Volume 15, issue 3 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Non-commutative Donaldson–Thomas theory and vertex operators

Kentaro Nagao

Geometry & Topology 15 (2011) 1509–1543
Bibliography
1 M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425 MR2117633
2 K Behrend, Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. $(2)$ 170 (2009) 1307 MR2600874
3 K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 MR1437495
4 K Behrend, B Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008) 313 MR2407118
5 M van den Bergh, Non-commutative crepant resolutions arXiv:math/0211064
6 M van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423 MR2057015
7 R Bocklandt, Calabi–Yau algebras and weighted quiver polyhedra arXiv:0905.0232
8 T Bridgeland, t-structures on some local Calabi–Yau varieties, J. Algebra 289 (2005) 453 MR2142382
9 T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. $(2)$ 166 (2007) 317 MR2373143
10 N Broomhead, Dimer models and Calabi–Yau algebras arXiv:0901.4662
11 J Bryan, C Cadman, B Young, The orbifold topological vertex arXiv:1008.4205
12 J Bryan, B Young, Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, Duke Math. J. 152 (2010) 115 MR2643058
13 W Y Chuang, G Pan, Bogomolny–Prasad–Sommerfeld state counting in local obstructed curves from quiver theory and Seiberg duality, J. Math. Phys. 51 (2010) 052305, 22 MR2666961
14 B Davison, Consistency conditions for brane tilings arXiv:0812.4185
15 A Hanany, D Vegh, Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007) 029, 35 MR2357949
16 D Happel, I Reiten, S O Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996) MR1327209
17 A Ishii, K Ueda, Dimer models and the special McKay correspondence arXiv:0905.0059
18 A Ishii, K Ueda, On moduli spaces of quiver representations associated with dimer models arXiv:0710.1898
19 D Joyce, Configurations in abelian categories IV: Invariants and changing stability conditions, Adv. Math. 217 (2008) 125 MR2357325
20 D Joyce, Y Song, A theory of generalzed Donaldson–Thomas invariants arXiv:0810.5645
21 D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory I, Compos. Math. 142 (2006) 1263 MR2264664
22 S Mozgovoy, Crepant resolutions and brane tilings I: Toric realization arXiv:0908.3475
23 S Mozgovoy, M Reineke, On the noncommutative Donaldson–Thomas invariants arising from brane tilings, Adv. Math. 223 (2010) 1521 MR2592501
24 K Nagao, Derived categories of small 3–dimensional toric Calabi–Yau varieties and curve counting invariants arXiv:0809.2994
25 K Nagao, Quiver varieties and Frenkel–Kac construction, J. Algebra 321 (2009) 3764 MR2517812
26 K Nagao, Refined open non-commutative Donaldson–Thomas theory for small toric Calabi–Yau 3–folds, Pacific J. Math. (to appear) arXiv:0907.3784
27 K Nagao, H Nakajima, Counting invariants of perverse coherent systems on 3–folds and their wall-crossings, Int. Math. Res. Not. 46 (2010)
28 K Nagao, M Yamazaki, The non-commutative topological vertex and wall crossing phenomena (to appear) arXiv:0910.5479
29 A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math. 244, Birkhäuser (2006) 597 MR2181817
30 H Ooguri, M Yamazaki, Crystal melting and toric Calabi–Yau manifolds, Comm. Math. Phys. 292 (2009) 179 MR2540074
31 R Pandharipande, R P Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407 MR2545686
32 P Sułkowski, Wall-crossing, free fermions and crystal melting, Comm. Math. Phys. 301 (2011) 517 MR2764996
33 B Szendrői, Non-commutative Donaldson–Thomas invariants and the conifold, Geom. Topol. 12 (2008) 1171 MR2403807
34 B Young, Computing Donaldson–Thomas partition functions for brane tilings using vertex operators (to appear)