usual notion of transversality for maps of spaces.
Lemma 29 Let X,Y, Z be Lie groupoids and let G: X — Y and F: Z — Y be
left-principal bibundles. If F th G then each of the four pairs of maps

(D) topg: Y; X“;’JF—>Y() and G — Y,

(2) F—>Yyandsop;: Y, x;gG — Yy,

(3) sopp: Y1 X;}ZF—) YO and G —)Y(),

4) F—Yyandtop;: Y, x;’O’G—>Y0

are transverse.

Proof By symmetry, it is enough to consider only the first two pairs of maps. Moreover,
the transversality of the first pair is easily seen to be equivalent to the second pair, thus
it is enough to prove that the first pair of maps are transverse. The map 7 o p;: Y3 X;OT
F — Y, factors through the action map

$,T
Y, Xy, F— F
which is surjective and surjective on tangent spaces. Therefore the images agree

d(t o p1)(T (Y1 Xy, F))=dt(TF), and the result follows. i

Recall that given a left principal bibundle G from the Lie groupoid X to the Lie
groupoid Y, we may form a right principal bibundle G from Y to X by flipping the
structure maps 7 and o and by using the inverse maps to switch left and right actions.

Lemma 30 If F h G, then the following coequalizer is a smooth manifold:

(_}'x;’;Yl xi;gF:}éxYOFeéoF.
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Proof This is a local question. For each point x € X, there exists an open neighbor-
hood U C X, and a map go: U — Yy, so that over U we have G|y =~ Y; x§;f" U.
Similarly, for each point in Zj, there exists a open neighborhood fy: V C Zj, a
map V — Y so that F|y = Y; xi,of 9 U . The transversality conditions ensure that fo
and g are also transverse. Locally the above equalizer is isomorphic to

8ot saf()
U><Y0 Y; Xy, |4

which is again a manifold by our transversality assumptions. a

A similar calculation shows that X xx, (GoF)x Zo Z1 is a smooth manifold. The
primary reason for introducing the notion of transversality between maps of spaces is
that it is a condition which ensures that pullbacks exist as smooth manifolds. The notion
of transversality introduced here generalizes this property to the bicategory Bibun.

Proposition 31 Let X, Z,Y be Lie groupoids and let G: X — Y and F: Z — Y
be two left-principal bibundles. If F and G are transverse then the pullback exists in
Bibun.

In the above proposition, pullback is meant as a weak categorical limit (also known
as bilimit) of the obvious diagram. See Street [62; 63] for details concerning such
limits. In this case, such a pullback consists of a Lie groupoid W, equipped with
bibundles P;: W — X and P,: W — Y, together with an isomorphism of bibundles
Go Py~ Fo P,: W— Y, which is universal for such Lie groupoids.

Proof of Proposition 31 We explicitly construct a pullback. The underlying Lie
groupoid is given as follows:

e objects Go F,
e morphisms X; xf\,g (GoF) x%; Zi,

with source map given by p, onto the middle factor and target given by the action.
Composition is given by the formula

(a.[g. f1.B)o (e [g", /'] B") = (@oc.[g. f1. BoB).

The identities and inverses are given by the obvious maps. Call this Lie groupoid T".
This Lie groupoid comes equipped with two smooth functors, which we regard as
bibundles. The first is a functor p;: I' — X and is given on objects by the natural
projection (G o F) — Xy. On morphisms it is also the projection

X x;(’g ((_?oF) x%g Z1— X;.
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One can check that this indeed defines a functor. The functor p,: I' — Z is defined
similarly. The bundlization of the first functor is a bibundle whose total space is
X1 xx,(Go F).

Composing the first map with the bibundle G we have
G o (X1 xx, (Go F)) =G xx, (Go F)
= (G xx, G)oF
~ (G Xy, Y1)o F
~G Xy, F,
where the later isomorphism follows from the simple transitivity of the Y action on G.

A similar calculation shows that composing the second map with F gives a canonically
isomorphic bibundle.

To prove that I" is the pullback, we must now check the universal property. In particular
given a Lie groupoid W and bibundles f: W — Z and g: W — X, together with an
isomorphism of bibundles ¢: Gog — Fo f, we must construct a bibundle P: W — T
and isomorphisms g =~ Py o P, f =~ P, o P. The total space of P is given by
P = g xy, f, with its canonical map to Wy, and diagonal action. We must construct
the projection to G o F.

The isomorphism ¢: G o g — F o [ is essential for this map. ¢ induces a map

GXX()gXVbe_)(Gog)XVbe%(Fof)XVVZ)fEFo(zl XZ()f)EFXZOf

Let (a,b) € g xw, f. Consider the image of a in X, under the projection g — Xj.
Choose a lift a € G — X, which always exists since G — Xy is a surjective map.
The above map says that given a, a, b, we get an element in b € F'.

We define the image of (a,b) € g Xy, f in G o F to be the equivalence class [@, 5]
The only ambiguity in this construction is the choice of the lift a. Since the action
of Y is simply transitive on G, the choices of a differ precisely by the action of Y .
Since ¢ is equivariant with respect to the Y —action, it follows that we have a well
defined element in G o F. Moreover since the lift & is given by a section of G — X,
which can locally be chosen to be smooth, the resulting projection map is smooth.

The left action on g Xy, f is given by the usual action map via
[Xl XXo (GOF) XZo Zl]xéoF[gXWo J[]’E (Xl XX()g)XVVb (Zl XZo f)_)gXI/Vb f

One can check that there are canonical isomorphisms g = Pyo P as desired f =~ P,o P,
and consequently that I" satisfies the universal property of a pullback. a
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Example 32 If X, Y, Z are manifolds, then transversality is transversality in the usual
sense and the pullback is the usual pullback. More generally if X and Z are manifolds
and Y =[W/(G] is a quotient Lie groupoid, then locally in X a bibundle to Y is given
by a G—equivariant map f: X x G — W, or equivalently by a map X — W . (This
is only the local picture. Globally these maps f are glued together by the action of G
on W. There is usually no global map.) If y € W is a point which is in the image of
the corresponding (local) maps f: X — W and g: Z — W, then transversality at y
is equivalent to the identity:

df (TxX) +dg(T:Z) + T, Og(y) = Ty W,
where Og(y) is the G —orbit through the point y.

Definition 33 A morphism F € Bibun(X, Y) is called representable if for all man-
ifolds M and all maps G € Bibun(M, Y), the pullback exists and is equivalent to a
manifold.

Example 34 Let X, Y, Z be Lie groups thought of as Lie groupoids with one object.
Then F and G are equivalent to group homomorphisms and are always transverse.
The pullback is the action groupoid of X x Z acting on the space Y by (x,z)-y =
G(x)yF(z)~ L.

Example 35 An important special case of the previous example is when X = pt
corresponds to the trivial group, and the homomorphism Z — Y corresponds to a
closed embedding of Lie groups. In this case the action is free and the quotient is a
manifold. Thus the groupoid of Z acting on Y is equivalent to the quotient space. In
this case the map Z — Y is representable.

Example 36 Let X = (X; = Xj) be a groupoid. We may view X, as a Lie groupoid
with only identity morphisms. Then there is the canonical bibundle Xy — X, which
is the bundlization of the inclusion functor Xy C X. If M is any manifold with a
bibundle F € Bibun(M, X'), then the pullback is canonically isomorphic to the total
space of F', viewed as a manifold. In particular, the pullback of X, with itself over X
is the space X7, thought of as a Lie groupoid with only identity morphisms.

Definition 37 Let F € Bibun(X,Y). F is a covering bibundle if it is representable
and the map t: F — Yj is a surjective submersion.

Remark 38 A bibundle F € Bibun(X, Y) such that the map 7: F — Y is a surjective
submersion is transverse to every bibundle G € Bibun(Z,Y).

Example 39 For any groupoid X = (X7 = Xj), the canonical bibundle from X,
to X is a covering bibundle.
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3 2-Groups in stacks

3.1 2-Groups

Groups are pervasive in all subjects of mathematics and are an important and well
studied subject. 2—Groups are a categorification of the notion of group, and have been
playing an increasingly important role in many areas of mathematics and even physics.
Recall the following slightly nonstandard but equivalent definition of a group. Let
(G, 1,-) be amonoid. We say G is a group if the map

GxG—->GxG
(x, )= (x,x-y)

is a bijection. The inverse of this map allows one to find an element g~! for each
element g such that gg—! = g~!g = 1. Categorifying this definition yields the most
succinct definition of 2—group of which I am aware.

Definition 40 A monoidal category (M, ®, 1,a,£,r) is a 2—group if the functor
(P1, ) M XM —>MxM

is an equivalence of categories, where pj is projection onto the first factor. The 2—
category of 2—groups is the full sub-bicategory of the bicategory of monoidal categories
whose objects consist of the 2—groups.

There are many equivalent descriptions of 2—groups which have arisen in various
branches of mathematics. While the precise history of 2—groups is too intricate and
convoluted to be done justice in this article, a few key highlights are in order. One
of the earliest appearances of 2—groups arose in topology, without the aid of (higher)
category theory. Since a 2—group is automatically a groupoid, its simplicial nerve will
be a Kan simplicial set. Hence the geometric realization of a 2—group is automatically a
homotopy 1-type (ie 7r; = 0 at all base points for all i > 1). The geometric realization
of a monoidal category is well known to be an A,—space, and for 2—groups it is
group-like. Thus it may be de-looped once to obtain a pointed connected homotopy
2—type B|M|. The (pointed) mapping spaces between pointed connected homotopy
2-types are automatically homotopy 1-types, and so by replacing the mapping space
with its fundamental groupoid we obtain a bicategory which captures essentially all the
homotopical information of homotopy 2-types. This bicategory is equivalent to the
bicategory of 2—groups, and so the study of pointed connected 2—-types (going back to
the work of Whitehead and Mac Lane in the 1940s and 1950s) can be regarded as one
of the earliest studies of 2—groups.
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It is well known that small monoidal categories can be strictified, that is replaced with
equivalent monoidal categories where associativity and unit identities are satisfied
on the nose. Doing this to a 2—group yields a so-called “categorical group”, ie a
(strict) group object in categories. A construction, known in the 1960s, shows that
such categorical groups are essentially the same thing as crossed modules, a concept
introduced by J HC Whitehead in 1946 and later used by Whitehead and Mac Lane to
classify pointed connected homotopy 2-types.

Finally, another method of studying 2—groups is via skeletalization (introduced for
2—groups in [5]) in which the 2—group is replaced by an equivalent 2—group which is
skeletal®. This yields a particularly simple description of each 2—group in terms of
invariants: two ordinary groups 1y, 75, and certain other data known collectively as the
k-invariant. This classification is in direct correspondence with the usual classification
of connected pointed 2—types in terms of Postnikov data.

3.2 2-Groups in general bicategories

Monoid and group objects can be defined in any category with finite products, and a
similar statement holds true for 2—groups. Following Baez and Lauda [5] we introduce
2—group objects in arbitrary bicategories with finite products. Such a “2—group” consists
of an object, G, together with a multiplication 1-morphism m: G x G — G, a unit
1-morphism e: 1 — G, and several coherence 2—isomorphisms. Additionally it must
satisfy a property which ensures that a coherent inverse map may be chosen. This is
essentially a mild generalization of the definition of “coherent 2—group objects” defined
in [5], modified to make sense in an arbitrary bicategory.

Definition 41 [5] Let C be a bicategory with finite products. A 2—group in C consists
of an object G together with 1-morphisms e: 1 - G, m: G x G — G, and invertible
2—morphisms

a: mo (m xid) — mo (id xm)

£: mo(exid) —id

r:mo(id xe) —id
such that (p1,m):GxG—->GxG

is an equivalence in C and the diagrams in Figures 1 and 2 commute.

The names of these diagrams have been chosen so as to correspond to the names of
diagrams when C is a strict 2—category. Thus the “pentagon” identity is no longer

9 A category C is skeletal if for all objects x, y € C, the property x = y implies x = y.
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[m o (id xm)] o (m x id x id) ———— [m o (m x id)] o (id x id xm)

ao(mxid x id) ao(id x id xm)
[m o (m xid)] o (m x id x id) [m o (id xm)] o (id x id xm)
m o [(m x id) i (m x id x id)] m o[(id xn) i (id x id xm)]
mo(axid) mo(id xa)
m o[(m x id) o (id xm x id)] m o[(id xm) o (id xm x id)]
[m o (m x id)]lo (id xm x id) [m o (id xm)]To (id xm x id)

\_/

ao(id xmxid)

Figure 1: The “pentagon” identity

ao(id xexid)

[m o (m xid)] o (id xe x id) [m o (id xm)] o (id xe x id)
T 1
mo[(mo (id xe)) x id] mo[id x(m o (e xid))]
m o (id x id)

Figure 2: The “triangle” identity

pentagonal in shape. The unlabeled arrows are the canonical isomorphisms given from
associativity and products in C.

Just as the notion of 2—group presented in [5] extends to an arbitrary bicategory C,
so too do the notions of homomorphism and 2—homomorphism. Homomorphisms
and 2-homomorphisms compose making a bicategory of 2—groups in C. A direct
calculation shows that all 2—homomorphisms are invertible!°.

10Thus the category of 2—groups is an example of an (oo, 1)—category.
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Definition 42 Let G and G’ be 2—groups in C. A homomorphism of 2—groups
G — G’ consists of

e a l-morphism F: G — G’,
e 2—isomorphisms Fy: m' o (Fx F) — Fom and Fy: ¢/ — Foe

such that the three diagrams in Figures 3, 4 and 5 commute. In these diagrams the unla-
beled arrows are the canonical isomorphisms given from associativity and products in C.

m’o(F2><F)

m' o[(m o (Fx F))x F] ——— m’ o[(Fom) X F]
/ N\
[m o (m’' xid)]o (F x F X F) [m’ o (F x F)]o (m xid)
a’o(FxFxF) F>o(mxid)
[m’ o (id xm')]o (F x F x F) [F om]o (m xid)
\ A
m' o [F x (m’ o (F x F)] Folmo(mxid)]
m’o(FxF5) Foa
m' o[F x (F om)] Fo[mo (id xm)]
N\ /
' o (F x F)]o (id xim) ———ss [F o] o (id xm)

Figure 3: Axiom 1 for 2—group homomorphisms

Definition 43 Given two homomorphisms F, K: G — G’ between 2—groups in C,
a 2-homomorphism 6: F = K is a 2—morphism such that the diagrams in Figure 6
commute.

Definition 44 Let C be a bicategory with finite products and G be a 2—group in C.
Let X be an object in C. A (left) G—action on X consists of
e a l-morphism f: Gx X — X,
e invertible 2—morphisms
ag: fo(mxid) — fo(idxf)
Lr: fo(exid) —id

such that the diagrams in Figures 7 and 8 commute.
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{’o(id; X F)
[m' o (e’ xid)]o (id; X F) (id; xF)
! T
[m’ o (id x F)]o (¢’ xid) Foid
[m’o(id x F)]o(Fo xid) Fot
[m’ o (id x F)]o[(F oe) xid] Fo[mo (e xid)]
N\ /
[m’o(FXF)]o(eXid)W[Fom]o(exid)

Figure 4: Axiom 2 for 2—group homomorphisms

r’o(Fxidy)
[ o (id xe')] o (F x id}) ido(F xid;)
! T

[’ o (F x id)] o (id xe’) Foid

[m’o(F xid)]o(id X F) For
[m' o (F xid)]o[id x(F o e)] F o[mo (id xe)]
N\ /
[m' o (F x F)]o (id xe) oo [F om]o (id xe)

Figure 5: Axiom 3 for 2—group homomorphisms

Definition 45 Let C be a bicategory with finite products, G a 2—group in C and X
and Y two objects in C equipped with G —actions. A G —equivariant 1—-morphism
from X to Y consists of

e a l-morphism g: X - Y in C,
e invertible 2—isomorphisms ¢: fy o(1xg) — go fy in C

such that the diagrams in Figure 9 and Figure 10 commute.
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m’o(0x86)
m’ o (F x F) m’ o (K x K)
Fom P Kom Foe—>Koe
om

Figure 6: Axioms of 2—homomorphisms

[fo(dx f)]o(mxidxidy) —— [f o(m xidy)]o (idxid x f)

afo(mxidxid)/ Yo(idxidxf)

[f o (m x id)] o (m x id x id) [f o(id x /)] o (id x id x f)
fO[(m0(n£><id))><id] fO[idX(fi(idyXf))]
fo(axid)\ /o(id xar)

f ol(mo (idxm)) xid] folidx(f o(mxid))]
[fo(mxid)]otdyxmxidy) [fo(idxf)]z(idxmxid)

\_/

aro(id xmxid)

Figure 7: The “pentagon” identity for 2—group actions

[ o (m x idyy)]o (id xe xid) — 20D 1 Gidx )]0 (idy x e xid)
T 1
S o[(mo(id xe)) x idy] Solidy x (fo(exidy))]
fm Am
1o (id x id)

Figure 8: The “triangle” identity for 2—group actions
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Jyol(mo(Ix1))xg] ———— fro[(lom)xg]

/ N\
[fy o(mxid)]o(1x1xg) [fy o(1x g)]o(mxidy)
afYO(FXFXF) ‘ ‘q&o(mxid)
[fy o(idx fy)]o(1x1xg) [g o fx]o(mxid)
l l
Jrol[l x(fyo(1xg))] golfxyo(mxidy)]
‘fYO(Iqu) goayy ‘
Jy o[l x(go fx)] go[fxo(idy x fx)]
N /
[fyo(1xg)]o(idy x fx) ey [go fx]o(idyy X fx)

Figure 9: Axiom 1 of equivariant 1—-morphism

ng o (id xg)

T

[fy o (e xidy)]o(idxg) (idxg)
l T
[fy o (idxg)]o (e xidy) goidy
l )[Foéfx
[fy o (idy x g)]o[(1oe) xid] golfxo(exidy)]
N /
[fy o (I x g)]o(exid) ooy [go fx]o(exid)

Figure 10: Axiom 2 of equivariant 1—morphism
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Definition 46 Given two G —equivariant 1-morphisms g, g’: X — Y, an equivariant
2—morphism p: g — g’ is a 2—isomorphism such that the following square commutes:

Sro(1xp)

fro(lxg) Sro(lxg)
ﬂ l‘”’
go fx g'ofx
po fx

3.3 Abelian groups in bicategories

The description in terms of monoidal categories makes it clear that there are two related
notions of 2—group which generalize the notion of abelian group: braided 2—groups
and symmetric 2—groups. In this work we will only be interested in the later, most
highly commutative structure. A braided monoidal category is a monoidal category
G, equipped with natural isomorphisms By ,: X ® y — y ® x, which satisfy the
requirement that two different hexagonal diagrams commute. A symmetric monoidal
category further satisfies the condition: Bx, ,By x =idy.

Following the discussion in Joyal and Street [32], if the above symmetry equation
is satisfied, then the hexagonal diagrams become redundant: only one is necessary,
the other is a consequence. Thus if one were interested only in defining symmetric
monoidal categories and not braided monoidal categories, one could omit one of the
hexagonal diagrams from the definition. This is the approach we take here.

Definition 47 Let C be a bicategory with finite products. An abelian 2—group
in C consists of a 2—group (G, e,m, I,a,£,r) in C, together with a 2—isomorphism
B:m—>mot,where 7: G XxG — G x G is the “flip” 1-morphism in C, such that the
diagrams in Figure 11 and Figure 12 commute (in these figures the unlabeled arrows
are canonical 2—morphisms from C).

Bot
mot —— (mot)ot

|

m —-— > m

Figure 11: Axiom 1 of abelian 2—group
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[mot]o(l xm)

ﬂV \

mo (1 xm) [mo(mx 1)]o[(1x7)o(tx1)]
a T ao[(1xt)o(rx1)] l
mo(mx1) [mo(1xm)]o[(1x7)o(rx1)]
lmO(Bxl) T
mo(mot]x1) [mo(1x (mot)|ofrxI]
\ mo(lxﬁ)]o[rxl]/
[mo(mx 1)]o[rx 1] [mo(1xm)]o[rx 1]
~
aol[tx1]

Figure 12: Axiom 2 of abelian 2—group

Definition 48 Let G and G’ be abelian 2—groups in C. A homomorphism of abelian
2—groups consists of a homomorphism (F, Fy, Fy): G — G’ of underlying groups
such that the following diagram commutes:

[m ot]o(F X F)
ﬁ’o(Fy \

m’ o (F x F) [m o(F x F)lot
le lFZOt
Fom [Fom]ot

Fo[mort]

A 2—homomorphism between homomorphisms of abelian 2—groups in C consists of a
2—homomorphism of underlying homomorphisms of groups in C.

Remark 49 2-Groups and abelian 2—groups in bicategories are defined diagrammat-
ically. Thus if 4: C — C’ is a product preserving 2—functor and G is an (abelian)
2—group object in C, then /(G) is canonically an (abelian) 2—group object in C’.
Similarly, /2 sends G —objects in C to /i (G)—objects in C'.
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3.4 2-Groups as a localization

The bicategory of 2—groups (in Cat) admits a succinct description as a localization of
the bicategory of monoidal groupoids (and hence also as a localization of monoidal
categories). This description will play a small technical role in this paper and so
we offer a brief summary of this approach and a proof of its equivalence to the one
already introduced (Definition 40). Along the way we will encounter several equivalent
descriptions of 2—groups.

Definition 50 A monoidal category M admits functorial inverses if there exists a
functor i: M — M and a natural isomorphism x ® i (x) = 1. A choice of functo-
rial inverses shall refer to a specific choice of functor i and corresponding natural
isomorphism.

Lemma 51 If M is a monoidal category which admits functorial inverses, then for
any choice of functorial inverses i there is a natural isomorphism i%(x) = x.

Proof i’(x)=1®i’(x)=(xQi(x)®i’(x)2xQ((x)®i*(x)=x®1x=x. O

Lemma 52 If M is a monoidal category which admits functorial inverses, then the
underlying category of M is a groupoid.

Proof Let f: x — y be a morphism in M . Its inverse f~!: y — x is given by the
composition

SThy=it() = (i) ®i%(y)

LEDEL @i () ®20) 2 x @ () ® () = ¥

of natural morphisms. a

Lemma 53 If M is a monoidal category admitting functorial inverses and f: x — x’
is a morphism in M , then for all objects y,z € M the following maps are bijections:

)& /f:C(r.2) > Crex,zex),
f®(=):C(yz)—>Cx®y x' ®:2).
Proof The inverse to the first bijection is obtained by choosing a functorial inverse i,
applying the functor (—)®i( /'), and using the natural isomorphisms y = (y ®x) ®i (x)

and z = (z ® x’) ® i (x”). The inverse to the second is obtained similarly, making use
of the isomorphism i2(x) = x. a
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The bicategory of monoidal categories admits all small weak colimits. This can
be seen, for example, by observing that the bicategory of monoidal categories is
equivalent to the bicategory of algebras for a 2—monad on the bicategory of categories;
see Blackwell, Kelly and Power [11, Section 6]. Similarly the bicategory Gpd® of
monoidal groupoids (ie of those monoidal categories whose underlying categories are
groupoids) is equivalent to the bicategory of algebras for the same 2—monad restricted
to the bicategory of groupoids. All the 2—morphisms of Gpd® are invertible, hence it
fits into the formalism of (co, 1)—categories as considered by Lurie [40; 39], and we
may therefore bring to bear the sophisticated machinery developed in those sources in
our study of 2—groups. In particular Gpd® is presentable in the sense of [40, Definition
5.5.0.1]. We will see the relevance of this shortly.

Any monoid may be regarded as a monoidal groupoid in which all morphisms are
identity morphism and where the monoidal structure is given by multiplication in the
monoid. The natural numbers N, viewed as a monoidal category in this way, are free in
the sense that the we have a natural equivalence of categories hom(N, C) >~ C for any
monoidal category C, where hom(A4, B) denotes the category of monoidal functors
from A to B.

Definition 54 Define the monoidal category [ as the weak pushout in the following
diagram of monoidal categories.

(55) J U } J

The inclusion N x 0 — N x N induces a map of monoidal categories s: N — .

Definition 56 A monoidal category M is s—local if the induced functor
s*: MF =hom(F, M) - hom(N, M) ~ M

is an equivalence of categories.

Theorem 57 For a monoidal category M the following conditions are equivalent:

(1) M isa2-group (ie (p1,R): M x M — M x M is an equivalence).
(2) M is s—local.

(3) M admits tunctorial inverses.
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Proof Let M be a monoidal category. Applying hom(—, M) to the commutative
diagram in Equation (55) we obtain the first of the following pair of weak pullback
squares of categories:

®
M~ MN — M x M~ MN<N NI VANV

R

0 MF — M

If M is a 2—group, then these pullback squares are equivalent via the equivalence
(p1.®): M x M — M x M . Thus the natural map s*: M¥ — M is an equivalence,
and so 2—groups are s—local.

By construction, a functor F — M 1is equivalent to a pair of objects x, X € M together
with an equivalence a: x ® X 2 1. The functor s*: M¥ — M sends the triple (x, X, &r)
to the object x. If M is s—local then we have an inverse equivalence M — M | and
hence a functorial choice of inverse x for every object x € M . In other words, M
admits functorial inverses.

Finally, suppose that M admits functorial inverses. We wish to show that M is a
2—group, ie that the natural functor (p;,®): M x M — M x M is an equivalence
of categories. Given a monoidal category C, the collection of isomorphism classes
of objects, moC, is a monoid. For a category which admits functorial inverses, M ,
the monoid oM is a group, and hence (p;, ®) is a bijection on isomorphism classes
of objects. It remains to show that (p;, ®) is fully faithful, ie that for all objects
x, y,x’,y’ € M, the natural map

M, ) x M, y) > Mx, ) xMxex',yy)

is a bijection. This in turn is equivalent to the statement that for each f: x — y, the
map f ® (—): M(x',y') - M(x ® x’,y ® y’) is a bijection, which is part of the
statement of Lemma 53. O

Remark 58 Examining the last part of the above proof and the proof of Lemma 53,
one observes that if the underlying category of M is a groupoid, then (p;, ®) is an
equivalence (and hence M is a 2—group) precisely if mgM is a group. Thus our
definition agrees with the notion of “weak 2—group” given in [5, Definition 2]. This
characterization allows one to deduce that [ itself is a 2—group: F is a monoidal
groupoid, being a colimit of such, and moreover 7glF =~ Z is a group (this last fol-
lows from the definition of F and from the fact that 7y sends colimits of monoidal
groupoids to colimits of monoids). Finally, using the skeletal classification of 2—groups
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[5, Section 8.3] and the universal property that MF ~ M for all 2—groups M , one
may deduce the monoidal equivalence ' >~ 7. Alternatively, one may simply compute
the pushout defining IF and deduce this equivalence. We will not make use of this in
what follows.

Corollary 59 The bicategory of 2—groups is cocomplete, the inclusion of 2—groups
into monoidal groupoids admits a weak left adjoint, and this adjunction is 2—monadic.

Proof By the above theorem, 2—groups are precisely the s—local objects of Gpd®.
Since this later is a presentable (oo, 1)—category, the first two claims are direct state-
ments from [40, Proposition 5.5.4.15], from which it also follows that 2—groups form
a strongly reflective sub-bicategory of Gpd® [40, page 482].

The final statement follows from general principles as the localizing adjunction from any
presentable (oo, 1)—category to a strongly reflective sub—(oo, 1)—category is monadic.
This is classical for ordinary categories and an identical argument applies to the higher
categorical setting, as follows. Let i: 2 Grp — Gpd® be the inclusion functor, L its
left adjoint and T =i L the corresponding 2—monad. Then for every 2—group X, the
adjunction induces the structure of a T'—algebra on i X'. Moreover, since i is fully
faithful, any 7 —algebra structure on i X is equivalent to this canonical one. Thus it
is sufficient to show that if Y is an arbitrary 7 —algebra, then Y is in fact a 2—group.
This follows since for any 7T —algebra Y the structure morphism /: TY — Y is an
equivalence, with inverse ny: Y — TY . O

Corollary 60 The forgetful functor from 2—groups to groupoids admits a weak left
adjoint and the resulting adjunction is 2—monadic.

Proof The composition of 2—monadic adjunctions remains 2—monadic, and so the
statement follows from the previous corollary and from the fact that the forgetful
functor from monoidal groupoids to groupoids is part of a 2—monadic adjunction [11,
Section 6]. O

The results of this section can be applied to 2—groups in a bicategory C much more
general then C = Cat. Let S be an essentially small category!!. Let C be a localization
(ie reflexive sub-bicategory) of the functor bicategory Fun(S°P, Gpd). For each object
U €S, let Ly: Gpd — C be the left-adjoint to evaluation at U . Let C® denote the bicat-
egory of monoidal objects in C.'? The functor Ly induces a functor Lg: Gpd® — C®.,

1 The following construction works when S is an essentially small bicategory, but we will only need
the case where S is an ordinary category.

12These are defined identically to 2—groups in C, except for the requirement that (py,m): M x M —
M x M is an equivalence.
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Let sy: Ly(N) — Ly (Z) denote the canonical map of objects in C®. An object of
C® is S—local if it is local with respect to all sy .!3

Theorem 61 Let C be a localization of Fun(S°, Gpd), as above, and let M € C®.
Then the following statements are equivalent:

(1) M isa?2-groupin C.

(2) M(U) is a 2—group (in Gpd) for every object U €S.

(3) M (U) admits functorial inverses for every objectin U €S.
(4) M) is s—local for every objectin U €S.

(5) M is an S —local object of C®.

Moreover the adjunction F: C <5 2 Grp(C) :U (induced by the forgetful functor from
2 Grp(C) to C) is monadic.

Proof The equivalences (1)< (2) and (4) < (5) follow from the bicategorical Yoneda
lemma, and the fact that C is a full sub-bicategory of Fun(S°P, Gpd). The equivalences
(2)< (3) < (4) follow from Theorem 57. The proof of Corollaries 59 and 60 carry over
immediately to show the final statement. |

Example 62 The category C = Stack of all stacks (not necessarily presentable) on
the site S = Man of smooth manifolds with the surjective submersion topology is a
localization of Fun(Man®?, Gpd). Hence the adjunction F: Stack % 2 Grp(Stack) :U
between stacks and 2—groups in stacks is monadic.

3.5 Smooth 2-groups and gerbes

We now specialize to the case C = Bibun, the bicategory of Lie groupoids, bibundles,
and bibundle morphisms. We will also refer to the objects of Bibun as smooth stacks.

Definition 63 A smooth 2—group (resp. smooth abelian 2—group) is a 2—group object
(resp. abelian 2—group object) in Bibun. Let G be a smooth 2—group. Then a smooth
G-stack X is a G-object in Bibun. Similarly, if X is a smooth stack, a smooth
2—group over X is a group object of Bibun /X . Let G be a smooth 2—group over X,
then a smooth G —stack over X is a G—object in Bibun /X .

3Since S is essentially small, the S —local objects of C are a further reflexive sub-bicategory of
Fun(S°P, Gpd).
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Remark 64 If X is a discrete space, then any surjective submersion P — X admits
a global section. Hence a bibundle whose source is a discrete groupoid is equivalent to
one arising from a functor (see Proposition 23). In particular we have that the composite
2—functor Gpd < LieGpd — Bibun is fully faithful. Thus any smooth 2—group whose
underlying Lie groupoid is discrete arises from a discrete 2—group and we may regard
the theory of discrete 2—groups as a special case of smooth 2—groups.

Example 65 (Lie groups) Let G be a Lie group, viewed as a Lie groupoid with only
identity morphisms. Then G is a smooth 2—group with monoidal structure coming
from the multiplication in G'.

Example 66 (Abelian Lie groups) Let A be an abelian Lie group. Let [pt/A] denote
the Lie groupoid with a single object and with automorphism of this object equal to A4.
Since A is a abelian, addition is a group homomorphism 4 x A — A. Thus addition
equips [pt/A] with a monoidal structure. Moreover, there is a (trivial) braiding making
this into a smooth abelian 2—group.

Example 67 (Crossed modules) A crossed module of Lie groups, 8: H — G, is
well known to be equivalent to a group object in the category of Lie groups. Thus a
crossed module gives rise to a Lie 2—group (and hence a smooth 2—group) in which
the associator and unitor structures are trivial. The translation from a crossed module
to a Lie 2—group is as follows; see [5]. The objects consist of the manifold G'. The
morphisms consist of the manifold G x H. The source map is projection onto the
G —factor. The target map is given by

1(g.h) =g-p(h).

Composition is given by (gg, ho) o (gB(ho), h1) = (g, hohy). Viewing the morphisms
as the group G x H, both the source and target maps are group homomorphisms.
Group multiplication in G and G x H equip this Lie groupoid with a strict monoidal
structure, with strict inverses. The underlying stack of this smooth 2—group is the
quotient stack [G/H].

A particularly important example of such a crossed module is H — Aut(H), sending
an element to the conjugation automorphism. The corresponding smooth 2—group
[Aut(H)/H] plays a key role in the theory of nonabelian bundle gerbes described in [3],
to which we will turn shortly.

Example 68 (Smooth cocycles) Let G be a Lie group and 4 an abelian Lie group
equipped with an action of G. Let a € Z3(G, A) be a smooth normalized group
cocycle. Following [5] we may form the following smooth 2—group I' = (G, 4, a).
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The objects of T' consist of the manifold G, the morphisms are the space G x 4.
There are no morphisms from an element g to g’, unless g = ¢’. In this case the
morphisms are identified with A, which is the fiber of the projection map G x 4 — A.
The monoidal structure is given by group multiplication at the level of objects and
by the multiplication in the group G x A4 at the level of morphisms. This is a strictly
associative multiplication. Nevertheless, we equip I" with the nontrivial associator
determined by a. This determines the unitor and inversion structures up to natural
isomorphism.

Given a object X € Bibun we can consider the product 2—functor
(=) x X: Bibun — Bibun / X.

This is product preserving, and sends any smooth 2—group to a smooth 2—group over X .
If G is a smooth 2—group, then by a smooth G —stack over X we will mean a smooth
G x X—stack over X. If U — X is any surjective submersion, then the pullback
functor

Bibun /X — Bibun /U

is product preserving as well, hence sends smooth G —stacks over X to smooth G—
stacks over U .

Example 69 Let A, B, and C be smooth 2—group, let f: A — B and g: B — C
be homomorphisms. Then f gives B the structure of a smooth A-stack. Moreover, if
¢: gf — 0 is a 2-homomorphism, then the action of 4 on B induced by f may be
canonically augmented via ¢ to an action over C. Hence in this case B is an A—object
over C.

Definition 70 (Principal bundles) Let G be a smooth 2—group. A smooth G —stack Y
over X is a G—principal bundle if it is locally trivial as a G —stack, ie there exists a
covering bibundle f: U — X such that /*Y is G -equivariantly equivalent to U x G
as a smooth G —stack over U.

Example 71 (Ordinary principal bundles) Let G be a Lie group, thought of as a
smooth 2—group with only identity morphisms. Let X be a manifold thought of as a
Lie groupoid with only identity morphisms. Then a G —principal bundle over X is the
same as a G —principal bundle over X in the usual sense.

Example 72 (Abelian cocycle data) Let A be an abelian Lie group, X a manifold.

Let Y — X be a surjective submersion, and fix a Cech 2—cocycle A: YRl =y xy
Y xx ¥ — A. We construct a [pt/A]—principal bundle E* over X as follows. The
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objects of E* consist of the manifold Y . The morphisms of E* consist of the manifold
yi2x 4. Composition is given by the formula

E} xy E} - E}
(Yo, y1,a) X (¥1, y2,b) = (Yo, y2,a+ b+ A(yo. y1, y2))-

This is readily seen to be a Lie groupoid equipped with a map to X and an [pt/A4]-
action over X . The pullback of E* along ¥ — X is a trivial [pt/4]-space over Y,
so that E* is indeed a principal bundle.

Example 73 (Abelian bundle gerbes) More generally, an A—bundle gerbe over X
in the sense of Murray [45] is an [pt/A]-principal bundle over X'. Let A4 be an
abelian Lie group, X a manifold. An A—bundle gerbe over X consists of ¥ — X a
surjective submersion, L — v an A-principal bundle, together with an isomorphism
of A—principal bundles over Y3,

M dXL®qdiL—dFL,

such that the induced map dA: Y4l — A is trivial. From this we construct an [pt/4]—
principal bundle E* over X as follows. The objects of E* are the manifold Y . The
morphisms are the elements of the manifold L, with source and target maps induced
from the maps

LYy

Composition is induced from the map A, and is associative because dA = 0. There
exists a covering ¢: U — Y such that the induced A-bundle ¢*L — U (2] s trivial,
and pulling E* back to U consequently yields a trivial [pt/A]—stack over U .

The last example can be given a more conceptual description. Just as maps from a
space to a topological group again form a group, maps from a manifold to a smooth
2—group form a 2—group. A map from a manifold Z to the 2—group [pt/A4] consists
precisely of an A-bundle L over Z. The (2-)group structure is given by tensoring
A-bundles. Thus the above abelian bundle gerbe data consists of a map of stacks
L: Y21 - [pt/A], together with an isomorphism of bibundles A: dL — 0 from Y[!
to [pt/A], such that d is the canonical isomorphism d2L 2 0 of bibundles from ¥ 4]

to [pt/A].

Example 74 (Classical nonabelian bundle gerbes) The classical data of a nonabelian
bundle gerbe as described in [3] consists of a nonabelian Lie group H, a manifold X,
a surjective submersion Y, a bibundle £ from Y2 to the smooth crossed module
2—group [Aut(H)/H] from Example 67, and an isomorphism of bibundles A: d& — 1
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from Y[3] to [Aut(H)/H], such that dX is the canonical isomorphism d2€ = 0 of
bibundles from Y4l to [Aut(H)/A].

This can be made into an [Aut(H )/ H]—principal bundle over X in a manner analogous
to the above constructions. The objects of this Lie groupoid are the manifold Y x
Aut(H), and the morphisms are the manifold £ x Aut(H). Composition is defined
using the above structures and there is an induced action of [Aut(H)/H]. By choosing
a covering of Y appropriately (so that the pullback of £ can be trivialized) we see that
this yields a principal bundle over X .

One of the advantages of using the bicategory Bibun to define the notion of gerbe is that
it automatically produces the correct notion of equivalence of gerbe over X . To see this,
consider a covering U — X and the corresponding Cech groupoid Xy = (U 2l 3 ).
There is a canonical functor Xyy — X given by projection. This functor is almost never
an equivalence in LieGpd; see Example 8. However, the bundlization is always an
invertible bibundle. It is an equivalence in Bibun. For this reason the stable equivalences
which need to be formally inverted in the approaches given in [45; 3], correspond
to honest equivalences of G —stacks over X. This approach is similar to the ones
presented in [9; 8].

In the last section of this paper we will provide a model of the String group as a smooth
2—group which is not of the form of the Examples 65, 66, 67 or 68. Nevertheless,
the above material allows us to discuss principal String(n)-bundles over a given
manifold X . The notion of string structure introduced in [64] yields such a principal
String(n)-bundle for the model of String(n) constructed in the final section of this

paper.
3.6 Extensions of 2—groups

Definition 75 An extension of a smooth 2—group G by a smooth 2—group A consists
of a smooth 2—group E, a homomorphisms f: A — E, a homomorphism g: £ — G,
and a 2-homomorphism ¢: gf — 0, such that £ is an A—principal bundle over G .

Lemma 76 For any extension of smooth 2—groups as above, the following diagram is
a (homotopy) pullback in the bicategory of smooth 2—groups.

A - / E
(77) j o j ¢
0 G
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Proof The forgetful functor from smooth 2—groups to stacks reflects equivalences
and is a (weak) right adjoint, hence preserves (homotopy) pullbacks. Since A4 is the
pullback in stacks, it follows that A4 is also the pullback in smooth 2—groups. a

There is an obvious generalization to extensions of smooth abelian 2—groups. In that
context, the above square is also a pushout square. In the nonabelian setting this fails,
a fact which was graciously pointed out to us by an anonymous reviewer. Nevertheless,
the above square does satisfy a closely related universal property, which we now
formulate.

Definition 78 A kernel square of smooth 2—groups consists of a pullback diagram

f
X'_ Y
e
0

Z

ie homomorphisms f: X — Y, g: ¥ — Z, and a 2-homomorphism ¢: gf =0, in
which X is the pullback.
The 1-morphisms and 2—morphisms of kernel squares are the obvious ones for diagrams

in bicategories. Given an extension of smooth 2—groups A i(> ES G, we may consider
the sub-bicategory KS( /) of kernel squares

Al_ ! E
Tl
0 Z

and those 1-morphisms and 2-morphism which restrict to the identity of f: 4 — E.

Proposition 79 Given an extension A — E — G of smooth 2—groups as above, the
kernel square A — E — G is the initial object of KS(f).

Before proving the above proposition, we must first introduce a technical lemma.

Lemma 80 If A — E — G is an extension of smooth 2—groups, then the induced
augmented simplicial object in smooth 2—groups

G EEExgE &= ExgEXxgE---

is a (homotopy) colimit diagram.
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Proof of Proposition 79, assuming Lemma 80 Let £° denote the simplicial 2—group
in stacks,
EE EXGgE &= EXgEXgE---.

Given a kernel square 4 — E — X, there exists a 2—homomorphism from E® to the
constant simplicial object X, which agrees with the given homomorphism £ — X
on the zero™ objects. Moreover the category of such 2—homomorphisms of simplicial
objects is contractible. This can be seen, for example, by identifying the A—stack
Exg-+Xg E withthe A-stack Ex Ax---x A.

Thus, by Lemma 80, the homomorphism E — X factors uniquely through the ho-
momorphism £ — G. Because both 4 — EF — G and A — E — X are pullback
squares, this extends to an essentially unique morphism of kernel squares. a

It remains to prove Lemma 80. Up to this point we have been primarily concerned with
2—groups in the bicategory of presentable stacks in the surjective submersion topology
on smooth manifolds. It is surely possible to provide a direct proof of Lemma 80
entirely within this bicategory. However, for the sake of brevity, we will now also
contemplate the bicategory Stack of all stacks for the surjective submersion topology
on manifolds. In other words, Stack is the bicategory of all fibered categories over
Man (fibered in groupoids) which satisfy stack descent with respect to the surjective
submersion topology.

Unlike Bibun this larger bicategory is complete and cocomplete (in the higher categori-
cal sense), and there exists a monadic adjunction

F: Stack 2 2 Grp(Stack) :U

between stacks and the bicategory of 2—groups in stacks (see Example 62). Thus we
may now apply the higher categorical Barr-Beck Theorem [39, Theorem 3.4.5], which
has the following corollary.

Corollary 81 Let F: C 2 D:U be a monadic adjunction of bicategories (for example
C = Stack and D = 2 Grp(Stack) ). Then for any object X € D, the colimit of the
simplicial object FU®(X) exists in D and agrees with the object X .

Proof This follows immediately from [39, Theorem 3.4.5], as the augmented simplicial
object X < FU*(X) is U —split. a

Proof of Lemma 80 Consider the augmented simplicial object

G+ EE EXgE &= EXgEXgE---
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which we write G < E*®. Because E is an A—principal bundle over G, the diagram
U(G) < U(E?®) is a colimit diagram in Stack (and hence in presentable stacks). Since
F is a left adjoint, it preserves colimits. Hence the diagram FU(G) < FU(E®) is a
colimit diagram in 2—groups in stacks.

We may now consider the bisimplicial diagram of 2—groups in stacks { FU?(E [‘1])},
where El) = Exg---xg E, g—times. We may compute the colimit of this diagram in
two ways, each consisting of two steps. We may first take the colimit in the p—direction,
after which we obtain the simplicial diagram E*®. Hence the colimit of this bisimplicial
2—group is precisely the colimit of E*°.

On the other hand, we may instead take the colimit first in the g—direction. For each
fixed p, this is the colimit of FUP(E*®), which we have already observed is FU?(G).
Thus the colimit of this bisimplicial 2—group is also the colimit of the simplicial
diagram FU®(G). By Corollary 81, this is precisely G. o

Given a smooth abelian 2—group A and a smooth 2—group G the central extensions of
G by A form a bicategory Ext(G; A). A 1-morphism of extensions (E, f, g,¢) —
(E', f',g',¢"), consists of an equivalence of 2—groups h: E — E’, together with
2—isomorphisms «: Af =~ f’ and B: g’h =~ g, such that the following pasting diagram
is the identity:

0

m
S B8

A\hj

Q

E
Jo’

=
)

The 2-morphisms in Ext(G; [pt/A]) are given by 2—isomorphisms y: & — /', such
that @ = o’ o (Y *idys) and B = B’ o (ifgy * ). By construction the bicategory
Ext(G; A) is contravariantly 2—functorial in G, covariantly 2—functorial in 4, and
commutes with products. Thus the usual Baer sum operation equips Ext(G; A) with
the structure of a symmetric monoidal bicategory (see Gordon, Power and Street [22],
Kapranov and Voevodsky [35; 34], Baez and Nuechl [6], Day and Street [16] and the
author’s thesis [54, Chapter 3]).

Since the 2—category of discrete 2—groups embeds into the bicategory of smooth
2—groups (see Remark 64) this gives a notion of extension of discrete 2—groups. Just
as the theory of discrete groups is more elementary then the theory of topological
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groups, so too the theory of discrete 2—groups is easier then the theory of topological
(or smooth) 2—groups. Nevertheless, we can learn many things by comparing these two
settings. For example, extensions of groups G by abelian groups A4 are categorized
according to the induced action of G on A. In the topological setting, such actions
are more problematic because such an action should be required to be a continuous
homomorphism G — Aut(A4), where this latter group is the group of continuous
automorphisms of A. This is defined using the internal hom for topological spaces.

While this doesn’t pose a significant problem for finite-dimensional Lie groups, there
are further issues to contend with in the case of smooth stacks. Noohi [46] and
Carchedi [14] have independently gone to some pains to understand conditions under
which internal homs exist in the setting of topological stacks.'# The smooth situation
is likely more difficult.

These difficulties disappear in the discrete setting, where internal homs for the 2—
category of groupoids are well known to exist. Even though the general theory of smooth
actions of groups presents problems, it is still possible to define central extensions
merely by comparing with the discrete case. An extension of topological groups
A — E — G is a central extension precisely when it is a central extension of discrete
groups, after forgetting the topology. We will employ the same strategy to define central
extensions of smooth 2—groups.

Lemma 82 Given an extension of discrete 2—groups A — B — C with A an abelian
2 —group, there exists a homomorphism of 2—groups C — Aut(A), unique up to unique
2 —homomorphism, where Aut(A) is the automorphism 2—group of A.

Proof Let f: A— B, g: B— C, and ¢: gf — 0 be the homomorphisms and 2—
homomorphism of the extension of 2—groups. Choose a functorial assignment b b of
weak inverses for the elements of B together with functorial isomorphisms b ® bhx=1.
Such an assignment is unique up to unique isomorphism.

For each object b € B we may form an automorphism of B given by conjugation.
Specifically we consider the functor defined on objects x € B by x — b ® [x ® b].
This can be made a self homomorphism of B by using the structure maps of B. It is

compatible with composition and induces a homomorphism of 2—groups B — Aut(B).

Precomposing with £ yields, for each b, a new homomorphism f%: 4 — B together
with a 2-homomorphism #?: gf® — 0. On objects we have f2(a) =bQ[f(a)RD],
where b is the functorial weak inverse of 5. The structure morphisms of /2 and ¢? are

14The internal hom always exists as a fibered category and automatically satisfies stack descent. The
main problem is in proving that such fibered categories are presentable by smooth or topological groupoids.
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canonically induced by those of /', ¢, g, and the 2—group structure of B. A morphism
b — b’ in B induces a natural isomorphism f? — f b Thus by the universal property
of the pullback, for each object of » we have a homomorphism as in the following
diagram.

Morphisms b — b’ in B induce 2—homomorphisms /(b)) — h(b’). The assignment
h:b [ h: (b= b)) (f° = f*') is not strictly canonical, but depends upon a
contractible category of choices.

The assignment b +— /(b) is compatible with the multiplication in B in the sense that
h(b ® b") = h(b) o h(b"). These isomorphisms may be chosen to be functorial and
yield a homomorphism of 2—groups /: B — Aut(A4). Again this choice is unique up to
unique isomorphism. Precomposition yields a homomorphism 4 — Aut(A). However,
if A is abelian, then the braiding allows us to canonically trivialize this composite.

We now use the universal property of the extension 4 — B — C to factor /& by an
essentially unique homomorphism B — C — Aut(A). The trivialization of 4 —
Aut(A4) permits us to form the following square:

A B

J Lo J(g,h)
0 — C xAut(A4)

This square is readily checked to be a kernel square. Since A — B — C is the initial
such kernel square, there exists an essentially unique morphism of kernel squares from
A — B — C to the above kernel square. In particular this consists of a homomorphism
C — C xAut(A), and projecting to the second factor yields the desired homomorphism
C — Aut(4). |

Given a smooth 2—group, we obtain a discrete 2—group by applying the forgetful
2—functor U: Bibun — Gpd, which forgets the topology. Thus to every extension of
smooth 2—group we get a corresponding extension of discrete 2—groups.
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Definition 83 An extension of discrete 2—groups 4 — B — C, with A abelian,
is central if the induced homomorphism C — Aut(A4) is isomorphic to the trivial
homomorphism. An extension of smooth 2—groups is central if the corresponding
extension of discrete 2—groups is central.

By the work of [5], every discrete 2—group is equivalent to a skeletal 2—group'® and
these are classified by the following invariants:

(1) agroup moI" = isomorphism classes of objects,
(2) an abelian group 7;I" = Homrp(1, 1),

(3) anaction p of moI" on 7 I', (induced by conjugating an automorphism of 1 by
an object in G),

(4) the k-invariant [a] € H?(moI'; T, p), which is determined by the associator
of I'.

(See [5] for details.) Part of this classification is the construction of a 2—group from a
this data. This construction will play a role in what follows, so we review it. Consider
the data (G, A, p, ) where G is a group, A is an abelian group, p is an action of G
on A and « € Zg3rp(G; A, p) is a group cocycle. Then we may form the following
skeletal 2—group I'(G, A4, p, @): The objects of I' are the elements G, the morphisms
of I' are the product space G x A, with both source and target maps the projection
to G. The automorphisms of each object are identified with the fiber 4, as a group.
The monoidal structure is given by the group multiplication in G on objects and the
group multiplication of 4 x, G on morphisms. It is strictly associative, nevertheless
we equip it with a nontrivial associator determined by «. The associator is given by
Ago.g1,22 = (g0, &1,82) € A, using the identification of 4 with the automorphisms
of gog1g>. That « is a cocycle ensures that the pentagon identity is satisfied. The left
and right unitors are uniquely determined by « and the requirement that the triangle
identity hold.

There exist canonical homomorphisms of 2—groups f: [pt/A] = T'(G, 4, p,«) and
g: T'(G, A, p,a) = G given by the obvious inclusion and projection. The composi-
tion g f is equal to the zero map [pt/A] — G, which in this case has no nonidentity
automorphisms.

Lemma 84 Consider an extension of discrete 2—groups of the form

A F E,q ¢ G
W W W
pt Ky G

15 A discrete 2—group T is skeletal if the for all objects x, x” € I" the condition x 2 x” implies x = x”.
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(the 2—homomorphism ¢: g f — 0 is unique if it exists, hence is determined by f
and g ). Then this extension is equivalent to an extension such that E = I'(G, A4, p, ®),
with f and g the canonical inclusion an projection homomorphisms. Moreover, all
such inclusion-projection sequences are extensions, and such an extension is central if
and only if the action p is trivial.

Proof By the work of [5] we know that E is equivalent to some skeletal 2—group
E ~T(H, B, p,a), so it suffices to consider that case. The homomorphisms f and g
are determined by their component homomorphisms fi: A — B and go: H —> G.

Consider the 2—group [pt/B]. This has a canonical inclusion functor £: [pt/B] - E
whose composition with g is zero. Thus by the universal property of the pullback,
there exists a (unique) homomorphism [pt/B] — [pt/A] which factors this inclusion.
In particular f; must be a split surjection.

Now consider the kernel ker f1, with its inclusion j: ker f{ — A. This yields a
homomorphism of 2—groups j: [pt/ker fi] — [pt/A], such that the following two
diagrams commute (strictly):

[pt/ker f1] \0 [pt/ker f1] \0
/ 0
S \ S

[pt/d] —— E N\ DyAl —— E
| I
y G 0 y G

By the universal property of the pullback this implies that j =~ 0 and hence f;: 4 — B
is an isomorphism.

Dually, consider the group H viewed as a 2—group with only identity morphisms.
The canonical projection £ = I'(H, B, p,«) — H is a homomorphism such that the
composite

[pt/A]— E=T(H,B,p,a) > H

is isomorphic to the zero homomorphism (if such an isomorphism exists it is unique).
Thus there exists an essentially unique morphism [pt/4] — K, where K =ker(E — H).
Conversely, since the map £ — G factors as £ — H — G, we obtain a unique map
K — [pt/A]. These are easily checked to be inverses so that K = [pt/A4], and hence
[pt/A] — E — H is a kernel square.

Geometry & Topology, Volume 15 (2011)



652 Christopher J Schommer-Pries

Thus by the universal property of the extension [pt/A] — E — G, there exists a (unique)
group homomorphism k: G — H making the following diagram commute.

H

“| N\

G o H

In particular the kernel of go: H — G is zero.

We may compose the map E — H with the homomorphism go: H — G, and thereby
obtain a map of kernel squares from [pt/4] — E — G to itself which restricts to the
map gook: G — G. Since this kernel square is initial, this composite must be the
identity on G'. Thus g¢ is an isomorphism.

A similar argument shows that the inclusion-projection sequence [pt/A] - E — G is
always an extension. The automorphism 2—group of the 2—group [pt/A] is equivalent
to the group Aut(A) viewed as a 2—group with only identity morphisms. Following
the previous construction, we see that the induced map G — Aut([pt/A]) = Aut(A4) is
precisely the action p, and thus the extension is central precisely when p is trivial. O

The above notion of central extension of smooth 2—group is more general then the
notion introduced by Wockel [66]. In particular it is invariant under equivalence
of smooth 2—group, and includes the following examples not covered by Wockel’s
treatment.

Example 85 Let I' = (G, 4,a) be the 2—group from Example 68. There exists
a canonical central homomorphism (inclusion) i: [pt/4A] — I and a homomorphism
(projection) 7: I' = G. The composite is equal to the zero homomorphism [pt/A] — G .
This has a unique automorphism ¢, and with this choice the triple (i, 7, ¢) is a central
extension. I' is a trivial principal bundle over G in the sense that it is equivalent to
G x [pt/A] as a [pt/A]-stack over G.

Example 86 Let A be an abelian Lie group. There is a unique homomorphism from A
to the abelian 2—group [pt/A]. This homomorphism factors as the composite

AL 05 [pt/a]

The automorphisms of 0 = gf: [pt/A] — A are in canonical bijection with ¢ €
hom(A4, A). The triple (f, g, ¢) is a central extension precisely when ¢ is an automor-
phism.
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3.7 Smooth 2—-groups and A,,—spaces

Given a smooth 2—group I' we may obtain a space by taking the geometric realiza-
tion |I'|; see Segal [55]. In the trivial case, when I' = G, the resulting space is |G| = G
and hence is a topological group. This is too much to expect in general, and indeed the
geometric realization functor, viewed as an assignment in the category of spaces, is
not precisely functorial with respect to bibundles. It does however lead to a functor
Bibun — h—Top with values in the homotopy category of spaces, as we shall see.

In particular any smooth 2—group gives rise to a group-like H-space, and this assignment
is functorial. In this section we will show that this can be improved upon to give an
infinitely coherent multiplication (4 —structure) on the geometric realization of any
smooth 2—group. Everything in this section holds equally well in the topological setting,
provided the source and target maps admit local sections.

Given a Lie groupoid I' = (I'y = I'g) we may construct an associated groupoid. The
target ¢: I'y — I’y is a surjective submersion so we may construct the corresponding
Cech groupoid EOT = (T xii(t) I'; = Ty); see Example 5. As always with Cech
groupoids, there is a functor to the space I'g, viewed as a Lie groupoid. In this case
that functor is given by the target map ¢: E T — I'y. This map is an equivalence
of Lie groupoids: the identity map ¢: I'g — I'; induces a functor the other direction
which is an inverse to ¢. This equivalence can be taken to be over the Lie groupoid Ty .

Moreover, there is a functor o: E®OT — I' which on objects is s: 'y = I'y, and on
morphisms is given by ( f, g) — go f~!. Passing to the nerve, we see on each level
that we have a space E®T,,, which consists of n—tuples of morphisms of I, all with
the same target. There is an action by I' in the sense that postcomposition gives a map

Iy g EOT, — EOT,

This action map is over 'y x I';;, and E ( )1",, becomes a bibundle from the space I,
to I'.

Geometric realization of these simplicial spaces is stable under fiber products by May
[43, Corollary 11.6] (see also Lewis [38] and Rezk [50]) and thus upon geometric
realization we find that |[E®T| is a (left principal) bibundle from the classifying
space |I'| to the groupoid I', now viewed in the topological category rather then the
smooth category!®. The bibundle | E 4 )F| is the analog of the classifying bundle of a

161t is not clear from our description that | E Or | will be locally trivial over |T'|, ie admit local sections.
Indeed this fails for general topological groupoids. However, in the case that the spaces involved are
locally contractible, local triviality follows from an argument identical to the proof of [56, Proposition A.1].
Since local triviality is not used in our argument we will omit these details.
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group: when I' = (G = pt) is a Lie group, | E® G| = | EG]| is exactly the classifying
bundle in the usual sense.

Moreover, the equivalence between E®T and I'y induces a homotopy equivalence
between |E®T| and T in the category of spaces over Iy, ie | E”YT| is homotopy
equivalent to the terminal object of Topr, . This is the appropriate analog of contractible
in the relative category Topr,. When I' = G is a group, then I'g = pt and hence EG
is contractible in the usual sense. Starting with the source map s: I'j — T’y yields
an analogous story, but the outcome is a right principal bibundle |E®T| from T
to |T'|. Again |E®T| ~ Iy as spaces over I'y. The inversion isomorphism allows us
to canonically identify |E@T| 2 | E®T|, thus we obtain an isomorphism of spaces
|EOT| xp | E®T =Ty xr, | EVT|. Projection gives rise to a map

(87) |EOT | xp | EOT|—T

which commutes with both the left and right I"—actions.

Lemma 88 Let P be a (left principal) bibundle from the space X to the Lie groupoid T".
Then the composition | E®T| o P with the right principal bundle |E®T| is a space
over X homotopy equivalent to X over X . In particular the space of sections is a
contractible space.

Proof This is a local statement and so it is enough to consider the case when we have
amap f: X >Tgand Px=T, x f X . The composition with | E®T| then becomes
|E®T|o P~ |EC)T| X1y X . But s1nce |E@T| ~ Ty over I'y the space Po|E®T|
is homotopy equivalent to X over X . a

Corollary 89 A bibundle P from the Lie groupoid G to the Lie groupoid I' gives
rise to a contractible family of morphisms from |G| to |I'| (described in the proof
below). This association is compatible with composition, and therefore yields a functor
Bibun — h—Top.

Proof Consider the following chain of bibundles:

|ECT| G IEOG|

w \u/ \,go/ ~

Note that P and |E¥ G| are left-principal bibundles, while | E®)T| is a right-principal
bibundle. Composing these three yields a space K = |[E®)T|o P o |[E® G|, with two
maps, one to |I'| and one to |G|. Moreover, by the previous lemma, K is homotopy
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equivalent to |G| over |G|. Hence the space S of sections of K over |G| is contractible.
Composing a section |G| — K with the projection K — |I'| induce the desired family
S — Maps(|G|, |T'|).

For a composable pair of bibundles P: G — I', and Q: H — G, a pair of sections
in Sp and S gives rise to a section over |H | of the space

|E(S)F| oPo |E(t)G| X|G| |E(S)G| oQo |E(t)H|.
From this, we get an section over |H| of |[E®T|o Po Qo |[EWH| and hence a map
Sp xS — Spog, by composing with the map of spaces
IEOG| x5/ |[E® G| — G,

described in Equation (87). The compatibility of this map with composition follows
from the biequivariance of the map in Equation (87). |

Remark 90 A more sophisticated approach is to consider the bicategory Bibun as an
(00, 1)—category. Then the above corollaries and proposition may be summarized by
saying that there is an co—functor from Bibun to the (oo, 1)—category of topological
spaces.

Corollary 91 The geometric realizations of Morita equivalent Lie groupoids are
homotopy equivalent.

Proof In the setting of the previous proof, a bibundle P between Lie groupoids gives
rise to a space K with maps to |G| and |I"|. In the case that P is a Morita equivalence,
both these maps are homotopy equivalences. a

Definition 92 A ropological operad consists of a collection of spaces S, for each
n > 0, together with composition maps
Sn X S,’l Xoeee Sin — Si1+-~-+in

which are associative in the obvious way. An algebra for a topological operad S is a
space X together with actions maps

SpyxXx--- X > X
N ——
n times

which again are associative and compatible with the maps from S, in the obvious way.

Definition 93 (May [43]) An A —operad is any topological operad with contractible
spaces. An Ax,—space is a space X which is an algebra for an A.,—operad.
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Theorem 94 The geometric realization of a smooth 2—group in Bibun is naturally an
Aoso—Space.

Proof We must construct an 4, —operad and an action of this operad on |I"|. Consider
the composition of bibundles, | E®T|omo (|EOT|x |E®T|). This is a space with a
map to |I’| coming from | E®T| and a map to |T'|x|T"| coming from |EOT|x|E®T|.
Thus if we choose a section over |I'| x || we get a map of spaces. Let S, denote the
space of sections over || x |I'|. Putting these maps together gives us a map

So x [P < |T| — [T|

which is continuous. Recall, however, that the space S, is contractible. Thus the
contractible space S, parametrizes several multiplications for the space |I"|. We mimic
this and define contractible spaces of sections S, for all n. For n > 2 S}, is the space
of sections (over |I'|") of

IEOTomomx1)omx1x1)o-0(|EOT|x|EDT|x---x |[EOT|).

n times n times

This is again a contractible space. We set So = S| = pt. Since we started with a Lie
2—group we have a specified isomorphism of bibundles ni o (m x 1) = m o (1 x m),
given by the associator. Mac Lane’s coherence theorem ensures us that this extends
to a canonical isomorphism between any two possible bracketings. For example the
composition

mo(mx1)omxmxm)o(lx1xmx1xmxl)
is canonically isomorphic to the composition

mo(mx1l)o(mx1x1l)o---.

7 times
We turn the collection of spaces Sy, into an A, —operad as follows. A point in the space,
Si, x---S;, is a section of the corresponding product of bibundles (over |I" |Grttiny,
These bundles project to |I'|” and so we get a map

|1-w|(i1+"'+l'n) N |F|n
A point in S, then gives us a section (over |I'|") of its corresponding bundle. When
we compose these bundles, we get a corresponding composition of sections. This is a
section of a certain bundle over |I‘|(’1 +++in) | similar in construction to S, but with

a different bracketing. The canonical identification from the associator allows us to
identity this with a point of Sj, 4.1, . Hence we have assembled maps

Sn X Sil Xoees Sin ad Si1+"'+in'
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It can readily be checked that this is an operad (the compositions involving .S; and Sy
are similar, where S corresponds to sections of the identity bibundle |[I'| — |I"| and S¢
to sections of the unit bibundle ¢: 1 — |I'|). Moreover since the spaces are contractible,
this is an A —operad.

We have also seen how |I'| is naturally an algebra for this operad. S, is a space of
sections of a bundle over |I"|” and this bundle has a map to |I"|, hence there is an
induced action map

Snx |T|" —|T|

which makes |I'| into an A —space. o

Remark 95 With more work one sees that a homomorphism of smooth 2—groups
yields a morphism of A.,—spaces.

4 A finite-dimensional string 2—group

In this section we prove a theorem which interprets Segal-Mitchison topological group
cohomology in terms of certain central extensions of smooth 2—groups. The model of
the String group presented in this paper is a special case of such an extension.

4.1 Segal’s topological group cohomology

Segal [56; 57] introduced a version of cohomology for (locally contractible) topological
groups, which mimics the derived functor definition of ordinary group cohomology. A
few years later, Quillen introduced the notion of exact category in his work on algebraic
K —theory [48]. Roughly speaking, an exact category is an additive category equipped
with a distinguished class of short exact sequences. Such a category is not required
to be an abelian category, and there are many examples, among them the category
of topological groups considered by Segal. It is now realized that essentially all the
constructions and machinery of homological algebra carry over to the setting of exact
categories; see Buehler [13] for a fairly comprehensive introduction and overview.
In particular resolutions and derived functors can often be defined in this setting and
Segal’s cohomology is an example.

Segal’s cohomology was rediscovered by Brylinski [12] in the smooth setting. This
group cohomology solves many of the defects of the naive “group cohomology with
continuous/smooth cochains”, and certain cocycle representatives will serve as our basic
input in constructing the String(n) 2—group. Let us summarize some of the special
features of this cohomology theory. Proofs of these facts can be found in Segal [56; 57].
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If G is a topological group and A is a topological G-module!” then we can form the
Segal-Mitchison group cohomology H{(G: A).

(D

2

3)

“4)

(&)

In low dimensions, ¢ = 0, 1,2, HSqM(G; A) may be interpreted in the usual

manner.

(a) HY,(G; A) = A%, the G—invariant subgroup,

(b) HSIM(G; A) is the group of continuous crossed homomorphisms G — 4,
modulo the principal crossed homomorphisms, and

(©) HSZM(G; A) is the group of isomorphism classes of group extensions

A—E—G

inducing the action of G on 4, where £ — G is topologically a locally
trivial fibration, ie a fiber bundle.

If A is contractible, then the Segal-Mitchison cohomology coincides with the
continuous group cohomology.

If A is discrete, then the Segal-Mitchison cohomology is isomorphic to the
twisted cohomology of the space BG with coefficients in A.!® In particular
if the G action is trivial we have H{,,(G;A) = H"(BG: A), the ordinary
cohomology of the space BG with coefficients in A.

A sequence of topological G-modules A" — A — A" is a short exact sequence
if it is a short exact sequence of underlying abelian groups and the action of A’
on A realizes A as an A’—principal bundle over A”. If A’ — A — A” is such a
short exact sequence then there is a long exact sequence of cohomology groups

0 — HY(G. A') — HQ(G, A) — HQy(G, A") —
— Hoy(G, A') — Hg\ (G, A) — ---.

If G is a topological group and A is a topological G—module, then A determines
a simplicial sheaf O4 on the simplicial space BGo. When the action of G on A4
is trivial, then O is simply the sheaf of continuous functions with values in 4.
In general we have HSqM(G; A) = H9(BG.; Oy4), where BG, is the simplicial
nerve of G, O4 is the simplicial sheaf corresponding to A, and this latter group
denotes the hypercohomology (see Friedlander [19] for details about simplicial
hypercohomology).

17 As mentioned in the introduction, and action of a topological group G on a topological abelian
group A is an action in the usual sense such that the map G x A — Ais continuous, where G x A is given
the compactly generated topology.

181t 4 is discrete then the action of G factors as G — oG — Aut(A) and since 71 BG = 7y G, we
have a canonical locally constant sheaf over BG . This can also be obtained as the sheaf associated to the
fiber bundle EG xG A — BG . This sheaf is used to define the twisted cohomology of BG .
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The category of (locally contractible) topological abelian groups becomes an exact
category with the short exact sequences introduced above. Segal’s cohomology is then
defined to be the derived functor of the invariant subgroup functor

% A A9,

Segal [56] proves that this functor is derivable by demonstrating a class of objects
adapted to this functor (his so-called “soft” modules). He also proves this cohomology
has the above properties.

In the finite-dimensional smooth setting, there is an analogous exact structure. More
precisely fix a Lie group G and consider the category of abelian Lie groups equipped
with smooth actions of G. A sequence of such G-modules A’ — A — A” will be
called a short exact sequence if it is a short exact sequence of underlying abelian
groups and the action of A" on A realizes A as an A’—principal bundle over A”.
Unfortunately this category will not contain enough adapted objects in order to derive
the invariant subgroup functor.

This can be overcome by embedding abelian Lie groups into a lager category of “smooth”
abelian group objects. For example abelian group objects in one of the “convenient
categories of smooth spaces” discussed by Baez and Hoffnung [4] provide such an
enhancement. Alternatively one could use the sheaf cohomology of the resulting
simplicial sheaf on BG,; see Friedlander [19] for the relevant definitions. Both of
these approaches result in the same cohomology theory which Brylinski [12] shows
may be computed as the cohomology of the total complex of a certain double complex,
which we now describe.

Definition 96 A simplicial cover (or just cover) of a simplicial manifold X, is a
simplicial manifold U, and a map Ues — X, such that each U, — X}, is a surjective
submersion. A cover is good if each of the spaces

UlPl = U, xx, - xx, Uy

p times

is the union of paracompact contractible spaces, where p,n > 0.

Consider the simplicial manifold BGe.. Brylinski [12] provides an inductive con-
struction of a good simplicial cover of BGe!°. For compact G, using techniques
developed by Meinrenken [44] we may construct a canonical such cover. For our

19For general simplicial spaces it is not possible to construct good simplicial covers. In that case one
must instead use good hypercovers. Brylinski’s construction allows us to avoid this subtlety entirely.
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purposes, however, any good simplicial cover will do and so we will not dwell on this
aspect. For 4 € Top Abg, we get an induced double complex, where

CPa=CcoWprtl, a),

and the differentials are induced by the two simplicial directions. The cohomology of
the total complex computes the smooth version of Segal’s group cohomology. Let us
fix some notation. Let G be a Lie group and 4 an abelian Lie group with a G —action.

. HSkM(G; A) is the smooth version of Segal’s cohomology which we take to be
the total cohomology of the double complex C?4 = C °°(ng +1], A) computed
from a good simplicial cover of BGL,.

o HF ooth(G+ A) denotes the cohomology of G computed with smooth group

S
cocycles.

e  We will primarily be interested in the case where the action of G on A4 is trivial.
In this case H* (G; A) is the Cech cohomology of the space G with coefficients
in the sheaf of smooth functions with values in 4.

Corollary 97 If G is a compact Lie group and A = S then we have the isomorphism
of smooth Segal-Mitchison cohomology

Hi(G: S = HEN (G, 2) ~ HT(BG)
forall i > 1, where H* (BG) is integral cohomology of the space BG , and moreover
in low degrees we have an exact sequence
0 — HY(G:Z) - HQy(G:R) = Hoy(G: SY) — Hy(G:Z) — 0

where S', R and Z are considered G —modules with trivial action.

Proof The short exact sequence of Lie groups Z — R — S'! induces a long exact
sequence in Segal cohomology. However since R is contractible, Segal cohomology
agrees with cohomology computed with smooth cochains. Since G is compact, these
vanish in degrees larger then zero. a

4.2 Classifying extensions of smooth 2—-groups

The goal of this section is to prove Theorem 1, which classifies the bicategory of central
extensions of certain smooth 2—groups. We begin with some elementary results on
symmetric monoidal bicategories. Results on general symmetric monoidal bicategories
may be found in [22; 35; 34; 6; 16; 54, Chapter 3].
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The simplest kinds of symmetric monoidal bicategories arise from 3—term cochain
complexes of abelian groups. Let

324

be a 3—term cochain complex of abelian groups. We may form a strict bicategory D as
follows. The objects D consist of the elements of the group C3. The 1-morphisms
consist of the product D; = C3 x C2. The source is the projection to C3, the
target map is given by #(c3,¢) = ¢3 + d(c¢3), and the strict horizontal composition
is given by (c3.¢2) o (¢5.¢5) = (c3.¢2 +¢), when ¢ = c3 + d(c3). Similarly, the
2-morphisms consist of C3xC?xC! with source map the projection, target map given
by t(c3,¢3,¢1) = (c3,¢3 + d(c1)), and vertical composition of composable elements
given by addition of the C! terms. The horizontal composition of composable 2—
morphisms is given by (c3, ¢z, ¢1) *(c5. ¢, ¢}) = (¢3. 2+ ¢, c1 +¢]), which is again
a strict operation.

The bicategory D comes equipped with the structure of a strict symmetric monoidal
bicategory. The monoidal structure is induced by the abelian group multiplication in C?,
i =1,2,3, and the braiding is trivial. In this way we obtain a number of examples
of elementary symmetric monoidal bicategories. For example, an abelian group M
may be regarded as a cochain complex concentrated in a single degree. There are three
possibilities for 3—term cochain complexes arising in this manner, and hence we obtain
three symmetric monoidal bicategories, M, M[1] and M|[2]. The notation M 2]
denotes the symmetric monoidal 2—category with one object, one 1-morphism, and
M many 2-morphisms, whose compositions are induced from multiplication in M .
Similarly M 1] denotes the symmetric monoidal bicategory with one object, M many
1—-morphisms, and only identity 2—morphisms, and M without decoration denotes the
symmetric monoidal bicategory with objects M and only identity 1-morphisms and
2—morphisms. The following lemma is presumably well known to experts.

Lemma 98 Let (C',d) be a 3—term cochain complex and let D be the resulting
symmetric monoidal bicategory. Let H* = H*(C',d) be the cohomology groups of
(C*,d). Then there is an equivalence

D~ H*x H*[1]x H'[2]

of symmetric monoidal bicategories. In general this equivalence is unnatural, but
nonetheless there is a natural isomorphism o (D) = H?>.
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Proof This can be proven in several ways. A global approach is to analyze the
k-invariants?® of Picard symmetric monoidal bicategories as was done for Picard
symmetric monoidal categories in [28, Appendix B.2] and for certain braided monoidal
categories in [32]. Since D is both strict and symmetric monoidal, these k-invariants
vanish. Thus D splits up to unnatural equivalence as the product of its “homotopy
groups”. Notice, however that there is natural map of cochain complexes from (C?, d)
to the complex with a single nonzero group H? in the top term. This is an isomorphism
on third cohomology groups and induces the natural isomorphism 7o (D) = H3.

Alternatively, one may simply choose a skeleton of D, as in [54, Lemma 3.4.5 - 3.4.7].
A direct calculation, following the proofs of these lemmas, shows that D splits as in
the statement of Lemma 98. Producing such a splitting usually requires choices. O

Let G be a Lie group and A an abelian Lie group. Let Zsm(G; A) denote the 3—term
chain complex

d d
Z3n(G: 4) < C3u(G: A) < Coy(G: 4)
given by the smooth Segal-Mitchison cohomology of G with values in the trivial

G-module 4. By abuse of notation, let Zgm(G; A) also denote the corresponding
symmetric monoidal bicategory.

Theorem 99 Let G and A be as above. There is a natural equivalence of symmetric
monoidal bicategories Zsv(G; A) = Ext(G;[pt/A]). Thus, we have a (generally
unnatural) equivalence

Ext(G: [pt/A]) =~ Hiu(G; A) x Hiy(G; A)[1] x Hgp(G: A)[2],

where H;M(G; A) denotes the smooth version Segal-Mitchison topological group
cohomology [56] . In particular isomorphism classes of central extensions

A Iy G
1 W W A 1
pt Iy G

are in natural bijection with H;’M(G; A).

Proof The bicategory Zsm(G; A) is covariantly functorial in G, contravariantly
functorial in A4, and preserves products. Moreover, just as for Ext(G;[pt/4]), the
symmetric monoidal structure is induced from the Baer sum. Thus it suffices to

20The 1- and 2—morphisms in the bicategory D arising from a 3—term chain complex are invertible
and hence D is a 2—groupoid. Moreover, 7y D is a group and so D is a 3—group. Thus its k-invariants
are well understood and coincide with the classical k-invariants of a stable homotopy 2—type.
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produce a natural equivalence of bicategories Zsm(G; A) — Ext(G; [pt/A]). Tt will
automatically be an equivalence of symmetric monoidal bicategories. See also [54,
Theorem 3.4.10]. The remaining statements in the theorem follow from this equivalence
and Lemma 98.

Before getting into the details, which are somewhat computational, let us explain
the philosophy behind why this theorem is true. This result is the offspring of two
well established ideas. On the one-hand, following [5], there is a direct relationship
between smooth functors between Lie groupoids and between certain Lie groupoid
cocycles. This link extends to the level of smooth natural transformations, as well. If
the multiplication in a smooth 2—group was given by a smooth functor, then we would
be able to translate the axioms it must satisfy into certain concrete statements about
cocycle data and be able to classify central extensions in terms of this data. See [5,
Theorem 55] for an example of a result along these lines.

On the other hand the multiplication in a smooth 2—group is a bibundle and these come
from functors precisely when there exists a global section of the bibundle over the
source object space [37] (see also Proposition 23). However, every bibundle admits
sections locally in the sense that for every bibundle P from G to H, there exists a
cover f: U — Gy, such that the composition of P with the canonical bibundle from
f*G to G admits a global section; see Example 18.

So while the multiplication bibundle in a 2—group, which is a bibundle m from G x G
to G, may not admit global sections, we may choose a cover f: U, — Gy x G such
that the pullback of m to f*(G x G) does admit global sections. Hence this induced
bibundle comes from a functor, and may be described by appropriate classical cocycle
data. The associator will have a similar description via cocycle data on the pullback of
G x G x G to an appropriately chosen cover of Gy x Gy X G¢. In this way we may
extract from a smooth 2—group precisely the cocycle data of a smooth Segal-Mitchison
cocycle. Conversely, given such cocycle data we may push it forward to bibundle data
via the equivalences between, say, G x G and its pullback along U, — Gy X Gy.

We now proceed to prove Theorem 99. Let us now note that there is a slight ambiguity
in the definition of the cochain complex Zsym(G; A). In defining the cochain complex
computing Segal-Mitchison cohomology, we were free to use any good simplicial
covering. The resulting cohomology is independent of this choice. However the cochain
complex itself clearly depends upon this choice. However, in the course of proving
Theorem 99, we will show that these choices are irrelevant. More precisely, we will first
fix a simplicial cover U and construct a functor Zgas,y(G; A) — Ext(G; [pt/A]) from
the chain complex bicategory defined relative to this fixed chosen cover. If the cover is
good, this functor is an equivalence of bicategories. Refining a simplicial cover U’ — U
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induces a (strict) functor Zgar,u/(G; A) — Zsm,u(G; A) which s also an equivalence
of bicategories. Our construction is compatible with refinement and since any two
covers have a common refinement the choice of cover is irrelevant. Equivalently, we
may consider Zsym(G; A) to consist of the directed colimit over all simplicial covers.
These considerations produce an equivalence Zsy(G; A) — Ext(G: [pt/A]).

First we fix a good simplicial cover and construct a canonical central extension from a
given cocycle representative A € Z SM(G; A). A 3—cocycle has three nontrivial parts,
which are smooth maps:

)\33 U3[1] — A

o U S 4

)\1 . U1[3] — A
We will see that these three data give rise to the three most important structures on a
smooth 2—group. A will give rise to an 4—gerbe over G, which will be the underlying
Lie groupoid of E A ko will give rise to the multiplication bibundle for E A and A3
will give rise to its associator. These three maps (A1, A, A3) form a cocycle in the

double complex CP4 = C*(Uy Lp-+11, ; A), which computes the (smooth version of)
Segal’s group cohomology, thus they satisfy the following relations:

Sphi =0
Syh1 = Spha
Soha = 03
Syhs = 0.

The first of these states that A; is a Cech cocycle in C (211 (G; A).

In Example 72 we constructed a [pt/A]—principal bundle (also known as an 4—gerbe)
given precisely such a Cech cocycle. This principal bundle will be the underlying
Lie groupoid of our smooth 2—group E A Recall that the objects of E A consist the
manifold U; and the morphisms consist of the manifold U 1[2] x A, with composition
being given by the formula

El} xy, E¥ — E?
(o, uy,a) x (uy,uz,b) > (uo,uz,a+b+Ay(ug, uy,uz)).

There are several associated objects we may build out of the cocycle A. The function
(diA1,d3)hy) from U[ I'to A x A defines a Cech cocycle in C2 (G X G;AXA)
and hence gives rise to a [pt/4 x A]-principal bundle F » over G x G. Here d; is
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the simplicial map in the simplicial manifold U, . There is a functor (dy, d,): F* —
E* x E*, which is given on morphisms by the map

Ul s 4?2 5> Ul ax v x4
(vo,vi,a,b) = (do(vo),do(v1),a) x (d2(v1),d2(v1), D).

This realizes F* as a pullback of the groupoid £ * % E* and so becomes an equivalence
upon bundlization.

The function (djdghii,dydiAy,dyd5 L) defines a Cech cocycle in C2 (G3 A3)
and hence a [pt/A3] pr1n01pal bundle H?* over G? (the three maps dodo, d2d0 and
d»d, are the simplicial maps living over the three projections from G to G). These
Lie groupoids fit into a diagram of smooth functors.

g=(do,d>) M

E* x E> F* E?
h=(dody,d>»do,d1d>) S

E* x EM x E* H* 2
h=(dodo,d»do,d,d>) /2

E* x EM x E* H* 2

The left-pointing functors become equivalences after bundlization. The right-pointing
functors are given explicitly by the following formulas:
e Fr=UPx a2 5 B =uPlxa
(vo, v1.a,b) = (d1(vo). d1(v1),a+ b+ Az (vo, v1)
fi: Hr =UPx 4?5 B} =uP x4
(wo, wy,a,b,c) > (didi(wo), drdy(wy),a+b+c
+ d3 Ao (wo, wy) + dy Aa(wo, wy))
fo: Hr =UP x ® 5 B} —uP x4
(wg, wy,a,b,c)— (didy(wg),d1di(w1),a+b+c
+ di da(wo, wy) + d5 ha(wo, wy))
These are functors because the identity d,A; = 654, holds. Moreover the identity
dpAz = Sy, implies that Az: Us — A gives the components of a smooth natural
transformation @ from f; to f>. Turning these into bibundles and inverting g will
give us bibundle M from E*x E* to E*. Inverting / and composing with f; and />

yields two bibundles from E* x E* x E* to E*. These are canonically identified with
M o(M x1) and M o (1 x M), respectively. The natural transformation a induces a
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natural isomorphism a: M o (M x1) — M o(1 x M). The equation §,A3 = 0 ensures
that this associator satisfies the pentagon identity.

More concretely, consider the composition
m
m:-Uy xU; - GxG— G,

and the induced ﬁber product U, xm (U1 x Uy). This space admits a covering by the
space V = U x Uz(d"’dz) XGxG (U1 x Uy). The data (A1, A,) defines a function ¢
given by the followmg formula:
¢: Uy Xg U2[2] xgxg (U xUp) —> A
(10, vo, vy, Uz, u3) = Aa(vo, v1) — Ay (o, drvo, d1v1)
—A1(dovo, dovy,uy)
—A1(davo, davy, uz)
This function defines a Cech cocycle CV'II,(U 1 Xg (U1 xUy); A) and hence a correspond-
ing A-bundle M over U; xg (U; x Uy). This is the total space of the bibundle M
above. The necessary groupoid actions are easily constructed from this description.

A compatible unit is straight forward to define and is determined up a contractible
category of choices.

A direct calculation shows that the sequence of homomorphisms
[pt/A] > E* > G

is a central extension of smooth 2—groups, and thus provides a construction of a central
extension from a cocycle A € ZS3M(G; A). It remains to show that this construction
can be extended to the entire cochain bicategory Zsm(G; A).

Let &, A" € Z3,(G; A) be two cocycles. A 1-morphism in Zsy(G; A) from A to A’ is
premsel acochain 6 € CszM(G A) such that 6 = A—A’. This cochain has components
01: U — A and 6,: Uy — A. In components the equation §6 = A — A" becomes

Spby = Ay — A
801 + 8462 = Ay — A,
8ubr = A3 —Aj.
This data gives rise to three functors
pE: E* > EV
ppi F* > F¥
PH: H* > 7Y
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and a natural isomorphism of functors b: ' o pg — pg o, such that the following
diagrams commute strictly:

g h
E* x EM «—— F* E* x E* x E» «—— H*
PEXPE J J DF PEXDEXPDE J J PH
E¥ x EV o F¥ E¥ x E¥ x E¥ —— HY

Explicitly these functors are defined as follows. Each of pg, pr, and pg is the
identity on objects, and on 1-morphisms they are given by the formulas:

pes: Eb=UP x4 - Ul xa=EV
(uo,uy,a) = (uo,uy,a+ 01(ug, uy))
pra: Fr=UPxaxa > Ul xaxa=rV
(vo, v1,a,b) — (vo,v1,a+d§01(ve,v1), b+ d5 01 (vg, v1))
pa: HE =UP xAxax4—->UPxaxaxa=nl
(wo, wy,a,b,c) > (wo, wy,a+dydy 0 (wo, wy),
b+ dydy 01 (wo, wy),c+dyd50i(wo, wy)).

The equation §,6; = A; — A is equivalent to the statement that these formulas de-
fine functors. The natural transformation b: u' o pp — ppg o u is given by b =
(Aody,6,): Uy — Ul[z] x A. The equation 8,6, + 8,0, = A2 — 1 is equivalent to
the naturality of this natural transformation.

We now turn each of these functors into bibundles. The functors pg, pr and pg be-
come equivalence bibundles, which are induced from the single bibundle P: E A EM.
The natural transformation » becomes a natural isomorphism of bibundles B: M’ o
(Px P) > PoM from E* x E* to E». The final equation 8,6, = Az — A% is
equivalent to the commutativity of the diagram in Figure 3, which says that P and S
are components of a 1—-homomorphism from E* to E M

The remaining components of the 1-homomorphism (P, §), namely those involving
units of E* and E*', exist and are uniquely determined by the requirement that this be
a homomorphism. The homomorphism P: E* — E M s canonically a homomorphism
over G (indeed any two 1-homomorphisms from £ » _ G which are isomorphic
are uniquely isomorphic). Moreover there is a unique 2—-homomorphism i’ = P oi
making (P, B) into a morphism of central extensions, where i: [pt/A] — E* and
i’ [pt/A] > E A" are the previously constructed inclusions. In this way we obtain from
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each 2—cochain 6 € Zsum(G; A) a homomorphism of central extensions which we
denote Py.

If 1, A’, and A" are three cocycles in Z3,;(G; A) and 6 and 6’ are two cochains in
C&,(G; A) which represent 1-morphisms from A to A’ and from 1’ to A", respectively,
then their composite in Zsy(G; A) is given by the sum 6’ + 6. A simple calculation
shows that the construction of the functors pg, pr and ppg preserves this composition
strictly. For example peE/ o p% = p%+9” on the nose. The natural isomorphisms b?

and 5% also obey a strict composition identity:
b9 T = (p% %% o (b7 % p%).

After bundlization, these strict equalities become the natural isomorphisms P 9o p¥ ~
PY+0 of homomorphisms of central extensions. The natural isomorphisms induced
by b? and b?" also obey the expected composition law. A similar calculation gives
natural isomorphisms P® 2 idg, for any cocycle A € ZgM(G; A). These natural
isomorphisms are part of the data of the functor Zsm(G; A) — Ext(G; [pt/A]).

The rest of the data of this functor concerns 2-morphisms in Zgy(G; A). Let
A A € Z3,(G; A) be objects in Zsm(G; A) and let 6,6’ € CZ4,(G; A) represent
1—-morphisms from A to A’. Thus §60 =560’ = A —A’. A 2—morphism from 6 to 0’ is
represented by a 1—cochain w € CSIM(G; A) such that 6w = 6 —0’. Such a 1—cochain
consists of a single function w: Uy — A such that =@ = 0; — 6] and Sy = 6, —0).
This gives rise to a natural isomorphism of functors 7: p% — p%/ whose components are
n(u) = (u,u, w(u)). That this formula defines a natural isomorphism is equivalent to
the equation —8,w = 0; — 0. This induces a natural isomorphism of homomorphisms
n: PY — P? . The second equation, dyw = 0, — 0, is equivalent to the commutativity
of the first diagram in Figure 6. The commutativity of the second diagram in that figure
is automatic in this case. The 2—homomorphism 7 is clearly compatible with the
projection to G and is also compatible with the inclusion of [pt/4] into E* and E*".
Thus it defines a 2—morphism of central extensions. A similar calculation to before
shows that at the level of natural transformations of functors, horizontal and vertical
composition in Zgm(G; A) is preserved strictly. After bibundlization this provides
the remaining natural isomorphisms and equalities which show that our assignment
Zsm(G; A) — Ext(G; [pt/A]) is a functor between bicategories.

If the simplicial cover used to define the Segal-Mitchison cohomology is good, then this
is an equivalence of bicategories, which is equivalent to showing that it is essentially sur-
jective on objects, essentially full on 1-morphisms and fully faithful on 2—morphisms.
To see this, recall that for any extension E, we know that there exists a sufficiently fine
cover of G over which the principal bundle £ — G may be trivialized, a sufficiently
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fine cover of G x G over which the principal bundle £ x E and the bibundle M
can both be trivialized, and a sufficiently fine cover over which the associator may be
trivialized. In particular these may be trivialized over any good covering. Choosing
explicit trivializations of these principal bundles and bibundles reproduces exactly
the components of a Segal-Mitchison cocycle and applying the above construction
reproduces (up to equivalence) the original extension. Similarly, any homomorphism
P: E* - E* between extensions arising from cocycles may be trivialized over a
good cover and such a trivialization gives rise to an explicit cochain 6 € CSZM(G; A)
representing a morphism between the corresponding cocycles. Applying our previous
construction yields a homomorphism of extensions isomorphic to the original P.
Finally if E* and E* are extension arising from cocycles, P? P E* 5 EV are
morphisms of extensions arising from 2—cochains, then any 2—morphism w: P?— p¥
arises from a unique 1-cochain w. This last statement is essentially equivalent to the
fact that an isomorphism between trivialized principal A—bundles is given by a unique
function on the base. This completes our proof of Theorem 99. a

4.3 String(n) as an extension of smooth 2—-groups

The model of Segal-Mitchison topological group cohomology that we used Theorem 99
computes this cohomology from the total complex associated to certain a double
complex, and consequently gives us several calculational tools. In particular there are
the edge homomorphisms

Hsimooth(G; A) - HSiM(G; A)
Hi'(G: 4) — H'(G: O),
where O 4 is the sheaf of smooth 4—valued functions on the space G' and Hsimooth(G; A)

denotes naive group cohomology with smooth cocycles. The construction in the previous
section shows that in a central extension of smooth 2—groups

[pt/A] — E* > G

coming from a cocycle A € C3(G:; A), the underlying [pt/A]—-principal bundle of E* is
classified by the image of [A1] in H?(G; O4). This allows us to identify the homotopy
type of the geometric realization of E A

In fact we can realize the component A simplicially as a map of simplicial spaces:
A1t (Gu,)e = K(A[2))s.

Here K(A[2])e is the simplicial topological abelian group associated to the chain
complex with no differentials and with A concentrated in degree two, and (G, )e is
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the Cech simplicial manifold associated with the cover U; — G. A direct calculation
shows that the simplicial nerve of E A is the pullback in simplicial spaces:

(EM)e — E(A[2])e
(Gu,)e P K(A[2])e

where E(A[2])e is the simplicial topological abelian group corresponding to the two
term chain complex of topological abelian groups with 4 in degrees one and two,
and with differential the identity. This is a contractible chain complex and hence the
geometric realization of the corresponding simplicial space is contractible. If fact it is
the universal K(A, 1)-bundle over the geometric realization |K(A[2])e| >~ K(4,2).
Since geometric realization of simplicial spaces commutes with fiber products, we have

~ A
G — |Gy I——1—|> K(A,2)

is the classifying map in the long exact fibration sequence. This identifies the homotopy
type of the space | E*|.

Theorem 100 Let n > 5. Then Hg,,(Spin(n); S!) =~ H*(BSpin(n)) = Z and the
central extension of smooth 2—groups corresponding to a generator gives a model for
String(n) as a smooth 2—group.

Proof It is well known that H*(BSpin(n)) = Z for n > 5, and so we know by
Corollary 97 that Segal cohomology HS3M(Spin(n); S1!) = Z and by Theorem 99 that
this classifies central extensions of smooth 2—groups, [pt/S'] — E — Spin(n). If
[A] € HS?’M (Spin(n), S1) is a class associated to a given central extensions, then by the
above considerations we know that the topology of | E| is determined by the image
of [A] under the edge homomorphisms HZ\,(Spin(n); S') — H?(Spin(n); S') = Z,
and moreover | E*| will have the correct homotopy type precisely if [A] is mapped to a
generator of H? (Spin(n); S1).

There are several ways to deduce that this edge homomorphism is surjective, and hence
an isomorphism. For example, using the short exact sequence of smooth Lie groups
7 — R — S and the induced long exact sequence in Segal-Mitchison cohomology,
we see that the edge homomorphism is the same as the one for integral coefficients:

H*(BG) = H,(G:Z) — H*(G:Z) =~ H*(G).

Segal [56] identifies this map with the transfer map from the Serre spectral sequence,
which is well known to be an isomorphism in these degrees for simply connected Lie
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groups like G = Spin(n). Alternatively, we may re-examine the double complex which
computes Segal-Mitchison cohomology, and use it to extract slightly more information.
Associated to this double complex is a spectral sequence with E;—term

EP? = H9(GP; 04) = HETU(G: A).
In the case that G = Spin(n) and A = S, the E|—term looks as follows:
0 . .
0 H*(G:SYY H*G?* S
qg( 0 0 0 0
St CR(G:sh)  Co(GHSY)  C=(GH S

P

The cohomology of the first row under the d!—differential is precisely the smooth
group cohomology of G, ie the cohomology computed using smooth S ! —valued group
cocycles. Since G is compact and 1—connected, this is trivial in degrees larger then
zero [30; 29; 17; 18; 25]. This yields the exact sequence

. dl .
0 — Hd\(Spin(n); ') — H*(G: S") = H*(G?; S1).

The kernel of d! consists of the primitive elements. It is well known that for G =
Spin(n) every element of H?(G;S!) is primitive in this sense. i

Remark 101 There are two generators of this cohomology group and hence there are
two associated central extensions. The corresponding smooth 2—groups which model
String(n) are equivalent and this equivalence is a map of extensions over G which
induces the order two automorphism of [pt/S!].

The above considerations also give a new conceptual re-interpretation of the notion
of multiplicative bundle gerbe. Carey, Johnson, Murray, Stevenson and Wang [15]
introduced multiplicative S!-bundle gerbes over G and showed they correspond to
elements of H*(BG). We see from the above that a multiplicative bundle gerbe over
G may instead be viewed as a central extension of smooth 2—groups.

4.4 Concluding remarks

Theorem 99 provides a construction which produces a central extension of smooth 2—
groups from a given smooth Segal-Mitchison cocycle and Theorem 100 shows that for
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any choice of generator of HS3M (Spin(n); S') the corresponding central extension gives
a model for String(n). But in what sense is this a construction of String(n)? One may
worry about the choices involved in this construction. However the choices don’t matter.
Theorem 99 shows that the isomorphism classes of homomorphisms between any two
extensions are in bijection with second Segal-Mitchison cohomology HSZM(G; A),
and the 2—homomorphisms between any two such homomorphisms form a torsor for
H;M(G; A). In the case of String(n), where G = Spin(n) and 4 = S, both of these
groups vanish, so that the bicategory of String(n)—extensions forms a contractible
bicategory, ie any two extensions are equivalent, and any two homomorphisms realizing
this equivalence are isomorphic via a unique 2—isomorphism. This is the strongest
possible uniqueness result one could hope for, and shows that the String(n) 2—group
extension is unique in precise analogy with the unique Spin(n) extension of SO(n).

This brings us to the matter of other extensions. While it was sufficient to construct a
model of String(n), Theorem 99 only classifies central extensions of smooth 2—groups
of the particular form

[pt/A] — E — G,

where G is an ordinary Lie group, and A an ordinary abelian Lie group, viewed as a
trivial G—module. This can be generalized, and the construction presented here works
with negligible modification when the action of G on A is nontrivial. In this case we
get an extension of smooth 2—groups, but it will not be a central extension.

More generally, we would like to understand the bicategory of extensions of arbitrary
smooth 2—groups Ext(G; A), where G and A do not necessarily come from ordinary
Lie groups. One could hope for some sort of cohomology theory which classifies theses
extensions and which reduces to Segal-Mitchison cohomology when G = G is an
ordinary Lie group and A = [pt/A] for A an abelian Lie group.

This hypothetical cohomology should take short exact sequences of smooth abelian
2—groups to long exact sequences and have other nice homological properties. Indeed
such a cohomology does in fact exist, and we may identify Ext(G;A) ~ H?(G:A).
Specializing to the case G = G and A = [pt/A], and using the short exact sequence
[pt/A] — 0 — A from Example 86, we have isomorphisms

H*(G:[pt/A]) = H*(G: A) = Hg(G: A).

However the proper way to define this cohomology theory and deduce its properties
requires developing the machinery of bicategorical homological algebra, in particular
in a form that can be applied to the smooth setting. This would take us too far afield of
current goals, but is a topic we take up in [53].
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