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Directed immersions of closed manifolds

MOHAMMAD GHOMI

Given any finite subset X of the sphere Sn , n� 2 , which includes no pairs of antipo-
dal points, we explicitly construct smoothly immersed closed orientable hypersurfaces
in Euclidean space RnC1 whose Gauss map misses X . In particular, this answers a
question of M Gromov.

53A07, 53C42; 57R42, 58K15

1 Introduction

To every .C1/ immersion f W M n!RnC1 of a closed oriented n–manifold M , there
corresponds a unit normal vector field or Gauss map Gf W M ! Sn , which generates a
set Gf .M /� Sn known as the spherical image of f . Conversely, one may ask (see
Gromov [8, page 3]): for which sets A � Sn is there an immersion f W M ! RnC1

such that Gf .M /� A? Such a mapping would be called an A–directed immersion
of M ; see Eliashberg and Mishachev [1], Gromov [7], Rourke and Sanderson [13]
and Spring [14]. It is well-known that when A ¤ Sn , f must have double points
(Section 4.1), and M must be parallelizable, eg, M can only be the torus T2 when
n D 2 (Section 4.2). Furthermore, the only known necessary condition on A is the
elementary observation that A[�AD S2 , while there is also a sufficient condition
due to Gromov [7, Theorem .D0/, page 186]:

Condition 1.1 A� Sn is open, and there is a point p 2 Sn such that the intersection
of A with each great circle passing through p includes a (closed) semicircle.

A great circle is the intersection of Sn with a 2–dimensional subspace of RnC1 . Note
that, when n � 2, examples of sets A � Sn satisfying the above condition include
those which are the complement of a finite set of points without antipodal pairs. Thus
the spherical image of a closed hypersurface can be remarkably flexible. Like most
h-principle or convex integration type arguments, however, the proof does not yield
specific examples. It is therefore natural to ask, for instance:

Question 1.2 [7, page 186] Is there a “simple” immersion T2!R3 whose spherical
image misses the four vertices of a regular tetrahedron in S2 ?
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Here we give an affirmative answer to this question (Section 2), and more generally
present a short constructive proof of the sufficiency of a slightly stronger version of
Condition 1.1 for the existence of A–directed immersions of parallelizable manifolds
M n�1 � S1 , where M n�1 is closed and orientable. Any such manifold admits an
immersion f W M n�1 ! Rn � f0g � RnC1 (Section 4.3). We then extend f to
M n�1 �S1 by using the figure eight curve

(1) Eı.t/ WD
�

cos.t/; ı sin.2t/
�

to put a copy of S1 ' R=2� in each normal plane of f , as described below. Note
that the midpoint of GEı .S

1/ is assumed to be at .1; 0/; see Figure 1 which shows
E1=2 and its spherical image. Further, the unit normal bundle of f may be naturally
identified with the pencil of great circles of Sn passing through .0; : : : ; 0; 1/.

Figure 1

Theorem 1.3 Let A � Sn satisfy Condition 1.1 with respect to p D .0; : : : ; 0; 1/.
Further, if n � 3, suppose that the semicircle in Condition 1.1 contains p , or that no
great circle through p is contained in A. Let f W M n�1 ! Rn � f0g � RnC1 be a
smooth (C1 ) immersion of a closed orientable .n�1/–manifold, and, for every q 2M ,
let Cq � Sn be the unit normal space of f at q . Then there is a smooth orthogonal
frame fNi W M ! Sng, i D 1, 2, for the normal bundle of f such that the semicircle
in Cq centered at N1.q/ lies in A. For any such frame, and sufficiently small ", ı > 0,

(2) F.q; t/ WD f .q/C "

2X
iD1

Ei
ı.t/Ni.q/

yields a smooth A–directed immersion M�S1!RnC1 , where Ei
ı

are the components
of the figure eight curve Eı given by (1).

It is not known if Condition 1.1 is necessary for the existence of A–directed closed
hypersurfaces, and the question posed in the first paragraph is open, even for nD 2. See
Ghomi [3; 4] and Ghomi and Tabachnikov [6] for some other recent results on Gauss
maps of closed submanifolds, Ghomi [2], Hartman and Nirenberg [9], Milnor [11]
and Wu [16] for still more studies of spherical images, and Spring [15] for historical
background.
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2 Example

If AD S2 XX for a finite set X without antipodal pairs, we may always find a point
p 2 S2 with respect to which A satisfies the hypothesis of Theorem 1.3 (eg, let p 62X

be in the complement of all great circles which pass through at least two points of X

other than �p ). After a rigid motion (which may be arbitrarily small) we may assume
that p D .0; 0; 1/ or .0; 0;�1/, and let f .�/ WD .cos.�/; sin.�/; 0/ be the standard
immersion of S1'R=2� in R3 . Then the desired framing for the normal bundle of f
may always take the form

(3) N1.�/ WD f
0.�/�N2.�/; N2.�/ WD

�
cos.�/; sin.�/; z.�/

�p
1C z2.�/

;

where zW R=2�!R is a smooth function with z.�/D�z.�C�/ and such that X is
contained entirely in one of the components of S2�N2.S1/. For instance, when X is
the vertices of a regular tetrahedron, we may set z.�/ WDcos.3�/ in (3). Then, for ", ı�
1=8, the mapping F.�; t/ given by (2) yields an immersion T2'R=2��R=2�!R3

which answers Question 1.2. The resulting surface, for " D ı D 1=8, is depicted in
Figure 2 together with its spherical image (note that here pD .0; 0;�1/). To find z.�/

Figure 2

in general, we may order the points in X 0[�X 0 , where X 0 WDX X f�pg, according
to their “longitude" � , and connect them by geodesic segments to obtain a simple
closed symmetric curve  .�/. A perturbation of  then yields a smooth symmetric
curve z such that X is contained in one of the components of S2� z .S1/. The third
coordinate of z gives our desired height function z .

3 Proof of Theorem 1.3

3.1 First we construct the frame fNig. For every q 2M , Cq is a great circle passing
through p . So it contains a semicircle in A by assumption (Condition 1.1). Let
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mq �Cq be the set of midpoints of all such semicircles. We need to find a smooth map
N1W M ! Sn such that N1.q/ 2mq for all q 2M . To this end note that mq is open
and connected. Further, if mq contains any pairs of antipodal points, then mq D Cq ;
otherwise, mq lies in the interior a semicircle of Cq . Consequently,

Cone.mq/ WD f�x j x 2mq and �� 0 g;

is a convex set in RnC1 . In particular, for any finite set of points xi 2 Cone.mq/ and
numbers �i � 0,

P
i �ixi 2Cone.mq/. Now let B be the set of all points q 2M such

that mq ¤Cq . Then B is closed (and therefore compact) since M XB is open; indeed
the set of great circles contained in A is open, since A is open. Further note that for
any point q 2M , normal vector x 2mq , and continuous local extension v of x to a
normal vector field of M , we have v.q0/ 2mq0 for all q0 in an open neighborhood U

of q (because the set of semicircles contained in A is open). Let fvi W Ui ! Sng,
i D 1; : : : ; k , be a finite collection of such local vector fields so that

S
i Ui covers B

and vi are smooth. Also let f�i W M ! Rg be a smooth partition of unity subordinate
to fUig, and, for q 2

S
i Ui , set

N1.q/ WD

Pk
iD1 �i.q/vi.q/

k
Pk

iD1 �i.q/vi.q/k
:

If q 2 B , then vi.q/ 2mq which lies in the interior of a semicircle S � Cq , and so
k
Pk

iD1 �i.q/vi.q/k ¤ 0. Indeed, if x is the midpoint of S , then˝Pk
iD1 �i.q/vi.q/;x

˛
D
Pk

iD1 �i.q/hvi.q/;xi> 0:

Thus N1 is well defined (and smooth) on an open neighborhood V of B . Further,
N1.q/ 2mq , for all q 2 V , since Cone.mq/ is convex. In particular we are done if
B DM ; otherwise, note that we may write

(4) N1.q/D cos.�.q//pC sin.�.q//Gf .q/;

for some function � W V ! R, since Gf is well defined due to the orientability of M ,
and thus fp;Gf .q/g forms an orthonormal basis for the normal plane df .TqM /? .
Further, it is easy to see that we may choose � continuously (and therefore smoothly)
if nD 2. This also holds for n> 2 if each Cq contains a semicircle passing through p ;
for then � is uniquely determined within the range Œ��=2; �=2�. Indeed, we may
choose the vectors vi above so that hvi.q/;pi � 0 which would in turn yield that
hN1.q/;pi � 0. Now let V 0 be an open neighborhood of B with closure V 0 � V .
Using Tietze’s theorem, followed by a perturbation and a gluing, we may extend � jV 0

smoothly to all of M . Then (4) yields the desired vector field on M , since for any
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q 2M XB , N1.q/ 2 Cq Dmq . Finally, set

N2.q/ WD sin.�.q//p� cos.�.q//Gf .q/:

3.2 It remains to show that GF .M�S1/�A, for small ", ı>0. For all q2M , Cq\A

contains an arc of length � � C ˛ with midpoint N1.q/ for some uniform constant
˛ > 0. Indeed, if we let g.q/ be the supremum of lengths of all arcs in Cq \A with
midpoint N1.q/, then gW M !R is lower semicontinuous, ie, limq!q0

g.q/� g.q0/,
since A is open. Thus, since g>� and M is compact, g��C˛ . Now choose ı > 0

so small that the length ` of the spherical image of Eı is � � C ˛ (this is possible
since `! � as ı! 0). Next, for .q; t/ 2M � S1 , let zGF .q; t/ be the normalized
projection of GF .q; t/ into df .TqM /? , ie,

zGF .q; t/ WD

P2
iD1

˝
GF .q; t/;Ni.q/

˛
Ni.q/qP2

iD1

˝
GF .q; t/;Ni.q/

˛2 :

Also, for fixed t 2S1 , let Ft .q/ WDF.q; t/. Then, by the tubular neighborhood theorem,
Ft W M ! RnC1 is a smooth immersion for small ". Further, as "! 0, Ft converges
to f with respect to the C1 –topology. Thus, for each q 2 M , the normal plane
dFt .TqM /? (which contains GF .q; t/) converges to df .TqM /? . Consequently GF

is well-defined for small ", and converges to zGF as "! 0. So it suffices to check that
zGF .M �S1/�A, which follows from our choice of ı . Indeed for each fixed q 2M ,
zGF .fqg � S1/ is the spherical image of the figure eight curve

P2
iD1 Ei

ı
.t/Ni.q/ in

df .TqM /? , which is an arc of Cq with midpoint N1.q/ and length � �C˛ .

4 Notes

4.1 It is well-known that Gf .M /DSn for any embedding f W M n!RnC1 of a closed
oriented n–manifold [7, page 187]. More generally, this also holds for “Alexandrov
embeddings", ie, immersions f W M !RnC1 which may be extended to an immersion
xf W SM !RnC1 of a compact (nC1)-manifold SM with @ SM DM . Indeed if v is any

vector field along M which points “outward" with respect to SM , then for p 2M , the
normalized projection of df .v.p// into the line df .TpM /? defines a normal vector
field M ! Sn which coincides with Gf (after a reflection of Gf if necessary). Then,
for any u 2 Sn , if p is a point which maximizes the height function h � ;ui on M , we
have Gf .p/D u. On the other hand, being only regularly homotopic to an embedding,
is not enough to ensure that Gf .M /D Sn . Indeed the example in Figure 2 is regularly
homotopic to an embedded torus of revolution by Pinkall [12].
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4.2 If Gf .M /¤ Sn for an immersion f W M n! RnC1 of an oriented n–manifold,
then, as is well-known (see Milnor [11]), M must be parallelizable. Here we include
a brief geometric argument for this fact. If .0; : : : ; 0; 1/ 62 Gf .M /, we may define a
continuous map F W TM ! Rn ' Rn � f0g � RnC1 as follows; cf [5, Lemma 2.2].
There is a continuous map �W Sn X f.0; : : : ; 0; 1/g ! SO.nC 1/, u 7! �u such that
�u.u/ D .0; : : : ; 0;�1/. Let � W TM ! M be the canonical projection, and for
X 2 TM set F.X / WD �Gf .�.X //.df .X //. Also let Fp WD F jTpM . Then fF�1

p .ei/g,
where feig is a fixed basis of Rn , gives a framing for TM as desired. So in particular,
when M is closed and nD 2, we have M D T2 . The last observation also follows
from Gauss–Bonnet theorem via degree theory when f is C2 ; since if Gf .M /¤ S2 ,
then

0D deg.Gf /D
1

4�

Z
M

det.dGf /D
1

4�

Z
M

K D
1

2
�.M /;

where K is the Gaussian curvature and � is the Euler characteristic.

4.3 To generate some concrete examples of the immersions f W M n�1!Rn'Rn�f0g

in Theorem 1.3, note that if f0W M
n�k�1
0

! Rn�k � f0g is any immersion such that
f0.M0/ is disjoint from the subspace L WDRn�k�1�f.0; 0/g, then spinning f0 about
L yields an immersion f1W M0 �S1! Rn�kC1 given by

f1.q; t/ WD

266664
I 0

0 cos.t/ sin.t/
� sin.t/ cos.t/

377775
26664

f 1
0
.q/
:::

f n�k
0

.q/

0

37775 ;
where f i

0
are the components of f0 . Thus, for instance, one may inductively construct

immersions of Sn�k�1�Tk in Rn , for kD 1; : : : ; n�1. More generally, if M n�1�S1

is parallelizable, then so is the open manifold M n�1� .0; 1/, which may be immersed
in Rn [10] by the h-principle [7], or more specifically, the “holonomic approximation
theorem" of Eliashberg and Mishachev [1; 5].
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