Volume 15, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Ricci flow on open $3$–manifolds and positive scalar curvature

Laurent Bessières, Gérard Besson and Sylvain Maillot

Geometry & Topology 15 (2011) 927–975
Abstract

We show that an orientable 3–dimensional manifold M admits a complete riemannian metric of bounded geometry and uniformly positive scalar curvature if and only if there exists a finite collection of spherical space-forms such that M is a (possibly infinite) connected sum where each summand is diffeomorphic to S2 × S1 or to some member of . This result generalises G Perelman’s classification theorem for compact 3–manifolds of positive scalar curvature. The main tool is a variant of Perelman’s surgery construction for Ricci flow.

Keywords
Ricci flow, three-dimensional topology
Mathematical Subject Classification 2000
Primary: 53C21, 53C44, 57M50
References
Publication
Received: 10 February 2010
Revised: 25 March 2011
Accepted: 8 May 2011
Published: 18 June 2011
Proposed: David Gabai
Seconded: Peter Teichner, Gang Tian
Authors
Laurent Bessières
Institut Fourier
UMR CNRS 5582 Université de Grenoble I
BP 74
100 rue des maths
38402 Saint Martin d’Hères
France
http://www-fourier.ujf-grenoble.fr/~lbessier/
Gérard Besson
Institut Fourier
UMR CNRS 5582 Université de Grenoble I
BP 74
100 rue des maths
38402 Saint Martin d’Hères
France
http://www-fourier.ujf-grenoble.fr/~besson/
Sylvain Maillot
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
UMR CNRS 5149 Université Montpellier 2
Case Courrier 051
Place Eugène Bataillon
34095 Montpellier
France
http://www.math.univ-montp2.fr/~maillot/