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Orthospectra of geodesic laminations and dilogarithm
identities on moduli space

MARTIN BRIDGEMAN

Given a measured lamination A on a finite area hyperbolic surface we consider a
natural measure M on the real line obtained by taking the push-forward of the vol-
ume measure of the unit tangent bundle of the surface under an intersection function
associated with the lamination. We show that the measure M) gives summation
identities for the Rogers dilogarithm function on the moduli space of a surface.

32G15; 11M36

1 Introduction

Let S be a closed hyperbolic surface and A a geodesic lamination on S. We let
Q be the volume measure on the unit tangent bundle 77(S). We let «(v) be the
longest geodesic arc containing v as a tangent vector and which does not intersect A
transversely in its interior. Generically «(v) will be a geodesic arc with endpoints on
A.

We define the function L: T;(S) — R by letting L(v) = Length(a(v)). We note that
L(v) is measurable but can be infinite. We define measure M) on the real line by
M) = L42. Then M, is a measure describing the distribution of the lengths of «(v).

We cut S along A to obtain a surface with boundary denoted S . A A—cusp of S
is an ideal vertex of a component of S . We let N, be the number of A—cusps of
S'. We denote by {«;} the geodesic arcs in S; which have endpoints perpendicular
to 0.5 € A and denote the length of «; by /;. We note that if a component of Sy
is an ideal k—gon then there are a finite number of geodesics «; in this component.
Otherwise there are an infinite number. We call the set {/;} (with multiplicities) the
A—orthospectrum. By doubling S — A we see that the A—orthospectrum corresponds to
a subset of the closed geodesics of a finite area surface and therefore is a countable set.

We prove the following length spectrum identity

72

(1) Zz: (Cosh2 r ) T3 CIX(S)] = Ny)

where L is a Rogers dilogarithm function (described below).
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708 Martin Bridgeman

1.1 Orthospectra identities

The orthospectrum was introduced by Basmajian [1] in studying hyperbolic n—manifolds
M with totally geodesic boundaries. In the paper Basmajian shows that the volume of
the boundary is given by the following orthospectrum identity

Vol(dM) = ) V,_y(logcoth(//2))

leAp

where A(M) is the orthospectrum of M, and Vj(r) is the volume of a hyperbolic
ball of radius r in H".

In an earlier paper [4], the author and Kahn generalize the length spectrum identity
(1) above to the case of a hyperbolic n—manifold with geodesic boundary to obtain an
identity giving the volume of the manifold in terms of the orthospectrum

Vol(M) = Z Fu(l)
IGAM

where F;, are explicitly described functions. Calegari [6; 5] gives an alternate derivation
of these length spectrum identities.

2 Dilogarithms and polylogarithms

The k™ polylogarithm function Lij is defined by the Taylor series

X _n

Lig() =) ;—k

i=1

for |z| < 1 and by analytic continuation to C. In particular

1
Lig(z) = 1 Li;(z) = —log(1 —z).
—z
Also
Lij_ Z Lig_
Lij (z) = =% 1) giving Lix(z) = / L1,
z 0 z

Also the functions Liy are related to the Riemann ¢ function by Lig (1) = ¢(k).

The dilogarithm function is the function Li,(z) and is given by

Lis(z) = — /OZ logt=2) ;.

z
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Orthospectra of geodesic laminations 709

Below is a brief description of some properties of the dilogarithm function. They can
all be found in 1991 survey "Structural Properties of Polylogarithms" by L Lewin [9].
From the power series representation, it is easy to see that the dilogarithm function
satisfies the functional equation

Liz(z) + Liz(—z) = 1 Lir (z2).

Other functional relations of the dilogarithm can be best described by normalizing the
dilogarithm function. The (extended) Rogers L£L—function [11] is defined by

L(x) =Liz(x)+%log|x|log(1—x) x <1.

In terms of the Rogers L£—function, Euler’s reflection relations for the dilogarithm are:

].[2
E(X)+£(1—x)=£(1)=? 0<x<I

2

7T2
L(—x)+ L(—x"N =2£L(-1) = - x> 0

Also in terms of £, Landen’s identity is

3) £( — ):—ﬁ(x) 0<x<1
1—x
and Abel’s functional equation is
1— 1-—
@) L)+ L(y) = Lxy) + £ (u) +L (u) .
I—xy l—xy

Also a closed form for £(x) is known for certain values of x including

C(l) = % L(%) = 711—2 (Euler)
2 2
L") =T L(1-¢7") =T (Landen)

where ¢ is the golden ratio.

Finally we note that Ramanujan found the following linear identities (see Berndt [2]
and Gordon—-MclIntosh [7])

®) oc(h)—c(h) == () +2(h) =
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3 Statement of results
The main result of the paper is the following:

Main Theorem There exists a function p: R?> — R such that infinitesimally

dM; = (4NA + Z,o(l,,x)) dx

sinh

where N, is the number of A—cusps of S. Furthermore the total mass of the measure
p(l, x) dx on the real line is given by

*© 1
F()= /0 p,x)dx = 8£(cosh2 M )

In particular the measure M) depends only on the A—orthospectrum.

4 The Length Spectrum Identity
As My = L4, M, has total mass equal to the volume of T (S). Therefore M} (R) =
Q(T1(S)) =472 x(S)|. Summing up the masses of measures in the Main Theorem

we immediately obtain the following.

Length Spectrum Identity Theorem Let A be a geodesic lamination on a finite area
hyperbolic surface S. Then the A—orthospectrum satisfies

1 26| x(S)|— Ny)
ZE( _-) o 12

72 (6x(S) +Nx)
ZE( sinh? l’) 12

By Landen’s identity (see equation (3)) we have

Thus we can see that the second form of the Length Spectrum Identity corresponds to
the first via Landen’s identity.

or, equivalently,

Geometry & Topology, Volume 15 (2011)



Orthospectra of geodesic laminations 711

5 The Length Spectrum Identity on moduli space

We note that if S is a connected hyperbolic surface of finite area with non-empty
geodesic boundary, letting A = 9.5 then the Length Spectrum Identity gives a summation
identity on the Moduli space Mod(S) of S. In this case the Euler characteristic x(.S)
can be a fraction and is defined such that 2 x(.S) is the negative of the area of S. This
relation is an infinite relation except in the case when S is an ideal polygon. In this
case we will show that these finite identities include the classical dilogarithm identities
described above.

5.1 Classical identities and the moduli space of ideal polygons

For S an ideal n-gon, the Length Spectrum Identity is a finite summation relation. We
will show that the associated relations give an infinite list of finite relations including
the classical identities stated in the previous section.

If {/;} is a A—orthospectrum, we will define two parameterizations by letting

1 1
4 =——7 bi=—7
1 l l
sinh 5 cosh 5
We now consider the Poincaré disk model and let x;,i = 1,...,n be the vertices in

anticlockwise cyclic ordering around the circle. Let s; be the side x;x;4;. Let /;; be
the length of the diagonal between s; and s; for |i — j| > 2. We define the cross-ratio
by

(z1 —22)(z4 — z3)

(z1—23)(za — 22)

As the cross ratio is invariant under Mobius transformations, we map the quadruple
(Xi, Xi41,Xj,Xj4+1) to (=1, 1,elii,—elii). Then

(z1,22,23,24] =

i X1 X7, xj 1] = (=1 1€l —eli] =
(=1 = 1)(=elii — elis) B 4elii _ 1
(—1—eli)(=eli =1) (el +1)2  cosh? (1’7’)

As S has area (n—2)m and n cusps, x(S) = (n—2)/2 and N) = n. Thus the Length
Spectrum Identity becomes

(n—3)m?

(6) Zﬁ([xi,xi+1,xj7xj+1]) = 3

i’j
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where the sum is over all ordered pairs 7, j such that the sides s;, s; are disjoint (at
infinity). In terms of dilogarithms we get

D L ([xi, Xig1, %), X 41]) =
i’j

(n—3)71
< ——Zlog — i X1 x5, x5 11]) log ([, Xig 1. x5, x5 11]) -

5.2 Some cases

Quadrilateral The ideal quadrilateral has 4 cusps and two ortholengths /;, /;. By ele-
mentary hyperbolic geometry we have sinh(/; /2). sinh(/,/2) = 1. Therefore ay.a; =1
and letting a = a; the Length Spectrum Identity is equivalent to the the classical
reflection identity of Euler.

72
(8) L(a)+ L@ = e
Also we have
_ 1 B 1 1
cosh?(l,/2) 1+ sinh? (12/2) 1+

smhz(l /2)
sinh?(/1/2) _q 1

=1- =1-by.
cosh?(1;/2) cosh?(11/2) !

Thus letting b = by, the Length Spectrum identity is equivalent to the Euler reflection
identity

) L(b)+L(—b)=—

Pentagon and Abel’s Identity If we choose a general ideal pentagon then there are

5 diagonals and therefore 5 parameters a;. We send three of the vertices to 0, 1, co

and the other two to u, v with 0 < u < v < 1. Then the cross ratios in terms of u, v are
v—u v—u u(l—v)

u, 1_U, ) ’ N
v l—u v(l—u)

Putting into the equation we obtain the following equation:

o 2
10  L@+LA-v)+L(— )*5(1—2)“(58—3):%

Geometry & Topology, Volume 15 (2011)
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Letting x = u/v, y = v, then we get

1—x x(1— w2
an Lx+LA-»+LA-x)+L y(—) + L M =—.
1—xy 1—xy 3
Now by applying Euler’s reflection identities for x, y, we obtain Abel’s identity for
the Rogers L—function:

(12) L(x)+£(y):E(xy)+£(y(l—x))+£(x(1—y))
I=xy l—xy

The general equation We obtain similar finite identities in the general ideal n—gon
case. In general we note that equation (6) will have (n — 3) independent variables and
will be given by the summation of evaluating £ on @
(n — 3) variables.

rational functions in the

5.3 The regular ideal n—gon relation

We now consider the dilogarithm equation for the specific case of a regular ideal n-gon.
In this case the cross ratios can be calculated and the dilogarithm formulas for specific
values of the dilogarithm function.

We consider a regular ideal n—gon in with center 0O in the Poincaré disk model and
vertices at vy = uk k=0,....n—1foru=en . Then equation (6) can be thought
of as an equation on the roots of the polynomial z”* = 1. We have

a —w) Wt —u")  u(u—-1)>% sin®(Z)
(A—u) @+ —u) — w( =12 sin?(4L)’

[Vo, V1, Vr, Vpg1] =

For r < n/2 there are exactly n distinct perpendiculars between sides separated by r
sides and for r = n/2 there are n/2 such sides. To take care of the even and odd case
simultaneously we let e, be 1 if n is even and O if 7 is odd. Therefore we have

/211 sin®(Z) n o (T (n—3)7?

r=2

where [x] is the least integer greater than or equal to x. Dividing by n we get

[n/2]—1 L 20w 2
sin”(3) en .o\ (n=3)m
Z L (—sinz(%)) + ?.E (sm ;) = R

r=2

Geometry € Topology, Volume 15 (2011)
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Limiting case We let n go to infinity and obtain the equation
[n/2]-1 2T 2 2
sin“ (% -3
im [ > ¢ # + 2L (sin?2) | = tim =" _ 7
noo |\~ sin® (%) n n—oo  6m 6

This gives a Rogers L£—function series relation due to Lewin [9, page 298]

2

> 1 b4

Regular ideal quadrilateral This case is trivial: a; =a, =—1, by = b, =1/2 and
equations (8) and (9) give the classical evaluations
2 w?
L(—1)=—"—= d £(i)==—.
h=-p () =1

Regular ideal pentagon, Golden Mean For the regular ideal pentagon, the orthos-
pectrum consists of 5 geodesics each of the same length /. Using the formula above
for n = 5,r =2 we obtain that / satisfies

cosh? (i) = 2 = ¢2
2) 543

where ¢ is the golden mean. Therefore as ¢ = ¢ + 1

sinh? (é) =¢*—1=¢

and we have @ = —¢~!. Thus the Length Spectrum Identity gives the classical relations
of Landen:
2 2
b4 b4
E . -1 - — E -2 = —
(—97h=-T3 @) ="T5

Applying the quadrilateral relations (8), (9) we also get
2 2

cem=—%—cewh=—%u

The regular ideal hexagon For a regular ideal hexagon, there are 9 elements of the
orthospectrum, with the 6 being perpendicular to sides one apart and three being
perpendicular to opposite sides. Putting n = 6 into equation (13) above then gives

7.[2
(14) 6L(3) +3L(3) = R

Geometry & Topology, Volume 15 (2011)
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Ramanujan identities We can form an elementary ideal hexagon by gluing two
regular ideal quadrilaterals along a common edge. Then calculating orthospectra, the
length spectrum identity gives

20(3) +22(4) +4() + £() =T

2 )
Therefore as £(%) = ’17—2 we obtain

72

(15) 2L(3) +4L(5) + L(5) =
We see that taking linear combinations of equations (14) and (15), we obtain the

Ramanujan identities in equations (5).

Before we prove the main theorem, we first consider the geometry of ideal quadrilaterals
in the hyperbolic plane.

6 Intersections with ideal quadrilaterals

Given two disjoint geodesics g1, g, with perpendicular distance / between them, let
QO be the ideal quadrilateral with opposite sides g1, g>. Then we can map Q by
a Mobius transformation to the ideal quadrilateral Q, in the upper half-plane with
vertices @, 0, 1,00 € R where a < 0. Similarly we can map Q to the ideal quadrilateral
Qp in the upper half-plane with vertices 0, b, 1, 00 € R where b > 0. Using cross-ratios
we have that

1 1
sinh” > cosh” 5
The choice of normalization Q,, Qp leads to the equivalent forms of the Length
Spectrum Identity. We choose normalization Q, for our calculations.

If x,y eR,x # p, welet g(x, y) be the geodesic in the upper half plane with end
points x, y. Then for (x, ) € (a,0) x (1, 00), the geodesic g(x, y) intersects O, in a
definite length denoted L,(x, y). Similarly for (x, y) € (0,b) x (1, 00), the geodesic
g(x, y) intersects Qp in a definite length denoted L (x, y).

Lemma 6.1 Ifk =a or b, the map Ly, is given

y(y—k)(x— 1)) 1y Jk()
x(x=k)-D/) 2 fillx)

Lk(x,y)=%1n(

Geometry € Topology, Volume 15 (2011)
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a X 0 1 y

Figure 1: Length intersection function L,(x, y)

where
_ x(x—k)

fel) =

Proof Let T be the ideal triangle with vertices 0, 1, 0o. Let /1: (—00,0)x(0,1) - R
and /5: (—00,0) x (1,00) — R be given by letting /;(x, y) be the length of the
intersection of g(x, y) with 7" and /;(x, y) be the length of the intersection of g(x, y)
with T'. By a previous paper of the author and Dumas [3], the functions /; are given by

- —1
() ()

To calculate L,, we split the quadrilateral Q, by the vertical line at x = 0 into two

ideal triangles 77, T, where T3 has vertices 0, 1, co and 77 has vertices a, 0, co. Then
Ty =T and f5(z) =z/a sends T, to T. Therefore

La(x,y) =h(x.y)+L(y/a.x/a)

Therefore

_1 yx—1) 1 1—y/a _

Laeen =1 (5E) i (1217 =
lm(ﬂx—nm—w)_lm(ﬂy—mu—n)
2 \x(-De-x)) 2 \x(x—a)y-1 /)’

Geometry & Topology, Volume 15 (2011)
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To calculate L we note that the map

z

1-b

g(z)=

sends Qp to O, where a = g(0) = % Therefore

Lp(x,y) = La(g(x),g(y) = 3 In

Simplifying we get

Ly(e.)=1n (y(y—b)(x— 1)).

x(x=b)(y—1

Figure 2: Graph of function f(x)

We consider the rational function f;(x) defined above. Differentiating we have

Q2x —k)(x—=1)—1.(x> —kx) B x2-2x +k
(x—1)? o (x—-1)2

ASE

Therefore fi(x) has two critical points 1 + +/1 —k. We label the critical points
xo=1—+l1—kand yo=1++1—k.

Geometry € Topology, Volume 15 (2011)
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7 Proof of the summation identity

By definition

(L Q)($) = /T , puwan

Let o, 8 be two arcs in Sj with endpoints on dS) . Then we say o ~ f if they are
homotopic relative to the boundary 9.5} .

We define the sets 4; = {v € T1(S)|a(v) ~ a;}. Also for each A—cusp ¢ we define
Ac ={v e T1(S)|a(v) ~ ¢} where a(v) ~ ¢ if a(v) can be homotoped (rel boundary)
out the cusp c¢. Note that for v € 4; or v € A., L(v) is finite. Finally we define
the set Ao to be all v not in any A4; or A.. By definition, the sets A;, A¢, Ao
form a partition of 77(S). If we double S} along its boundary, the geodesic arcs o;
correspond to a subset of the geodesics of the doubled surface. Therefore as the length
spectrum of the doubled surface is countable, so is the collection of arcs «; in Sj .
Also, by ergodicity of geodesic flow on S (see Hopf [8]), the set A, is a measure
Zero.

Therefore
(L Q)(@) = Z/A H(L(v) dS +Z/A (L)) dS.
We let
1
a; = _Slnh—zl_z
2

Then setting Q; = Qg; , we have that Q; is a quadrilateral with perpendicular of length
;. We lift «; to the upper half plane so that it is the perpendicular of length /; in Q;.
We lift each A—cusp c to the ideal vertex at infinity between the vertical geodesics
x =0,x = 1. Let T be the ideal triangle with vertices 0, 1, 00 € R.

If v € Ty (H?) in the upper half plane, we define g(v) to be the geodesic with tangent
vector v. We also denote the endpoints of g(v) by (x(v), y(v)).

We lift the set A; to the set A} € T1(Q;). Then for v € A} the geodesic arc a'(v) =
QiNg(v) isalift of a(v). Similarly we lift A, to the set A, € T (T").Then for v € 4,
the geodesic arc o’ (v) = T N g(v) is a lift of «(v). By abuse of notation we also let
be the volume measure on T} (H?). We parameterize T (H?) by (x, y,/) e RxR xR
where (x, y,!) corresponds to the vector v such that g(v) has ordered endpoints (x, )
and v has basepoint on g(v) a distance / from the highest point of g(v) in the upper

half-plane. Then the volume form €2 can be written as (see Nicholls [10])
2dx dy dl
ag = 2dxdvdl
(x—=y)

Geometry & Topology, Volume 15 (2011)



Orthospectra of geodesic laminations 719

Therefore

2.0(L(v))dxdydl
dQ = .
/Ac¢(L<v)) Q fA o

We note that L(v) only depends on the endpoints and therefore we can write L(v) =
L(x,y). If v e A, then either (x, y) or (y,x) € (—00,0) x (1, 00) . Integrating over
[ we have

/ 2.¢(L(v))dxdydl _ /0 /°° 4.¢(L(x,y))L(x,y)dxdy
A, (x —y)? —o0 /1 (x —»)? '

By a previous paper of the author and Dumas [3],

/0 /°° 4.¢(L(x.y)L(x,y)dxdy _ f°° 4.¢(L).L*dL
—00 J1 (x —y)? 0 sinh? L '

Thus as there are N) A-—cusps we have

_ *4.¢(L).L*dL
> [, #wwnie= Nx-/o AL Ml9)

where Mo is the measure with infinitesimal

Similarly we have by lifting 4; to A; that

[ 2.6(L(v)dxdyd]
[, ponan= [ SRS,

If v € A} then either (x, y) or (p, x) € (a;,0) x (1, 00) . Integrating over / we have

(x —y)? (x—y)?

For a < 0 we define M,(¢) to be the righthandside of the above equation. Then

0 2 4p(L(x, y)L(x, y)dx dy
Ma(9) = f / DL |

/ 2.0(L(v)dxdydl _ /0 /°° 4.0(L(x,y)L(x,y)dxdy
A; a; J1 .

Then
My =Moo+ M,

1

Geometry € Topology, Volume 15 (2011)
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As M, = L. it has total mass equal to the volume of 77;(S) which is 42| x(S)|.
Therefore

(17) QUTL(S)) =47 |X(S)] = My (1) = Moo(1) + ) Mg, (1).
By an elementary calculation (see [3])
/°° x*dx _ n?
o sinh? x 6
Therefore

X 4Ny x2 dx X2 dx 7% 2Npn?
Moo()= | 220 =an; =4N. = :
o  sinh®x 0o sinh®x 6 3

Using Lemma 6.1 we substitute the formula for L,(x, y) to obtain

oo 2. log y(y @) (= 1)) dx dy
M (1)_/ / x(x—a)(y—1) ‘

(x—y)?
We let F(I) = M,(1), then by equation (17) above we obtain
2 2Ny 7?
4| X(S)] = Moo () + > Mg, (1) = + Y F(li)
i i
giving the summation identity
ZNAn 272
(18) ZF(I)—47TZIX(S)|— =6l (S)[=MN)
as required. a
We note that it follows from the above that for
1 1
a=——- b= —
sinh? % cosh? %

then by the formulae for L,(x, y) and Lp(x, y) (see Lemma 6.1) that

y(y a)(x—1)
S — oo 2. log Yo—a) = 1)) dx dy
(= (x—»)?
y(y b)(x—1)
/ /002 log YO = 1)) dx dy
(x —»)? '

19)
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8 Integral calculation

In this section we find a formula for F(/) by calculating an integral. We note that
by the previous section, we already know that the function F satisfies the functional
equation (18). We will make use of this to reduce F to the form we wish independent
of using any classical dilogarithm relations.

Lemma 8.1 Fort <1,

=D x-1)
, oo log i()yc t)(); 1)| dx dy
0= -7

Proof We fix r < 1 and let
—x—-1)
oo log | Y8501 1)‘ dx dy
G(t) = 5 .
(x—y)

Integrating by parts we get

y=(x-1) y(=)(x-1)
/log x(x—t)(y—1)| dx log x(x—t)(y—1) +/ 1 1 1 1 d
=— —— —— ) dx.
(x —y)? xX—y x—y\x—1 x x-—t
Using
1
—_— dx = 1 —a| -1 —b
| g = 7 toelv—al—loglx—b)
we get
y(y=t)(x—1) y(y=t)(x—1)
log x(x—r)(y—l)‘ dx log|yaoho-n| 1
5 == + (log |x—y|—log |x—1])
(x=y) xX—y y—1
1 1
— — (log|[x—y|—log|x|) ——— (log [x—y[—log |x—t])
y y=t
O—)(x—-1)
log‘i(i—t)();—l) log|x—1] log|x| log|x—t|
= - - -
y—x y—1 y y—t
1 1 1
+ log |x—y]) _ .
y=1 y y—t
We define

y(y=)(x=1)
¢ log | =R
I(y) = —
0 (x—y)

Geometry € Topology, Volume 15 (2011)
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To evaluate the improper integral 7(y) we gather the divergent terms to find their limits.
Therefore

1 1 1 1
1(y)= 11m log | x| (———)+lim loglx—tl(—— )
y—x y) x-i y—t y—x
lo log | 2@=DE=1)
g t(y 1) _log |t 1 1 1 |7 1o-D
—log|y| -—= +
y y—t y=1 'y y—t y—t

loglt—1] loglt 1 1 1
_logle—1] | g||+log|l_y|( 1 )
y—1 y y—=1 y y—t

By elementary calculus, both limits are zero. As y > 1 and ¢ < 1, when we gather the
remaining terms by common denominators and get

2log |t]—21og(y—1)+ log(y—1) 4 log(y—t)—log(1—1) —log(y)
y y—1
. log(1—¢)+21log(y)—2log |t|—log(y—1)
y—t '

I(y) =

We now rewrite in the following form:
log(y—1) lo log |2| log|XF* log (¥=5) log (2=
I(y):( g1 g(y))+2( g|¥| log|% \)+ g (1) log (=)
Y y-1 y—t Y y=l1 y—t
=L+ L)+ I:(»)

Before we calculate the integral of /()) we note some properties of the dilogarithm.
As the dilogarithm function Li, satisfies

Liz(z):_/:wd

t
Then for x < 1 we have that £ has derivative
L(x)= j—x(Liz(x) +1 log |x|log(1 — x))

log(l —X) log(1 —x) _ log |x|
= 41
X 2 X 1—x

1 (log(1—x) log|x]|
=— + :
2 X 1—x

s =260-9-42 (£) =22 (72) =10+ 20+ 5300

We let
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Then differentiating we get

log(1—(1—y)  log|l—
J{(y)=2.(—%).(—1).(og( (1-y)  log| y|)

L=y 1= (=)
_ (log(y— ) log(y)) .
Y y—1 )
1 1 -1z log | 1=¥
Jé(y)=—2.(—%).(_1_f)_<0g(1__y1_t)+ (l)g_}}—;;|)
1—t —7
_ (log(1=5) log(3=)\ _
_( y—lt - y_lt )—130’)-
log(1—%) log|L
o () ()
y y
_ 1og(y7_’)+t.log(§) |
y y(y—1)
As t ) 1 _l
yy—t) y—t
we have

o (5) -1 (5) e (2)

y y—t

—t
log (lel) log (%)
-2 _

Y y—t

J5(y) =2

= 1>(y).

Then we have J'(y) = I(y) and therefore we have an antiderivative for /. Integrating
we get

o
6= [ 16)dy = JOIF = fim S~ tim ().
1 y—>00 y—>1+
We let Lo be the limit if £(x) as x tends to —oo. Then
lim+ J(y) =2L(0) —4L(t) —2L(0) =4L(1)
y—1
ylggo J(y) =—4L(0).
As L£(0) =0 we have
G(t) =4L(1) —4L0) =4L(2). O
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Therefore using equation (19) we have

F(l) = —8L(a) = 8L(b).

9 Volume interpretation of £

Let g, g» be disjoint geodesics in H? with perpendicular distance / and endpoints
X1,y1 and Xxj, y, respectively on S!. Given v € T (S) let g, be the associated
oriented geodesic with tangent v. Then we define the set

C(g1.82)={veTi(S)|gNgi #2. gNg2# 2}

Let ¢ = [x1, V1, X2, V2], then depending on the ordering of the points on the circle we
have

B 1 1

" cosh?(1/2) sinh2(1/2)
It follows from the invariance of volume on 77 (S), that the volume of C(gq, g>) in
T1(S) only depends on ¢. We therefore define V(z) = Volume(S(g1, £2))-

t=[—1,1,el,—el] t=[—1,1,—el,el]=

Then it follows from the main theorem that
L(t)=+gV(1)

where the sign is given by the sign of #. Therefore we can interpret the Rogers
L—function as a signed volume function on 77 (S) for the sets G(g1, g2).

10 Integral formula for p

We let a < 0 and
L(x,y)z%log(w):%bg(&) o f(x)=xix_“).

x(x—a)(y—1) S (x) —1
Taking derivatives of the length function L(x, y) we have

L f'(x) L _ f'»)

o 2/(v) a2/

By the previous section, the function f has critical points xg, yo. Furthermore on (a, 0)
the function f(x) has global maximum at xo and on (1, 00), f has global minimum
at yo. Therefore fixing x, the function u: (1,00) — R given by u(y) = L(x, y) is
decreasing on (1, y¢) and increasing on (yg, 00). Therefore we make the change of
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variable t = L(x, y), x = x. Finding inverses for f we define the two functions g

and g_ by
(@a+x)++(a+x)2—4x
5 )

g+(x)=

Then solving t = L(x, y) gives f(y) = f(x)e?". Therefore on (1, yy) we have
y =g_(f(x)e?") and on (yg, 00) we have y = g4 (f(x)e?") Therefore

0/ r¥o ®4.¢(L(x,y))L(x,y)dy
e R T K

M) = |

a

and

/y" 4.¢(L(x, p)L(x,y)dy _ /L(x’y‘)) 4.9(0)t.gL (f(x)e*)2f (x)e* dt
1

(x —y)? o0 (x —g—(f(x)e?"))? ’
/°° 4.¢(L(x,y)L(x,y)dy _ /00 4.9()1.g' (f(x)e?)2f (x)e?! dt
Yo (x —y)? L(x,50) (x —g+(f(x)e2")? '

Therefore combining we have

0 ro0 ! 2t / 2t
_ 21 gl (f (x)eh) _ gl (f(x)eh)
Ma(#)= L/L(X,yo§‘¢([)‘t‘e o (x)<(x—g+(f<x)e2f>)2 (x—g_(f(x)eZt))Z)dldx‘

We switch the order of integration. The function L(x, y¢) is minimum at xo with
minimum value / = L(xg, yg) being the length of the perpendicular (see figure 2).
Thus we integrate ¢ from / to infinity. The integral in the x direction is between the
two x solutions of # = L(x, yo) which are solutions to f(x) = f(y¢)e 2*. Thus we

integrate x from g_( f(yo)e™2%) to g+ (f(yo)e ??) giving

My(p) = /I - 8.9(t).t.e* dt

( /g+<f<yo>e‘2’>< g4 (f(x)e?) 8-S (x)e) )f(x) dx).
g

CFOome2) \(—g+(f(x)e2))? (x—g—(f(x)e?))?
Therefore -
Ma(g) = f $(0).p(.1)d1
0

where

ol 1) = 8te* X[1.00)

[ IO (e gL )
oo \(x—g+(f()e2))2 (x—g—(f(x)e?"))? ’
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and
_ x(x—a) _ 1
f(x)= ~—1 where a = i 1/2.
Therefore oo
L)@) = [ Pt dx
0
where

4N,

xz
pL) = ——+ ) o).

sinh

11 Asymptotic behavior

In this section we study the asymptotic behavior of the function p(/, ¢) for large ¢.

For functions of a single variable, we write f(x) >~ g(x) as x tends to xq if

o S
1m =

1.
x5 g(x)

Furthermore for functions of more than one variable, we write f(x, y) >~ g(x, y) as
X tends to xg if
o Jxy)
lim =1
x—>xo g(x, y)

Theorem 11.1 The measure p(/,t) dx on the real line satisfies

p(l,1)

A%, Torze2i — D)
uniformly on compact subsets of (0, co0) where
—2a% +5a -2 1
r(l):; for a=——7F—.
a(l—a) sinh (5)

Proof We now show lim;— p(/,?) = (/) converges uniformly on compact subsets
of (0,00). Let I € (0,00) be a compact interval. Now let / € . As before we let
a=—1/sinh?(//2) and define f(x) = x(x—a)/(x—1) with inverses g4 and critical
values xq, yo. Let

AT (S (e
Gl =sre ((x—g+(f(x)e2’))2 BCETRVICE D R
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Then for ¢ > [ we have
g+(f(yo)e™2")
p(l,t) = / G(t,x)dx.
g—(f(yo)e=2%)

For C > 0, we further define

g+ (f(yo)Ce™2t)

(20) o(C, 1, t) = / G(t,x)dx.
g-(f(yo)Ce=2")

On the interval [¢, 0] f has maximum at xq. Therefore p(C,!,t) is defined for all ¢
such that f(yo)Ce™ 2" < f(xg) or

S (yo)
S (xo0)

t>K0(C):%lnC+%ln( ):l-l—%lnC.

Considering g4 (x) for large x we have

R (li(l—z—x))'
2 2 (a+x)?
Therefore
N(a—i—x) B 2x _ X . a
-0 = 2 (1 1-i_(a—i—x)Z)_a—l—x_l X
and
N(a—i—x) 2x . X a
g+(X)_T(1+l—m)—(a+X) a+x_(a 1)+x+x

Taking leading terms we have
a

1) g-(x) ~1, gl(x) ~ =, g+(x) = x, gh(x)~1.
X

We let

Ic = [g-(f(p0)Ce™ "), g4+ (f(¥0)Ce™")].

Then for x € Ic we have f(x)e?’ > C.f(yo). Therefore for C sufficiently large
we use the above approximations to approximate G(¢,x) on /c. We substitute the
approximations (21) into the formula for G(¢, x) to define

a2t 1 B T®eD?
G1(t,x) = 8te”". ((x— T (x—1)2 ) J(x).
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Simplifying we have

1 a 1
G , — 8 —2t‘ . )
1t = e ((1—@)2 (- 1)2) 7

Noting that f(x)e?’ > Cf(yo) on Ic, then for large C the quantity W is small

and we obtain the approximation

1
Gz(t,x):8te_2’.(1— ¢ )

(x—1)2) f(x)
Therefore given an € > 0 we can find a K (€) such that
G(t,
@ x) e[l—e,14¢€] forall C > K(¢),t > Ko(C),x € Ic.
G (2, x)

Therefore integrating

1 . g+(f(yo)Ce™?") a 1 y : |
—— | 8te™ / (1——)_ X | e 1—6,1+6
p(C.1,1) g (f(yo)Ce—21) (x—12) f(x)

for C > Kq(¢) and t > K¢(C). We fix a K > K;(¢) and define
g+(f(ro)Ke ") a 1
px (1, 1) =8te™ . (/g(f(yo)l(e—2f) (1 T oo 1)2) I dx)
2 </g+(f(yo)Ke‘2’)( x—1 a ) dx).
e (fo)Ke=2) \X.(x—a) x(x—a)(x—1)
Integrating we have

x—1 a dy —
/(x.(x—a)_x(x—a)(x—l)) Y

1— 2 _3a+1
( x| — 2 1n|x—1|—$1n|x—a|)).
a

= 8te”

1—a a(l —a)
Therefore

g+ (f(yo)Ke™2)

1— 2 3a+1
ok (1) =812 (=% 10 [x) == n =1 =20 x—al
a l—a a(l—a)

g—(f(yo)Ke—2t)
For x small we have

(a+x)£V(@+x)?—4x (a+x) (1:F(1 2x ))
5 ~ :

2 " (a+x)?

g+(x)=
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Therefore
X (1—a)x «
- =l mo s mas ’ g+(x) ~
a—+x a it x p
Therefore
1— Kf -2t 1
ok (t) = 8ot (129 ,| K Q0™ a
a a2 1—a 1
a*—3a+1 a2

)

a(l—a) lI"(l—a)f(yo)Ke—Zf

Taking limits as we have

1— 2 _3a+1 —2a% +5a—2
o (1 1) ~y (16122, [ =124 92734 1) ((gp2p-20) T2 T 247 2
a a(l—a) a(l—a)

Therefore given € > 0 there exists K1 (€) > 0 such that for any C > K (€) both

- p(C,1,1) . p(C,1,1) .
22 liminf ————— and limsup ————arein[l —¢,1 +€
(22) 100 1612¢=2r(a) lHolip 161221 (a) in ]
where
—2a*+5a—2
ra@) = —————
a(l —a)
We now define
g—(f(y0)Ce™2")
p_(C,l,t)=/ G(t,x)dx
g—(f(yo)e=2)
g+(f(yo)e )
and p+(C, 1 t) = / G(t,x)dt.
g+(f(yo)Ce™2)

Then by definition
Io(l’ [) = IO(C’ l’ Z) + p—(C?Lt) +/0+(C’ l’ Z)'
We now bound the functions p+(C,/,1). Let I, 1 g be the given intervals.

On the interval I, gi(f(x)ezt) >1and x <0 so (x —gi(f(x)ezt))z > 1. Also as
2" (f(x)e?") <0 we have

=g+ (FWe)P  (x—g-(f()e?)?
<8r.e? . (gh (f(N)e?) = gL(f(1)e™)) f(x).

/ 2t /
|G(t,x)|=(8t.e2t).< g4 (/e gL (S @)e*) ) 0
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The derivative of g1 (x) is given by

1 x+a-2

ry = Lot
gi(x)—ziz\/m.

Therefore
X+a-—2

gh(x)—gl(x)= N e

As f has critical values f(x¢) and f(y9) we have that

x+a-—-2
V= o) = f (o)
We note that on Ig we have f(yo) < f(x)e?’ < Cf(yo) then

Cf(yo) +a-2
L(f(x)e*) —gL(f(x)e?) <
g+ (/(x)e g-lJxe V(o) — f(xo)(f(x)e2! — f(10))

<<Cf(yo)+a—2) ot
“\VSOo)— fx0) ) VI x) = f(o)e 2t

The function f(x) = x(x —a)/(x — 1) has maximum at xq on («, 0). Therefore for

b < f(xo)

ghi(x)—gl(x)=

(x—g-(b)(x —g+(b))

S —b= oy

As x € (a,0) we have

J(x)=b = (x—g-(b))(g+(b) —x).
Therefore
gL (f(x)e*) —gL(f(x)e*) =

( Cf(yo)+a—2 ) e
VG0 = f(x0) ) V(x —g—(f(ro)e 2 (g+(f (mo)e=21) —x)

Now restricting to Iér we have x > g4 (f(yg)Ce™?"). Therefore for x € Ig,

g (f(x)e)—gL(f(x)e*) =

( Cf(yg)+a—2 ) et
V((o)—f(x0))(g+(f(y0)Ce=2)—g_(f(yo)e2")) \/g+(f(y0)e_2’)—x'
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Therefore we have

t S (x)
C.l1)=< G(t,x)|dx < .
R A Py
where D(¢) is the constant
D(t):( /(o) +a-2 )
V(7o) = f(x0) g+ (S (10)Ce™2) — g ([ (vo)e™21))

As f(x)=x(x—a)/(x—1) then, 0 < f(x) <ax on (a,0) we have
X

d
* Ver oo ) —x

o+(C,1t) < /+ |G(t,x)|dx < D(l).8.a.t.e’./
12 I

By integration we have

b
X
dx = 22b +a)Vb—a.
/a vb—a 3 ( )

Therefore

p+(C.1.0) £16.D().ate’. (2g+(/ (ro)e™) + g+(f (ro)Ce ™))

Jer(f(0)e2) — g1 (/ (o) Ce21).

Now for ¢ large we have

lim D(Z)=< /o) ta2 ):D
100 V(o) — [(x0))-la

We note for x small g4 (x) ~ x/a. Therefore

i ,0+(C,l,t)
im sup g <
o 16.D.a.t.e'. (zf(J’o)e_Z’Jrf(J’o)Ce_Z’) \/f(yo)e_z’—f(yo)Ce—Z’
lim sup a4 4
t—00 t2e—2t
. p+(C. L) _ . 16.D.f(y0)**(C +2)VC -1
limsup | ————| < limsup =0.
t—oo | tPeT? t—>00 t.\/—a
Thus
C,lt
lim M —0.

t—oo 22t
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Similarly for p_(C,/,t) we once again have that

_(C,1,t
lim L):(),

t—>o00 22t

Therefore given € > 0 we can find K(€) such that for C > K(¢) by equations (22)

thUPMZIimsup( p—(C.L.1) p(C.1,1) p+(C,1,1) )
oo 1612¢720r(a) oo \1612¢72'r(a) * 1612721 (a) =~ 161%¢~2Ir(a)
C,lt
= limsup il ) ell—e, 1+¢.

t—oo 16127211 (a)

As € is arbitrary we have

t—00 16[23_2tr(a)
Similarly
It
liminf — P00 _ o
t—oo 16t2¢~2r(a)
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