# Directed immersions of closed manifolds

MOHAMMAD GHOMI

Given any finite subset X of the sphere  $S^n$ ,  $n \ge 2$ , which includes no pairs of antipodal points, we explicitly construct smoothly immersed closed orientable hypersurfaces in Euclidean space  $\mathbb{R}^{n+1}$  whose Gauss map misses X. In particular, this answers a question of M Gromov.

53A07, 53C42; 57R42, 58K15

# **1** Introduction

To every  $(\mathcal{C}^1)$  immersion  $f: M^n \to \mathbb{R}^{n+1}$  of a closed oriented *n*-manifold M, there corresponds a unit normal vector field or *Gauss map*  $G_f: M \to \mathbb{S}^n$ , which generates a set  $G_f(M) \subset \mathbb{S}^n$  known as the *spherical image* of f. Conversely, one may ask (see Gromov [8, page 3]): for which sets  $A \subset \mathbb{S}^n$  is there an immersion  $f: M \to \mathbb{R}^{n+1}$  such that  $G_f(M) \subset A$ ? Such a mapping would be called an A-directed immersion of M; see Eliashberg and Mishachev [1], Gromov [7], Rourke and Sanderson [13] and Spring [14]. It is well-known that when  $A \neq \mathbb{S}^n$ , f must have double points (Section 4.1), and M must be parallelizable, eg, M can only be the torus  $\mathbb{T}^2$  when n = 2 (Section 4.2). Furthermore, the only known necessary condition on A is the elementary observation that  $A \cup -A = \mathbb{S}^2$ , while there is also a sufficient condition due to Gromov [7, Theorem (D'), page 186]:

**Condition 1.1**  $A \subset \mathbf{S}^n$  is open, and there is a point  $p \in \mathbf{S}^n$  such that the intersection of A with each great circle passing through p includes a (closed) semicircle.

A great circle is the intersection of  $S^n$  with a 2-dimensional subspace of  $\mathbb{R}^{n+1}$ . Note that, when  $n \ge 2$ , examples of sets  $A \subset S^n$  satisfying the above condition include those which are the complement of a finite set of points without antipodal pairs. Thus the spherical image of a closed hypersurface can be remarkably flexible. Like most h-principle or convex integration type arguments, however, the proof does not yield specific examples. It is therefore natural to ask, for instance:

**Question 1.2** [7, page 186] Is there a "simple" immersion  $\mathbf{T}^2 \rightarrow \mathbf{R}^3$  whose spherical image misses the four vertices of a regular tetrahedron in  $\mathbf{S}^2$ ?

Here we give an affirmative answer to this question (Section 2), and more generally present a short constructive proof of the sufficiency of a slightly stronger version of Condition 1.1 for the existence of A-directed immersions of parallelizable manifolds  $M^{n-1} \times \mathbf{S}^1$ , where  $M^{n-1}$  is closed and orientable. Any such manifold admits an immersion  $f: M^{n-1} \to \mathbf{R}^n \times \{0\} \subset \mathbf{R}^{n+1}$  (Section 4.3). We then extend f to  $M^{n-1} \times \mathbf{S}^1$  by using the *figure eight curve* 

(1) 
$$E_{\delta}(t) := (\cos(t), \,\delta\sin(2t))$$

to put a copy of  $\mathbf{S}^1 \simeq \mathbf{R}/2\pi$  in each normal plane of f, as described below. Note that the midpoint of  $G_{E_\delta}(\mathbf{S}^1)$  is assumed to be at (1,0); see Figure 1 which shows  $E_{1/2}$  and its spherical image. Further, the unit normal bundle of f may be naturally identified with the pencil of great circles of  $\mathbf{S}^n$  passing through  $(0, \ldots, 0, 1)$ .



Figure 1

**Theorem 1.3** Let  $A \subset \mathbf{S}^n$  satisfy Condition 1.1 with respect to p = (0, ..., 0, 1). Further, if  $n \ge 3$ , suppose that the semicircle in Condition 1.1 contains p, or that no great circle through p is contained in A. Let  $f: M^{n-1} \to \mathbf{R}^n \times \{0\} \subset \mathbf{R}^{n+1}$  be a smooth  $(\mathcal{C}^\infty)$  immersion of a closed orientable (n-1)-manifold, and, for every  $q \in M$ , let  $C_q \subset \mathbf{S}^n$  be the unit normal space of f at q. Then there is a smooth orthogonal frame  $\{N_i: M \to \mathbf{S}^n\}$ , i = 1, 2, for the normal bundle of f such that the semicircle in  $C_q$  centered at  $N_1(q)$  lies in A. For any such frame, and sufficiently small  $\varepsilon, \delta > 0$ ,

(2) 
$$F(q,t) := f(q) + \varepsilon \sum_{i=1}^{2} E_{\delta}^{i}(t) N_{i}(q)$$

yields a smooth A-directed immersion  $M \times S^1 \to \mathbb{R}^{n+1}$ , where  $E^i_{\delta}$  are the components of the figure eight curve  $E_{\delta}$  given by (1).

It is not known if Condition 1.1 is necessary for the existence of A-directed closed hypersurfaces, and the question posed in the first paragraph is open, even for n = 2. See Ghomi [3; 4] and Ghomi and Tabachnikov [6] for some other recent results on Gauss maps of closed submanifolds, Ghomi [2], Hartman and Nirenberg [9], Milnor [11] and Wu [16] for still more studies of spherical images, and Spring [15] for historical background.

### 2 Example

If  $A = \mathbf{S}^2 \setminus X$  for a finite set X without antipodal pairs, we may always find a point  $p \in \mathbf{S}^2$  with respect to which A satisfies the hypothesis of Theorem 1.3 (eg, let  $p \notin X$  be in the complement of all great circles which pass through at least two points of X other than -p). After a rigid motion (which may be arbitrarily small) we may assume that p = (0, 0, 1) or (0, 0, -1), and let  $f(\theta) := (\cos(\theta), \sin(\theta), 0)$  be the standard immersion of  $\mathbf{S}^1 \simeq \mathbf{R}/2\pi$  in  $\mathbf{R}^3$ . Then the desired framing for the normal bundle of f may always take the form

(3) 
$$N_1(\theta) := f'(\theta) \times N_2(\theta), \quad N_2(\theta) := \frac{\left(\cos(\theta), \sin(\theta), z(\theta)\right)}{\sqrt{1 + z^2(\theta)}}$$

where  $z: \mathbf{R}/2\pi \to \mathbf{R}$  is a smooth function with  $z(\theta) = -z(\theta + \pi)$  and such that X is contained entirely in one of the components of  $\mathbf{S}^2 - N_2(\mathbf{S}^1)$ . For instance, when X is the vertices of a regular tetrahedron, we may set  $z(\theta) := \cos(3\theta)$  in (3). Then, for  $\varepsilon, \delta \le$ 1/8, the mapping  $F(\theta, t)$  given by (2) yields an immersion  $\mathbf{T}^2 \simeq \mathbf{R}/2\pi \times \mathbf{R}/2\pi \to \mathbf{R}^3$ which answers Question 1.2. The resulting surface, for  $\varepsilon = \delta = 1/8$ , is depicted in Figure 2 together with its spherical image (note that here p = (0, 0, -1)). To find  $z(\theta)$ 



Figure 2

in general, we may order the points in  $X' \cup -X'$ , where  $X' := X \setminus \{-p\}$ , according to their "longitude"  $\theta$ , and connect them by geodesic segments to obtain a simple closed symmetric curve  $\gamma(\theta)$ . A perturbation of  $\gamma$  then yields a smooth symmetric curve  $\tilde{\gamma}$  such that X is contained in one of the components of  $\mathbf{S}^2 - \tilde{\gamma}(\mathbf{S}^1)$ . The third coordinate of  $\tilde{\gamma}$  gives our desired height function z.

## **3 Proof of Theorem 1.3**

**3.1** First we construct the frame  $\{N_i\}$ . For every  $q \in M$ ,  $C_q$  is a great circle passing through p. So it contains a semicircle in A by assumption (Condition 1.1). Let

 $m_q \subset C_q$  be the set of midpoints of all such semicircles. We need to find a smooth map  $N_1: M \to \mathbf{S}^n$  such that  $N_1(q) \in m_q$  for all  $q \in M$ . To this end note that  $m_q$  is open and connected. Further, if  $m_q$  contains any pairs of antipodal points, then  $m_q = C_q$ ; otherwise,  $m_q$  lies in the interior a semicircle of  $C_q$ . Consequently,

$$\operatorname{Cone}(m_q) := \{ \lambda x \mid x \in m_q \text{ and } \lambda \ge 0 \},\$$

is a convex set in  $\mathbb{R}^{n+1}$ . In particular, for any finite set of points  $x_i \in \operatorname{Cone}(m_q)$  and numbers  $\lambda_i \geq 0$ ,  $\sum_i \lambda_i x_i \in \operatorname{Cone}(m_q)$ . Now let *B* be the set of all points  $q \in M$  such that  $m_q \neq C_q$ . Then *B* is closed (and therefore compact) since  $M \setminus B$  is open; indeed the set of great circles contained in *A* is open, since *A* is open. Further note that for any point  $q \in M$ , normal vector  $x \in m_q$ , and continuous local extension *v* of *x* to a normal vector field of *M*, we have  $v(q') \in m_{q'}$  for all q' in an open neighborhood *U* of *q* (because the set of semicircles contained in *A* is open). Let  $\{v_i: U_i \to \mathbf{S}^n\}$ ,  $i = 1, \ldots, k$ , be a finite collection of such local vector fields so that  $\bigcup_i U_i$  covers *B* and  $v_i$  are smooth. Also let  $\{\phi_i: M \to \mathbf{R}\}$  be a smooth partition of unity subordinate to  $\{U_i\}$ , and, for  $q \in \bigcup_i U_i$ , set

$$N_1(q) := \frac{\sum_{i=1}^k \phi_i(q) v_i(q)}{\|\sum_{i=1}^k \phi_i(q) v_i(q)\|}$$

If  $q \in B$ , then  $v_i(q) \in m_q$  which lies in the interior of a semicircle  $S \subset C_q$ , and so  $\|\sum_{i=1}^k \phi_i(q)v_i(q)\| \neq 0$ . Indeed, if x is the midpoint of S, then

$$\left\langle \sum_{i=1}^{k} \phi_i(q) v_i(q), x \right\rangle = \sum_{i=1}^{k} \phi_i(q) \langle v_i(q), x \rangle > 0.$$

Thus  $N_1$  is well defined (and smooth) on an open neighborhood V of B. Further,  $N_1(q) \in m_q$ , for all  $q \in V$ , since  $\text{Cone}(m_q)$  is convex. In particular we are done if B = M; otherwise, note that we may write

(4) 
$$N_1(q) = \cos(\theta(q)) p + \sin(\theta(q)) G_f(q),$$

for some function  $\theta: V \to \mathbf{R}$ , since  $G_f$  is well defined due to the orientability of M, and thus  $\{p, G_f(q)\}$  forms an orthonormal basis for the normal plane  $df(T_q M)^{\perp}$ . Further, it is easy to see that we may choose  $\theta$  continuously (and therefore smoothly) if n = 2. This also holds for n > 2 if each  $C_q$  contains a semicircle passing through p; for then  $\theta$  is uniquely determined within the range  $[-\pi/2, \pi/2]$ . Indeed, we may choose the vectors  $v_i$  above so that  $\langle v_i(q), p \rangle \ge 0$  which would in turn yield that  $\langle N_1(q), p \rangle \ge 0$ . Now let V' be an open neighborhood of B with closure  $\overline{V'} \subset V$ . Using Tietze's theorem, followed by a perturbation and a gluing, we may extend  $\theta|_{V'}$ smoothly to all of M. Then (4) yields the desired vector field on M, since for any

$$q \in M \smallsetminus B$$
,  $N_1(q) \in C_q = m_q$ . Finally, set
$$N_2(q) := \sin(\theta(q)) \ p - \cos(\theta(q)) \ G_f(q).$$

**3.2** It remains to show that  $G_F(M \times \mathbf{S}^1) \subset A$ , for small  $\varepsilon$ ,  $\delta > 0$ . For all  $q \in M$ ,  $C_q \cap A$  contains an arc of length  $\geq \pi + \alpha$  with midpoint  $N_1(q)$  for some uniform constant  $\alpha > 0$ . Indeed, if we let g(q) be the supremum of lengths of all arcs in  $C_q \cap A$  with midpoint  $N_1(q)$ , then  $g: M \to \mathbf{R}$  is lower semicontinuous, ie,  $\lim_{q \to q_0} g(q) \geq g(q_0)$ , since A is open. Thus, since  $g > \pi$  and M is compact,  $g \geq \pi + \alpha$ . Now choose  $\delta > 0$  so small that the length  $\ell$  of the spherical image of  $E_{\delta}$  is  $\leq \pi + \alpha$  (this is possible since  $\ell \to \pi$  as  $\delta \to 0$ ). Next, for  $(q, t) \in M \times \mathbf{S}^1$ , let  $\widetilde{G}_F(q, t)$  be the normalized projection of  $G_F(q, t)$  into  $df(T_q M)^{\perp}$ , ie,

$$\widetilde{G}_F(q,t) := \frac{\sum_{i=1}^2 \left\langle G_F(q,t), N_i(q) \right\rangle N_i(q)}{\sqrt{\sum_{i=1}^2 \left\langle G_F(q,t), N_i(q) \right\rangle^2}}.$$

Also, for fixed  $t \in \mathbf{S}^1$ , let  $F_t(q) := F(q, t)$ . Then, by the tubular neighborhood theorem,  $F_t: M \to \mathbf{R}^{n+1}$  is a smooth immersion for small  $\varepsilon$ . Further, as  $\varepsilon \to 0$ ,  $F_t$  converges to f with respect to the  $\mathcal{C}^1$ -topology. Thus, for each  $q \in M$ , the normal plane  $dF_t(T_q M)^{\perp}$  (which contains  $G_F(q, t)$ ) converges to  $df(T_q M)^{\perp}$ . Consequently  $G_F$ is well-defined for small  $\varepsilon$ , and converges to  $\tilde{G}_F$  as  $\varepsilon \to 0$ . So it suffices to check that  $\tilde{G}_F(M \times \mathbf{S}^1) \subset A$ , which follows from our choice of  $\delta$ . Indeed for each fixed  $q \in M$ ,  $\tilde{G}_F(\{q\} \times \mathbf{S}^1)$  is the spherical image of the figure eight curve  $\sum_{i=1}^2 E_{\delta}^i(t)N_i(q)$  in  $df(T_q M)^{\perp}$ , which is an arc of  $C_q$  with midpoint  $N_1(q)$  and length  $\leq \pi + \alpha$ .  $\Box$ 

#### 4 Notes

**4.1** It is well-known that  $G_f(M) = \mathbf{S}^n$  for any embedding  $f: M^n \to \mathbf{R}^{n+1}$  of a closed oriented *n*-manifold [7, page 187]. More generally, this also holds for "Alexandrov embeddings", ie, immersions  $f: M \to \mathbf{R}^{n+1}$  which may be extended to an immersion  $\overline{f}: \overline{M} \to \mathbf{R}^{n+1}$  of a compact (n+1)-manifold  $\overline{M}$  with  $\partial \overline{M} = M$ . Indeed if v is any vector field along M which points "outward" with respect to  $\overline{M}$ , then for  $p \in M$ , the normalized projection of df(v(p)) into the line  $df(T_pM)^{\perp}$  defines a normal vector field  $M \to \mathbf{S}^n$  which coincides with  $G_f$  (after a reflection of  $G_f$  if necessary). Then, for any  $u \in \mathbf{S}^n$ , if p is a point which maximizes the height function  $\langle \cdot, u \rangle$  on M, we have  $G_f(p) = u$ . On the other hand, being only regularly homotopic to an embedding, is not enough to ensure that  $G_f(M) = \mathbf{S}^n$ . Indeed the example in Figure 2 is regularly homotopic to an embedded torus of revolution by Pinkall [12].

**4.2** If  $G_f(M) \neq \mathbf{S}^n$  for an immersion  $f: M^n \to \mathbf{R}^{n+1}$  of an oriented *n*-manifold, then, as is well-known (see Milnor [11]), M must be parallelizable. Here we include a brief geometric argument for this fact. If  $(0, \ldots, 0, 1) \notin G_f(M)$ , we may define a continuous map  $F: TM \to \mathbf{R}^n \simeq \mathbf{R}^n \times \{0\} \subset \mathbf{R}^{n+1}$  as follows; cf [5, Lemma 2.2]. There is a continuous map  $\rho: \mathbf{S}^n \sim \{(0, \ldots, 0, 1)\} \to \mathbf{SO}(n+1), u \mapsto \rho_u$  such that  $\rho_u(u) = (0, \ldots, 0, -1)$ . Let  $\pi: TM \to M$  be the canonical projection, and for  $X \in TM$  set  $F(X) := \rho_{G_f(\pi(X))}(df(X))$ . Also let  $F_p := F|_{T_pM}$ . Then  $\{F_p^{-1}(e_i)\}$ , where  $\{e_i\}$  is a fixed basis of  $\mathbf{R}^n$ , gives a framing for TM as desired. So in particular, when M is closed and n = 2, we have  $M = \mathbf{T}^2$ . The last observation also follows from Gauss-Bonnet theorem via degree theory when f is  $C^2$ ; since if  $G_f(M) \neq \mathbf{S}^2$ , then

$$0 = \deg(G_f) = \frac{1}{4\pi} \int_M \det(dG_f) = \frac{1}{4\pi} \int_M K = \frac{1}{2}\chi(M),$$

where K is the Gaussian curvature and  $\chi$  is the Euler characteristic.

**4.3** To generate some concrete examples of the immersions  $f: M^{n-1} \to \mathbb{R}^n \simeq \mathbb{R}^n \times \{0\}$ in Theorem 1.3, note that if  $f_0: M_0^{n-k-1} \to \mathbb{R}^{n-k} \times \{0\}$  is any immersion such that  $f_0(M_0)$  is disjoint from the subspace  $L := \mathbb{R}^{n-k-1} \times \{(0,0)\}$ , then spinning  $f_0$  about L yields an immersion  $f_1: M_0 \times \mathbb{S}^1 \to \mathbb{R}^{n-k+1}$  given by

$$f_1(q,t) := \begin{bmatrix} I & 0 \\ & & \\ 0 & \cos(t) \sin(t) \\ & -\sin(t) \cos(t) \end{bmatrix} \begin{bmatrix} f_0^1(q) \\ \vdots \\ f_0^{n-k}(q) \\ 0 \end{bmatrix},$$

where  $f_0^i$  are the components of  $f_0$ . Thus, for instance, one may inductively construct immersions of  $\mathbf{S}^{n-k-1} \times \mathbf{T}^k$  in  $\mathbf{R}^n$ , for k = 1, ..., n-1. More generally, if  $M^{n-1} \times \mathbf{S}^1$ is parallelizable, then so is the open manifold  $M^{n-1} \times (0, 1)$ , which may be immersed in  $\mathbf{R}^n$  [10] by the h-principle [7], or more specifically, the "holonomic approximation theorem" of Eliashberg and Mishachev [1; 5].

**Acknowledgements** The author thanks Misha Gromov for his interesting question in [7, page 186], and David Spring who first called the author's attention to that problem and pointed out a correction in an earlier draft of this work.

The research of the author was supported in part by NSF grant DMS-0806305.

### References

 Y Eliashberg, N Mishachev, Introduction to the h-principle, Graduate Studies in Math. 48, Amer. Math. Soc. (2002) MR1909245

Geometry & Topology, Volume 15 (2011)

- [2] **M Ghomi**, *Gauss map*, *topology*, *and convexity of hypersurfaces with nonvanishing curvature*, Topology 41 (2002) 107–117 MR1871243
- [3] M Ghomi, Shadows and convexity of surfaces, Ann. of Math. (2) 155 (2002) 281–293 MR1888801
- [4] M Ghomi, Tangent bundle embeddings of manifolds in Euclidean space, Comment. Math. Helv. 81 (2006) 259–270 MR2208806
- [5] M Ghomi, M Kossowski, h-principles for hypersurfaces with prescribed principal curvatures and directions, Trans. Amer. Math. Soc. 358 (2006) 4379–4393 MR2231382
- [6] M Ghomi, S Tabachnikov, Totally skew embeddings of manifolds, Math. Z. 258 (2008) 499–512 MR2369041
- [7] M Gromov, Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer, Berlin (1986) MR864505
- [8] M Gromov, Spaces and questions, from: "Visions in mathematics: GAFA 2000 (Tel Aviv, 1999)", (N Alon, J Bourgain, A Connes, M Gromov, V D Milman, editors), Geom. Funct. Anal., Special Volume, Part I (2000) 118–161 MR1826251
- [9] **P Hartman**, **L Nirenberg**, *On spherical image maps whose Jacobians do not change sign*, Amer. J. Math. 81 (1959) 901–920 MR0126812
- [10] M W Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math.
  (2) 73 (1961) 566–571 MR0124915
- [11] **J Milnor**, On the immersion of n-manifolds in (n+1)-space, Comment. Math. Helv. 30 (1956) 275–284 MR0079268
- U Pinkall, Regular homotopy classes of immersed surfaces, Topology 24 (1985) 421– 434 MR816523
- [13] C Rourke, B Sanderson, The compression theorem. II. Directed embeddings, Geom. Topol. 5 (2001) 431–440 MR1833750
- [14] D Spring, Directed embeddings of closed manifolds, Commun. Contemp. Math. 7 (2005) 707–725 MR2175094
- [15] D Spring, The golden age of immersion theory in topology: 1959–1973. A mathematical survey from a historical perspective, Bull. Amer. Math. Soc. (N.S.) 42 (2005) 163–180 MR2133309
- [16] H Wu, The spherical images of convex hypersurfaces, J. Differential Geometry 9 (1974) 279–290 MR0348685

School of Mathematics, Georgia Institute of Technology Atlanta GA 30332, USA ghomi@math.gatech.edu www.math.gatech.edu/~ghomi

Proposed: Yasha Eliashberg Seconded: Leonid Polterovich, Dmitri Burago Received: 25 October 2010 Accepted: 13 March 2011

Geometry & Topology, Volume 15 (2011)