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Sutures and contact homology I
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We define a relative version of contact homology for contact manifolds with convex
boundary and prove basic properties of this relative contact homology. Similar
considerations also hold for embedded contact homology.
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1 Introduction and main results

The goal of this paper is to define relative versions of contact homology and embedded
contact homology for contact manifolds with convex boundary and to prove basic
properties of these relative contact homology theories. Contact homology, due to
Eliashberg and Hofer and part of the symplectic field theory (SFT) package of Eliash-
berg, Givental and Hofer [11], is a Floer-type invariant of a (closed) contact manifold.
It is the homology of a differential graded algebra whose differential counts genus
zero holomorphic curves in the symplectization with one positive puncture and an
arbitrary number of negative punctures. Contact homology has been quite successful
at distinguishing contact structures, as can be seen for example from the works of
Bourgeois and Colin [1] and Ustilovsky [38]. Embedded contact homology (ECH) is
a variant of contact homology/SFT for three-dimensional contact manifolds, defined
by Hutchings [24] with Sullivan [26] and Taubes [28; 29], which is the homology
of a chain complex whose differential counts certain embedded holomorphic curves,
possibly of higher genus, in the symplectization. Although ECH is defined in terms
of a contact form, it is actually a topological invariant of the underlying 3–manifold,
ie it does not depend on the contact structure (up to a possible grading shift – see
Section 1.1). This invariance follows from a theorem of Taubes [37] identifying ECH
with Seiberg–Witten Floer cohomology, which also implies the Weinstein conjecture
in dimension three, again by work of Taubes [36].

Let M be a compact, oriented .2nC1/–dimensional manifold with boundary. A natural
boundary condition for an oriented contact structure � on M to satisfy is that @M be
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�–convex. The notion of convexity in contact geometry was introduced by Eliashberg
and Gromov [12], and developed by Giroux [15]. A thorough discussion will be given
in Section 2.2, but we briefly give definitions here: A 2n–dimensional submanifold
†�M is � –convex if there is a contact vector field X transverse to †. To a � –convex
submanifold † and a transverse contact vector field X we can associate the dividing
set �D�X �†, namely the set of points x 2† such that X.x/2 �.x/. By the contact
condition, .�; � \T�/ is a .2n�1/–dimensional contact submanifold of .M; �/; the
isotopy class of .�; � \ T�/ is independent of the choice of X . The set of points
x 2 † where X is positively (resp. negatively) transverse to � will be denoted by
RC.�/ (resp. R�.�/). We denote by .M; �; �/ the contact manifold .M; �/ with
convex boundary and dividing set � D �X � @M with respect to some transverse
contact vector field X . We emphasize that, in this paper, � is a submanifold of †, not
an isotopy class of submanifolds of †.

1.1 Invariants of sutured contact manifolds

1.1.1 Sutured contact homology and sutured ECH Our first result is that the con-
tact homology algebra and, in the three-dimensional case, embedded contact homology
can be defined for a contact manifold .M; �; �/ with convex boundary, extending the
usual definitions. A slight subtlety is that the actual boundary condition we want to use
is not that @M be �–convex, but rather that .M; �; �/ be a sutured contact manifold.
Roughly speaking this is a sutured manifold, essentially as defined by Gabai [14], with
a contact structure adapted to the sutures. The precise definition of sutured contact
manifold is given in Section 2.3, and Section 4.1 explains how to pass between the
convex and sutured boundary conditions. For now we write .M; �; �/ to indicate either
of these boundary conditions, and we refer to � interchangeably as a “suture” or a
“dividing set”.

Theorem 1.1 Let .M; �; �/ be a .2nC1/–dimensional sutured contact manifold.

(1) The contact homology algebra HC.M; �; �/ is defined and independent of the
choice of contact 1–form ˛ with ker˛D � , adapted almost complex structure J ,
and abstract perturbations.

(2) Suppose dim M D 3. Then the embedded contact homology ECH.M; �; ˛;J /

is defined.

Here contact homology is defined over Q. One reason for this is that multiply covered
Reeb orbits force one to use coefficients in Q or some extension thereof. On the other
hand, ECH is defined over Z.
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The definitions of these versions of contact homology, as well as the proof of Theorem
1.1, are given in Section 6. The basic idea is to copy the definitions from the closed
case, and to argue that the relevant Gromov compactness carries over.

Note that, already in the closed case, the definition and proof of invariance of contact
homology require some abstract perturbations of the moduli spaces of holomorphic
curves (due to the presence of multiply covered holomorphic curves of negative index).
This construction is still in progress, using the polyfold technology being developed by
Hofer, Wysocki and Zehnder; see Hofer [20]. The proof of Theorem 1.1(1) assumes
that the machinery needed to construct contact homology in the closed case works; see
Section 6 for details.

The differentials in both contact homology and ECH depend also on the choice of a
coherent orientation of the moduli spaces; see Bourgeois and Mohnke [4] for contact
homology and Hutchings and Taubes [29, Section 9] for ECH. Since the construction of
the coherent orientation is local, it carries over unchanged in the sutured case. Different
choices of coherent orientations yield different, but canonically isomorphic, chain
complexes.

If A is a homology class in H1.M /, then we write HC.M; �; �;A/ for the homology
of the subcomplex generated by monomials 
1 : : : 
k , where 
i is a closed orbit
of the Reeb vector field R˛ corresponding to ˛ , and

Pk
iD1Œ
i � D A. Also write

ECH.M; �; ˛;J;A/ for the homology of the subcomplex generated by orbit sets
f.
i ;mi/g

k
iD1

where
Pk

iD1 mi Œ
i �DA.

1.1.2 Conjectural topological invariance of sutured ECH In the closed case, ECH
is a topological invariant of the underlying 3–manifold in the following sense: If M is
a closed 3–manifold, if ˛i is a contact form on M and Ji is a generic ˛i –adapted
almost complex structure as needed to define the ECH chain complex for i D 1; 2, and
if A1 2H1.M /, then

ECH.M; ˛1;J1;A1/' ECH.M; ˛2;J2;A2/

as relatively graded Z–modules, where

(1) A2�A1 D PD.s�1
� s�2

/:

Here s�i
denotes the Spinc structure determined by �i D Ker.˛i/, and s�1

� s�2
2

H 2.M IZ/ denotes the difference between the two Spinc structures. The above in-
variance follows from the theorem of Taubes [37] identifying ECH�.M; ˛i ;Ji ;Ai/
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with the Seiberg–Witten Floer cohomology bHM��.M; s�i
CPD.Ai//, up to a possible

grading shift1.

This motivates the following conjecture in the sutured case:

Conjecture 1.2 The sutured embedded contact homology ECH.M; �; ˛;J / does not
depend on the choice of contact form ˛ , contact structure � D ker˛ or almost complex
structure J . More precisely,

ECH.M; �; ˛1;J1;A1/' ECH.M; �; ˛2;J2;A2/

as relatively graded Z–modules, when A1 and A2 are related by (1).

Remark 1.3 We need to explain why Equation (1) still makes sense in the sutured case.
The difference between two Spinc –structures on M is an element of H 2.M IZ/D
H1.M; @M /. However for a sutured manifold one has a fixed 2–plane field on @M
determined by the sutures, which determines a canonical Spinc –structure s0 in a
neighborhood of @M . A contact structure � compatible with the sutures then determines
a relative Spinc –structure relative to s0 , which means a Spinc –structure s� on M

together with an isomorphism of s� j@M with s0 . These relative Spinc structures
comprise an affine space over H 2.M; @M IZ/DH1.M /.

1.1.3 Invariants of Legendrian submanifolds Let .M; �/ be a closed .2nC1/–
dimensional contact manifold. Then we can define an invariant HC.M; �;L/ of a
Legendrian submanifold L in .M; �/ as follows: Let N.L/ be a Darboux–Weinstein
neighborhood of L. Then @.M �N.L// is a convex submanifold of M with dividing
set �@.M�N.L// . We now define

HC.M; �;L/D HC.M �N.L/; �@.M�N.L//; �jM�N.L//:

Similarly, in dimension three, if � D ker˛ , then we can define

ECH.M; ˛;J;L/D ECH.M �N.L/; �@.M�N.L//; ˛
0;J 0/;

where ˛0;J 0 are obtained from ˛;J by a modification near @N.L/. If Conjecture 1.2
is true, then ECH.M; ˛;J;L/ depends only on the ambient manifold M and the
framing of the knot L, as a relatively graded Z–module. The details of the Legendrian
submanifold invariants are given in Section 7.3.

1Both Seiberg–Witten Floer homology and ECH have absolute gradings by homotopy classes of
oriented 2–plane fields on M (see [32; 25]), and it is natural to conjecture that Taubes’s isomorphism
between them respects these gradings.
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1.2 Comparison with sutured Floer homology

In this section dim M D 3.

The definition of the sutured versions of contact homology theories has been known
at least since the work of the first and third authors [8]. However, additional impetus
for the current work came from the recent foundational work of Juhász [30; 31] on
the sutured version of Heegaard Floer homology. Juhász’ work also motivated the
definition of a sutured version of Seiberg–Witten Floer homology by Kronheimer and
Mrowka [33].

Definition 1.4 A sutured 3–manifold .M; �/ (see Section 2.3) is called balanced if M

has no closed components, the map �0.�/! �0.@M / is surjective, and �.RC.�//D
�.R�.�// on the boundary of each component of M .

To a balanced sutured 3–manifold .M; �/, Juhász assigned the sutured Floer homology
module SFH.M; �/, which generalizes the “hat” version of Heegaard Floer homology
and link Floer homology as follows. Let M be a closed oriented 3–manifold. If we
define the sutured manifold M.1/ to be the pair consisting of M �B3 and suture S1

on @B3 , then one has

(2) SFH.M.1//' cHF.M /;

where the right hand side is the “hat” version of Heegaard Floer homology. Next,
if L �M is a link, define the sutured manifold M.L/ to be the pair consisting of
M �N.L/ and suture which consists of two meridian curves on each component
of @N.L/. Juhász then showed that SFH.M.L// is isomorphic to the link Floer
homology of L.

If .M; �; �/ is a sutured contact 3–manifold with no closed components, then the
sutured manifold .M; �/ is automatically balanced. To see this, recall the Euler class
formula

he.�/;†i D �.RC.�//��.R�.�//

for a � –convex surface † with dividing set � . Since the boundary † of each component
of M is homologically trivial, the claim follows. (The �0 surjectivity holds because
each component of @M n� is an exact symplectic manifold; see Section 2.3.) Con-
versely, if .M; �/ is a balanced sutured 3–manifold, then there is a contact structure �
so that @M is convex with dividing set � . (Moreover, according to Honda, Kazez
and Matić [21], there is a tight (or universally tight) � with convex boundary and
dividing set � on @M if and only if .M; �/ is a taut sutured manifold, which means
roughly that R˙.�/ is incompressible and genus-minimizing in its homology class
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in H2.M; �/.) In this paper we will assume without further mention that our sutured
3–manifolds are balanced.

If M is closed, it is conjectured that ECH is isomorphic to Heegaard Floer homology,
namely ECH.M; �;A/ ' HFC.�M; s� C PD.A// as relatively graded Z–modules.
Extending this to the sutured case, we conjecture the following, which is a strengthening
of Conjecture 1.2:

Conjecture 1.5 If .M; �; �/ is a sutured contact 3–manifold, then

ECH.M; �; �;A/' SFH.�M;��; s� CPD.A//

as relatively graded Z–modules, where s� denotes the relative Spinc –structure deter-
mined by � .

Calculations due to Golovko [18; 17] confirm this conjecture in some examples, eg,
when M D S1 �D2 and � is arbitrary, for a universally tight contact structure.

In the closed case, it is further conjectured that the isomorphism between ECH and
HFC intertwines the U –maps on both sides. Assuming this conjecture, we can confirm
Conjecture 1.5 for the sutured contact 3–manifold M.1/, where M is closed, as
follows. On the Heegaard Floer side, the map U W HFC.M /! HFC.M / fits into an
exact triangle with cHF.M / in the third position. To obtain an analogue of this on the
ECH side, define bECH .M / to be the homology of the mapping cone of the U –map
on the ECH chain complex. We then have the following analogue of (2):

Theorem 1.6 If M is a closed oriented 3–manifold, then ECH.M.1// is independent
of choices (as a relatively graded Z–module), and

ECH.M.1//' bECH .M /:

Arguments in Section 8.4 show that ECH.M.1// depends only on the contact structure.
The rest of Theorem 1.6 will be proved in the sequel [7].

We also have some evidence for Conjecture 1.5 for the sutured manifold M.K/,
where K is a nullhomologous knot in a closed oriented 3–manifold M . Namely,
in Section 7.2 we define a filtration on the chain complex whose homology gives
ECH.M.1//; the associated graded complex gives ECH.M.K//. This is analogous
to the Heegaard Floer story, where there is a filtration on the chain complex computingcHF.M /' SFH.M.1//, such that the homology of the associated graded complex is
the knot Floer homology, which is identified with SFH.M.K//.
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1.3 The simplest sutured contact manifold

Let .W; ˇ/ be a Liouville manifold. (See Section 2.1 for a definition and discussions.)
Then the simplest contact manifold with convex/sutured boundary is the product sutured
contact manifold

.M; �; ˛/D .W � Œ�1; 1�; @W � f0g;Ker.dt Cˇ//;

where t denotes the Œ�1; 1�–coordinate on W � Œ�1; 1�.

Lemma 1.7 Suppose .M; �; �/ is a product sutured manifold. If ˛ D dt C ˇ is a
Œ�1; 1�–invariant contact form for � as above, then

(1) HC.M; �; �/DQ;

(2) ECH.M; �; ˛;J /D Z, if dim M D 3.

Proof The Reeb vector field of ˛ is R˛D @t , which has no closed orbits. The algebra
HC.M; �; ˛/DQ is generated by the unit 1, and the Z–module ECH.M; �; ˛;J /DZ
is generated by the empty set.

1.4 Gluing theorems

1.4.1 Connected sums The simplest gluing result describes the behavior of contact
homology and ECH under connected sum. Given a .2nC1/–dimensional closed contact
manifold .M; �/, let us write bHC.M; �/DHC.M�B2nC1; �DS2n�1; �jM�B2nC1/,
where .B2nC1; � D S2n�1; �/ is the standard Darboux ball with convex boundary.
Then:

Theorem 1.8 Let .M1; �1/ and .M2; �2/ be .2nC1/–dimensional closed contact
manifolds. If .M1#M2; �1#�2/ is the contact manifold obtained by removing standard
Darboux balls from each .Mi ; �i/ and gluing, then

(1) bHC.M1#M2; �1#�2/DbHC.M1; �1/˝bHC.M2; �2/;

(2) if dim M1 D dim M2 D 3 and we take ECH with coefficients in a field, then

bECH .M1#M2; �1#�2/D bECH .M1; �1/˝ bECH .M2; �2/:

The proof of Theorem 1.8 is given in Section 8.4. We remark that, in Theorem 1.8(2),
we have a tensor product of homologies since the ground ring is a field. With Z
coefficients one would need to modify the right hand side according to the Künneth
formula for the homology of a tensor product of chain complexes. Note also that
Theorem 1.8(b) is consistent with the conjectural equivalence of ECH and Heegaard
Floer homology (and their respective U maps), because the analogous property holds
for cHF .
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Before stating the next two theorems we need to make the following:

Disclaimers Theorems 1.9(2) and 1.10(2) for ECH presuppose part of Conjecture 1.2,
namely that sutured ECH depends only on the contact structure and not on the contact
form or almost complex structure. They also assume a slightly stronger conjecture,
namely that a suitable “exact symplectic cobordism” between sutured contact 3–
manifolds induces a map on sutured ECH satisfying certain basic properties; see
Section 10.4 for details. Analogous maps on ECH induced by exact symplectic
cobordisms between closed contact 3–manifolds are constructed by Hutchings and
Taubes [27], using Seiberg–Witten theory.

1.4.2 Sutured manifold gluing Let .M 0; � 0; � 0/ be a sutured contact manifold.
Suppose there exist codimension zero Liouville submanifolds PC � RC.�

0/ and
P� �R�.�

0/ which are symplectomorphic with respect to d˛ , where ˛ is a contact
1–form for � 0 , and the symplectomorphism takes ˛jPC to ˛jP� . Then we can glue PC
and P� to obtain a new sutured contact manifold .M; �; �/ with a properly embedded
surface P which is transverse to the Reeb flow. Details of this sutured manifold gluing
– the inverse procedure of a sutured manifold decomposition, as defined by Gabai [14]
in dimension 3 – will be given in Section 4.3. We then have the following:

Theorem 1.9 If .M; �; �/ is obtained from performing a sutured manifold gluing on
.M 0; � 0; � 0/, then there are canonical injections

(1) ˆW HC.M 0; � 0; � 0/ ,! HC.M; �; �/;

(2) ˆW ECH.M 0; � 0; � 0/ ,! ECH.M; �; �/, when dim M D 3.

Moreover, the map (1) is a Q–algebra homomorphism. In both cases the image coin-
cides with the subgroup of (E)CH generated by Reeb orbits which do not intersect P .

Theorem 1.9 is analogous to a theorem of Juhász in the context of sutured Floer
homology [30; 31], namely that there is an injection

ˆW SFH.M 0; � 0/ ,! SFH.M; �/

of sutured Floer homology modules. Its proof will be given in Section 8.4.

1.4.3 Convex gluing A more general type of gluing is that of gluing along a closed
convex submanifold. Postponing the precise procedure for gluing along a convex
submanifold S until Section 4.4, we have the following results:
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Theorem 1.10 If .M; �; �/ is obtained from .M 0; � 0; � 0/ by gluing along a closed
convex submanifold S , then there are canonical maps

(1) ˆW HC.M 0; � 0; � 0/! HC.M; �; �/;

(2) ˆW ECH.M 0; � 0; � 0/! ECH.M; �; �/, when dim M D 3.

Moreover, the map (1) is a Q–algebra homomorphism.

The proof of Theorem 1.10 will be given in Section 11. Theorem 1.10 is analogous to
a theorem of Honda, Kazez and Matić [22] for sutured Floer homology.

Unlike the case of a sutured manifold gluing, the convex gluing does not necessarily
give an injection of the corresponding contact homology algebras. However, we still
have the following:

Corollary 1.11 If HC.M; �; �/ 6D 0, then HC.M 0; � 0; � 0/ 6D 0.

Proof This is due to the fact that the gluing map

ˆW HC.M 0; � 0; � 0/! HC.M; �; �/

is a Q–algebra homomorphism.

For example, if M is closed and if L is a Legendrian submanifold of M , then M is
obtained by gluing along the convex submanifold @N.L/. Thus we obtain:

Corollary 1.12 Let L be a closed Legendrian submanifold of a closed contact mani-
fold .M; �/. If HC.M; �/ 6D 0, then HC.M; �;L/ 6D 0.

In contrast to Corollary 1.12, the Legendrian contact homology – due to Chekanov [5]
and Eliashberg in dimension three, and Ekholm, Etnyre and Sullivan [10] in higher
dimensions – of a stabilized Legendrian submanifold always vanishes. On the other
hand, let A be the contact homology differential graded algebra (DGA) for some choice
of contact form ˛ for .M; �/, almost complex structure J , and abstract perturbation.
If A admits an augmentation, ie a chain map A!Q with the trivial differential for Q,
for example if .M; �/ has an exact symplectic filling, then HC.M; �/ 6D 0.

In a sequel, we plan to prove gluing theorems for contact homology and embedded
contact homology for the initial step in a sutured manifold hierarchy.
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Outline of the paper Sections 2–4 present the basic material on sutured contact mani-
folds. In Section 2 we introduce Liouville manifolds, convex submanifolds and sutured
contact manifolds, and in Section 3 we introduce almost complex structures which are
“tailored” to sutured contact manifolds. Section 4 collects the various operations that can
be done with sutured contact manifolds – in particular we discuss switching between
the sutured and convex boundary conditions and explain the sutured manifold gluing
and convex gluing procedures. Then in Section 5 we prove the necessary compactness
results for holomorphic curves in completions of sutured contact manifolds. In Section 6
we define sutured contact homology and sutured ECH and prove Theorem 1.1. Section 7
is devoted to the various invariants that can be defined via sutured contact homology:
the “hat” versions of contact homology and ECH, Legendrian knot invariants and
a transverse knot filtration. Finally, after some preliminary considerations on neck-
stretching in Sections 8 and 9, we prove Theorem 1.9 in Section 10 and Theorem 1.10
in Section 11.

2 Sutured contact manifolds

In this paper, when we refer to a .2nC1/–dimensional contact manifold .M; �/, it
is assumed that the ambient manifold M is oriented, and the contact structure � is
cooriented by a global 1–form ˛ which is positive, ie satisfies ˛^ .d˛/n > 0.

2.1 Liouville manifolds

Definition 2.1 A Liouville manifold (often also called a Liouville domain) is a pair
.W; ˇ/ consisting of a compact, oriented 2n–dimensional manifold W with boundary
and a 1–form ˇ on W , where ! D dˇ is a positive symplectic form on W and the
Liouville vector field Y given by {Y ! D ˇ is positively transverse to @W (ie exits
from W along @W ). It follows that the 1–form ˇ0 D ˇj@W (this notation means ˇ
pulled back to @W ) is a positive contact form on @W , whose kernel we denote by � .

There is a neighborhood N.@W / of @W which can be written as .�"; 0�� @W , with
coordinates .�;x/, where Y D @� , ˇ D e�ˇ0 , and @W D f0g � @W . In other words,
.N.@W /; dˇ/ is locally symplectomorphic to the symplectization of ˇ0 , with Y D @� .

We briefly give a proof of this fact: Since Y is transverse to @W , we take @W D

f0g � @W and Y D @� . Then we can write ˇ D ˇ� C f d� , where ˇ� D ˇjf�g�@W
does not contain any d� –term. Then dˇD dxˇ� Cd� ^dˇ�=d�Cdxf ^d� , where
dx means d in the @W –direction. The Liouville condition {Y dˇ D ˇ implies that
dˇ�=d� �dxf D ˇ�Cf d� . Hence f D 0 and dˇ�=d� D ˇ� , implying ˇ� D e�ˇ0 .
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We write . �W ; y̌/ to denote the completion of .W; ˇ/, obtained by attaching the positive
symplectization .Œ0;1/� @W; e�ˇ0/.

Two Liouville 1–forms ˇ0 and ˇ1 on W are homotopic if there is a 1–parameter
family of Liouville 1–forms ˇt , t 2 Œ0; 1�, such that the corresponding Liouville vector
field Y t on N.@W /D .�"; 0�� @W is @� . We can then complete the homotopy ˇt

to �W by setting y̌t D e�ˇt
0

on Œ0;1/� @W , where ˇt
0
D ˇt j@W .

2.2 Convex submanifolds

Let .M; �/ be a .2nC1/–dimensional contact manifold. Following Giroux [15], we say
that a closed, oriented 2n–dimensional submanifold † of M is � –convex if there is a
contact vector field X transverse to †. (Recall that a contact vector field is generated
by a contact Hamiltonian function. Hence any contact vector field X which is defined
in a neighborhood of † can be extended to a contact vector field on all of M , and thus
convexity is a local condition.) Given X as above, one defines the dividing set � to be
fx 2† jX.x/ 2 �.x/g.

To understand the dividing set more explicitly, let N.†/D Œ�"; "��† be a neighbor-
hood2 of † D f0g �†, such that X D @t , where t denotes the Œ�"; "�–coordinate.
By changing the sign of X if necessary, we may assume that @t gives the normal
orientation of †. We can now find a 1–form ˛ for � which in N.†/ is given by
˛Df dtCˇ , where f and ˇ do not depend on t and ˇ has no dt –term. The dividing
set is then � D ff D 0g. Since ˛ is a contact form,

(3) ˛^ .d˛/n D f dt .dˇ/nC n df dt ˇ.dˇ/n�1 > 0:

It follows that (i) df 6D 0 along � , and hence � is a codimension 1 submanifold of †,
and (ii) ˇ is a contact form on � . In particular, (iii) � D ker˛ is transverse to � . The
dividing set � is not necessarily connected.

Lemma 2.2 A closed, oriented, codimension one submanifold †�.M; �/ is �–convex
if and only if there is an oriented, codimension one submanifold � of † and a (coori-
ented) contact form ˛ for � such that

(A) � decomposes † into alternating positive and negative open regions R˙.�/ so
that .RC.�/; d˛jRC.�// and .R�.�/; d˛jR�.�//, endowed with the orientation
of † on RC.�/ and its opposite on R�.�/, are positive symplectic manifolds;

(B) the form ˛j� is a positive contact form on � for the boundary orientation
of RC.�/.

2In this paper, a “neighborhood” is not necessarily an open neighborhood.
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A contact form ˛ satisfying (A) and (B) above is said to be adapted to .†; �/. When M

has dimension three, � is an oriented multicurve on the surface † which is positively
transverse to � .

Remark 2.3 Let R˛ be the Reeb vector field associated with ˛ . The condition that
d˛ be symplectic on R˙.�/ is equivalent to the condition that R˛ be positively
transverse to † along RC.�/ and negatively transverse to † along R�.�/.

Remark 2.4 If .†; �/ is a convex hypersurface of .M; �/, then the proof of Lemma
2.2 shows that the closures R˙.�/ are Liouville manifolds with a Liouville form
obtained from the restriction of an adapted contact form by a slight modification
near � . Also, one can choose an adapted contact form ˛ so that .†; d˛j†/ is a folded
symplectic manifold, as defined in [34].

The proof of Lemma 2.2 uses the following notion: Given a codimension one submani-
fold † of .M; �/, the characteristic line field L is the singular line field in �D �\T†

such that {L.d˛j�/ D 0 for any contact form ˛ for � . The line field L is singular
where � D T†.

Proof of Lemma 2.2 ()) Suppose † is a convex submanifold. Let ˛ D f dt Cˇ

be the contact form on N.†/ D Œ�"; "� �† as above. By Equation (3), � can be
oriented so that ˛j� is a positive contact form on � . With this orientation of � , the
normal orientation of � in † is given by the direction in which f is decreasing. We
then define RC.�/ (resp. R�.�/) to be the region ff > 0g (resp. ff < 0g). This
proves (B).

In order to prove (A) we further normalize the contact form. Take a sufficiently small
neighborhood N.�/ D Œ�1; 1� � Œ�"; "� � � of � with coordinates .�; t;x/ so that
ˇ is a contact form on all f.�; t/g �� . Here we take @t for N.�/ to agree with @t

for N.†/. By possibly multiplying ˛ by a positive function, we may assume that
f D 1 for � � 1

2
, f D �1 for � � �1

2
, f is locally constant outside of N.�/, and

f D f .�/ inside N.�/. Wherever f is locally constant, .dˇ/n is > 0 or < 0 as
appropriate, by Equation (3).

Next, let L be the line field on N.�/ which agrees with the characteristic line field
on each level set At0

D ft D t0g of N.�/. Take a t –invariant vector field Y that
directs L so that the component of Y in the � –direction is exactly @� . This is possible
since � t � and d˛ is nondegenerate on � \T� ; hence L must have a component
transverse to � . Flowing along Y starting on � gives us a new coordinate function
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xW N.�/! � so that ˛ D f dt Cˇ , where ˇ only has dx–terms and no d� –term,
f D f .�/ as before, and ˛ is t –invariant. Now

d˛ D f 0.�/ d� dt C d�
dˇ

d�
C dxˇ;

where dx is the derivative in the x–direction. Since {@� .d˛j�/ D 0, it follows that
.dˇ=d�/.v/D 0 for all v 2 kerˇjT† , or, equivalently, dˇ=d� is a function times ˇ .
Hence, on N.�/, we can write

(4) ˛ D f .�/ dt Cg.�;x/ˇ0;

where ˇ0D ˇjf.0;0/g�� and g> 0. Also, the contact condition implies that @g=@� < 0

when f D 1 and @g=@� > 0 when f D�1.

Finally, let h be a positive t –invariant function on N.�/ so that

(i) hD g for � � 1
2

and � � �1
2

;

(ii) @h=@� < 0 for � > 0;

(iii) @h=@� > 0 for � < 0.

We claim now that condition (A) is fulfilled by a contact form that agrees with .h=g/˛
on N.†/. We need to check that d..h=g/˛j†/ is a positive symplectic form on RC.�/

and a negative symplectic form on R�.�/. On the complement of N.�/, this follows
from Equation (3) since f is constant there. On N.�/, we have .h=g/˛j† D hˇ0 ,
and d.hˇ0/ is symplectic on each of R˙.�/ by (ii) and (iii).

(() Suppose now that there is a contact 1–form ˛ which is adapted to .†; �/. Let
ˇ D ˛j† . We first normalize ˇ on N.�/ \† D ft D 0;�1 � � � 1g: Let X be
the characteristic vector field on N.�/\† so that its � –component is @� . Flowing
along X (starting at �D0) gives us new coordinates .�;x/ so that ˇ.�;x/Dg.�;x/ˇ0 ,
where ˇ0 D ˇj�D0 and g is a positive function. Moreover, since dˇ > 0 is a positive
symplectic form for � > 0, it follows that @g=@� < 0 on � > 0; similarly, @g=@� > 0

on � < 0.

Next we construct a 1–form z̨ on N.†/ of the form

z̨.�; t;x/D zf dt C ž;

where zf and ž do not depend on t . The function zf W †!R is constant outside of
N.�/ and can be written as zf .�/ on N.�/ so that zf .�/D 1 for � � 1

2
, zf .�/D�1

for � � �1
2

, zf .0/ D 0, and zf 0.�/ > 0 for �1
2
< � < 1

2
. The 1–form ž equals ˇ

outside of N.�/ and equals zgˇ0 on N.�/, where zg.�;x/D g.�;x/ near � D�1; 1,
zg.�;x/ only depends on � for �1

2
� � � 1

2
, zg > 0 for all � , @zg=@� < 0 on � > 0,

and @zg=@� > 0 on � < 0.
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The 1–form z̨ is clearly contact outside of N.�/. Inside N.�/ we compute that

z̨ ^ .d z̨/n D n

�
@ zf

@�
zg� zf

@zg

@�

�
zgn�1 d� dt ˇ0.dˇ0/

n�1 > 0:(5)

Since ˛; z̨ pull back to 1–forms ˇ , ž which differ by a conformal factor on †, there
is a local diffeomorphism which fixes † and sends ker˛ to ker z̨ . Since † is clearly
convex with respect to z̨ , the same holds for ˛ .

The following is a corollary of the above proof:

Corollary 2.5 Given a convex submanifold †, one can choose a neighborhood
N.†/D Œ�"; "��† on which the contact structure is given by the kernel of a contact
form ˛0Df dtCˇ such that f and ˇ do not depend on t ; f D˙1 on R˙.�/�N.�/;
f D f .�/ on N.�/D Œ�1; 1�� Œ�"; "��� ; the zero set of f is � D 0; ˇ D g.�/ˇ0

on N.�/; g.�/ > 0; ˇ0 is a contact form on � ; and .@f=@�/g�f .@g=@�/ > 0.

Recall that t the first coordinate of N.†/D Œ�"; "��† and � is the first coordinate of
N.�/D Œ�1; 1�� Œ�"; "��� .

Example 2.6 Let .K; �/ be a supporting open book for a closed .M; �/ and let ˛ be
a contact form for � adapted to .K; �/ (as in Giroux [16]). Let † be the submanifold
of M which is the union of (closures of) two pages of the open book that match up
smoothly. Then † is �–convex with dividing set K and adapted form ˛ .

2.3 Sutured contact manifolds

Definition 2.7 A compact oriented manifold M of dimension m with boundary and
corners is a sutured manifold if it comes with an oriented, not necessarily connected
submanifold � � @M of dimension m� 2 (called the suture), together with a neigh-
borhood U.�/ D Œ�1; 0�� Œ�1; 1�� � of � D f.0; 0/g � � in M , with coordinates
.�; t/ 2 Œ�1; 0�� Œ�1; 1�, such that the following holds:
� U \ @M D .f0g � Œ�1; 1���/[ .Œ�1; 0�� f�1g ��/[ .Œ�1; 0�� f1g �� ).
� @M � .f0g � .�1; 1/��/ is the disjoint union of two submanifolds which we

call R�.�/ and RC.�/,3 where the orientation of @M agrees with that of
RC.�/ and is opposite that of R�.�/, and the orientation of � agrees with the
boundary orientation of R˙.�/.

� The corners of M are precisely f0g � f˙1g �� .

3At the risk of some confusion, we will use this definition of R˙.�/ when we view .M; �/ as a
sutured manifold, and the definition of R˙.�/ given in Section 2.2 when we think of @M as being
smooth.
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The notion of a sutured manifold was introduced by Gabai in [14] for 3–manifolds.
The definition above is slightly different from the usual one; in particular the neighbor-
hoods U.�/ do not appear in Gabai’s definition.

By analogy with the theory of branched surfaces, often the submanifold @hM D

RC.�/[R�.�/ is called the horizontal boundary and @vM D f0g � Œ�1; 1��� the
vertical boundary of M .4

Definition 2.8 Let .M; �;U.�// be a .2nC1/–dimensional sutured manifold. If �
is a contact structure on M , we say that .M; �;U.�/; �/ is a sutured contact manifold
if � is the kernel of a positive contact 1–form ˛ such that

� .RC.�/; ˇCD ˛jRC.�// and .R�.�/; ˇ�D ˛jR�.�// are Liouville manifolds;

� ˛DC dtCˇ inside U.�/, where C is a positive constant and ˇ is independent
of t and does not have a dt –term;

� @� jR˙.�/ D Y˙ inside U.�/, where Y˙ is the Liouville vector field for ˇ˙ .

Such a contact form ˛ is said to be adapted to .M; �;U.�//. (This is analogous
to, but different from, the notion of a contact form adapted to a convex submanifold
as discussed in Section 2.2.) We sometimes denote the sutured contact manifold by
.M; �;U.�/; ˛/.

We note two immediate consequences of the above definition. First, the Reeb vector
field R˛ of ˛ is equal to .1=C /@t on U.�/ and is positively transverse to all of R˙.�/,
ie enters M along R�.�/ and exits M along RC.�/. This positive transversality
holds because d˛jR˙.�/ is symplectic. Second, on U.�/D Œ�1; 0�� Œ�1; 1��� with
coordinates .�; t;x/, we have ˛ D C dt C e�ˇ0.x/, where ˇ0 is a contact form on � .

Example 2.9 Let .W; ˇ/ be a Liouville manifold and let N.@W /D .�"; 0��@W be
the neighborhood of @W with coordinates .�;x/, so that the Liouville vector field Y

equals @� . Then the manifold

.W � Œ�1; 1�; @W � f0g;N.@W /� Œ�1; 1�; dt Cˇ/

is a sutured contact manifold, called a product sutured contact manifold.

4Strictly speaking, the orientation of U.�/ is that of the product Œ�1; 1�� Œ�1; 0��� . However we
write the first two factors in the opposite order because we want to visualize Œ�1; 0� as the horizontal
direction and Œ�1; 1� as the vertical direction.

Geometry & Topology, Volume 15 (2011)



1764 Vincent Colin, Paolo Ghiggini, Ko Honda and Michael Hutchings

Example 2.10 Let .M 0; � 0;U.� 0/; � 0/ be a .2nC1/–dimensional sutured contact
manifold with adapted contact form ˛0 . Let � 0

0
� � 0 be a union of connected com-

ponents of � 0 . Also let .W; ˇ/ be a 2n–dimensional Liouville cobordism from @CW

to @�W . By this we mean that @W D @CW � @�W and dˇ is a symplectic form
on W , such that the Liouville vector field Y satisfying {Y dˇ D ˇ points into W

along @�W and out of W along @CW . Suppose there is a diffeomorphism

�W .@�W; ˇj@�W /
�
! .� 00; ˇ0j� 0

0
/:

We can then define a new sutured contact manifold .M; �;U.�/; �/, called an interval-
fibered extension of .M 0; � 0;U.� 0/; � 0/, by

M DM 0
t .W � Œ�1; 1�/=� ;

where .0; t; �.y// � .y; t/ for all y 2 @�W . Here � D Ker.˛/ where ˛ is obtained
by gluing ˛0 and C dt C ˇ . Also � D .� 0 � � 0

0
/ t .@CW � f0g/, and R˙.�/ D

R˙.�
0/[ .W � f˙1g/.

2.4 Completion of a sutured contact manifold

Let .M; �;U.�/; �/ be a sutured contact manifold with an adapted contact form ˛ .
We now explain how to extend .M; ˛/ to a “complete” noncompact contact mani-
fold .M �; ˛�/.

The Reeb flow of ˛ defines neighborhoods Œ1�"; 1��RC.�/ and Œ�1;�1C"��R�.�/

of RC.�/D f1g �RC.�/ and R�.�/D f�1g �R�.�/ respectively, in which ˛ D
C dtCˇ˙ , where t 2 Œ�1;�1C"�[ Œ1�"; 1� extends the t –coordinate on U.�/. The
first step is to extend ˛ “vertically” by gluing Œ1;1/�RC.�/ and .�1;�1��R�.�/

with the forms C dt C ˇC and C dt C ˇ� respectively. The boundary of this new
manifold is f0g �R�� . In the neighborhood Œ�1; 0��R�� of the boundary with
coordinates .�; t;x/, we have ˛ D C dt C e�ˇ0.x/ where ˇ0 is a contact form on � .

To complete the construction of .M �; ˛�/, we then extend “horizontally”, similarly to
the construction of an interval-fibered extension, by gluing Œ0;1/�R�� with the
form C dt C e�ˇ0 .

For convenience, we extend the coordinates .�; t/ to functions on all of M � so that
t.M /� Œ�1; 1� and � .M [ .Œ1;1/�RC.�//[ ..�1;�1��R�.�///� Œ�1; 0�. We
then refer to t > 1 as the Top (T), to t < �1 as the Bottom (B), and to � > 0 as the
Side (S). Consistently with our notation for the completion of Liouville manifolds
in general, we let .2R˙.�/; y̌˙/ denote the completion of .R˙.�/; ˇ˙/ obtained by
extending to (S).
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3 Almost complex structures

3.1 Adapted and tailored almost complex structures

Let .Y; �/ be a contact manifold. Then an almost complex structure J on the symplec-
tization R�Y , with R–coordinate s , is adapted to the symplectization if the following
hold:

(1) J is s–invariant.

(2) J takes � to itself on each fsg �Y .

(3) J maps @s to the Reeb vector field R˛ associated to a contact 1–form ˛ for � .

(4) J j� is d˛–positive, ie d˛.v;Jv/ > 0 for all nonzero v 2 � .

We remark that Condition (4) does not depend on the choice of ˛ . If we also want to
specify the contact 1–form ˛ , then we say that J is ˛–adapted.

Let .W; ˇ/ be a Liouville manifold and let � be the contact structure given on @W
by kerˇ0 , where ˇ0 D ˇj@W . Recall the completion . �W ; y̌/ of .W; ˇ/, where�W DW [ .Œ0;1/� @W / and y̌jŒ0;1/�@W D e�ˇ0 . Here � is the Œ0;1/–coordinate.
An almost complex structure J0 on �W is y̌–adapted if it is

(1) ˇ0 –adapted on Œ0;1/� @W ;

(2) dˇ–positive on W , ie dˇ.v;J0v/ > 0 for all nonzero tangent vectors v .

Let .M; �;U.�/; �/ be a sutured contact manifold, ˛ an adapted contact form and
.M �; ˛�/ its completion. We consider the symplectization .R �M �; d.es˛�// of
.M �; ˛�/, where s is the coordinate on R. We say that an almost complex structure J

on R�M � is tailored to .M �; ˛�/ if the following hold:

(A0 ) J is ˛�–adapted.

(A1 ) J is @t –invariant in a neighborhood of R� .M � n int.M //.

(A2 ) The projection of J to T 2R˙.�/ is a y̌˙–adapted almost complex structure J0

on the completion .2RC.�/; y̌C/ t .2R�.�/; y̌�/ of the Liouville manifold
.RC.�/; ˇC/t .R�.�/; ˇ�/.

Note that, by the above conditions, J0 uniquely determines J on R� .M � n int.M //.
Moreover, the flow of @t identifies J0j1RC.�/�RC.�/ and J0j1R�.�/�R�.�/ .
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3.2 Integrable complex structures J0 for Stein domains

We now discuss the integrable complex structure on a Stein domain, which, as we will
see in Section 5.3, is often more convenient for calculations. The slight drawback is
that the integrable complex structure is usually not adapted to the symplectization.

Let .W;J0/ be a Stein domain. Then there exists a Morse function f W W !R which
is strictly plurisubharmonic and for which @W is a regular level set. If ˇ D�dCf D

�df ıJ0 , then we claim that .W; ˇ/ is a Liouville manifold and that the symplectic
form ! D dˇ is J0 –compatible. Indeed, ! is symplectic since !.v;J0v/ > 0 (ie ! is
tamed by J0 ) for all nonzero tangent vectors v of W by the strict plurisubharmonicity
of f . Moreover, !. � ;J0� / is symmetric by the integrability of J0 : Writing

.�/D�!.X;J0Y /C!.Y;J0X /;

we compute, using the formula d�.A;B/DA.�.B//�A.�.B//� �.ŒA;B�/, where
� is a 1–form and A;B are vector fields, that

.�/D ddCf .X;J0Y /C ddCf .J0X;Y /

DX.dCf .J0Y //�J0Y .dCf .X //� dCf .ŒX;J0Y �/

CJ0X.dCf .Y //�Y .dCf .J0X //� dCf .ŒJ0X;Y �/:

Now, the integrability of J0 is equivalent to the vanishing of the Nijenhuis tensor, ie

J0ŒX;J0Y �CJ0ŒJ0X;Y �D ŒJ0X;J0Y �� ŒX;Y �:

So .�/D�X.df .Y //CY .df .X //Cdf .ŒX;Y �/CJ0X.df .J0Y //�J0Y .df .J0X //�

df .ŒJ0X;J0Y �/ D �d2f .X;Y /C d2f .J0X;J0Y / D 0, and we have proved that
!. � ;J0� / is symmetric. Now let � be the contact structure on @W given by kerˇj@W .
If v 2 � , then ˇ.J0v/D df .v/D 0, and thus J0 fixes � . Let g.X;Y /D !.X;J0Y /

be the compatible metric on W . Then the Liouville vector field X satisfying {X! D ˇ

is given by X Drf D J0Xf , where the gradient r is with respect to g and Xf is the
Hamiltonian vector field of f with respect to ! . Hence the Liouville vector field X is
positively transverse to @W and .W; ˇ/ satisfies the conditions of a Liouville manifold.

When W is a compact surface with nonempty boundary, there is a complex structure J0

which makes .W;J0/ into a Stein domain. Thus W has the structure of a Liouville
manifold with a compatible almost complex structure J0 .

One subtlety that we address in Section 3.4 is that, in a neighborhood of @W , the
integrable J0 is often slightly different from an almost complex structure J 0

0
which is

ˇ0 D ˇj@W –adapted. If .�"; "/� @W is a piece of the symplectization of @W with
coordinates .�;x/ and @W D f� D 0g so that the Liouville vector field X D @� , then
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the level sets of f differ slightly from the level sets of � . Also, while J 0
0

can be made
to agree with J0 on kerˇ0 , and J0 maps @� 7! g0Rˇ0

, the function g0 is usually
not constant. The following is an example of the above-mentioned issues, which the
authors learned from Jian He.

Example 3.1 Consider Cn with coordinates zi D xi C
p
�1 yi and the standard

integrable complex structure J0 . Let M be an ellipsoid in Cn which is a level set of

f D
1

2

X
i

.x2
i C�iy

2
i /

for some positive real numbers �i . We compute that

df D
X

i

.xidxi C�iyidyi/;

ˇ D�df ıJ0 D

X
i

.��iyidxi Cxidyi/;

! D dˇ D
X

i

.1C�i/dxidyi ;

Xf D
X

i

1

1C�i
.�xi@yi

C�iyi@xi
/;

where Xf is the Hamiltonian vector field of f with respect to ! , and

X Drf D J0Xf D
X

i

1

1C�i
.xi@xi

C�iyi@yi
/:

Hence, we have

df .X /D
X

i

1

1C�i
.x2

i C�
2
i y2

i /:

It follows that if not all the �i are the same, then df .X /D df .@� / is not constant on
the level sets of f , and so the level sets of � are different from the level sets of f .

3.3 Interpolation of almost complex structures on symplectizations

Let Y be an odd-dimensional manifold and let ˇ0; ˇ
0
0

be homotopic contact 1–forms
on Y , ie suppose there is a 1–parameter family of contact 1–forms from ˇ0 to ˇ0

0
.

Consider R�Y with coordinates .�;x/. We then have the following lemma, which is
used to prove that the sutured contact homology algebras are independent of the choice
of almost complex structure:
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Lemma 3.2 There is a constant C > 0 and an almost complex structure J on R�Y

which is C � ˇ0
0

–adapted for � � 1 and ˇ0 –adapted for � � 0, and such that � is
plurisubharmonic with respect to J , ie �ddC�.v;Jv/D�d.d� ıJ /.v;Jv/� 0 for
all tangent vectors v 2 T .R�Y /.

Proof This is just a modification of the usual proof of the plurisubharmonicity of �
with respect to a ˇ0 –adapted almost complex structure.

By Gray’s theorem, the homotopy from ˇ0 to ˇ0
0

gives rise to a diffeomorphism
isotopic to the identity, which takes ˇ0

0
to fˇ0 for some positive function f on Y .

Hence, after composing with a diffeomorphism of R�Y of type .�;x/ 7! .�; �� .x//,
where �� W Y

�
! Y is a diffeomorphism, we may assume that ˇ0

0
D fˇ0 . We then

define a 1–form ˇ.�;x/ D g.�;x/ˇ0.x/ on R � Y such that g.�;x/ is a smooth
function which satisfies the following:

(i) g.�;x/D 1 for � � 0.
(ii) g.�;x/D C �f .x/ for � � 1, where C is a constant greater than max.1=f /.

(iii) @g.�;x/=@� � 0.

Let R� be the Reeb vector field for ˇ.�/. Then we choose J so that J.�;x/ sends
kerˇ.�/ D kerˇ0 to itself and @� to R� , and satisfies dY ˇ.�/.X;JX / > 0 for all
nonzero X 2 kerˇ.�/, where dY denotes the exterior derivative on Y .

We claim that d� ı J D �ˇ . Indeed, d� ı J sends kerˇ.�/ 7! 0, @� 7! 0, and
R� 7! �1, agreeing with the evaluation of �ˇ on these tangent vectors.

We now have

(6) �ddC� D dˇ D d.gˇ0/D
@g

@�
d� ^ˇ0C dY .gˇ0/;

If we write v 2 T .R � Y / as X C a@� C bR� , where X 2 kerˇ.�/, then Jv D

JX C aR� � b@� . Evaluating the pair .v;Jv/ on the right-hand side of Equation (6),
we obtain

(7) g�1 @g

@�
.a2
C b2/C dY .gˇ0/.X;JX /� 0:

This proves the plurisubharmonicity of � .

By rescaling in the � –direction we obtain the following:

Corollary 3.3 There is an almost complex structure J on R�Y which is ˇ0
0

–adapted
for sufficiently positive � and ˇ0 –adapted for sufficiently negative � , so that some
increasing function u of � is J –plurisubharmonic. In particular, no holomorphic map
from a Riemann surface with punctures into .R�Y;J / attains a local maximum in the
� –direction.
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3.4 Interpolation between the adapted and integrable almost complex
structures

Let .W;J0/ be a Stein domain with a strictly plurisubharmonic function � and a
corresponding Liouville 1–form ˇ . (Unlike our previous notation, � now denotes
the plurisubharmonic function and not the coordinate near the boundary given by the
Liouville vector field.) Without loss of generality, we may assume that @W D f� D 0g.
Writing Y D @W , let N.@W /D Œ�"; 0��Y be a neighborhood of @W Df0g�Y with
coordinates .�;x/. Extend this to Œ�";1/� Y , also with coordinates .�;x/. Write
ˇ� D ˇjf�g�Y and �� D kerˇ� .

Lemma 3.4 Suppose ˇ0
0

is a contact 1–form homotopic to ˇ0 . On Œ�";1/ � Y ,
there exist an almost complex structure J and a J –plurisubharmonic function u.�/

such that

(i) J is ˇ0
0

–adapted for sufficiently positive � ;

(ii) J agrees with J0 on N.@W /.

We thank Yasha Eliashberg for suggesting that something like the above lemma might
be true.

Proof By applying Corollary 3.3 above, we may assume that ˇ0
0
D ˇ0 .

Let us first consider the Liouville 1–form ˇD�d� ıJ0 on N.@W /. By changing the
identification of N.@W / with Œ�"; 0��Y , we can arrange for the vector field @� to be
parallel to, but not necessarily a constant multiple of, the Liouville vector field r� which
satisfies {r� dˇD ˇ . It then follows that ˇ has no d� –terms. Hence ˇ.�;x/D ˇ� .x/.
We also observe that, if R� is the Reeb vector field for ˇ� on f�g�Y , then it is parallel
to the Hamiltonian vector field X� for � , which satisfies

{X� dˇ D {X� .dY ˇ� C d� ^ P̌� /D d�;

where P̌� D dˇ�=d� . Moreover, we claim that J0.@� / D R� . Indeed, since r�
is parallel to @� , X� is parallel to R� , and J0.r�/ D �X� , we have J0.@� / is a
function times R� . The function can be determined from the equation ˇ� .R� / D

�d� ıJ0.R� /D 1.

Next define a smooth function uW Œ�"; 0�!R so that it satisfies

� u.�/D � on Œ�";� "
2
�;

� d2u=d�2 � 0 on Œ�"; 0�;

� .d2u=d�2/.0/� .du=d�/.0/.
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The function u.�/ is J0 –plurisubharmonic on N.@W /. This follows from the general
fact that the composition of a plurisubharmonic function with a smooth, increasing,
convex function u from a subset of R to R is plurisubharmonic. Here “convex” means
u00 � 0 at all points in the domain. To see this explicitly, if we set ˇ0D�duıJ0 , then

ˇ0 D�
du

d�
.d� ıJ0/D

du

d�
ˇ;

dˇ0 D
d2u

d�2
d� ^ˇC

du

d�
dˇ

D
d2u

d�2
d� ^ .�d� ıJ0/C

du

d�
dˇ:

The conditions on u.�/ then imply that dˇ0.v;J0v/ > 0 for all nonzero v .

It is useful below to write g.�/D du=d� , and to rewrite the above equation as

(8) dˇ0 D
dg

d�
d� ^ .�d� ıJ0/Cg.dY ˇ� C d� ^ P̌� /;

where g.�/ satisfies dg=d� � g near � D 0.

We now extend ˇ0 D gˇ and J D J0 over Œ0;1/�Y . First choose gW Œ0;1/! R
so that dg=d� � g on Œ0; 1� and dg=d� > 0 elsewhere. We then extend ˇ so that

� ˇ.�;x/D ˇ� , ie ˇ has no d� –term;

� ˇ� are contact forms on Y ;

� ˇ� D ˇ0 for � � 1.

(The only reason we cannot set ˇ� D ˇ0 for all � � 0 is that we require ˇ to be
smooth.) Let �� D kerˇ� and R� DRˇ� . Since J0 maps �� to itself and @� 7!R�

on N.@W /, we can extend J0 to J so that �� is mapped to itself and @� 7!R� .

Now let uD u.�/ be the extension of ujN.@W / to Œ�";1/�Y so that du=d� D g.�/.
To show that u is J –plurisubharmonic, first observe that

�du ıJ D
du

d�
.�d� ıJ /D gˇ D ˇ0:

Thus we need to verify the nonnegativity condition dˇ0.v;Jv/ � 0. Write v D
X C a@� C bR� , where X 2 �� , so that Jv D JX C aR� � b@� . Then Equation (8)
gives

dˇ0.v;Jv/D
dg

d�
.a2
C b2/Cg.dY ˇ� .X;JX //

Cg.a P̌� .JX C aR� /C b P̌� .X C bR� //:
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The nonnegativity is immediate for � � 1 since P̌� D 0. The nonnegativity for � 2 Œ0; 1�
follows from dg=d� � g and is based on the inequality

k
X

i

x2
i CK

X
j

y2
j �

X
ij

aij xiyj ;

where k > 0 and aij are given, and K� 0 is chosen in response to k; aij . In the
application of this inequality, the numbers xi are the components of X in some local
coordinate system, while the numbers yj are a and b .

4 Operations on sutured contact manifolds

In this section we collect some operations that are done to sutured contact manifolds.

Roadmap Section 4.3 and Section 4.4 give some technical constructions which will
only be used in Sections 10 and 11. The first-time reader may want to skip those
sections and proceed to Section 5.

4.1 Switching between convex and sutured boundary conditions

In this section we describe how to pass between the convex and sutured boundary
conditions.

When .M; �;U.�/; �/ is a sutured contact manifold, it is easy to smooth the corners
of M inside U.�/ D Œ�1; 0� � Œ�1; 1� � � , so that the resulting manifold M 0 has
boundary @M 0 which is transverse to the Reeb vector field RD .1=C /@t except at
� D f.0; 0/g �� . More precisely, the portion of @M 0 for which t > 0 (resp. t < 0) is
positively (resp. negatively) transverse to R. Hence the slight retract .M 0; �; �jM 0/

of M has �–convex boundary by Lemma 2.2.

On the other hand, the following lemma explains how to pass from convex to sutured
boundary.

Lemma 4.1 Let .M; �/ be a .2nC1/–dimensional contact manifold with �–convex
boundary .@M; �/, and let N.�/ �M be a tubular neighborhood of � . Then there
exists a codimension 0 sutured contact submanifold .M 0; � 0;U.� 0/; �jM 0/ of M , to-
gether with a contact form ˛ on M , such that ˛jM 0 is adapted to .M 0; � 0;U.� 0/; �jM 0/,
M�M 0�N.�/, U.� 0/�N.�/, and .� 0; �\T� 0/ is isotopic to .�; �\T�/ through
.2n�1/–dimensional contact submanifolds of .M; �/.
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Proof Since † D @M is �–convex, there is a neighborhood N.†/ D Œ�"; 0� �†

of † D f0g �† with first coordinate t and a contact form ˛0 D f dt C ˇ as given
by Corollary 2.5. In particular, on N.�/D Œ�1; 1�� Œ�"; 0��� , the form ˛0 can be
written as

˛0 D f .�/ dt Cg.�/ˇ0 D g.�/.ˇ0C
zf .�/ dt/I

we may assume that zf .�/D � for �1
4
� � � 1

4
, @g=@� > 0 for � < 0, @g=@� < 0 for

� > 0, and g.�/D g.��/. Then

(t) R˛0
is positively transverse to @M along RC.�/ and negatively transverse

to @M along R�.�/.

Consider cylindrical coordinates .r; �;x/ on N.�/ so that

.�; t/D .r cos.�/; r sin.�//

and the portion contained in M is � � � � 2� . Let

U D f� � � � 2�; 0� r � ıg �N.�/:

Along t D 0, �1
4
� � � 1

4
, the contact forms

˛0 D g.�/.ˇ0C
zf .�/ dt/;

˛1 D g.r/.ˇ0C r2d�/

agree and the interpolation ˛sD .1�s/˛0Cs˛1 is contact. Hence, by the usual Moser–
Weinstein technique, there is a 1–parameter family of local diffeomorphisms �s ,
s 2 Œ0; 1�, near � so that �0 D id, �s D id along †, and .�1/� takes �˛0

to �˛1
. In

other words, after a change of coordinates we may write

˛0 D h0.r; �;x/.ˇ0C r2d�/

on U , for some positive function h0W U !R and sufficiently small ı . Note that we
have not modified ˛0 by a conformal factor, and R˛0

still satisfies (t).

Now let hW U!R be any positive function. We claim that the Reeb vector field R˛ for
the contact form ˛Dh.ˇ0Cr2d�/ is positively transverse to the surfaces f�Dconstg�
U � � if and only if @h=@r < 0. Indeed, by plugging R˛ into the equation ˛ D
h.ˇ0C r2d�/, we obtain

ˇ0.R˛/D
1

h
� r2d�.R˛/:

Also, the coefficient of dr in the equation {R˛ d˛ D 0 gives

@h

@r
ˇ0.R˛/C

�
r2 @h

@r
C 2rh

�
d�.R˛/D 0:
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Putting the two identities together, we obtain

@h

@r
D�2rh2d�.R˛/

and the conclusion follows.

Now we take a function h on U with the following properties:

� hD h0 on @U \fr D ıg.
� @h=@r < 0.
� hD C0=r

2 when "
2
� r � ". (Here C0 > 0 is a large constant and " > 0 is a

small constant < ı .)

If we define ˛ to be h.ˇ0C r2d�/ on U and ˛0 on M �U , then the Reeb vector
field R˛ is transverse to R˙.�/. On "

2
� r � ", since ˛ D .C0=r2/ˇ0CC0d� we

have R˛ D .1=C0/@� . We then take M 0 DM �fr < "
2
g, � 0 D fr D "

2
; � D 3�

2
g and

U.� 0/DM \ f "
2
� r � "g. The � –coordinate becomes the t –coordinate on U.� 0/

and the contact form ˛ gives this modified manifold .M 0; � 0;U.� 0// the structure of
a sutured contact manifold.

Finally, � is isotopic to � 0 through contact submanifolds of type .�a;b; kerˇ0/, where
�a;b D fr D a; � D bg.

4.2 From concave to convex boundary

Definition 4.2 Let M be a compact .2nC1/–dimensional manifold with 3�=2–
corners and let ��@M be a .2n�1/–dimensional submanifold. We call .M; �;V .�//

a concave sutured manifold with suture � if V .�/ � M is a neighborhood of
� D f.0; 0/g �� of the form

V .�/D ..Œ�1; 1�� Œ�2; 2�/� ..0; 1�� .�1; 1///��

such that

� V .�/\ @M D ..f0g � Œ�1; 1�/[ .Œ0; 1�� f�1; 1g//�� ;
� @M � .f0g� .�1; 1/��/ is the disjoint union of two submanifolds RC.�/ and

R�.�/, such that R˙.�/\V .�/D Œ0; 1�� f�1g �� ;
� the corners of M are f0g � f�1; 1g �� .

We denote the coordinates on V .�/ above by .�; t;x/. We designate RC.�/tR�.�/

as the “horizontal boundary” of M and f0g � Œ�1; 1��� as the “vertical boundary”.
We endow RC.�/ (resp. R�.�/) with the boundary orientation (resp. the opposite of
the boundary orientation) of @M .
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Definition 4.3 .M; �;V .�/; �/ is a concave sutured contact manifold if � is a contact
structure on M and if there exists a contact form ˛ for � so that .R˙.�/; ˛jR˙.�//
are Liouville manifolds and ˛DC dtCˇ in V .�/, where C > 0 and ˇ is independent
of t and has no dt –term. (Note that the Reeb flow along the vertical boundary then
goes from RC.�/ to R�.�/, instead of from R�.�/ to RC.�/ as is the case for
convex sutures).

Example 4.4 Let .M; � D ker˛/ be a contact 3–manifold and let S � M be a
compact, oriented surface which is transverse to the Reeb vector field R˛ and whose
boundary @S is positively transverse to � . Now, if N.S/ D S � Œ�"; "� is a collar
neighborhood of S whose Œ�"; "�–coordinate t satisfies R˛D @t , then M �int.N.S//
is naturally a concave sutured contact manifold with respect to the form ˛ . In particular,
�Df0g�@S , the vertical boundary is @S� Œ�"; "�, RC.�/DS�f�"g, and R�.�/D

S � fC"g.

Example 4.5 Let .M; �/ be a closed .2nC1/–dimensional contact manifold and let
L�M be a closed Legendrian submanifold. By the Darboux–Weinstein neighborhood
theorem, there is a sufficiently small neighborhood N.L/ of L which is contacto-
morphic to a small neighborhood of the zero section fz D p1 D � � � D pn D 0g in the
1–jet space R�T �L with the contact 1–form ˛ D dzC�, where � is the Liouville
form on T �L which is locally given by

P
i pidqi . The Reeb vector field is given

by R˛ D @z , and we can take the boundary of the tubular neighborhood of the zero
section to be †D f.z;p; q/ j z2Cjpj2q D "

2g, where j � jq denotes some fiber metric
on T �q L which is smooth in q 2L. Then R˛ is positively transverse to † (with the
boundary orientation) for z > 0, negatively transverse to † for z < 0, and tangent
to † for z D 0. The set � D f.z;p; q/ j z D 0; jpjq D "g is the unit cotangent bundle
of L, and is a .2n�1/–dimensional contact manifold. One can see this for example by
observing that the Liouville vector field

P
i pi@pi

for .T �L; �/ is transverse to � . If
we define a new neighborhood of L by N.L/D f.z;p; q/ j z2 < "2; jpj2q < "

2g, then
.M �N.L/; �jM�N.L/; �/ is a concave sutured manifold.

Proposition 4.6 Let M D .M; �;V .�/; �/ be a concave sutured contact manifold.
Then there is an inclusion of M into a convex sutured contact manifold M0 D

.M 0; � 0;U.� 0/; � 0/, so that the contact manifold with convex boundary .Msm; �; �/,
obtained by smoothing the corners of M, is isotopic to the contact manifold with
convex boundary .M 0

sm; �
0; � 0/, obtained by smoothing the corners of M0 . Here �

and � 0 are isotopic contact submanifolds and M 0�M � .0; 1�� .�1; 1/�� .

Proof On V .�/D .Œ�1; 1�� Œ�2; 2�� .0; 1�� .�1; 1//�� the adapted contact form
is ˛ D C dt Cˇ , where C is a positive constant. Without loss of generality we can
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write ˇ D e��ˇ0 , where ˇ0 is a 1–form on � . (The minus sign in e��ˇ0 is due to
the fact that the Liouville vector field on R˙.�/ points in the negative � –direction.)
We now describe how to extend ˛ to the product Œ0; 1�� Œ�1; 1��� . To that end, we
look for a form of type f .�; t/ dtCg.�; t/ˇ0 , where f;gW Œ�1; 1�� Œ�2; 2�!R, and
f D C and g D e�� outside of Œ0; 1�� Œ�1; 1�.

Let g be a positive Morse function on Œ0; 1�� Œ�1; 1� which is a C 0 –small perturbation
of e�� and whose level sets are obtained from perturbing the foliation by intervals
f�g � Œ�1; 1�, � 2 Œ0; 1�, by adding a pair of (canceling) critical points – a saddle h

and a source e – as in Figure 1.Two of the separatrices of h go to Œ0; 1�� f˙1g and

h
e

Figure 1: The level sets of g on Œ0; 1� � Œ�1; 1� . The arrows indicate the
direction of Xg .

decompose Œ0; 1�� Œ�1; 1� into two components; we assume that e is on the component
which contains .1; 0/. We choose g so that @g=@� < ", where " is a small positive
constant. (Here @g=@� may be negative.) Note that @g=@� > 0 (resp. < 0) at those
points in Figure 1 where the arrows on the level sets point downwards (resp. upwards).
Next choose a positive function f on Œ0; 1��Œ�1; 1� so that @f=@� �0 on Œ0; 1��Œ�1; 1�

and @f=@� is a large positive constant where @g=@� � 0.

On Œ0; 1�� Œ�1; 1��� , with ˛ defined as above, we compute

d˛ D
@f

@�
d� ^ dt C dg^ˇ0Cg dˇ0:

The contact condition for ˛ is

gn�1

�
g
@f

@�
�f

@g

@�

�
> 0;

and the requirements on @f=@� and @g=@� yield the contact condition.

Let Xg be the Hamiltonian vector field with respect to the symplectic form d� ^ dt .
Note that Xg is tangent to the level sets of g . The Reeb vector field R˛ is parallel
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to .@f=@�/R0 CXg , where R0 is the Reeb vector field for ˇ0 on � . Indeed, we
compute that

{.@f=@�/R0CXg
d˛ D

@f

@�
� {Xg

.d� ^ dt/C {.@f=@�/R0
.dg^ˇ0/Cg � {.@f=@�/R0

dˇ0

D
@f

@�
dg�

@f

@�
dgC 0D 0:

Let ı be an arc in Œ0; 1�� Œ�1; 1� which connects the source e to the point .1; 0/ and
is transverse to Xg . Let D be a small disk of radius r about e , whose boundary is
a level set of g , and let N" be an "–neighborhood of ı , with "� r . Consider the
manifold M 00 , obtained from M by adding .Œ0; 1�� Œ�1; 1�� int.D[N"//�� . See
Figure 2. The contact form on M 00 is the restriction of ˛ , defined above. We then

Figure 2: Excavation of D[N" from Œ0; 1�� Œ�1; 1�

modify M 00 slightly so that the corners along � D 1 are smoothed and the horizontal
boundary is transverse to R˛ . Note that R˛ is tangent to .@D�N"/�� and the orbits
connect from R�.�/ to RC.�/; we may also need to make a slight modification so
that the flow lines of the Reeb vector field from R�.�/ to RC.�/ have constant length
near the vertical boundary. The resulting manifold .M 0; ˛jM 0/ is a (convex) sutured
contact manifold whose vertical boundary contains .@D�N"/�� .

Finally, the isotopy of .Msm; �; �/ to .M 0
sm; �

0; � 0/ follows from observing that there is
a 1–parameter family of convex submanifolds which connect between @Msm and @M 0

sm
inside M . We use Lemma 2.2 and find submanifolds which are (positively or negatively)
transverse to R˛ except at some contact submanifold f.�; t/g � � , where .�; t/ 2
Œ0; 1�� Œ�1; 1�.

The only periodic orbits of R˛ that are contained in M 0 �M are periodic orbits
of R0 contained in fhg�� . When dim M D 3, this construction gives a collection of
hyperbolic orbits (one for each component of � ) which are parallel to the suture � .
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4.3 Gluing sutured contact manifolds

The procedure of gluing sutured contact manifolds, together with compatible Reeb
vector fields, was first described by Colin and Honda [8] when dim M D 3. Here we
describe the sutured gluing so that it is also applicable to higher dimensions.

Let .M 0; � 0;U.� 0/; � 0/ be a sutured contact manifold of dimension 2mC1 and let ˛0

be an adapted contact form. Let

� W U.� 0/D Œ�1; 0�� Œ�1; 1��� 0! Œ�1; 0��� 0;

be the projection onto the first and third factors. If we think of Œ�1; 0� � � 0 as a
subset of RC.�

0/ (resp. R�.�
0/), then we denote the projection by �C (resp. �� ).

By definition, the horizontal components .R˙.� 0/; ˇ0˙ D ˛0jR˙.� 0// are Liouville
manifolds. We denote by Y 0

˙
their Liouville vector fields. The contact form ˛0 is

dt C ˇ0
˙

on the neighborhoods RC.�
0/ � Œ1 � "; 1� and R�.�

0/ � Œ�1;�1C "� of
RC.�

0/DRC.�
0/� f1g and R�.�

0/DR�.�
0/� f�1g, found using the Reeb flow.

Also, we may assume that the Reeb vector field R˛0 is given by @t on U.� 0/, after
scaling the contact form.

Take a 2m–dimensional submanifold PC �RC.�
0/ with smooth boundary5 so that

� @PC is the union of .@PC/@ � @RC.� 0/ and .@PC/int � int.RC.� 0//;

� @PC is positively transverse to the Liouville vector field Y 0C on RC.�
0/.

Similarly take P� � R�.�
0/, .@P�/@ , and .@P�/int with Y 0� positively transverse

to @P� . See Figure 3. Whenever we refer to .@P˙/int and .@P˙/@ , we assume that
closures are taken as appropriate.

Suppose we have a pair PC;P� so that �..@P�/@/\ �..@PC/@/ D ∅ and there is
a diffeomorphism � which sends .PC; ˇ0CjPC/ to .P�; ˇ0�jP�/ and takes .@PC/int

to .@P�/@ and .@PC/@ to .@P�/int . We will refer to the triple .PC;P�; �/ as the gluing
data. For the purposes of gluing, it suffices to require that ˇ0CjPC and ��.ˇ0�jP�/
be homotopic Liouville 1–forms on PC , via a homotopy which is constant in a
neighborhood of @PC . In that case, there is a 1–parameter family of adapted contact 1–
forms .˛0/� , � 2 Œ0; 1�, on .M 0; � 0;U.� 0// so that .˛0/0D˛0 , .˛0/� DC � dtC.ˇ0/�

˙

on R˙.�
0/, .ˇ0/�

˙
D ˇ0

˙
on R˙.�

0/ � int.P˙/, and .ˇ0/1CjPC D ��..ˇ0/1�jP�/.
This is made possible by the flexibility theorem of Giroux [15]. (Note that, when
dim M 0D 3, we only need ˇ0CjPC and ��.ˇ0�jP�/ to match up on @PC , since we can
linearly interpolate between primitives of positive area forms on a surface.)

5This is slightly different from what appears in [8], where it is assumed that @PC has corners along
@.@PC/@ D @.@PC/int .
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.@PC/@

.@PC/int

Figure 3: The diagram shows PC � RC.�
0/ . The line field represents

Y 0C � kerˇ0C , and the vertical annuli represent the vertical boundary of M 0 .

Topologically, we construct the sutured manifold .M; �/ from .M 0; � 0/ and the gluing
data .PC;P�; �/ as follows: Let M DM 0=�, where

(1) x � �.x/ for all x 2 PC ;

(2) x � x0 if x;x0 2 ��1.� 0/ and �.x/D �.x0/ 2 � 0 .

In words, (2) says that we collapse the annular neighborhood of � 0 onto � 0 . Then

RC.�/D .RC.� 0/�PC/=� ; ie .@PC/int is identified with �C..@P�/@/;

R�.�/D .R�.� 0/�P�/=� ; ie .@P�/int is identified with ��..@PC/@/;

� D .� 0��.@PC t @P�//=�:and

As it is defined, the boundary of .M; �/ has a cusp along � . To obtain an actual
sutured manifold, one “blows up” the cusp � to a vertical annulus Œ�1; 1��� .

In [14, Definition 3.1], Gabai defined the notion of a sutured manifold decomposition
for sutured 3–manifolds, which is the inverse construction of our sutured gluing.

Fact 4.7 Suppose dim M D 3. Let P � .M; �/ be the surface obtained by identifying
PC and P� . Then P gives rise to a sutured manifold decomposition

.M; �/
P .M 0; � 0/:

Construction of .Mn; ˛n/ For the purposes of studying holomorphic curves, we want
to stretch in both the � – and t –directions. The construction of the contact manifold
will depend on the parameter n, and the resulting glued-up sutured contact manifold
will be written as

.Mn; �n;U.�n/; �n D ker.˛n//:

See Figure 4 for an illustration when nD 1.
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P c
C S1

.S1�S/

� Œ�1; 1�

Figure 4: The left-hand side represents M 0=� , where x � �.x/ for all
x 2 PC . The portion of RC.�

0/ that is exposed is P c
C . The right-hand side

represents M 0=� with .S1 � S/� Œ�1; 1� glued. When n D 1 this gives
us M .1/ .

Step 1: Gluing the top and the bottom Let .M .0/; ˛.0// D .M
.0/
n ; ˛

.0/
n / – we

will often suppress n to avoid cluttering the notation – be the contact manifold
obtained from the completion ..M 0/�; .˛0/�/ by removing the Side, ie M .0/ D

M 0[ .RC.�
0/� Œ1;1//[ .R�.�

0/� .�1;�1�/. Then construct .M .1/; ˛.1// from

(9) M .0/
� .PC � Œn;1//� .P� � .�1;�n�/;

by taking closures and identifying

� PC � fng with P� � f�ng;

� .@PC/int � Œn;1/ with .@P�/@ � Œ�n;1/;

� .@PC/@ � .�1; n� with .@P�/int � .�1;�n�;

all via the identification .x; t/ 7! .�.x/; t � 2n/. Let us write P c
C D RC.� 0/�PC

and P c
� D R�.� 0/�P� . Next take n0 � 0 and truncate the Top and Bottom of

.M .1/; ˛.1// to obtain the (compact) sutured manifold .M .2/; �.2/;U.�.2/// with
contact form ˛.2/ so that M .2/ contains

M 0
[ .P c

C � Œ1; n
0�/[ .P c

� � Œ�n0;�1�/;

the Reeb vector field R D R˛.2/ is transverse to the horizontal boundary, and the
vertical boundary E is foliated by interval orbits of R with fixed action � 3n0 .
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Step 2: Extending the side Let �W E ! B be the fibration whose fibers are the
interval orbits of R, so that B is diffeomorphic to � . The base B is a union of
finitely many codimension zero submanifolds Bi so that there are local sections
si W Bi ! ��1.Bi/ for which si.Bi/ are .2n�1/–dimensional contact submanifolds.
Let .x; t/ be coordinates on ��1.Bi/ so that RD @t , x is a local coordinate system
for Bi , and t D 0 corresponds to si.Bi/. We consider the extension

z�W Œ0;1/�E! Œ0;1/�B

with first coordinate � so that f0g �E is identified with E �M .2/ and z�.�;x; t/D
.�; �.x; t//. We can extend the contact form ˛.2/ to a t –invariant contact form
on Œ0;1/�E which is given by dt C e�ˇ0.x/, where .�;x; t/ are coordinates on
Œ0;1/� ��1.Bi/.

At this point we are not guaranteed the existence of a global section sW B!E which
is contact when � D 0. However, given any section sW B!E , for sufficiently large
� D �0 , we claim that the submanifold f�0g � s.B/ is contact. Indeed, any section s

can locally be written as .x; t/ 7! .x; f .x//, and pulling back dt C e�ˇ0.x/ yields
df .x/C e�ˇ0.x/. If �0 � 0, the term e�ˇ0.x/ dominates df .x/, and the section
becomes contact. Attaching

(10) V D Œ0; �0��E

to M .2/ gives us .Mn; ˛n/. The horizontal boundary which is positively (resp. nega-
tively) transverse to R will be called RC.�n/ (resp. R�.�n/).

We now verify that R˙.�n/ are Liouville manifolds. The 1–form ˛n restricts to the
primitive of a symplectic form on R˙.�n/, since R is transverse to R˙.�n/. Without
loss of generality the ends of R˙.�n/ are of the form Œ0; �0�� @E with local contact
form dtCdf .x/Ce�ˇ0.x/. As before, when �0� 0, e�ˇ0.x/ dominates df .x/, and
the Liouville vector field corresponding to df .x/C e�ˇ0.x/ approaches one parallel
to @� . It now follows that the resulting manifold .Mn; �n;U.�n/; �n; ˛n/ is a sutured
contact manifold.

Now we describe the completion M �
n of Mn . Let

(11) V � D Œ0;1/�R�B

be the completion of V D Œ0; �0��E , obtained by extending to (T), (B), and (S). Then
M �

n is obtained from M .1/ by attaching V � .

Step 3: Interval-fibered extension Let

S D .RC.�
0/� fng/[ .R�.�

0/� f�ng/�M .1/;
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and let S1�M .1/ be the noncompact, possibly disconnected surface obtained from S

by attaching all the P c
C�f.2kC1/ng and P c

��f.�2k�1/ng, where k ranges over all
the positive integers. Note that it is possible for S1 to have finitely many noncompact
components and countably many compact components. There is an embedding

(12) �nW S1 � Œ�nC 1; n� 1� ,!M .1/;

which maps .x; t/ to the time-t translation of x 2 S1 along @t , such that

(13) M 0
e DM .1/

� .S1 � Œ�nC 1; n� 1�/

is obtained from M 0 by attaching an interval-fibered product which is diffeomorphic
to .S1�S/� Œ�1; 1�.

We will call M 0
e an infinite interval-fibered extension (ie an exhaustion of interval-

fibered extensions) of .M 0; � 0/. More explicitly,

(14) M 0
e DM 0

[

[
k>0

�
P c
C� Œ2kn�1; 2knC1�

�
[

[
k>0

�
P c
�� Œ�2kn�1;�2knC1�

�
;

where the gluing maps are given as before by .x; t/ 7! .�.x/; t � 2n/ for x 2 PC .

We can write S1 nS D SC [ S� , where SC is the subsurface obtained by gluing
together the P c

C � f.2k C 1/ng pieces and S� is the subsurface obtained by gluing
together the P c

� � f.�2k � 1/ng pieces. Let us denote by .@PC/int � SC the union of
connected components of .@PC/int�f.2kC1/ng which are on the boundary of SC , ie
when kD 1; similarly define .@P�/int�S� . Then we can write M 0

e more abstractly as

M 0
[ .S� � Œ�1; 1�/[ .SC � Œ�1; 1�/;

where we glue .@PC/int� Œ�1; 1�� SC� Œ�1; 1� to .@P�/@� Œ�1; 1��M 0 by .�; id/,
and .@P�/int � Œ�1; 1�� S� � Œ�1; 1� to .@PC/@ � Œ�1; 1��M 0 .

Summarizing, we have the following:

Lemma 4.8 Suppose n > 0. Given a sutured contact manifold .M 0; � 0;U.� 0/; ˛0/

and gluing data .PC;P�; �/, there exists an inclusion of sutured contact manifolds

.M 0; � 0;U.� 0/; ˛0/ ,! .Mn; �n;U.�n/; ˛n/;

where .Mn; �n;U.�n// is homeomorphic to .M; �;U.�// and the completion of Mn

is M �
n D M .1/ [ V � . Here V � is a fibered piece given by Equation (11) and

M .1/ admits a noncompact embedding of S1 � Œ�nC 1; n � 1� so that R˛n
D @t

on .S1 � S/ � Œ�nC 1; n � 1� and S � .Œ�nC 1;�"� [ Œ"; n � 1�/, and the com-
plement M .1/ � .S1 � Œ�nC 1; n � 1�/ is an infinite interval-fibered extension of
.M 0; � 0;U.� 0/; ˛0/ which is independent of n.
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Almost complex structures We now discuss the gluing/extension of almost complex
structures under sutured manifold gluing.

Step 1: Definition on R �M 0 Definition on R �M 0 We first define an almost
complex structure J 0� on R�M 0 which is tailored to the sutured contact manifold
.M 0; � 0;U.� 0/; ˛0/.

Consider the neighborhood U.� 0/D Œ�1; 0�� Œ�1; 1��� 0 with coordinates .�; t;x/,
where we may assume that ˇ0C D e� x̌0 and x̌0 D ˇ0Cjf0;0g�� 0 . Choose a diffeomor-
phism

H� W Œ�1; 0��� 0
�
! Œ0; ���� 0;

.�;x/ 7! .h�.�/;x/;

where h� W Œ�1; 0�
�
! Œ0; ��, h�.�1/D 0, h�.0/D � , h0�.�/D 1 in a neighborhood of

� D�1; 0, and h� is linear outside a bigger neighborhood of � D�1; 0.

Then J 0� is defined on R�U.� 0/ by specifying the projection .J 0�/0 to T .Œ�1; 0���/

as follows:

� .J 0�/0 is the H� –pullback of an almost complex structure adapted to x̌0 on
Œ0; ���� 0 .

� �� takes .J 0�/0 along @.@PC/int to .J 0�/0 along @.@P�/int , so that they agree
when projected to the base B of the fibration �W E! B .

On R�.M 0�U.� 0//, choose J 0� to be independent of � , such that the projection .J 0�/0
to T .R˙.�

0/� .Œ�1; 0��� 0// is adapted to ˇ0
˙

.

Step 2: Definition on R �M .1/ We then extend J 0� to an almost complex struc-
ture J�;n on R�M .1/ which satisfies the following:

(1) J�;n is adapted to the symplectization .R�M .1/; d.es˛.1///.

(2) J�;n is @t –invariant on each connected component of R times P c
C� Œ2n�1;1/,

P c
� � .�1;�2nC 1�, @M .1/ , and S � .Œ�nC 1;�"�[ Œ"; n� 1�/.

(3) The extension to the interior of S � Œ�"; "� is arbitrary, but is independent of n.

Here S � Œ�nC 1; nC 1� is viewed as a subset of M .1/ via the map �n given in
Equation (12). The almost complex structure J�;n on R�P c

C� Œ2n�1;1/ is defined
by specifying the projection .J�;n/0 of J�;n to TP c

C so that .J�;n/0 agrees with .J 0�/0
along @P c

C � @PC and with ��.J 0�/0 along @P c
C \ @PC D .@PC/int . The extension

of .J�;n/0 to the interior of P c
C is arbitrary, provided it is compatible with dˇ0C . In
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particular, .J�;n/0 does not need to agree with .J 0�/0 on all of P c
C . The almost complex

structure .J�;n/0 is defined similarly on P c
� .

Step 3: Extension to R�V � Next we extend J�;n to R�V � , V �D Œ0;1/�R�B ,
as follows: On each Œ0;1/���1.Bi/ with coordinates .�;x; t/ and contact form dtC

e�ˇ0.x/, choose an e�ˇ0 –adapted almost complex structure J0 on Œ0;1/� si.Bi/D

ft D 0g. This determines J�;n which projects to J0 . By construction, we may
also assume that the sections si.Bi/ and sj .Bj / differ by t D const on the overlap
��1.Bi \Bj /; hence the contact form on Œ0;1/ � ��1.Bi \Bj / is dt C e�ˇ0.x/

with respect to either coordinate chart. This means that we can choose a J0 on all of
Œ0;1/�B and a J�;n which projects to J0 on all of V � .

Step 4: Verification of conditions We now verify that J�;n is tailored to .M �
n ; ˛

�
n/.

Conditions (A0 ) and (A1 ) are easily satisfied. It remains to verify (A2 ), namely
J�;n is dˇ˙–positive, where ˇ˙ is the restriction of ˛n to R˙.�n/. The reason
this needs verification is that the adjustment in the vertical direction implies that the
t –variable undergoes a coordinate change of the type .t;y/ 7! .t Cf .y/;y/, where y

is a coordinate on R˙.�
0/. By pulling back, we see that ˇ˙.y/D df .y/Cˇ0

˙
.y/,

and dˇ˙ D dˇ0
˙

. Hence the dˇ˙–positivity is inherited from the dˇ0
˙

–positivity.

Remark 4.9 Let J0 be the projection of J�;n onto Œ0;1/�B . Since the 1–forms
ˇ0.x/ patch to give a contact 1–form ˇ0 on B , it follows that .Œ0;1/�B; d.e�ˇ0//

is a (positive) symplectization and J0 is adapted to the symplectization. Hence � is a
plurisubharmonic function with respect to J0 .

4.4 Gluing along convex submanifolds

In this section we discuss gluing along convex submanifolds. In particular, we carefully
construct a contact 1–form which is suited to counting holomorphic curves.

Let .M 0; � 0;U.� 0/; � 0/ be a sutured contact manifold of dimension 2mC 1 and ˛0

be an adapted contact 1–form. Let S1 and S2 be two disjoint components of @M 0

and let S˙i D Si \R˙.�
0/. A neighborhood of SCi in .M 0; ˛0/ is given by .SCi �

Œ1� "; 1�; dt C ˇ0/, where t 2 Œ1� "; 1� and SCi D SCi � f1g. Similarly, we have a
neighborhood .S�i � Œ�1;�1C "�; dt Cˇ0/ of S�i D S�i � f�1g. Suppose there is a
diffeomorphism hW SC

1
[S�

1
! S�

2
[SC

2
which takes .SC

1
; ˇ0jSC

1
/ to .S�

2
; ˇ0jS�

2
/

and .S�
1
; ˇ0jS�

1
/ to .SC

2
; ˇ0jSC

2
/, and which can be extended to a (piecewise smooth)

homeomorphism from S1 to S2 . Also suppose that when we compose hjSC
1

and
h�1jSC

2
with the identifications of @S�i and @SCi by the flow of @t in U.� 0/, we get

the identity on @SC
1

.
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Instead of gluing directly using h, we insert layers as follows: Fix n> 0. Let .M 0
n; ˛
0
n/

be the contact manifold obtained by gluing the products .SC
1
� Œ0; n�; dt Cˇ0jSC

1
/ and

.S�
1
� Œ0; n�; dt C ˇ0jS�

1
/ to .M 0; ˛0/ by identifying SC

1
with SC

1
� f0g, S�

2
with

SC
1
� fng, SC

2
with S�

1
� f0g, and S�

1
with S�

1
� fng.

We now construct the contact manifold .Mn; ˛n;f;g/ by filling in some of the boundary
components of .M 0

n; ˛
0
n/; see Figure 5. Here f;g are smooth functions Œ0; 1�t � � � t

Œ0; 1�!R, where there is a copy of Œ0; 1� for each component V of S1\� . Moreover,
f;g depend on n. Consider a boundary component of .M 0

n; ˛
0
n/ of the form V �S1 ,

where V corresponds to a connected component of S1 \ � and S1 D R=2�Z has
coordinate � . The contact form ˛0n on V �S1 is given by and� Cˇ0

0
, where an is a

constant > n=� and ˇ0
0
D ˛0jV . We then fill V �S1 with V �D2 , where we are using

polar coordinates .r; �/ on D2 and S1D fr D 1g. We require the contact form ˛n;f;g

on V �D2 to be of the form

f .r/d� Cg.r/ˇ00;

with boundary condition .f .1/;g.1//D .a; 1/. The contact condition is equivalent to

f 0g�g0f D .f 0;g0/ � .g;�f / > 0;

which in words says that the path f.f .r/;g.r//; r 2 Œ0; 1�g, is transverse to radial rays
in the .f;g/–plane and rotates clockwise around the origin. The Reeb vector field
R D R˛n;f;g

is given by R D .f 0R0 � g0@� /=.f
0g � g0f /, where R0 is the Reeb

vector field for ˇ0
0

.

M 0

M 0

V �D2

SC1 S�1

SC
1
� Œ0; n� S�

1
� Œ0; n�

S�
2 SC

2

Figure 5: The convex gluing of M 0 near a component of V

We now choose specific f and g so that an orbit 
 of R which passes through Mn�M 0

has action A.
 / > n. Let B0;B1 be large positive constants so that B0� aB1� 0.
Then set
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� .f .r/;g.r//D .ar2;B0� aB1r2/ for r 2 Œ0; 1� 2"�;
� 0< f 0.r/ and g0.r/ < 0 for r 2 Œ1� 2"; 1� "�;
� f .r/D a, g0.r/ < 0 for r 2 Œ1� "; 1�;
� .f .1/;g.1//D .a; 1/;
� f .r/D a, g.r/D e1�r for r 2 Œ1� "=2; 1�.

The last condition is to ensure the smooth gluing of fd� Cgˇ0
0

with ˛0n .

If 
 passes through M 0
n�M 0 , then we claim that A.
 / > n by construction. Suppose


 lies in V �S1 . Then we compute RD .1=B0/R0C .B1=B0/@� for 0� r � 1�2".
Since B0=B1 � a, it takes at least 2�a units of time to travel once around the � –
direction; hence A.
 / > n. (When r D 0, then R D .1=B0/R0 and 
 is tangent
to V � f0g. If B0 is sufficiently large, then A.
 / > n.) On the other hand, for
r 2 Œ1 � 2"; 1�, the coefficient in front of @� in R is less than 1=f � 1=a; hence
A.
 / > n for sufficiently small ".

Finally, note that the above construction depends continuously on .n; f;g/. Hence, by
Moser’s Lemma, .Mn; ker˛n;f;g/' .Mn0 ; ker˛n0;f 0;g0/ for any two triples .n; f;g/,
.n0; f 0;g0/. In particular .Mn; ker˛n;f;g/' .M; �/, where .M; �/ is obtained from
.M 0; � 0/ by gluing S1 to S2 .

Summarizing the above discussion, we have:

Lemma 4.10 Let .M; �/ be a compact contact manifold of dimension 2mC 1 and
.S; �S / � .M; �/ be a convex submanifold. If .M 0; � 0/ is obtained from .M; �/ by
cutting along S , then, for any n > 0 and appropriate f D f .n/;g D g.n/, .M; �/

is contactomorphic to .Mn; ker˛n;f;g/, where ˛n;f;g is obtained from a contact 1–
form ˛0 adapted to .M 0; � 0;U.� 0/; � 0/ by attaching (i) layers .SC

1
�Œ0; n�; dtCˇ0jSC

1
/

and .S�
1
� Œ0; n�; dtCˇ0jS�

1
/ and (ii) .V �S1; fd�Cgˇ0

0
/. Moreover, the Reeb vector

field RDR˛n;f;g
satisfies the following:

� Every orbit of R which intersects Mn�M 0 has action larger than n.
� R is tangent to V � f0g, positively transverse to SCi � ftg and S�i � ftg for all

t 2 Œ0; n�, and transverse to � D const on V � .D2�f0g/.

When dim M D 3, the dividing set V � f0g is a periodic orbit of R.

We define the tailored almost complex structure J D Jn;f;g on R�M �
n as follows:

Choose a tailored J 0 on R� .M 0/� so that its restrictions to SC
1

and S�
2

, and also its
restrictions to S�

1
and SC

2
, agree via h. We then extend J 0 to J on R�S˙

1
� Œ0; n�

so that J is invariant in both the s– and t –directions. Finally, we extend J so that it
is ˛n;f;g –adapted on R�V �D2 .
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5 Compactness results

Let .M; ˛/ be a sutured contact manifold, and let .M �; ˛�/ denote its completion as
defined in Section 2.4. Let J be an almost complex structure on R�M � tailored to
.M �; ˛�/, as defined in Section 3.1. In this section we show that the SFT compactness
theorem for holomorphic curves in the symplectization of a closed contact manifold,
proved by Bourgeois et al [3] and Cieliebak and Mohnke [6], extends to the case of J –
holomorphic curves in R�M � . At the end of this section, we extend the compactness
theorem for embedded contact homology of the last author [24] to R�M � in the case
dim.M /D 3.

5.1 Convergence of stable Riemann surfaces

We begin by reviewing some notation and classical results about the convergence of
stable Riemann surfaces, following [3].

A marked Riemann surface is a triple SD .†; j ;m/ consisting of a closed Riemann
surface .†; j / and a finite ordered set m � † of “punctures” or “marked points”.
(The surface † does not need to be connected.) Two marked Riemann surfaces
SD .†; j ;m/ and S0 D .†0; j 0;m0/ are said to be equivalent if there exists a diffeo-
morphism 'W †

�
!†0 such that '�j D j 0 and '.m/Dm0 in an order-preserving way.

The surface S is called stable if, on each connected component †0 of †, we have
2g.†0/C�.†0/ � 3. Here g.†0/ is the genus of †0 and �.†0/ is the number of
marked points on †0 . A nodal Riemann surface is a quadruple S D .†; j ;m;D/,
where .†; j ;m/ is a marked Riemann surface as before, and D �†nm is a finite set
partitioned into unordered pairs f.d 0i ; d

00
i /g. A stable nodal Riemann surface is defined

as above, where the set of marked points is taken to be mtD . From a nodal surface
SD .†; j ;m;D/ one can form a singular surface y†D D†=.d

0
i � d 00i /.

Let SD .†; j ;m/ be a stable marked Riemann surface. On P†D†nm there is a unique
complete, finite volume hyperbolic metric hj ;m which is compatible with j . Denote
its injectivity radius by � . Given � > 0, we define the “thick part” and “thin part”

Thick�.S/D fx 2 P† j �.x/� �g;

Thin�.S/D fx 2 P† j �.x/ < �g:

If � < log.1C
p

2/, then each component of Thin�.S/ is conformally equivalent to
a punctured disk or to a finite cylinder. Each cylindrical component C of Thin�.S/
contains a unique closed geodesic �C . The thick and thin parts of complete, finite
volume hyperbolic metrics for stable nodal Riemann surfaces are defined similarly,
except that we take P†D† n .m[D/.
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Definition 5.1 A sequence of marked Riemann surfaces SnD .†n; jn;mn/ converges
to a nodal Riemann surface SD .†; j ;m;D/ if the following hold:

� There exist a smooth surface †D , diffeomorphisms 'nW †
D �
! †n and an

ordered set mD �†D such that 'n.mD/Dmn (as ordered sets).
� There exist disjoint circles �1; : : : ; �k � †

D nmD and a map 'W †D ! y†D

such that ' is a diffeomorphism between †Dn
S
�i and †nD , and '.mD/Dm

(as ordered sets).
� 'n.�i/�†n are closed geodesics for the metric hjn;mn and are contained in

the thin part (defined using some � < log.1C
p

2/).
� '�n jn! '�j in C1loc .†

D n
S
�i/ or, equivalently, '�n .h

jn;mn/! '�.hj ;m/ in
C1loc .†

D n .
S
�i [mD//.

� Given a point ci 2 �i , the geodesic arcs ın
i for the metric '�n .h

jn;mn/ which
intersect �i orthogonally at ci and whose endpoints are contained in the thick part
of †D for the metric '�n .h

jn;mn/, converge uniformly as n!1 to a continuous
arc in †D which passes through ci and is a geodesic in †D n .

S
�i [mD/ for

the metric '�.hj ;m/.

We then have the following theorem (see [3, Theorem 4.2] and the references therein):

Theorem 5.2 Any sequence of stable marked Riemann surfaces Sn D .†n; jn;mn/

with fixed 2g.†n/C�.†n/ has a subsequence which converges to a nodal Riemann
surface SD .†; j ;m;D/.

Fact 5.3 Let gn be a sequence of Riemannian metrics which converges uniformly to
a Riemannian metric g . Let ln be the length functional for gn and l be the length
functional for g . Then for any ı > 0 there exists n0 2N such that for all n� n0 and
for all arcs 
 we have

.1� ı/l.
 /� ln.
 /� .1C ı/l.
 /:

The proof of Fact 5.3 is an easy exercise.

Proposition 5.4 Let Sn D .†n; jn;mn/ be a sequence of Riemann surfaces which
converges to a nodal Riemann surface SD .†; j ;m;D/, in the sense of Definition 5.1.
Then for all �; ı > 0 there is n0 2N such that

'�1.Thick�.S//� '�1
n .Thick.1�ı/�.Sn//;

'�1.Thin�.S//� '�1
n .Thin.1Cı/�.Sn//;

for all n� n0 .
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Proof Let hn be the complete, finite volume hyperbolic metric on †D nmD which
is compatible with '�n jn , and h be the complete, finite volume hyperbolic metric on
†D n .mD [�i/ which is compatible with '�j . Also let �n and � be the injectivity
radii of hn and h, respectively. Let z 2 †D n .mD [ �i/. In order to compute the
injectivity radii at z , it suffices to compute the shortest geodesic loops based at z (see
for example Hummel [23, Lemma 4.8]). Let 
 be the shortest g–geodesic loop based
at z , and let 
n be the shortest gn –geodesic loop based at z . By Fact 5.3, we have

.1� ı/l.
 /� .1� ı/l.
n/� ln.
n/;

for sufficiently large n. Hence .1� ı/�.z/ � �n.z/. We then conclude that �n.z/ �

.1� ı/� whenever �.z/� � .

On the other hand, if l.
 / < � , then we have

ln.
n/� ln.
 /� .1C ı/l.
 /;

for sufficiently large n. We then conclude that �n.z/� .1Cı/� whenever �.z/ < � .

5.2 Holomorphic curves in R � M �

Let J be a tailored almost complex structure on R�M � as usual. Let .†; j ;m/ be a
marked Riemann surface. The notation

F D .a; f /W .†; j ;m/! .R�M �;J /

denotes a .j ;J /–holomorphic map from the punctured Riemann surface P†D† nm
to M � . If p 2 m, and if 
 is a Reeb orbit of ˛ , we say that F is “positively
asymptotic” to 
 at p if limz!p a.z/DC1 and if the restriction of f to a circle
around p converges to 
 as the size of the circle converges to zero. We also say that
p is a “positive puncture” of F asymptotic to 
 . We define “negatively asymptotic”
analogously but with limz!p a.z/D�1.

Now let 
 D .
1; : : : ; 
k/ and 
 0 D .
 0
1
; : : : ; 
 0

l
/ be finite ordered lists of Reeb orbits,

possibly with repetitions. Let Mg.
 I 

0IJ / denote the moduli space of holomorphic

maps F as above such that † has genus g , there are kC l marked points in m, F is
positively asymptotic to 
i at the i –th marked point, and F is negatively asymptotic
to 
 0j at the .kCj /–th marked point.

We wish to extend the SFT compactness theorem to sequences of holomorphic curves
in these moduli spaces. To do so, it is sufficient to show that for any sequence of such
curves, the projections to M � are confined in a compact set.

We first show that a sequence of holomorphic curves cannot escape from the side (S).
Recall the functions � W M � ! Œ�1;1/ and t W M � ! .�1;1/ from Section 2.4.
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We extend � and t to maps R �M � ! Œ�1;1/ and R �M � ! .�1;1/ by
precomposing with the projection R�M �!M � onto the second factor.

Lemma 5.5 Let F 2Mg.
 I 

0IJ / for some g , 
 , and 
 0 . Then � ıF.z/� 0 for all

z 2 P†.

Proof Suppose there exists a point z 2 P† such that � ıF.z/ > 0. Since � < 0 along
the closed Reeb orbits, it follows that � ıF has a positive local maximum, which we
assume without loss of generality to be attained at z .

The projection of J to 2RC.�/ is J0 . Hence where � > 0, the projection of F to
2RC.�/ is a J0 –holomorphic map. Since � restricted to 2RC.�/ is a plurisubharmonic
function where it is positive, a positive local maximum of � ıF is forbidden by the
maximum principle.

The main task in the rest of this section is to show that a sequence of holomorphic curves
cannot escape from the top (T) or bottom (B). That is, we wish to bound the restriction to
a holomorphic curve of the absolute value of the function t W M �!R from Section 2.4.
For this purpose we need to consider somewhat more general holomorphic curves than
the ones in Mg.x
 I x


0IJ /, in particular the restrictions of such curves to certain subsets
of the domain. However our curves F will always have an upper bound on � ıF as a
result of Lemma 5.5. In addition, all our curves F will have finite Hofer energy E.F /;
see [3, Section 5.3] for the definition of Hofer energy and [3, Proposition 5.13] for the
proof that any curve in Mg.x
 I x


0IJ / (and consequently the restriction of any such
curve to a subset of the domain) has finite Hofer energy.

5.3 The Stein case

It is easiest to obtain a bound on jt j when .2R˙.�/;J0; y̌˙/ is a Stein manifold. (Recall
that we can arrange to be in this situation when 2R˙.�/ is a surface.) In this case we
have jt j � 1 by the following lemma and corollary.

Lemma 5.6 Suppose J0 is an integrable complex structure making .2R˙.�/;J0; y̌˙/

into a Stein manifold. If F W .†; j ;m/! .R�M �;J / is a holomorphic map, then
t ıF is a harmonic function on the open set fz 2 P† W jt ıF.z/j> 1g.

Proof We prove the lemma for the case when .t ıF /.z/ > 1; the argument for the
case .t ı F /.z/ < �1 is identical. The symplectization of the top (T) is written as
R� .1;1/�2RC.�/, with coordinates s on R and t on .1;1/. On .1;1/�2RC.�/,
we may take the contact form to be ˛D dtCˇ , where ˇD y̌C . Since .2RC.�/;J0; ˇ/
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is Stein, ˇ ıJ0 D df , where f is the strictly plurisubharmonic function. With these
conventions in place, we compute the Laplacian of t ıF :

ddC.t ıF /D d.d.t ıF / ı j /D d.F�.dt ıJ //D F�d..˛�ˇ/ ıJ /

D F�d.ds� .ˇ ıJ //D�F�d.ˇ ıJ /:

We now claim that ˇ ı J D df . First we observe that ˇ ı J and df both evaluate
to zero on @s and @t . Next we compare .ˇ ı J /.X / and .ˇ ı J0/.X /D df .X / for
any vector X tangent to 2RC.�/. Since J.X /D J0.X /C v0.X /@sC v1.X /@t by the
definition of J and ˇ.@s/D ˇ.@t /D 0, it follows that .ˇ ıJ /.X /D .ˇ ıJ0/.X /.

Finally, since ˇ ıJ is exact, we conclude that ddC.t ıF /D 0.

Corollary 5.7 Suppose J0 is an integrable complex structure making .2R˙.�/;J0; y̌˙/

into a Stein manifold. If F 2Mg.
 I 

0IJ /, then j.t ıF /.z/j � 1 for all z 2 P†.

Proof If there is a point z 2 P† such that j.t ıF /.z/j>1, then there is a local maximum
for t ı F , which we may assume to be attained at z . But this is forbidden by the
maximum principle because t ıF is harmonic in a neighborhood of z by Lemma 5.6.

The non-Stein case is less nice because we do not necessarily have jt j � 1. However
we can still obtain a theoretical upper bound on jt j, as the rest of this section will
explain.

5.4 Bubbling lemma

In this section we adapt the usual bubbling argument to our noncompact setting; cf [3,
Lemma 5.11].

Let SD .†; j ;m/ be a marked Riemann surface, and let

F D .a; f /W .†; j ;m/! .R�M �;J /

be a holomorphic map as above. Below, we write b D t ıf W P†!R. When the image
of F is contained in the symplectization R� .1;C1/�2RC.�/ of the Top (or in the
symplectization R� .�1;�1/�2R�.�/ of the Bottom), we can write f D .b; v/,
where vW P†!2R˙.�/.
On R�M � , we will always use the Riemannian metric

(15) g D ds˝ dsC˛�˝˛�C d˛�. � ;J � /� d˛�.J � ; � /;
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where s is the R–coordinate. (The last term is added to symmetrize the tensor, since we
are only taking J to be d˛–positive.) With respect to this metric, krtk is uniformly
bounded.

Also recall the following (by now well-known) topological lemma.

Lemma 5.8 (Hofer’s lemma) Let .X; d/ be a complete metric space, f W X !R be
a nonnegative continuous function, x0 2X , and ı > 0. Then there exist x 2X and a
positive number "� ı such that

d.x0;x/ < 2ı; sup
B".x/

f � 2f .x/; "f .x/� ıf .x0/;

where B".x/ is an open ball of radius " about x .

Let us write Dr D fz 2C j jzj< rg, and D DD1 . Then we have the following:

Lemma 5.9 (Bubbling) Consider a sequence of J –holomorphic maps

Fn D .an; fn/W D! .R�M �;J /

satisfying E.Fn/ < C and � ı Fn < C 0 for some constants C 0;C > 0. Suppose
that krFn.0/k ! 1 as n!1. Then after passing to a subsequence, there exists
a sequence of points xn 2 D converging to 0, and sequences of positive numbers
cn;Rn!1 such that jxnjC c�1

n Rn < 1 and the rescaled maps

F0
n W DRn

�! .R�M �;J /;

z 7�! Fn.xnC c�1
n z/

converge in C1loc .C/ to one of the following:

(1) a nonconstant holomorphic map F0W C! .R�M �;J /, after translating in the
s–direction, or

(2) a nonconstant holomorphic map F0W C! .R�R�2R˙.�/;J /, after translating
in the s– and t –directions.

In both cases the limit map satisfies the condition E.F0/� C .

The gradients krFn.0/k are computed with respect to the standard Euclidean metric
on D and the metric on R�M � given by Equation (15).
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Proof Choose a sequence ın > 0 such that ın! 0 and ınkrFn.0/k!1. Applying
Hofer’s lemma to krFnk, we obtain new sequences xn 2 D and 0 < "n � ın such
that xn! 0 and

sup
jx�xnj�"n

krFn.x/k � 2krFn.xn/k; "nkrFn.xn/k!1:

Set cn D krFn.xn/k and Rn D "nkrFn.xn/k. For sufficiently large n we have
jxnjC c�1

n Rn < 1. Hence there exist rescaled maps

F0
n .z/D

�
a0

n.z/; f
0

n .z/
�
D
�
an.xnC c�1

n z/� an.xn/; fn.xnC c�1
n z/

�
;

defined on DRn
. The sequence fF0

n g satisfies

� a0
n.0/D 0;

� krF0
n .0/k D 1;

� supz2DRn
krF0

n .z/k � 2;

� E.F0
n /�E.Fn/� C .

We now consider two cases:

Case 1 If there is a constant C > 0 such that jbn.xn/j � C , then the maps F0
n are

uniformly bounded, in the sense that for any compact set K1 �C there is a compact
set K2 � R �M � such that F0

n .K1/ � K2 for all n sufficiently large. This is a
consequence of the uniform bounds on krF0

n k and on � ıF0
n . The Gromov–Schwarz

lemma [3, Lemma 5.1] implies that all the derivatives of F0
n are bounded. Hence we

can apply the Arzelà–Ascoli theorem and extract a subsequence which converges in
C1loc .C/ to a finite energy plane

F0
W C! .R�M �;J /:

(In the rest of the paper, the Gromov–Schwarz lemma and the Arzelà–Ascoli theorem
will be used repeatedly without specific mention.) The limiting map F0 is nonconstant
since krF0

n .0/k D 1 for all n.

Case 2 Suppose that bn.xn/ is unbounded. Then, without loss of generality, we can
assume that lim

n!C1
b.xn/DC1 and that there exists a sequence R0n �Rn such that

lim
n!1

R0n DC1 and F0
n .DR0n

/�R� .1;1/�2RC.�/�R�M �:

Therefore F0
n can be viewed as a map

F0
n D .a

0
n; b

0
n; v

0
n/W DR0n

!R�R�2RC.�/:
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If we define
zF0

n .z/D .a
0
n.z/� a0

n.0/; b
0
n.z/� b0

n.0/; v
0
n.z//;

then the uniform bound on the gradient implies that for any compact set K �C there
is a positive constant C such that zF0

n .K/� Œ�C;C �� Œ�C;C ��2RC.�/. Hence there
is a subsequence which converges in C1loc .C/ to a nonconstant finite energy plane

zF0
W C! .R�R�2RC.�/;J /:

This completes the proof of Lemma 5.9.

5.5 Bound on the t–coordinate

In this section we discuss the bound on the t –coordinate and the removal of singularities.

5.5.1 Gradient bound for a single curve We start this section with the following
useful lemma.

Lemma 5.10 Let .M �; ˛�/ be the completion of a sutured contact manifold .M; ˛/,
and let J be a tailored almost complex structure on R�M � .

(1) If F D .a; f /W C ! .R �M �;J / is a finite energy holomorphic map with
bounded gradient and

R
C f
�d˛� D 0, then F is constant.

(2) If F D .a; f /W C� D C � f0g ! .R�M �;J / is a finite energy holomorphic
map with bounded gradient, R˛� has no closed orbits, and

R
C� f

�d˛� D 0,
then F is constant.

In (2) the gradient is computed using the flat metric on C� , viewed as an infinite
cylinder.

Proof (1) The first statement is basically [19, Lemma 28], which goes through
without modification to our noncompact case. By the zero d˛�–energy condition,
Im.F / is contained in R� 
 , where 
 is a Reeb orbit of R˛� . Let z
 be the universal
cover of 
 if 
 ' S1 or R, and let z
 ' R be the extension of 
 to M � if 
 is
an interval. Then F factors through a holomorphic map �W C! C D R� z
 . Note
that rF is bounded if and only if @�=@z is bounded with respect to the flat metric
on both C ’s. It then follows that @�=@z is bounded and hence constant. Therefore
�.z/D c0C c1z for some constants c0; c1 , and the corresponding F does not have
finite Hofer energy unless c1 D 0.

(2) If R˛� has no closed orbits, then the map F factors through a holomorphic
map �W C� ! C D R � z
 , where z
 ' R. First observe that any holomorphic
function �.z/ on C� can be written as a Laurent series

P
n2Zanzn , an 2C , where
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�0.z/D
P

n�1anzn is a holomorphic function on C and �1.z/D
P

n��1 anzn is a
holomorphic function on C�[f1g, and both �0 and �1 have infinite radius of con-
vergence. Next observe that the boundedness of rF is equivalent to the boundedness of

@

@w
.� ıg.w//D

@�

@z
.ew/ � ew D

@�

@z
.z/ � z;

where gW R� Œ0; 2��!C� sends w 7! z D ew , and we are using the flat metric on
R� Œ0; 2�� and CDR� z
 . It follows that @�=@z (and hence @�0=@z ) is bounded for
jzj large. Hence @�0=@z is constant and �0.z/D c1z . Similarly, �1.z/D c�1z�1 . We
then conclude that �.z/D c�1z�1Cc0Cc1z . The image of � contains a neighborhood
of the point at infinity, which contradicts the finite Hofer energy condition of F .

The following proposition is analogous to [19, Proposition 27], and its proof only needs
some minor changes.

Proposition 5.11 (Gradient bound for a single curve) Let F W .†;j ;m/!.R�M �;J /

be a finite energy holomorphic map with bounded � ıF . Then

sup
z2 P†

�.z/krF.z/k<C1;

where � denotes the injectivity radius of the complete, finite volume hyperbolic metric h

on P† which is compatible with j and krF.z/k is measured with respect to h on P†
and the Riemannian metric on R�M � defined in Equation (15).

Remark 5.12 Near a puncture, �.z/krF.z/k, calculated with respect to a complete,
finite volume hyperbolic metric (ie a cusp), is commensurate to krF.z/k, calculated
with respect to a flat metric on a half-cylinder.

Proof We argue by contradiction. Suppose there is a sequence zn 2
P† such that

�.zn/krF.zn/k!1

as n ! 1. By passing to a subsequence we may assume that zn converges to a
puncture in m. Next, there exist holomorphic charts  nW D

�
! Dn �

P† such that
 n.0/D zn and

C1�.zn/� kr n.z/k � C2�.zn/

for all z 2D . Here C1 and C2 are two positive constants that do not depend on zn and
r is calculated with respect to the standard Euclidean metric on D and the hyperbolic
metric on P†. (This follows from Remark 5.12.) Setting

zFn D .zan; zfn/D .a ı n; f ı n/;

we have kr zFn.0/k!C1 as n!C1.
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We now apply Lemma 5.9 to obtain the bubbling off of a finite energy plane zF0 D

.za0; zf 0/. In both Cases (1) and (2) of Lemma 5.9, we have

0�

Z
C
. zf 0/�d˛ � lim

n!1

Z
D
. zfn/

�d˛ D lim
n!1

Z
Dn

f �d˛ D 0;

because the size of Dn is going to zero as n goes to infinity. Moreover, kr zF0k is
bounded by construction. Hence zF0 is a constant map by Lemma 5.10. This contradicts
the property that kr zF0

n .0/k D 1 for all n.

5.5.2 Bound on b for a single curve

Proposition 5.13 Let F W PDDD�f0g!.R�M �;J / be a finite energy J–holomorphic
map such that � ıF is bounded. Then b D t ıF is bounded.

Proof Let us rewrite F as

F D .a; f /W Œ0;1/�S1
! .R�M �;J /;

with coordinates .r; �/ for Œ0;1/ � S1 . Here we are using the flat metric on the
half-cylinder and the metric on R�M � given by Equation (15). The gradient bound
(Proposition 5.11) and Remark 5.12 imply a uniform bound on jb.r; �/� b.r; � 0/j for
all r; �; � 0 .

Arguing by contradiction, suppose that b is not bounded. Without loss of generality,
we may assume that lim supr!1 b.r; �/ D 1. By the bound on krFk, there are
increasing sequences �n!1 and r

.i/
n !1, i D 1; 2; 3; 4, such that

� r
.1/
n < r

.2/
n < r

.3/
n < r

.4/
n ;

� r
.iC1/
n � r

.i/
n !1, i D 1; 2; 3;

� b.r
.i/
n ; 0/D i�n , i D 1; 2; 3; 4;

� b.r; �/� 1 for all .r; �/ 2 Œr .1/n ; r
.4/
n ��S1 , ie f .Œr .1/n ; r

.4/
n ��S1/ is contained

in the Top.

Hence we may view F j
Œr
.1/
n ;r

.4/
n ��S1 as a map

FnW Œr
.1/
n ; r .4/n ��S1

! .R�R�2RC.�/;J /:
Modulo translations in the r –, s– and t –directions, we can extract a convergent
subsequence of Fn . However, we need to exercise some care in order to ensure that
the limiting curve is nonconstant.
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First suppose that there is a constant c > 0 such that

sup
r2Œr

.2/
n ;r

.3/
n �

krFnk � c

for all n. (Note that we still have an upper bound on krFnk.) Then, after translating
in the r – and � –directions and restricting the domain, we may view Fn as

zFnW Œ�Rn;Rn��S1
! .R�R�2RC.�/;J /;

where kr zFn.0; 0/k> c and Rn!1. (Note that we are using Œr .2/n ; r
.3/
n �� Œr

.1/
n ; r

.4/
n �

to give ourselves extra room on both sides.) By our assumption that � ıF is bounded,
we can pass to a subsequence so that after translating in the s– and t –directions, zFn

converges in C1loc to

zF1W R�S1
! .R�R�2RC.�/;J /:

Since kr zF1.0; 0/k � c , it follows that zF1 is nonconstant. Also kr zF1k is bounded
by construction. Since zF1 has zero d˛–energy as argued in Proposition 5.11, we can
apply Lemma 5.10(2) to obtain a contradiction.

On the other hand, suppose there is a positive sequence "n! 0 such that

sup
r2Œr

.2/
n ;r

.3/
n �

krFnk D "n:

By shrinking the interval Œr .2/n ; r
.3/
n � if necessary, we may assume that the distance

between Fn.r
.2/
n ; 0/ and Fn.r

.3/
n ; 0/ is 1 and the diameter of ZnDFn.Œr

.2/
n ; r

.3/
n ��S1/

is between 1 and 2. Such “long and thin” tubes in R�R�2RC.�/ can be eliminated
by the isoperimetric inequality and the monotonicity lemma. Here the area is calculated
with respect to the metric given in Equation (15). More precisely, by the gradient
bound, 
 .2/n D Fn.fr D r

.2/
n g/ has length � 2�"n . Now recall the following well-

known isoperimetric inequality (see for example [23, Proposition A.1]):

Lemma 5.14 (Isoperimetric inequality) Let .M;g/ be a Riemannian manifold with
bounded geometry. Then there exist constants "> 0 and C > 0 satisfying the following:
for every 0< r <" and geodesic ball Br .x/ of radius r , if 
 is a closed curve in Br .x/

of length l.
 /, then there is a surface S � Br .x/ with boundary 
 such that

Area.S/� C.l.
 //2:

Here the area and length are calculated with respect to the metric g .
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Continuing the proof of Proposition 5.13: by the isoperimetric inequality, there is a
surface S

.2/
n which bounds 
 .2/n and has area �K0"

2
n , where K0 does not depend

on n. The same can be said about 
 .3/n DFn.fr D r
.3/
n g/.

We now claim that

(16) C �Area.Zn/� Area.S .2/n [S .3/n /� 2K0"
2
n;

for some positive constant C which is independent of n. The first inequality follows
from noting that

(i) C1 �
R

S ! � Area.S/ for any surface S (Wirtinger’s inequality);

(ii)
R

Zn
! D

R
S
.2/
n [S

.3/
n
! (since Zn [ S

.2/
n [ S

.3/
n is nullhomologous due to the

fact that Zn is thin);

(iii) C2 �Area.Zn/�
R

Zn
! (since J tames ! and Zn is holomorphic).

Here !Dd.es˛/ is the symplectization 2–form and (i) and (iii) work because each Zn ,
after translation, is contained in 0� s � 2 by the diameter bound.

On the other hand, since "n! 0 and the distance between Fn.r
.2/
n ; 0/ and Fn.r

.3/
n ; 0/

is fixed, there is a constant ı > 0, independent of n, such that a ball Bı.xn/ of radius ı
centered at some point xn 2Zn does not intersect the boundary of Zn . Then by the
monotonicity lemma,

(17) Area.Zn\Bı.xn//�K1ı
2

for some constant K1 > 0 which is independent of n. This contradicts Inequality (16)
for sufficiently small "n . This concludes the proof of Proposition 5.13.

5.5.3 Removal of singularities We now state some corollaries of the bound on the
t –coordinate.

Corollary 5.15 (Removal of singularities for Top/Bottom) Every finite energy holo-
morphic map

F D .a; f; v/W PD D fz 2C j 0< jzj< 1g ! .R�R�2RC.�/;J /
with � ıf bounded, extends to a finite energy holomorphic map

xF W D! .R�R�2RC.�/;J /:
Proof Since b is bounded by Proposition 5.13, the usual argument for a symplectiza-
tion applies: either F approaches a closed orbit of the Reeb vector field as jzj ! 0,
or the singularity is removable. There are no closed orbits on R�R�2RC.�/, so the
result follows.
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Corollary 5.16 Let F D .a; f /W .†; j ;m/! .R �M �;J / be a finite energy J –
holomorphic map with � ıF bounded. Then the set of punctures m can be written as
mC tm� tmr , where
� for any zC 2mC we have lim

z!zC
a.z/DC1 and lim sup

z!zC

jb.z/j<C1;

� for any z� 2m� we have lim
z!z�

a.z/D�1 and lim sup
z!z�

jb.z/j<C1;

� for any zr 2mr the singularity is removable.

5.6 Bounds for sequences of holomorphic curves

To extend the SFT and ECH compactness theorems to our situation, we need uniform
bounds on the t –coordinate for sequences of holomorphic curves.

5.6.1 Gradient bound for a sequence We start with the following lemma which
gives a gradient bound for a sequence of holomorphic maps. The proof is similar to
the proof of Proposition 5.11 and to [3, Section 10.2.1].

Lemma 5.17 Let Fn D .an; fn/W .†n; jn;mn/ ! .R �M �;J / be a sequence of
J –holomorphic maps such that there exists C > 0 with E.Fn/ < C and j� ıFnj< C .
Then we can remove finite sets m0

n from †n nmn so that the sequence

FnW .†n n .mn[m0
n/; jn/! .R�M �;J /

satisfies the bound

(18) �n.x/krFn.x/k � C; 8x 2†n n .mn[m0
n/;

where the norm of gradient is computed with respect to the unique complete, finite
volume hyperbolic metric which is compatible with jn on †n n .mn[m0

n/, and with
respect to the metric on R�M � given by Equation (15). Here the cardinality jm0

nj is
independent of n.

Proof Suppose there is a sequence zn 2†nnmn such that �n.zn/krFn.zn/k!1 for
n!1. There exist holomorphic charts  nW D

�
!Dn�†nnmn such that  n.0/D zn

and
C1�n.zn/� kr n.z/k � C2�n.zn/

for all z 2D . Here C1 and C2 are two positive constants that do not depend on zn and
r is calculated with respect to the standard Euclidean metric on D and the complete
hyperbolic metric on †n nmn . Setting

zFn D .zan; zfn/D .an ı n; fn ı n/;

we have kr zFn.0/k!C1 as n!C1.
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By Lemma 5.9 we obtain the bubbling off of a nonconstant finite energy plane
zF0W C! .R�M �;J / or zF0W C! .R�R�2R˙.�/;J /. The latter cannot happen

because a nonconstant finite energy plane in R � R �2R˙.�/ would extend to a
nonconstant holomorphic sphere by Corollary 5.15. (Note that there are no closed orbits
in R�2R˙.�/.) This is a contradiction since the symplectic form on R�R�2R˙.�/ is
exact. Also observe that the finite energy plane zF0 is positively asymptotic to a closed
Reeb orbit because there are no nonconstant holomorphic spheres in .R�M �;J /.

In order to achieve the gradient bound given by Equation (18), we add marked points
in the bubbling neighborhoods as in [3, Subsection 10.2.1]. Since there is a uniform
lower bound on the areas of finite energy planes, we only need a finite set m0

n .

5.6.2 Bound on bn , assuming topological complexity bound We now prove the
following bound on bn , provided we have bounds on the energy and genus (and number
of marked points).

Proposition 5.18 Let Fn D .an; fn/W .†n; jn;mn/! .R�M �;J / be a sequence of
holomorphic maps with uniform upper bounds on j� ı Fnj, the energy E.Fn/, and
the “topological complexity” g.†n/Cjmnj. Then there is a uniform upper bound on
jbnj D jt ıfnj.

Proof Let Fn be a sequence as in the hypothesis of Proposition 5.18. Arguing by
contradiction, suppose the functions bn are not uniformly bounded. Without loss of
generality we may assume that limn!1.sup P†n

bn/DC1 for n!1. By Lemma 5.17
we can add marked points m0

n to P†n D†n nmn to obtain the gradient bound given by
Equation (18) for the sequence Fn .

By Theorem 5.2, there is a subsequence of S0n D .†n; jn;mn[m0
n/ which converges

to a nodal surface SD .†; j ;m;D/. Fix � < 1
4

log.1C
p

2/ (ie 1=4 of the constant
required for the thick-thin decomposition), and consider the cover

†� .m[D/D C0[ : : :[Ck ;

where Ci is either a connected component of Thick2�.S/ or a “connected component”
of Thin3�.S/. (Here any two components of Thin3�.S/, whose corresponding marked
points in D are identified, are regarded as part of the same “connected component” of
Thin3�.S/.) Similarly consider the cover

†n� .mn[m0
n/D C n

0 [ : : :[C n
k ;

where C n
i is a component of Thick�.S0n/ or a “connected component” of Thin4�.S0n/,

and C n
i corresponds to Ci . By Proposition 5.4, for sufficiently large n, Ci is contained

in a component C n
i for all i .
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Now define �n.C
n
i /D sup

C n
i

bn� inf
C n

i

bn:

Since limn!1.sup P†n
bn/DC1 and the ends of Fn are asymptotic to cylinders over

Reeb orbits in M , it follows that

lim
n!1

.sup
P†n

bn� inf
P†n

bn/DC1:

Now, since each covering has the same finite number of components, there must be one
– which we call C n

0
without loss of generality – for which limn!1�n.C

n
0
/DC1.

By Lemma 5.17 and Proposition 5.4, krFnk is uniformly bounded on Thick2�.S/.
Since the variation of bn is bounded on the thick part due to a bound on the diameter,
C0 must be a connected component of Thin3�.S/.

By reparametrizing the component C n
0

using a standard flat cylinder, we can write Fn

on C n
0

as
FnW Œ0; rn��S1

! .R�R�2RC.�/;J /;
where krFnk is uniformly bounded by Lemma 5.17, in view of Remark 5.12. This
uniform bound implies that Im Fn has bounded diameter (independent of n) when
restricted to any circle fr D constg.

The rest of the proof is as in Proposition 5.13. There exist �n!1 and r
.i/
n !1,

i D 1; 2; 3; 4, such that

� 0< r
.1/
n < r

.2/
n < r

.3/
n < r

.4/
n < rn ;

� r
.iC1/
n � r

.i/
n !1, i D 1; 2; 3;

� bn.r
.iC1/
n ; 0/� bn.r

.i/
n ; 0/D �n , i D 1; 2; 3; 6

� bn.r; �/� 1 for all .r; �/ 2 Œr .1/n ; r
.4/
n ��S1 , ie f .Œr .1/n ; r

.4/
n ��S1/ is contained

in the Top.

If sup krFnk is bounded below by c > 0 on Œr .2/n ; r
.3/
n ��S1 , then, after restricting

the domain of Fn and translating in the r – and � –directions, we obtain

zFnW Œ�Rn;Rn��S1
! .R�R�2RC.�/;J /;

where kr zFn.0; 0/k � c and Rn!1. The limit curve

zF1W R�S1
! .R�R�2RC.�/;J /;

6Note that, unlike the corresponding condition for Proposition 5.13, we are taking the difference of the
bn values.
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is a nonconstant holomorphic curve. By Corollary 5.15, we can extend this function to
a nonconstant holomorphic sphere in .R�R�2RC.�/;J / and obtain a contradiction.
On the other hand, if sup krFnk! 0 on Œr .2/n ; r

.3/
n ��S1 , then we can eliminate the

“long and thin” tubes in R�R�2RC.�/ as in Proposition 5.13.

Corollary 5.19 Let M � be the completion of a sutured contact manifold M and let
J be a tailored almost complex structure on the symplectization R�M � , as usual.
Then the SFT compactness theorem [3, Theorem 10.1] holds for J –holomorphic curves
in R�M � whose punctures are asymptotic to Reeb orbits.

Proof We need to show that any sequence in Mg.
 I 

0IJ / has a subsequence which

converges to a holomorphic building in the sense of [3]. By Lemma 5.5, there is a
uniform upper bound on � for the curves in the sequence. By [3, Proposition 5.13]
there is a uniform upper bound on the Hofer energy of the curves in the sequence. By
Proposition 5.18 there is then a uniform upper bound on t . Thus the projections of all
the holomorphic curves in the sequence to M � are contained in a compact set, and the
rest of the argument in [3] carries over.

5.6.3 Bound on bn in dimension four We turn now to the compactness theorem for
ECH. For this purpose we will prove the bound on bn without any constraints on the
genus, but assuming that R�M � has dimension four. The proof is based on a version
of Gromov compactness due to Taubes which uses currents and does not assume any
genus bounds; see [35, Proposition 3.3; 24, Lemma 9.8].

We recall some basic terminology from ECH. An orbit set is a finite set of pairs
f.
i ;mi/g, where the 
i are distinct embedded Reeb orbits, and the mi are positive
integers. In the terminology of [24], a flow line from the orbit set f.
i ;mi/g to the
orbit set f.
 0j ;m

0
j /g is a finite energy holomorphic curve F W .†; j ;m/! .R�M �;J /

such that

(1) F is an embedding, except perhaps for repeated R–invariant cylinders which
do not intersect the other components of F ;

(2) F has positive punctures at covers of 
i with total multiplicity mi , negative
punctures at covers of 
 0j with total multiplicity m0j , and no other punctures.

Proposition 5.20 Suppose dim.R�M �/D 4. Let Fn D .an; fn/W .†n; jn;mn/!

.R�M �;J / be a sequence of flow lines from f.
i ;mi/g to f.
 0j ;m
0
j /g. Then there

are uniform upper bounds on j� ıfnj and jbnj D jt ıfnj.
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Proof The bound on � follows from Lemma 5.5. To prove the bound on t , suppose
on the contrary that there is a sequence of flow lines Fn with bn unbounded. Without
loss of generality there exist xn 2

P†n such that bn.xn/!C1. Now consider the
restriction

F 0nW †
0
n!R� Œ1;1/�2RC.�/

of Fn where
†0n D fx 2

P†n j fn.x/ 2 Œ1;1/�2RC.�/g:
Let C 0n be the holomorphic subvariety obtained by translating F 0n.†

0
n/ by an.xn/ in the

s–direction and by bn.xn/ in the t –direction. (From now on, we will not distinguish
between holomorphic maps and their images, viewed as currents.) We then set

Cn D C 0n\ .Œ�cn; cn�� Œ�dn; dn��2RC.�//;
where cn; dn!1 and 0<dn�bn.xn/. Note that Cn passes through f.0; 0/g�2RC.�/.
We may assume without loss of generality that

R
Cn

d˛�! 0.

By the Gromov compactness theorem via currents [35, Proposition 3.3], we can pass
to a subsequence so that Cn converges weakly as currents in .R�R�2RC.�/;J / to a
proper J –holomorphic subvariety C , so that, for any compact set K�R�R�2RC.�/,
(19) sup

x2Cn\K

dist.x;C /C sup
x2C\K

dist.x;Cn/! 0;

as n!1. More precisely, for any compact set K � R�R�2RC.�/, we can pass
to a subsequence so that the intersections of the curves Cn with K converge to a
J –holomorphic subvariety in K , using the fact that there is a uniform upper bound on
the integral of the symplectic form d.es˛�/ over Cn \K . An exhaustion argument
then gives a subsequence converging on all of R�R�2RC.�/ as above.

We claim now that d˛�jC D0. To see this, let p2C and let 'W R�R�2RC.�/! Œ0; 1�

be a compactly supported smooth function with '.p/ D 1. Since
R

Cn
d˛� ! 0

and d˛�jCn
� 0 on all of Cn , we have

R
Cn
' d˛� ! 0. Since Cn converges to C

as functionals on compactly supported 2–forms, we obtain
R

C' d˛� D 0. Since
d˛�jC � 0 on all of C , we conclude that d˛�jC vanishes on a neighborhood of p .
This proves the claim.

It follows now that C is supported on R� 
 , where 
 is a Reeb orbit. Note that 
 is
not a closed orbit, and instead is a line. Now C covers all of R� 
 by the properness
of C , and the fact that holomorphic maps are open. On the other hand, R� 
 has
infinite Hofer energy, while there is a uniform upper bound on the Hofer energy of Cn

by [3, Proposition 5.13]. This contradicts the weak convergence of Cn to C .
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Corollary 5.21 Suppose dim.R�M �/D 4. Then the ECH compactness theorem [24,
Lemma 9.8] holds for J –holomorphic curves in the symplectization of the completion
of a sutured contact manifold, provided that we choose the almost complex structure J

on R�M � to be tailored to .M �; ˛�/ in the sense of Section 3.1.

6 Definition of the sutured contact homology and sutured
ECH

We now use the compactness theorems established in the previous section to define the
sutured contact homology and sutured ECH groups and to prove Theorem 1.1.

6.1 Definition of sutured contact homology

Let .M; �;U.�/; �/ be a sutured contact manifold and ˛ be an adapted contact form
for � . Let .M �; ˛�/ be the completion of .M; ˛/ and J be an almost complex
structure on R �M � which is tailored to .M �; ˛�/. Since all the periodic orbits
of R˛� are contained in M , by performing a small perturbation of ˛� supported
in M we may assume that ˛� is nondegenerate, ie all the periodic orbits of R˛� are
nondegenerate.

We define the sutured contact homology HC.M; �; ˛;J / to be the contact homology
of .M �; ˛�;J / as follows: A periodic orbit of the Reeb vector field R˛� is said to
be good if it does not cover a simple orbit 
 an even number of times, where the first
return map �
.0/! �
.T / has an odd number of eigenvalues in the interval .�1; 0/.
Let P.˛/ be the set of good periodic orbits 
 of R˛� . The contact homology chain
complex A.˛;J / is the free supercommutative Q–algebra with unit generated by
elements of P.˛/, where the grading and the boundary map @
 are defined in the
usual way (as in [11]) with respect to the ˛�–adapted almost complex structure J .
The homology of A.˛;J / is the sutured contact homology algebra HC.M; �; ˛;J /.

It follows from Corollary 5.19 that the necessary Gromov compactness holds to show
that the differential @ is well-defined and @2D 0. Namely, if 
 is a periodic orbit, then
there are only finitely many collections of negative ends with total action less than that
of 
 . Hence @
 counts holomorphic curves in the quotients by the R–action of index 1

moduli spaces M0.
 I 

0
1
; : : : ; 
 0

l
/, where we range over finitely many .
 0

1
; : : : ; 
 0

l
/.

If these moduli spaces are cut out transversely, then it follows from Corollary 5.19
that @
 is a finite count of holomorphic curves. Similarly, the proof that @2 D 0

involves considering the boundaries of quotients by the R–action of index 2 moduli
spaces MDM0.
 I 


0
1
; : : : ; 
 0

l
/, where for any given 
 there are only finitely many

possibilities for 
 0 . If these moduli spaces are cut out transversely, then it follows from
Corollary 5.19 that @2 counts points in the boundary of a compact 1–manifold.
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Disclaimer Already for closed contact manifolds, it is usually not possible to choose J

so that all of the above moduli spaces are cut out transversely. This problem arises
because of multiply covered holomorphic curves of negative index. Thus in general the
differential @ needs to be defined as a count of points in some abstract perturbation of the
(compactified) moduli space of index 1 holomorphic curves. Even in a lucky situation
where all relevant moduli spaces of holomorphic curves are cut out transversely, one
still needs some abstract perturbations to define the chain homotopies needed to prove
that the contact homology is independent of the choice of contact form and almost
complex structure. This problem arises because in a generic 1–parameter family of
data there can be holomorphic buildings with repeated index �1 curves.

The necessary abstract perturbations to solve the above problems in the closed case are
a work in progress by Hofer, Wysocki and Zehnder (see [20] for an overview), and are
expected to carry over directly to the sutured case. But strictly speaking Theorem 1.1
should be regarded as a conjecture until this work has been completed.

On the other hand, transversality for somewhere injective holomorphic curves in
Mg.
 I 


0IJ / can be achieved by taking J to be generic inside M , while keeping it
tailored. In fact, the transversality argument in [9] carries over directly to the sutured
case. In particular, it suffices to perturb J arbitrarily near the periodic orbits in order
to attain transversality for somewhere injective curves.

6.2 Invariance of the contact homology algebra

Modulo the above disclaimers, we now prove the following proposition, which will
complete the proof of Theorem 1.1(1). Below we suppress the (not yet defined) abstract
perturbations from the discussion.

Proposition 6.1 Let .M; �; �/ be a sutured contact manifold.

(1) The contact homology algebra HC.M; �; ˛;J / does not depend on the choice of
adapted contact form ˛ with Ker.˛/D � or tailored almost complex structure J ,
and so we can denote it by HC.M; �; �/.

(2) More generally, a one-parameter family of contact structures f�t j t 2 Œ0; 1�g which
are the kernels of a one-parameter family f˛� j � 2 Œ0; 1�g of adapted contact
forms on .M; �;U.�// induces an isomorphism HC.M;�; �0/'HC.M;�; �1/

which depends only on the homotopy class of the path f�tg.

Proof Let ˛0 and ˛1 be two contact 1–forms which are adapted to .M; �;U.�//,
and are connected by a 1–parameter family ˛� , � 2 Œ0; 1�, of adapted contact 1–
forms; also let .˛�/� be the completion of ˛� to M � . Note that we are not assuming
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that ker˛0 D ker˛1 , only that they are isotopic. Let J� , � 2 Œ0; 1�, be an almost
complex structure on R�M � which is tailored to .M �; .˛�/�/. In particular, the
projection J�

0
of J� to .2R˙.�/; y̌�˙/ is y̌�

˙
–adapted. Here y̌�

˙
is the completion

of the Liouville 1–form ˛�jR˙.�/ so that the Liouville vector field Y � D @� for
� � 0; let us also write .ˇ�

˙
/0 for the restriction of y̌�

˙
to @R˙.�/. We now define an

isomorphism HC.M; �; ˛0;J 0/
'
! HC.M; �; ˛1;J 1/.

Step 1 First consider the case when y̌�
˙

and J�
0

are independent of � on the region
where � � 0. We then define a chain map

ˆW A.˛0;J 0/!A.˛1;J 1/:

as follows. Let �W R! Œ0; 1� be a smooth nonincreasing function with �.s/D 1 for
s ��N and �.s/D 0 for s �N , where N � 0. On R�M � with coordinates .s;y/,
define the almost complex structure zJ so that zJ .s;y/DJ�.s/.s;y/. Let Mg.
 I 


0I zJ /

be the moduli space of genus g finite energy holomorphic maps F W .†; j ;m/ !
.R�M �; zJ / with positive ends 
 which are periodic orbits of R.˛0/� and negative
ends 
 0 which are periodic orbits of R.˛1/� . Then the chain map ˆ.
 / counts
elements of index zero moduli spaces M DM0.
 I 


0
1
; : : : ; 
 0

k
I zJ /. Note that the

almost complex structure zJ is tamed by the symplectic form d.es˛�.s//, provided
jd�=dsj is sufficiently small for all s . Moreover, zJ is ˛0 –adapted for s � N and
˛1 –adapted for s � �N .

We claim that all the curves in M0.
 I : : : I zJ /, when projected to M � , are contained
inside a compact subset of M � , so that they satisfy the Gromov compactness needed
to show that ˆ is a well-defined chain map. Since the projection J�.s/

0
of zJ is s–

invariant on � � 0, it follows that no such curve enters the region � � 0. Now, if there
is a sequence of curves Fn 2M0.
 I : : : I zJ / and zn 2

P† such that t ıFn.zn/!1,
then an argument similar to the proof of Proposition 5.18 implies the existence of a
nonconstant finite energy holomorphic map to R�R�R˙.�/, either with respect
to zJ or with respect to J 0 or J 1 . In any case, since there are no periodic orbits inside
R�R�R˙.�/, we have a contradiction.

Arguing as usual, we can prove that ˆ has a homotopy inverse ‰ , so that ˆ induces
an isomorphism on homology.

Step 2 Next suppose that J 0 and J 1 do not agree on the ends � � 0. We define
an intermediate almost complex structure J 2 together with a 1–form .˛2/� on M �

so that there are isomorphisms HC.˛0;J 0/' HC..˛2/�;J 2/ and HC..˛2/�;J 2/'

HC.˛1;J 1/.

The proof of Lemma 3.2 and Corollary 3.3 shows that there exist an almost complex
structure J 2

0
and 1–forms y̌2

˙
on 2R˙.�/ which satisfy the following:
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� Where � � 0, the 1–form y̌2
˙

agrees with .ˇ0
˙
/0 , and the almost complex

structure J 2
0

is .ˇ0
˙
/0 –adapted.

� Where � � 0 we have J 2
0
D J 1

0
and y̌2

˙
D y̌1
˙

.

� Where � � 0, some increasing function u.�/ is plurisubharmonic with respect
to J 2

0
.

� y̌2
C D

y̌2
� for � � 0, where 2R˙.�/� int.R˙.�// are naturally identified.

In particular, no holomorphic map from a punctured Riemann surface to the space
.Œ0;1/� @R˙.�/;J

2
0
/ has a local maximum of � in the interior of the domain.

The 1–form .˛2/� on M � is defined as follows:

� .˛2/� D ˛1 on M .

� .˛2/� D C dt C y̌2
˙

on M �� int.M /.

The almost complex structure J 2 on R�M � is chosen so that

� Conditions (A0 ) (with respect to the 1–form .˛2/� ) and (A1 ) from Section 3.1
hold;

� the projection of J 2 to 2R˙.�/ is J 2
0

;

� J 2 D J 1 on R� f� � 0g.

We then apply Step 1 to obtain a chain map

ˆ1W A.˛0;J 0/!A..˛2/�;J 2/;

which is a quasi-isomorphism.

On the other hand, since J 1
0

and J 2
0

agree on R˙.�/ and � ı F does not attain
a local maximum for any holomorphic curve F where � > 0, it follows that every
holomorphic curve counted in @ for J 2

0
lies inside R � f� � 0g. This implies that

A..˛2/�;J 2/DA.˛1;J 1/ as chain complexes. Hence we obtain an isomorphism

(20) HC.M; �; ˛0;J 0/
'
! HC.M; �; ˛1;J 1/:

Step 3 To complete the proof of the proposition, we need to show that the isomor-
phism (20) is canonical when �� is independent of �, and otherwise depends only on
the homotopy class of the path f��g.

First consider the situation where M is closed and ˛0 , ˛1 are contact 1–forms which
are homotopic through contact 1–forms ˛� , �2 Œ0; 1�. We can use the homotopy to con-
struct a cobordism .R�M;J / giving rise to the chain map ˆW A.˛0;J0/!A.˛1;J1/,
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where Ji is adapted to ˛i . Now, if there are two homotopies ˛� , ˛0� from ˛0 to ˛1

which are homotopic, then there is a homotopy of cobordisms from .R�M;J / to
.R�M;J 0/, and the usual chain homotopy argument implies that the induced isomor-
phisms ˆ, ˆ0 agree. In other words, the map ˆW HC.M; ˛0;J0/! HC.M; ˛1;J1/

only depends on the homotopy class of paths connecting ˛0 and ˛1 ; however, the
map will likely depend on the choice of homotopy class. On the other hand, when we
have two contact 1–forms ˛0 and ˛1 for the same contact structure � , we can write
˛1 D f1˛0 , and there is a canonical homotopy class of paths from ˛0 to ˛1 , namely
one which has the form ˛� D f�˛0 . Hence, the identification ˆW HC.M; ˛0;J0/!

HC.M; f1˛0;J1/ is canonical.

Returning to the sutured case, suppose ˛0 and ˛1 are adapted to the sutured contact man-
ifold .M; �;U.�/; �/. We claim that the contact homology algebras HC.M; �; ˛0;J 0/

and HC.M; �; ˛1;J 1/ are canonically isomorphic. Since ˛0 and ˛1 are contact forms
for the same contact structure � , the forms ˛1 and ˛0 are conformally equivalent.
Consequently, .ˇ1

˙
/0 and .ˇ0

˙
/0 differ by a constant multiple. Any two almost complex

structures J constructed in the proof of Lemma 3.2 are connected by a 1–parameter
family of almost complex structures with the same properties. Hence there is a 1–
parameter family of chain maps .ˆ1/�W .˛

0;J 0/!A..˛2/��;J
2
� / where A..˛2/��;J

2
� /

and A.˛1;J 1/ are canonically isomorphic. Then, by the discussion in the previous
paragraph, the induced isomorphisms in Equation (20) agree.

6.3 Sutured embedded contact homology

Suppose now that .M; �; ˛/ is a sutured contact manifold where dim.M /D 3 and ˛ is
nondegenerate. Let J be a generic tailored almost complex structure on R�M � . We
can now define the sutured embedded contact homology ECH.M; �; ˛;J / by copying
the definition in the closed case (see eg [28, Section 7]) verbatim. It follows from the
discussion at the end of Section 6.1 that for generic tailored J , the moduli spaces of
J –holomorphic curves needed to define the ECH differential @ and prove that @2 D 0

are cut out transversely. (These curves are all somewhere injective.) Corollary 5.21
implies that the necessary compactness holds to show that @ is defined and satisfies
@2 D 0. The gluing analysis from [28; 29] to complete the proof that @2 D 0 carries
over unchanged.

Recall that part of Conjecture 1.2 is that ECH.M; �; ˛;J / depends only on .M; ˛; �/.
Currently the only known proof of the analogous statement in the closed case uses
Seiberg–Witten theory; there is no known definition of an isomorphism in terms of
holomorphic curves (due to the presence of multiply covered curves of negative ECH
index in cobordisms). However if such an isomorphism could be constructed, then the
discussion in Section 6.2 would allow it to be extended to the sutured case.
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7 Variations

In this section we define some variants of sutured contact homology and sutured ECH.

7.1 The “hat” versions of contact homology and embedded contact ho-
mology

Let .M; �/ be a closed contact .2nC1/–dimensional manifold. Choose a contact
form ˛ for � and a Darboux ball .B2nC1DD2n� Œ�1; 1�; ker˛jB2nC1/� .M; �/ such
that D2n�Œ�1; 1� has coordinates .x1;y1; : : : ;xn;yn; t/, D2nDf

P
i jxi j

2Cjyi j
2�1g,

and ˛jB2nC1 D dt C
P

i
1
2
.xidyi �yidxi/. On B2nC1 , the Reeb vector field is given

by R˛ D @t . In particular, R˛ is tangent to .@D2n/ � Œ�1; 1� and transverse to
D2n � f�1; 1g. Let .M.1/0; ˛jM.1/0/ be the concave sutured contact manifold ob-
tained from .M; ˛/ by removing B2nC1 . Applying the concave-to-convex procedure
described in Section 4.2 to .M.1/0; ˛jM.1/0/ then gives a convex sutured contact
manifold .M.1/; ˛1/.

Recall from Theorem 1.6 that when dim.M /D 3 we have

(21) bECH .M; �/' ECH.M.1/; ˛1/:

By analogy with this, in all odd dimensions we define a “hat” version of contact
homology by

(22) bHC.M; �/D HC.M.1/; ˛1/:

(This does not depend on ˛ as shown in Section 6.2.)

7.2 A transverse knot filtration

Let .M; �/ be a closed contact 3–manifold and let K �M be a null-homologous
transverse knot. Since K is transverse, there exists a contact form ˛ on M such
that � D ker˛ and K is a closed orbit of R˛ . In fact, by the Darboux–Weinstein
neighborhood theorem, we can choose ˛ so that there is a neighborhood N.K/ D

D2 � Œ�2; 2�=.�2 � 2/ of K D fr D 0g on which ˛ D dt C cr2d� . Here c is
a small positive constant, .r; �; t/ are cylindrical coordinates on D2 � Œ�2; 2�, and
D2 D fr � 1g. Let .M.1/0; ˛jM.1/0/ be defined as in the previous section, where
B3 DD2 � Œ�1; 1��N.K/. Define .M.1/; ˛1/ as above, so that (21) and (22) hold.

Next we define a related contact manifold .M0; �0; �0/, which is obtained from
.M �N.K/; �jM�N.K // by attaching a collar. Consider

AD @.M �N.K//� Œ�1; 0�DR=2�Z� .Œ�2; 2�=�/� Œ�1; 0�
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with coordinates .�; t;u/. We take M0 D .M �N.K//[A, where @.M �N.K// is
identified with @.M �N.K//� f�1g. We extend ˛ over A as dt � cud� . (This is
smooth if we define the smooth structure on M0 using an appropriate chart in the gluing
region.) If we perturb ˛ near @.M �N.K//� f0g, then the resulting �0 D ker˛0 has
convex boundary and dividing set �0 which consists of two meridians (circles where t

is constant).

Proposition 7.1 A nullhomologous transverse knot K in a closed contact 3–manifold
.M; �/ induces

(1) a filtration F on the chain complex C.M.1/; ˛1/ for bHC.M; �/, such that the
homology of the associated graded complex is isomorphic to HC.M0; �0; �0/;

(2) a filtration F on the chain complex for ECH.M.1/; ˛1;J1/ ' bECH .M; �/,
such that the homology of the associated graded complex is isomorphic to
ECH.M0; �0; ˛0;J0/, if the almost complex structures J0 and J1 are suitably
related.

Proof We will only prove assertion (1) for sutured contact homology; assertion (2)
for sutured ECH is proved using the same argument.

A generator of C.M.1/; ˛1/ is a monomial 
 D 
m1

1
� � � 


mk

k
, where the 
i are closed

orbits of R˛1
, and each mi is a positive integer. The total homology class of this

generator is A D m1Œ
1�C � � � Cmk Œ
k � 2 H1.M /. Fix a relative homology class
B 2H2.M;K/ with @B D ŒK�, and let S be a Seifert surface for K in the class B .
Let K1DK\M.1/. We view S as a surface in M.1/ with boundary on K1[@M.1/.
Since all the closed orbits of R˛1

are contained in M.1/ nK1 , we can define the
filtration level of 
 to be its algebraic intersection number with S , namely

F.
 /D 
 �S D
kX

iD1

mi.
i �S/:

Note that if 
 0D .
 0
1
/m
0
1 � � � .
 0

l
/m
0
l is another generator representing the same homology

class A 2H1.M /, then the filtration difference is given by

(23) F.
 /�F.
 0/D† �K1;

where † is any 2–chain in M with @†D
Pk

iD1 mi
i �
Pl

jD1 m0j

0

j . One can show
this by perturbing † so that it is transverse to S and then counting points in the
boundary of the compact 1–manifold †\S .
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Next we prove that the differential does not increase the filtration level of the generators.
More generally, for any holomorphic curve

F D .a; f /W .†; j ;m/!R�M.1/�

which is positively asymptotic to 
 and negatively asymptotic to 
 0 , we have

F.
 /� F.
 0/:

To prove this, first note that K1 extends to an infinite length Reeb orbit zK1 in M.1/� .
Now let x† be the compact surface with boundary obtained from † by performing
a real blowup at each puncture. Then the map f extends to a map xf W x†!M.1/�

whose restriction to the boundary is
P

i mi
i �
P

j m0j

0

j . Moreover f is homotopic
rel boundary to a map f 0 whose image is contained in M.1/. We then have

F.
 /�F.
 0/D f 0.x†/ �K1 D f .x†/ � zK1 � 0;

where the last inequality holds by positivity of intersections of the holomorphic curve F

with the holomorphic plane R� zK1 in R�M.1/� .

We now show that the homology of the associated graded complex with respect
to F is the contact homology HC.M0; �0; �0/. Recall the identification of N.K/

with the set D2 � Œ�2; 2�=.�2 � 2/. Consider a small neighborhood N.K1/ D

D2
" � .Œ�2;�1� [ Œ1; 2�/ � M.1/ \ N.K/, where D2

" D fr � "g. The manifold
M.1/�N.K1/ is almost a convex sutured manifold contactomorphic to .M0; �0; �0/.
The only issue is that, along .@D2

" /� ftg with t 2 Œ�2; 1�[ Œ1; 2�, the contact form ˛

restricts to a positive contact form with respect to the boundary orientation induced
from D2

" , and hence to a negative contact form with respect to the boundary of R˙.�/.
To remedy this problem we attach a collar

A0 DR=2�Z� .Œ�2;�1�[ Œ1; 2�/� Œ�1; 1�

with coordinates .�; t;u/ to M.1/�N.K1/ by identifying @D2
" � .Œ�2;�1�[ Œ1; 2�/

with R=2�Z�.Œ�2;�1�[ Œ1; 2�/�f�1g and extending via the contact form dt�cud� .
Then .M.1/�N.K1//[A0 is a sutured contact manifold, and we leave it as an exercise
to prove that it is contactomorphic to .M0; �0; �0/ (modulo the process of matching
up the contact structures on the boundary by a homotopy).

Finally, let N. zK1/ denote the obvious extension of N.K1/ to a neighborhood of zK1

in M.1/� . We then observe that a holomorphic curve in R�M.1/� does not pass
through R� zK1 , ie does not decrease the filtration, if and only if its image is contained
in R � .M.1/� �N. zK1//. This follows from intersection positivity by observing
that N. zK1/ is foliated by Reeb arcs parallel to zK1 . A similar argument shows
that the holomorphic curves that are counted by the contact homology differential
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in R� ...M.1/�N.K1//[A0/� do not pass through the “vertical completion” of
R � A0 , and so are contained in R � .M.1/� �N. zK1//. Thus the differential on
the associated graded complex for M.1/ counts the same holomorphic curves as the
differential for the contact homology of .M.1/�N.K1//[A0 'M0 .

Remark 7.2 Although the filtration defined above depends on the choice of a relative
homology class B 2H2.M;K/ with @B D ŒK�, the filtration difference between two
generators representing the same class A 2H1.M / does not depend on this choice, by
Equation (23).

7.3 Invariants of Legendrian submanifolds

In this section we briefly discuss invariants of Legendrian submanifolds. Let .M; �/ be
a closed .2nC1/–dimensional contact manifold and L�M be a closed Legendrian
submanifold. By Example 4.5, there is a tubular neighborhood N.L/ of L so that
.M �N.L/; � D Sn�1T �L; �jM�N.L// is a concave sutured contact manifold. Now,
by Proposition 4.6, we can modify the concave sutured contact manifold into a convex
sutured contact manifold .M 0; � 0; � 0/. Then we define

HC.M; �;L/D HC.M 0; � 0; � 0/:

To show that this is well-defined, recall from Section 6.2 that the right hand side is
independent of the choices of contact form and the almost complex structure. We then
have:

Lemma 7.3 The contact homology algebra HC.M; �;L/ is an invariant of .M; �;L/,
ie does not depend on the choice of tubular neighborhood of L.

Proof Observe that the hypersurface † of M , defined in Example 4.5, has the
following properties:

(i) There is a contact 1–form for � , written locally as

(24) ˛ D dzCˇ D dzC

nX
iD1

fi.p; q/dpi C

nX
iD1

gi.p; q/dqi :

Here .z;p D .p1; : : : ;pn/; q D .q1; : : : ; qn// are local coordinates, R˛ D @z ,
LD fz D 0;p D 0g, and fi.0; q/D gi.0; q/D 0 for all q . In particular, � is
tangent to fz D 0g along L.
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(ii) On the 2n–dimensional submanifold fz D 0g, let Y be the Liouville vector
field satisfying {Y dˇ D ˇ , and let Wq be the “fan” consisting of all points
.p; q/ whose backwards flow along Y converge to .0; q/. Then let � be a
.2n�1/–dimensional submanifold of fz D 0g which is arbitrarily close to L

and such that each � \Wq is “star-shaped”, ie an .n�1/–dimensional sphere
which is transverse to Y .

(iii) The submanifold � is diffeomorphic to the unit cotangent bundle of L and
bounds a 2n–dimensional submanifold †0 � fzD 0g which is diffeomorphic to
the unit disk bundle of T �L. Then †\fz > 0g (resp. †\fz < 0g) is transverse
to R˛ and the projection along R˛ gives a diffeomorphism with int.†0/.

Condition (ii) implies that � is a .2n�1/–dimensional contact submanifold and Con-
dition (iii) implies that † is a convex hypersurface of M .

Now let ˛ be a contact 1–form for � , which is defined in a neighborhood of L and
satisfies (i). In particular, ˛ is given by Equation (24). We describe the Liouville vector
field Y for ˇ on fz D 0g when jpj is arbitrarily small. For jpj small,

d˛ �
X

i

@gi@pj dpj dqi C

X
i

@fi@pj dpj dpi ;

since @fi=@qj and @gi=@qj are close to zero. Ignoring higher order terms, we write
fi D

P
j Fij pj and gi D

P
j Gij pj , where Fij and Gij are constants. By the sym-

plectic condition, det.@gi=@pj /Ddet.Gij />0. If we write Y D
P

i ai@pi
C
P

i bi@qi
,

then the Liouville condition implies that

gi D

X
j

@gi@pj aj ;

or
P

j Gij pj D
P

j Gij aj . Hence aj D pj and Y has the form

(25) Y D
X

i

pi@pi
C

X
i;j

Aij pj@qj ;

by the invertibility of Gij . Here Aij are constants which smoothly depend on Fij

and Gij .

Equation (25) implies that the fan Wq and Y jWq
vary continuously as we vary ˇ

(while preserving the conditions in (i)), and that the @pi
–terms are independent of ˇ

(modulo higher order corrections).

Finally, given two convex submanifolds†0 and†1 of the type described in Example 4.5,
there is a 1–parameter family of contact 1–forms ˛t interpolating between ˛0 and ˛1 ,
all satisfying (i). Since W t

q varies continuously with ˇt , it follows that there is a
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family � t from �0 to �1 , all satisfying (ii). We can then extend to †t from †0 to
†1 , all satisfying (iii). This implies that †0 and †1 can be connected by a 1–parameter
family of convex submanifolds †t . To conclude, Lemma 4.1 provides a 1–parameter
family of sutured contact manifolds f.M 0; � 0; � 0t /gt2Œ0;1� , whose contact homology
groups are isomorphic by Proposition 6.1(2).

Our Legendrian submanifold invariant HC.M; �;L/, unlike other invariants such as
Legendrian contact homology, does not automatically vanish under stabilizations. In
fact, Corollary 1.12 shows that the invariant does not vanish for example when the
ambient manifold .M; �/ has an exact symplectic filling.

Example 7.4 Suppose .M; �/D .S3; �/ is the standard contact 3–sphere and L is
a Legendrian unknot with Thurston–Bennequin number tb.L/ D �n and rotation
number r.L/D n� 1 for n� 1. (These Legendrian unknots have maximal rotation
number amongst those with the same tb .) Then .S3�N.L/; �jS3�N.L// is a sutured
contact solid torus which is obtained from a product sutured contact manifold

.D2
� Œ�1; 1�; @D2

� f0g;N.@D2/� Œ�1; 1�; dt Cˇ/;

where ˇ is a primitive of an area form on D2 , by a sutured manifold gluing. Its contact
homology HC.S3; �;L/ has been completely calculated by Golovko [18; 17], and in
particular is nonzero.

Question 7.5 Determine the relationship of HC.M; �;L/ with the Legendrian contact
homology LCH.M; �;L/ of the Legendrian submanifold L� .M; �/ as well as the con-
tact homology HC.M.L/; �L/ of the contact manifold .M.L/; �L/, obtained from M

by Legendrian surgery along L. (A surgery exact sequence involving HC.M.L/; �L/

and a variant of LCH.M; �;L/ was obtained by Bourgeois, Ekholm and Eliashberg [2].)

When dim M D 3, we can also define

ECH.M; �;L/D ECH.M 0; � 0; � 0/:

This is conjectured to be independent of the choice of � (up to the usual grading shift)
and dependent only on the framing of L.

8 First warm-up: neck-stretching in the t–direction

Before embarking on the proof of Theorem 1.9, we treat slightly easier cases in this
section and the next.
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Consider the situation where we have a sutured contact manifold .M 0; � 0; ˛0/, and
there is a diffeomorphism

�W .RC.�
0/; ˇ0C/

�
! .R�.�

0/; ˇ0�/;

where ˇ0
˙
D ˛0jR˙.� 0/ , which is the identity on RC.�

0/\U.� 0/. Let .M; ˛/ be the
contact manifold with boundary obtained from M 0 by gluing RC.�

0/ and R�.�
0/

via � . If we let � denote the image of � 0 in M , then a neighborhood of @M is
identified with Œ�1; 0�� .R=Z/�� so that ˛ D C dt Cˇ .

Although .M; ˛/ is not quite a sutured contact manifold in the sense of Definition 2.8,
we can nonetheless define part of its contact homology as follows. First complete
.M; ˛/ to .M �; ˛�/ by attaching the side (S) as usual (but not the top/bottom), and
choose a tailored almost complex structure on R �M � . Let AŒ0�.M; �; ˛/ be the
free supercommutative Q–algebra with unit generated by good Reeb orbits in M �

which do not intersect RC.�
0/; note that these are the same as the good Reeb orbits

in M 0 . Note that if a holomorphic curve in R�M � has all positive ends at such Reeb
orbits, then it also has all negative ends at such Reeb orbits; otherwise the sum of the
Reeb orbits from the positive ends could not be homologous to the sum of the Reeb
orbits from the negative ends, because all orbits that nontrivially intersect RC.�

0/

do so positively. Thus the usual construction defines a well-defined differential on
AŒ0�.M; �; ˛/ which has a well-defined homology HCŒ0�.M; �; ˛/.

The goal of this section is to prove the following result:

Theorem 8.1 There is an isomorphism HC.M 0; � 0/' HCŒ0�.M; �/.

The idea of the proof is to “stretch the neck” in the gluing that produces M from M 0 ,
with a parameter n that measures the length of the neck. One wants to argue that if
n is sufficiently large then all relevant holomorphic curves in R�M � correspond to
holomorphic curves in R� .M 0/� . However, one cannot choose a single n that always
works; the size of n that is required for this to work depends on the total symplectic
action of the Reeb orbits involved. To deal with this issue we will use a direct limit
argument.

We remark that one can also prove a more general version of Theorem 8.1 in which
one glues only some components of RC.�

0/ to some components of R�.�
0/. This

uses the same argument but more notation.

8.1 Stretching the neck

For the purposes of the neck-stretching, we introduce a sequence of contact manifolds
with boundary .Mn; ˛n/ and almost complex structures Jn which are parametrized
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by n: Let Mn be the manifold diffeomorphic to M D M 0=� , obtained from the
disjoint union M 0 t .RC.�

0/� Œ�n; n�/ by identifying RC.�
0/ with RC.�

0/� f�ng

by the identity and RC.�
0/�fng with R�.�

0/ by � . We take the 1–form ˛n to agree
with dtCˇ0C on RC.�

0/� Œ�n; n� and with ˛0 on M 0 . Let J 0 be an almost complex
structure which is tailored to .M 0; ˛0/ and is taken to itself by � . Then define Jn to
be t –invariant on RC.�

0/� Œ�n; n� and to agree with J 0 on M 0 . Also define M �
n as

the completion of Mn , obtained by attaching (S), but not (T) or (B) since R˙ have
been eliminated. By counting Jn –holomorphic curves in R�M �

n we can define the
contact homology HCŒ0�.Mn; ˛n;Jn/. The standard continuation argument shows that
this does not depend on n and is canonically isomorphic to HCŒ0�.M; �/.

Lemma 8.2 Let 
CD .
C
1
; : : : ; 
C

k
/ and 
�D .
�

1
; : : : ; 
�

l
/ be finite ordered sets of

Reeb orbits in M 0 , possibly taken with multiplicities. Then given g , for all sufficiently
large n,

Mg.

C
I 
�IR� .M 0/�;J 0/DMg.


C
I 
�IR�M �

n ;Jn/:

Proof The proof is almost identical to that of Lemma 5.17 and Proposition 5.18; the
slight difference is that the ranges of the holomorphic maps vary with n. Arguing by
contradiction, suppose there is a sequence

Fn D .an; fn/W .†n; jn;mn/! .R�M �
n ;Jn/

in Mg.

CI 
�IR �M �

n ;Jn/ whose second component fn nontrivially intersects
2RC.� 0/�f0g for all n. (Observe that, if fn does not intersect 2RC.� 0/�f0g, then Fn

can be viewed as a holomorphic map in Mg.

CI 
�IR� .M 0/�;J 0/.) As before, we

can restrict to � � 0 by the strict plurisubharmonicity of � .

On R�M �
n we use the metric given by Equation (15), and on .†n�mn; jn/ we use the

unique complete, compatible, finite volume hyperbolic metric gn . Also write �n for the
injectivity radius of gn . If there is no “gradient bound”, ie a bound on �n.x/krFn.x/k,
then we obtain the bubbling off of a nonconstant finite energy plane with image in
.R� .M 0/�;J 0/ or .R�R�2RC.� 0/;J 0/ by Lemma 5.9. In the latter case, we obtain
a holomorphic sphere inside .R�R� 2RC.� 0/;J 0/ by the removal of singularities
lemma for the Top/Bottom (Corollary 5.15), a contradiction. Hence the bubbling occurs
inside .R� .M 0/�;J 0/. Since the area of finite energy holomorphic planes is bounded
by below (see [3, Lemma 5.11]), we can remove finite sets m0

n from †n�mn to ensure
that there is a gradient bound with respect to . P†n D†n� .mn[m0

n/; jn/.
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Arguing as in Proposition 5.18, there is a subsequence of Fn (again denoted Fn by
abuse of notation) for which

(i) there is a bound on the gradient;

(ii) there is a "–thin component C n of P†n and an annulus Zn � C n , such that
fn.Z

n/�RC.�
0/� Œ�n; n�;

(iii) maxx2Zn t ıfn.x/�minx2Zn t ıfn.x/ is an unbounded sequence in n, where
t 2 Œ�n; n�.

This sequence limits to a nonconstant holomorphic cylinder in .R�R� 2RC.� 0/;J 0/,
which is a contradiction.

8.2 Continuation maps

Given a contact form ˛ , the action of an oriented curve 
 with respect to ˛ will be
written as

A˛.
 /D

Z



˛:

We also write x
 D 
m1

1
� � � 


mk

k
and A˛.x
 /D

P
i miA˛.
i/.

Let A�K .M
0; ˛0;J 0/ denote the subcomplex of A.M 0; ˛0;J 0/ generated (as a module)

by monomials x
 with A˛0.x
 /�K . Lemma 8.2 implies that given K , if n is sufficiently
large then the inclusion

ˆK ;nW A�K .M
0; ˛0;J 0/ ,!A.Mn; ˛n;Jn/

is a chain map.

We now investigate the dependence of this map on K and n. To start, we have the
following key lemma:

Lemma 8.3 For all n sufficiently large, the canonical isomorphism

HCŒ0�.Mn; ˛n;Jn/' HCŒ0�.MnC1; ˛nC1;JnC1/

is induced by a chain map

‰nW AŒ0�.Mn; ˛n;Jn/!AŒ0�.MnC1; ˛nC1;JnC1/;

such that if 
 is a Reeb orbit in M 0 then

(26) 
 7! 
 C
X

i

ai
i ;

where all the orbits of 
i are contained in M 0 and A˛n
.
 / >A˛nC1

.
i/DA˛n
.
i/.
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In particular, the lemma implies that the chain map ‰n is “triangular”, ie is the identity
plus lower order terms with respect to the action.

Proof Let us write ˛1 D ˛n ; on RC.�
0/� Œ�n; n�, ˛1 D dt Cˇ . (In this section we

will write ˇ for ˇ0C .) There exists an identification inW Mn
�
!MnC1 so that M 0 is

taken to itself by the identity and i�n .˛nC1/D f .t/ dtCˇ on RC.�
0/� Œ�n; n�, where

1 � f .t/ � 1C 2=.n� 1/. If we set ˛0 D i�n .˛nC1/, then ˛0 and ˛1 agree on M 0 .
Let ˛s , s 2 Œ0; 1�, be the 1–parameter family of contact 1–forms obtained by linearly
interpolating between ˛0 and ˛1 , perturbed to be s–independent near sD 0; 1. (These
are contact forms if n is sufficiently large.) Extend this family to all s 2R by setting
˛s D ˛0 for s � 0 and ˛s D ˛1 for s � 1.

Define an almost complex structure J on R�M �
n such that the following hold:

(1) For all s 2 R, J jfsg�M�n
takes ker˛s to itself, maps @s to R˛s , and is d˛s –

positive.

(2) J js�1 D Jn and J js�0 D .idR �in/
�JnC1 .

(3) J is s–invariant on R�M 0 .

(4) The projection of J jR�RC.� 0/�Œ�n;n� to fsg �RC.�
0/� ftg does not depend

on s and on t .

The cobordism .R�M �
n ;J / gives rise to the chain map ‰n , obtained in the usual

way by counting rigid rational curves with one positive puncture and an unspecified
number of negative punctures. The 2–form ! that we use below to control the
action is insufficient for verifying the compactness of the relevant moduli spaces.
For compactness, we need a taming form d.g.s/˛s/ for a suitable g.s/, whose J –
positivity is verified as in Lemma 3.2. We also restrict the range from R�M �

n to
R�Mn ; this is possible since the projection of J to 2RC.� 0/ is adapted to ˇ .

Consider the 2–form ! D d˛1 . We claim that ! is J –nonnegative, ie !.v;Jv/� 0

for all tangent vectors v . On M 0 , ˛1 D ˛0 , and the claim is immediate. On
RC.�

0/� Œ�n; n�, we have ! D dˇ . If we write v 2 T.s;x/.R�RC.�
0/� Œ�n; n�/

(for s 2 R and x 2 RC.�
0/ � Œ�n; n�) as a@s C b@t Cw , where w 2 ker˛s , then

Jv D ah@t � .b=h/@s C Js;tw . Here h is a function which is approximately equal
to 1. (This comes from the fact that R˛s is parallel, but not exactly equal, to @t on
R�RC.�

0/� Œ�n; n�.) We then compute that

!.v;Jv/D dˇ.w;Js;t .w//� 0;

by projecting to RC.�
0/.
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Next let F be a holomorphic curve in .R�Mn;J / with positive end 
 and negative
ends x
 0 . As noted previously, if 
 �M 0 , then all orbits of x
 0 are also contained in M 0

for homological reasons. By Stokes’ theorem and the J –nonnegativity of ! , we have

(27) A˛1.
 /�A˛0.x
 0/DA˛1.x
 0/:

Note that the first term on the right-hand side of Equation (26) comes from counting a
trivial cylinder over 
 . To obtain strict inequality in (27) when x
 0 6D 
 , first observe
that F is asymptotically a cylinder over 
 at C1. If F is not a cylinder over 
 ,
then F must have positive d˛1 –area, implying the strict inequality in (27). (Branched
covers of trivial cylinders do not contribute to the differential by Fabert [13].)

Our next ingredient is the following:

Lemma 8.4 Given K > 0, there exists n0 > 0 such that for all n� n0 ,

‰nW AŒ0�.Mn; ˛n;Jn/!AŒ0�.MnC1; ˛nC1;JnC1/

maps 
 7! 
 , whenever A˛n
.
 /�K .

Proof This is a variant of the proof of Lemma 8.2. First note that A˛n
.
 /�K implies

that 
 �M 0 for sufficiently large n. Suppose there is a sequence of finite energy,
rational holomorphic maps Fn to .R�Mn; zJn/ with one positive end at 
 , where
zJn is the almost complex structure for the cobordism given in Lemma 8.3 (called Jn

there). If Fn intersects R�RC.�
0/� f0g for all n, the proof of Lemma 8.2 produces

a holomorphic sphere in R�RC.�
0/�R, a contradiction. (Note that, as n!1, the

difference between the almost complex structure zJn and the tailored almost complex
structure Jn for ˛n becomes arbitrarily small in the C1 topology.) Hence Fn can be
viewed as a map to .R� .M 0/�;J 0/ for sufficiently large n. Since J 0 is R–invariant,
the lemma follows.

Lemma 8.4 implies that the diagram

(28)

A�K .M
0; ˛0;J 0/

ˆK;n - AŒ0�.Mn; ˛n;Jn/

AŒ0�.MnC1; ˛nC1;JnC1/
?

‰n

ˆ
K
;nC

1

-

commutes, provided that n is sufficiently large with respect to K .
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8.3 Direct limits

Definition of ˆ Suppose n0� n� 0. By composing ‰n0�1 ı‰n0�2 ı � � � ı‰n , we
obtain a chain map

‰n;n0 W AŒ0�.Mn; ˛n;Jn/!AŒ0�.Mn0 ; ˛n0 ;Jn0/;

where 
 �M 0 is mapped to 
 C
P

i ai
i , the orbits of 
i are contained in M 0 , and
A˛n

.
i/DA˛n0
.
i/<A˛n

.
 /. It follows from the commutativity of Diagram (28) that
if K <K0 and if n is sufficiently large with respect to K0 , then the chain map ‰n;n0

fits into the following commutative diagram of chain complexes:

(29)

A�K .M
0; ˛0;J 0/

ˆK;n- AŒ0�.Mn; ˛n;Jn/

A�K 0.M
0; ˛0;J 0/

iK;K 0

?
ˆK 0;n0- AŒ0�.Mn0 ; ˛n0 ;Jn0/:

?

‰n;n0

Here iK ;K 0 denotes the natural inclusion. Note that the usual chain homotopy argument
shows that ‰n;n0 is chain homotopic to any continuation map given by a symplectic
cobordism from ˛n to ˛n0 .

By commutativity of Diagram (29), we can take direct limits to obtain a map

ˆW lim
K!1

HC�K .M
0; ˛0;J 0/! lim

n!1
HCŒ0�.Mn; ˛n;Jn/

on the level of homology. Now observe that

lim
K!1

HC�K .M
0; ˛0;J 0/D HC.M 0; ˛0;J 0/D HC.M 0; � 0/;

because the analogous statement on the level of chain complexes holds by definition
and taking homology commutes with direct limits. On the other hand,

lim
n!1

HCŒ0�.Mn; ˛n;Jn/D HCŒ0�.M; �/;

because the map ‰n;n0 induces the canonical isomorphism on homology, so that
the direct limit is isomorphic to any single HCŒ0�.Mn; ˛n;Jn/ and is canonically
isomorphic to HCŒ0�.M; �/. We conclude that ˆ defines a map

ˆW HC.M 0; � 0/! HCŒ0�.M; �/:

To complete the proof of Theorem 8.1, we will show that this is an isomorphism.
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In the arguments below, we will use, without further notation, the canonical identifica-
tions

A.M 0; ˛0;J 0/'AŒ0�.Mn; ˛n;Jn/'AŒ0�.Mn0 ; ˛n0 ;Jn0/

arising from the fact that an orbit 
 in A.M 0; ˛0;J 0/ can naturally be viewed as
an orbit in AŒ0�.Mn; ˛n;Jn/ or in AŒ0�.Mn0 ; ˛n0 ;Jn0/. These are identifications of
Q–vector spaces, but not necessarily of chain complexes.

Injectivity of ˆ Refer to Diagram (29). Suppose that a is a cycle in A�K .M
0; ˛0;J 0/

and that aD @b for some b 2AŒ0�.Mn; ˛n;Jn/ with n sufficiently large. Then ‰n;n0

sends a 7! a by Lemma 8.4, and b 7! bC
P

i bi by Lemma 8.3, where A˛n0
.bi/ <

A˛n
.b/. (Here A˛n

.b/ means the maximum over all the monomials of b .) Hence
a D @.b C

P
ibi/ in AŒ0�.Mn0 ; ˛n0 ;Jn0/. Now, if we let K0 > A˛n

.b/, then, for
sufficiently large n0 , the inclusion ˆK 0;n0 is a chain map by Lemma 8.2. Hence
aD @.bC

P
ibi/ in A�K 0.M

0; ˛0;J 0/. This proves the injectivity of ˆ.

Surjectivity of ˆ Suppose that a is a cycle in AŒ0�.Mn; ˛n;Jn/ for some n. By
Lemma 8.4, ‰n;n0.a/D aC

P
i ai stabilizes for sufficiently large n0 . As before, for

sufficiently large K0 , the inclusion ˆK 0;n0 is a chain map by Lemma 8.2. Hence ˆK 0;n0

sends aC
P

i ai 7! aC
P

i ai . This proves the surjectivity of ˆ.

8.4 Proof of Theorem 1.8

Starting with .Mi ; �i/, let Bi be a standard Darboux ball with convex boundary in Mi ,
and set M 0

i DMi�Bi . Applying the convex-to-sutured operation in Lemma 4.1, we ob-
tain sutured contact manifolds .M 00

i ; �
00
i DS2n�1;U.� 00i /; �

00
i /, where R˙.�

00
i /DD2n .

We then glue M 00
1

, M 00
2

, and a layer D2n � Œ�N;N � so that R�.�
00
1
/ and D2n �fN g

are identified by a diffeomorphism and RC.�
00
2
/ and D2n � f�N g are identified by a

diffeomorphism. Without loss of generality we may assume that the contact 1–form
on D2n � f�N g has the form dt Cˇ , and that the contact forms on M 00

i agree with
dtCˇ . Now observe that all the Reeb orbits of M 00 DM 00

1
[M 00

2
[ .D2n� Œ�N;N �/

are Reeb orbits of M 00
1

or Reeb orbits of M 00
2

. The rest of the proof of Theorem 1.8(1)
is identical to that of Theorem 8.1.

We prove Theorem 1.8(2) using a slightly different argument (which can also be used to
give an alternate proof of Theorem 1.8(1)). Let .M 00; ˛N / denote the version of M 00

with neck stretching parameter N . (That is, we are using diffeomorphisms to regard
the different stretched contact manifolds as different contact forms on the same 3–
manifold.) Fix almost complex structures J i as needed to define the ECH of M 00

i

for i D 1; 2. Let JN be an almost complex structure as needed to define the ECH
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of .M 00; ˛N /, which restricts J i on M 00
i . An analogue of Lemma 8.2, modified for

ECH as in Proposition 5.20, shows that for any K , if N is sufficiently large, then there
is a canonical isomorphism

(30) ECH�K .M
00; ˛N ;JN /

'
�! ECH�K .M

00
1 tM 00

2 /

induced by the obvious bijection on generators. From this description of the iso-
morphism it follows that given K < K0 , if N is sufficiently large, then the above
isomorphisms for K and K0 fit into a commutative diagram

(31)

ECH�K .M
00; ˛N ;JN /

'
����! ECH�K .M

00
1
tM 00

2
/??y ??y

ECH�K 0.M
00; ˛N ;JN /

'
����! ECH�K 0.M

00
1
tM 00

2
/

where the vertical arrows are induced by the inclusions of chain complexes.

Now since the Reeb orbits in M 00 and their actions do not depend on the neck stretching
parameter N , lemmas from [27] can be invoked to show the following:

(i) ECH�K .M
00; ˛N ;JN / does not depend on N , ie for any N;N 0 there is a canon-

ical isomorphism

ECH�K .M
00; ˛N ;JN /' ECH�K .M

00; ˛N 0 ;JN 0/:

Thus we can denote this homology simply by ECH�K .M
00/.

The above isomorphism is constructed by choosing a generic homotopy f.˛N.t/;Jt / j

t 2 Œ0; 1�g from .˛N ;JN / to .˛N 0 ;JN 0/, dividing the homotopy into a composition of
many short homotopies, and taking the composition of the corresponding continuation
isomorphisms from [27]. Note that the latter continuation maps are defined using
Seiberg–Witten theory and so are only valid in a closed manifold, but one can extend
them to the present situation by embedding into closed manifolds as follows. Given
K and fN.t/g, take an irrational ellipsoid E with its standard contact form which
is sufficiently large so that its Reeb orbits have action larger than K and so that it
contains a one-parameter family of cylinders fZt j t 2 Œ0; 1�g such that the Reeb flow
near @Zt is diffeomorphic to the Reeb flow near .@M 00; ˛N.t//. One can then embed
the family of sutured contact manifolds f.M 00; ˛N.t// j t 2 Œ0; 1�g into a family of
closed contact manifolds by gluing M 00 to E nZt for each t . The desired continuation
isomorphism is now obtained by applying [27] to this family of closed contact manifolds.
This continuation map still sends ECH�K .M

00; ˛N ;JN / to ECH�K .M
00; ˛N 0 ;JN 0/,

because the Reeb orbits in E have action greater than K .
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(ii) For any given K , if N;N 0 are sufficiently large, then the above canonical isomor-
phism is induced by the obvious bijection on generators. (Here we are again using the
ECH analogue of Lemma 8.2.)

(iii) If K <K0 then the inclusion-induced map

ECH�K .M
00; ˛N ;JN /! ECH�K 0.M

00; ˛N ;JN /

commutes with the canonical isomorphisms in (i) and so induces a well-defined map

ECH�K .M
00/! ECH�K 0.M

00/:

It follows from (i) and (ii) that the isomorphism (30) induces a well-defined isomorphism

ECH�K .M
00/
'
�! ECH�K .M

00
1 tM 00

2 /:

By (iii) and Diagram (31), the above isomorphisms fit into a commutative diagram

ECH�K .M
00/

'
����! ECH�K .M

00
1
tM 00

2
/??y ??y

ECH�K 0.M
00/

'
����! ECH�K 0.M

00
1
tM 00

2
/:

We can then take the direct limit over K to obtain an isomorphism

ECH.M 00/
'
�! ECH.M 00

1 tM 00
2 /D ECH.M 00

1 /˝ECH.M 00
2 /;

where the equality on the right holds because we are using field coefficients. By
Theorem 1.6, ECH.M 00

i /'
bECH .Mi/ and ECH.M 00/' bECH .M1#M2/. This com-

pletes the proof of Theorem 1.8(2).

9 Second warm-up: neck-stretching in the �–direction

Let .M 0; � 0; ˛0/ be a sutured contact manifold and let .W; ˇ/ be a Liouville cobordism
from @CW to @�W , as defined in Example 2.10. Suppose there is a diffeomorphism
which takes .@RC.� 0/; ˇ0D ˛

0j@RC.� 0// to .@�W; ˇj@�W /. We also assume that Rˇ0

is nondegenerate. Let us write N D Œ0; 1� � Œ�1; 1� � � 0 with coordinates .�; t;x/.
We construct the interval-fibered extension .M; � D @CW; ˛/ of .M 0; � 0; ˛0/ as
follows: The manifold M is obtained from M 0 t N t .W � Œ�1; 1�/ by identi-
fying f0g � Œ�1; 1� � � 0 � U.� 0/ and f0g � Œ�1; 1� � � 0 � N and by identifying
f1g� Œ�1; 1��� 0�N and @�W � Œ�1; 1��W � Œ�1; 1�. We then define ˛ as follows:

(32) ˛ D

(
˛0 on M 0;

dt C x̌ on N [ .W � Œ�1; 1�/;
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where x̌ is a 1–form on WN D .Œ0; 1���
0/[W , which equals e�ˇ0 on Œ0; 1��� 0

and e1ˇ on W .

Let � > 0. Choose a diffeomorphism

H� W Œ0; 1���
0 �
! Œ0; ���� 0;

.�;x/ 7! .h�.�/;x/;

where h� W Œ0; 1�
�
! Œ0; ��, h�.0/ D 0, h�.1/ D � , h0�.�/ D 1 in a neighborhood of

� D 0; 1, and h� is linear outside a bigger neighborhood of � D 0; 1. If J 0 is an almost
complex structure on M 0 which is tailored to ˛0 , then we define its extension J� on
M to be tailored to ˛ , subject to the following conditions on the projection .J�/0
of J� to WN :

� .J�/0 is independent of � on W .

� On Œ0; 1� � � 0 , .J�/0 is the H� –pullback of a ˇ0 –adapted almost complex
structure on Œ0; ���� 0 .

By sending �!1, we are “stretching the neck” in the � –direction.

In this section we prove the following theorem:

Theorem 9.1 An interval-fibered extension .M 0; � 0; � 0/ ,! .M; �; �/ induces an
isomorphism

ˆW HC.M 0; � 0; � 0/
�
! HC.M; �; �/:

The proof of Theorem 9.1 follows the same outline as the proof of Theorem 8.1.

We first observe that the set of Reeb orbits of .M 0; � 0; � 0; ˛0/ and .M; �; �; ˛/ are the
same. The holomorphic curves are restricted by the following analog of Lemma 8.2:

Lemma 9.2 Suppose 
C and 
� consist of orbits in M 0 . Then, for sufficiently
large � ,

Mg.

C
I 
�IR� .M 0/�;J 0/DMg.


C
I 
�IR�M �;J�/:

Proof Arguing by contradiction, suppose there is a sequence of holomorphic curves

F� D .a� ; f�/W .†� ; j� ;m�/! .R�M �;J�/

in Mg.

CI 
�IR �M �;J�/, whose second component f� nontrivially intersects

.WN /
TBDR�WN for all � . (Here the superscript TB indicates that we are extending

towards the top and bottom.) We write f� D .b� ; v�/ when f�.x/ 2 .WN /
TB ; here

b� D t ıf� and v� is the projection onto WN .
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On R�M we use the Riemannian metric

g� D ds˝ dsC˛˝˛C!. � ;J� � /�!.J� � ; � /;

where ! is the (not everywhere closed) 2–form defined by

! D

8̂<̂
:

d˛0 on M 0;

dz� ^ˇ0C dˇ0 on H�.Œ0; 1���
0/D Œ0; ���� 0;

dˇ on W:

Here z� is the coordinate on Œ0; ��.

If there is a gradient blow-up for the sequence F� in the neck region R�R� Œ0; ���� 0 ,
then the usual argument gives us a nonconstant finite energy plane in R�R�R�� 0 .
However, since there are no closed orbits in R�R�R�� 0 , we obtain a contradiction.
Putting in finitely many punctures on †� � m� to bound the gradient of F� on
P†� D†�� .m�[m0

�/ as usual, we apply similar considerations as in Proposition 5.18.
There is a connected subsurface x†� of P†� which satisfies the following:

� f�.x†�/�R� ..Œ1
3
; 1��� 0/[W /.

� x†� is a union of type A[B , where A is a possibly empty union of thick and
thin components of P†� and B is a nonempty union of annular subsets of thin
components of P†� .

� The components of B have the form E�S1 inside thin components Œ�R;R0��S1

or Œ�R;1/�S1 , where E is an interval in Œ�R;R0� or Œ�R;1/ and length.E/
tends to 1 as �!1.

� f�.x†�/ nontrivially intersects R�W and f .@x†�/�R� Œ1
3
; 2

3
��� 0 .

We now consider v� restricted to x†� . Observe that the finiteness of the d˛–energy
of F� implies the finiteness of d x̌–energy of v� . Moreover, if ž D f .�/ˇ0 on
Œ0; 1��� 0 , where f W Œ0; 1�!R is a smooth, monotonically increasing function which
agrees with e� on Œ0; 2

3
� and satisfies f .1/D e1 , then Stokes’ theorem gives an upper

bound on the d ž–energy of v� on Œ2
3
; 1��� 0 . We then have the Hofer energy bound

of v� on Œ2
3
; 1�� � 0 . Therefore, v� converges to a finite energy holomorphic curve

in W [ .R�� 0/ without any positive ends, contradicting Stokes’ theorem. (Here the
R–coordinate corresponds to z� .) Hence, for sufficiently large � , F� does not intersect
R�R�W . It follows that F� has image inside R� .M 0/� .

By Lemma 9.2, given K> 0, there exists � > 0 such that all the punctured holomorphic
spheres in .R�M �;J�/ which are asymptotic to 
 2A�K .M

0; ˛0;J 0/ at the positive
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end are disjoint from R�W � Œ�1; 1�. Hence we have an inclusion of chain complexes

ˆK ;� W A�K .M
0; ˛0;J 0/ ,!A.M; ˛;J�/;

for sufficiently large � .

We now compare .M; ˛;J�/ and .M; ˛;J�C1/ for sufficiently large � . Observe that
the contact forms are the same, and we are only interpolating between J� and J�C1 .
The almost complex structures differ only on R � R � Œ0; 1� � � 0 . We identify
H� W Œ0; 1���

0 �! Œ0; ���� 0 and use coordinates z� on Œ0; ��. Then .J�/0 and .J�C1/0
agree on kerˇ0 ; however, .J�/0 sends @z� 7!Rˇ0

and .J�C1/0 sends @z� 7! f .z�/Rˇ0
,

where we may take 1�2=� � f .z�/� 1. Let .J�C1�s/0 , s 2 Œ0; 1�, be an interpolation
between .J�C1/0 and .J�/0 where only the function f .z�/ is varying. Now define
the almost complex structure J�C1�s on M to be tailored to ˛ so that the projection
to WN is .J�C1�s/0 . We then define the almost complex structure zJ� on R�M � so
that

(1) . zJ�/js�1 D J� and . zJ�/js�0 D J�C1 ;

(2) . zJ�/js D J�C1�s .

The following is the analog of Lemma 8.3:

Lemma 9.3 The cobordism .R�M �; zJ�/ gives rise to a continuation map

‰� W A.M; ˛;J�/!A.M; ˛;J�C1/

with the property that, if 
 �M 0 , then

(33) 
 7! 
 C
X

i

ai
�!
i ;

where all the orbits of �!
i are contained in M 0 and A.
 / >A.�!
i /DA˛.
�!
i /.

Proof This is straightforward, since both J� and J�C1 are adapted to ˛ . We easily
see that ! D d.g.s/˛/ is zJ� –nonnegative whenever g.s/ is a positive, monotonically
increasing function.

We also have the following lemma:

Lemma 9.4 Given K > 0, there exists �0 > 0 such that for all � � �0 ,

‰� W A.M; ˛;J�/!A.M; ˛;J�C1/

maps 
 7! 
 , whenever A˛.
 /�K .
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Proof Similar to that of Lemma 9.2, with one difference: If there is a sequence of
holomorphic curves

F� D .a� ; f�/W .†� ; j� ;m�/! .R�M �; zJ�/

in Mg.

CI 
�IR�M �; zJ�/, then there is a restriction of F� to a connected subsur-

face x†� as before, whose image is contained in .WN /
TB . If we write f� D .b� ; v�/,

then each v� is not necessarily .J�/0 – or .J�C1/0 –holomorphic. However, since the
sequence v� jx†� limits to a holomorphic curve in W [ .R�� 0/, after possibly taking
a subsequence, the proof of Lemma 9.2 still carries over. (Compare Section 6.2.)

Putting Lemmas 9.2, 9.3 and 9.4 together, the direct limit argument in Section 8.3
proves Theorem 9.1.

10 Proof of Theorem 1.9

In this section we prove Theorem 1.9, ie the inclusion map under sutured manifold
gluing. The proof is a combination of the previous two sections.

10.1 Stretching the neck

Keeping the notation from Section 4.3, the main theorem of this section is the following:

Theorem 10.1 Suppose the orbits of 
C and 
� are contained in M 0 . Then there
exist � > 0 and n0 D n0.�/ > 0 such that the tailored almost complex structure J 0�
on .M 0/� satisfies

Mg.

C
I 
�IR� .M 0/�;J 0�/DMg.


C
I 
�IR�M �

n ;J�;n/;

for all n� n0 .

Proof We analyze the convergence of a sequence of finite energy holomorphic maps

Fn D .an; fn/W .†n; jn;mn/! .R�M �
n ;J�;n/

in Mg.

CI 
�IR�M �

n ;J�;n/. Our first reduction is to restrict the range of Fn from
R�M �

n to R�M
.1/
n . Indeed, by Remark 4.9, any holomorphic map Fn is disjoint

from R�V � . From now on, we consider the sequence

FnW .†n; jn;mn/! .R�M .1/
n ;J�;n/:

Recall that M 0
e is the infinite interval-fibered extension of M 0 , obtained from M 0 by

attaching an interval bundle S 0 � I over S 0 D S1 � S (as given in Equations (13)
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and (14)), and that .M 0
e/

TB is the partial completion of M 0
e , obtained by attaching

just the Top and the Bottom. The theorem now follows from combining the following
Lemma 10.2 and Lemma 10.3.

Lemma 10.2 For sufficiently large � > 0, the almost complex structure J 0� tailored
to .M 0/� satisfies

Mg.

C
I 
�IR� .M 0/�;J 0�/DMg.


C
I 
�IR� .M 0

e/
TB;J�;n/:

Observe that, by the construction in Section 4.3, the almost complex structure J�;n
does not depend on n when restricted to M 0

e .

Proof of Lemma 10.2 Similar to that of Lemma 9.2. The only difference is that the
region S 0 [ .Œ�1; 0�� � 0/ analogous to W is not compact, since M 0

e is an infinite
interval-fibered extension of M 0 . Hence the sequence

v� W x†�! S 0[ .Œ�1; 0��� 0/

may not converge, since v� can be pushed towards the ends of S 0 . However, most of
the analysis in [3, Section 10] can be carried out for the portion of x†� mapped into
Œ�1; 0��� 0 by v� . In particular there must be a finite set of disjoint separating curves
in x†� which converge to some Reeb orbits as negative punctures. We can assume
without loss of generality that those curves are @x†� . Hence, for sufficiently large � ,R
@x†�

v��ˇ < 0 (the negative sign because @x†� approaches a Reeb orbit as a negative
puncture). Then

R
x†�
v�� dˇ < 0 by Stokes’ theorem, contradicting the positivity of the

symplectic area on holomorphic curves.

Lemma 10.3 Given � > 0, there exists n0 > 0 so that for all n� n0 ,

Mg.

C
I 
�IR�M .1/

n ;J�;n/DMg.

C
I 
�IR� .M 0

e/
TB;J�;n/:

Proof of Lemma 10.3 Take a sequence Fn 2Mg.

CI 
�IR�M

.1/
n ;J�;n/. If A

and B are subsets of a metric space .X; d/, we define the distance from A to B to
be supx2A d.x;B/. This “distance” is not symmetric, but that is not a problem. We
apply the argument in Proposition 5.18 and Lemma 8.2 to bound the distance from
Im.Fn/ to the interval-fibered extension .M 0

e; ˛n;J�;n/. Although the interval-fibered
extension is noncompact, R�M 0

e has bounded geometry due to the fact that the almost
complex structures on the pieces P c

C� Œ2kn�1; 2knC1� are isomorphic (and similarly
for P c

� � Œ�2kn� 1;�2knC 1�), so we can use the same compactness arguments of
Proposition 5.18 and Lemma 8.2.
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The ECH case We have the following analog of Theorem 10.1 in the ECH case:

Theorem 10.4 Let f.
i ;mi/g and f
 0j ;m
0
j /g be orbit sets in M 0 . Then there is some

n0 2 N and some tailored almost complex structure J 0 on .M 0/� such that all flow
lines in .R�M �

n ;Jn/ from f.
i ;mi/g to f
 0j ;m
0
j /g are contained in .R� .M 0/�;J 0/

for all n� n0 .

Proof The proof of Theorem 10.4 is similar to that of Proposition 5.20. We can
restrict to .R�M

.1/
n ;J�;n/ as in the contact homology case, and apply the Gromov–

Taubes compactness theorem in dimension four to bound the distances of Im.Fn/ to
.M

.2/
n ; ˛

.2/
n ;J�;n/ and .M 0

e; ˛n;J�;n/.

The analog of Lemma 10.2 is straightforward and does not involve � since dim M 0D 3

and the projection of J 0 to J 0
0

on S1 makes S1 into a Riemann surface: Let F be a
holomorphic map to R� .M 0

e/
TB , whose ends are contained in R� .M 0/� . Also let

S 00 D .S1 �S/[ .Œ�1; 0��� 0/. Then consider the restriction of F to R�S 00 �R,
composed with the projection to S 00 . It is a holomorphic map between Riemann
surfaces, and hence is an open mapping; on the other hand it is also proper. We now
obtain a contradiction since S 00 is noncompact. We conclude that F does not intersect
R�S 00 �R.

10.2 Continuation maps and direct limits

In this section we prove part of Theorem 1.9, namely we define the map

ˆW HC.M 0; ˛0/! HC.M; ˛/

and show that ˆ is injective.

By Theorem 10.1, given K > 0, there are � > 0 and n0.�/ > 0 such that for all
n� n0.�/ there is an inclusion of chain complexes

ˆK ;�;nW A�K .M
0; ˛0;J 0�/ ,!A.Mn; ˛n;J�;n/:

The following lemma is essentially the same as the combination of Lemmas 8.3 and 8.4
– the only difference is the bounded geometry of the interval-fibered portion – and its
proof will be omitted.

Lemma 10.5 Given K > 0 and � > 0, there exists n0.�/ > 0 such that for all
n� n0.�/ there is a cobordism .R�M �

n ;J / which gives rise to a continuation map

‰nW A.Mn; ˛n;J�;n/!A.MnC1; ˛nC1;J�;nC1/;

with the following properties:
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(1) If A˛n
.
 /�K , then ‰n.
 /D 
 .

(2) If 
 �M 0 , then ‰n.
 /D 
 C
P

i ai
�!
i , where all the orbits of �!
i are contained

in M 0 and A˛n
.
 / >A˛nC1

.�!
i /.

It follows that given K > 0 there exist � > 0 and n0.�/ > 0 such that if n � n0.�/,
then the following diagram of chain complexes commutes:

(34)

A�K .M
0; ˛0;J 0�/

ˆK;�;n - A.Mn; ˛n;J�;n/

A.MnC1; ˛nC1;J�;nC1/
?

‰n

ˆ
K
;�;nC

1

-

Next consider the continuation maps

i�;�C1W A.M 0; ˛0;J 0�/!A.M 0; ˛0;J 0�C1/;

j�;�C1W A.Mn; ˛n;J�;n/!A.Mn; ˛n;J�C1;n/;

which are defined as in Lemma 9.3. The map i�;�C1 sends 
 7! 
 C
P

i ai
�!
i , where

A˛0.
 / > A˛0.
�!
i /. This is due to the fact that the contact form ˛0 is the same for

the domain and the range. Similar considerations hold for j�;�C1 . We then have the
following lemma:

Lemma 10.6 Given K0 >K > 0, there exists �0 > 0 such that for all � � �0 there
exists n.�/ such that for all n� n.�/, the following diagram commutes:

(35)

A�K .M
0; ˛0;J 0�/

ˆK;�;n- A.Mn; ˛n;J�;n/

A�K 0.M
0; ˛0;J 0�C1/

i�;�C1

?
ˆK 0;�0;n- A.Mn; ˛n;J�C1;n/

?

j�;�C1

Moreover, if 
 2A�K .M
0; ˛0;J 0�/, then all the maps in the diagram send 
 7! 
 .

Proof The proof is similar to that of Lemma 9.4. For sufficiently large � , if A˛0.
 /�K,
then i�;�C1.
 /D
 . The same holds for j�;�C1 , provided we choose n to be sufficiently
large in response to � .
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Definition of ˆ Suppose n0 > n > 0. By composing ‰n0�1 ı‰n0�2 ı � � � ı‰n , we
obtain a chain map

‰n;n0 W A.Mn; ˛n;J�;n/!A.Mn0 ; ˛n0 ;J�;n0/;

where 
 �M 0 is mapped to 
 C
P

i ai
�!
i with orbits of �!
i contained in M 0 and

A˛n0
.�!
i / < A˛n

.
 /. Similarly, if �0 > � > 0, then we can define i�;�0 and j�;�0 by
composing chain maps of type i�;�C1 and j�;�C1 . Given K0 >K > 0, there exists �0

such that if �0 > � � �0 and n� n.�; �0/, then the chain maps ‰n;n0 , i�;�0 , and j�;�0

fit into the following commutative diagram of chain complexes:

A�K .M
0; ˛0;J 0�/

ˆK;�;n - A.Mn; ˛n;J�;n/

A.Mn0 ; ˛n0 ;J�;n0/
?

‰n;n0

ˆ
K
;�;n 0

-

A�K 0.M
0; ˛0;J 0�0/

i�;�0

?
ˆK 0;�0;n0- A.Mn0 ; ˛n0 ;J�0;n0/:

?

j�;�0

(36)

HC.M 0; ˛0/D lim
K!1

HC�K .M
0; ˛0;J 0�.K //;Now,

since the contact form ˛0 does not vary while K!1. The diagram induces the map

ˆW HC.M 0; ˛0/! lim
�!1

HC.Mn.�/; ˛n.�/;J�;n.�//

on the level of homology. Moreover, the direct limit lim�!1HC.Mn.�/; ˛n.�/;J�;n.�//

is isomorphic to any single HC.Mn.�/; ˛n.�/;J�;n.�//.

Injectivity of ˆ Refer to Diagram (36). Suppose a is a cycle in A�K .M
0; ˛0;J 0�/

and a D @b for some b 2 A.Mn; ˛n;J�;n/ with n sufficiently large. Note that for
homological reasons, all the orbits of b must be contained in M 0 . Then ‰n;n0 sends
a 7! a and b 7! bC

P
i bi by Lemma 10.5, where all the orbits of bi are contained

in M 0 and A˛n0
.bi/ < A˛n

.b/, where the latter means the maximum over all the
monomials of b . Hence a D @.b C

P
i bi/ in A.Mn0 ; ˛n0 ;J�;n0/. For sufficiently

large n0 , if we apply j�;�0 to a D @.b C
P

i bi/, we obtain a D @.b C
P

i b0i/ in
A.Mn0 ; ˛n0 ;J�0;n0/ with A˛n0

.b0i/ <A˛n0
.b/. Now, if we let K0 >A˛n0

.b/, then there
is a sufficiently large n0 such that the map ˆK 0;�0;n0 is injective by Theorem 10.1.
Hence aD @.bC

P
i b0i/ in A�K 0.M

0; ˛0;J 0�0/. This proves the injectivity of ˆ.
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10.3 The inclusion map is well-defined

In this section we prove that the inclusion map

ˆW HC.M 0; � 0; � 0/! HC.M; �; �/

does not depend on the choices made to define it. By this we mean the following:

Proposition 10.7 Let .˛0/0 and .˛0/1 be two contact forms which are adapted to
the sutured contact manifold .M 0; � 0;U.� 0/; � 0/, and let ˛0

n , ˛1
n be their extensions

to Mn . Then there is a commutative diagram

(37)

HC.M 0; .˛0/0/
ˆ0
- lim

�!1
HC.Mn.�/; ˛

0
n.�/;J

0
�;n.�//

HC.M 0; .˛0/1/

‚0

?
ˆ1
- lim

�!1
HC.Mn.�/; ˛

1
n.�/;J

1
�;n.�//;

?

‚

where the ˆi are the inclusion maps defined in Section 10.2 and ‚, ‚0 are the
continuation maps given in Section 6.2.

Proof Let .˛0/0 and .˛0/1 be two contact forms adapted to .M 0; � 0;U.� 0/; � 0/, and
let ˛0

n and ˛1
n be their extensions to Mn . Also let .J 0�/

0 and .J 0�/
1 be the almost

complex structures on M 0 corresponding to .˛0/0 and .˛0/1 , as defined in Section 4.3,
and let J 0

�;n and J 1
�;n be their extensions to Mn . Also write .ˇ0/i

0
D .˛0/i j@RC.� 0/ and

.ˇ0/i D .˛0/i jRC.� 0/ .

Since .˛0/0 and .˛0/1 are contact forms for the same contact structure � 0 , we can write
.˛0/0D f � .˛0/1 , where f is constant in a neighborhood of the sutures. Moreover, we
can write .ˇ0/0

0
DC.ˇ0/1

0
for some constant C , which we take to be equal to 1 for sim-

plicity. Also, if we identify the manifolds Mn using the appropriate diffeomorphisms,
then we can write ˛0

n D fn˛
1
n .

Choose a 1–parameter family f � , � 2 Œ0; 1�, where f 0 D f and f 1 D 1. We then
use the family f �.˛0/1 to construct a symplectic cobordism and an almost complex
structure as in Section 6.2 and to define a continuation map

‚0� W A.M 0; .˛0/0; .J 0�/
0/!A.M 0; .˛0/1; .J 0�/

1/:

Next choose a 1–parameter family f �n , � 2 Œ0; 1�, where f 0
n D fn and f 1

n D 1 and
f
�

n extends f � . Using f �n ˛1
n , we obtain a continuation map

‚�nW A.Mn; ˛
0
n;J

0
�;n/!A.Mn; ˛

1
n;J

1
�;n/:
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Let K > 0. Then there exists K0 > 0 such that

‚0�.A�K .M
0; .˛0/0; .J 0�/

0//�A�K 0.M
0; .˛0/1; .J 0�/

1/:

For sufficiently large � , there exists n.�/ such that if n � n.�/ then the following
diagram is commutative:

(38)

A�K .M
0; .˛0/0; .J 0�/

0/
ˆ0

K;�;n- A.Mn; ˛
0
n;J

0
�;n/

A�K 0.M
0; .˛0/1; .J 0�/

1/

‚0�

?
ˆ1

K 0;�;n- A.Mn; ˛
1
n;J

1
�;n/:

?

‚�n

The proof follows from combining Step 1 of Section 6.2 and Theorem 10.1.

Given �0 > � > 0 and n0 > n> 0, let

.‰
�;�0

n;n0 /
0
D j 0

�;�0 ı‰
0
n;n0 W A.Mn; ˛

0
n;J

0
�;n/!A.Mn0 ; ˛

0
n0 ;J

0
�0;n0/

be the continuation map from last section; similarly define .‰�;�
0

n;n0 /
1 .

In order to take direct limits, we need to verify that the following diagrams

A�K .M
0; .˛0/0; .J 0�/

0/
j0
�;�0- A�K 00.M

0; .˛0/0; .J 0�0/
0/

A�K 0.M
0; .˛0/1; .J 0�/

1/

‚0�

?
j1
�;�0- A�K 000.M

0; .˛0/1; .J 0�0/
1/

?

‚0
�0

(39)

A.Mn; ˛
0
n;J

0
�;n/

.‰
�;�0

n;n0
/0
- A.Mn0 ; ˛

0
n0 ;J

0
�0;n0/

A.Mn; ˛
1
n;J

1
�;n/

‚�n

?
.‰
�;�0

n;n0
/1
- A.Mn0 ; ˛

1
n0 ;J

1
�0;n0/

?

‚�
0

n0
(40)

commute up to chain homotopy. This follows from the fact that, in either case, the
symplectic cobordisms corresponding to the compositions (together with their almost
complex structures) are homotopic. Taking direct limits, we obtain Diagram (37).
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10.4 The ECH case

In this section we explain how to prove Theorem 1.9(2), assuming the existence of
appropriate cobordism maps on sutured ECH, analogous to the cobordism maps on
ECH of closed contact 3–manifolds defined in [27].

First observe that the ECH setup is much simpler since we do not need to use the
parameter � . Let C.M 0; ˛0;J 0/ be the ECH chain complex (Z–module) generated by
the orbits sets of R˛0 and whose boundary map counts J 0–holomorphic curves. Also let
C0.Mn; ˛n;Jn/ be the subcomplex of the ECH chain complex C.Mn; ˛n;Jn/ which
counts orbit sets which have zero intersection with S1 . As before, C.M 0; ˛0;J 0/ and
the subcomplexes C0.Mn; ˛n;Jn/ for different n are all isomorphic as Z–modules,
although not necessarily as chain complexes.

Fix n> 0. By analogy with [27], it is conjectured that given K > 0, for sufficiently
large K0 , the cobordism in Lemma 10.5 induces a chain map

‰K ;K 0

n;nC1W C�K .Mn; ˛n;Jn/! C�K 0.MnC1; ˛nC1;JnC1/;

which depends on some choices, but which has the following two properties: First,
‰K ;K 0

n;nC1
is given by some unspecified count of (possibly broken) holomorphic curves

between orbit sets �!
 for .Mn; ˛n/ and �!
 0 for .MnC1; ˛nC1/, in the cobordism
.R�M �

n ;J / given in the proof of Lemma 10.5. Second, on the subset R�M 0 where
the almost complex structure is cylindrical, trivial holomorphic cylinders over closed
Reeb orbits are always counted in ‰K ;K 0

n;nC1
.

We now claim that the following commutative diagram of chain complexes exists:

(41)

C�K .M
0; ˛0;J 0/ - .C0/�K 00.Mn; ˛n;Jn/

C�K 0.M
0; ˛0;J 0/

?
- .C0/�K 000.MnC1; ˛nC1;JnC1/

?

‰K 00;K 000

n;nC1

Here we are given K0 > K > 0; we choose n D n.K/ > 0, K00 � K and K000 D

K000.n;K00/ � K0 . First note that ‰K 00;K 000

n;nC1
is given by some count of holomorphic

curves in the cobordism. On the other hand, Theorem 10.4 shows that, if �!
 is
a generator of .C0/�K 00.Mn; ˛n;Jn/ which comes from C�K .M

0; ˛0;J 0/, then no
holomorphic subvariety in .R �M �

n ;J / which flows from �!
 can cross the “neck
region”, ie cross S1 , provided n is chosen to be sufficiently large. Furthermore,
once we know that no curve from �!
 crosses the “neck region”, we are now in
the symplectization portion, and we only have trivial cylinders. Hence ‰K 00;K 000

n;nC1
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maps �!
 7! �!
 if �!
 comes from C�K .M
0; ˛0;J 0/. This proves the commutativity of

Diagram (41).

For other �!
 in .C0/�K 00.Mn; ˛n;Jn/, considerations of ! in Lemma 10.5, together
with the fact that ‰K 00;K 000

n;nC1
is some count of holomorphic curves, proves that ‰K 00;K 000

n;nC1

maps �!
 to �!
 plus terms with lower action. (Note that ! is not the exact symplectic
form which gives the exact symplectic cobordism, but is just some taming form for J .)

Arguing as in the contact homology case, we obtain an inclusion

lim
K!1

ECH�K .M
0; ˛0;J 0/ ,! lim

n!1
.ECH0/�K 00.n/.Mn; ˛n;Jn/;

where ECH0 is the homology for C0 . More precisely, the limit on the right-hand side is
over n!1 and K00.n/ is a sequence !1 which depends on both n and K00.n�1/.
The left-hand side is ECH.M 0; � 0; � 0/, and the right-hand side equals ECH0.M; �; �/,
under our conjecture that ECH.M; �; �/ does not depend on the choice of contact form
or almost complex structure.

11 Gluing along a convex submanifold

Let .M; �; �/ be a contact manifold with convex boundary and let S �M be a closed
convex submanifold with dividing set �S . Also let .M 0; � 0; � 0/ be the sutured contact
manifold obtained by splitting M along S and applying Lemma 4.1.

The goal of this section is to prove the following:

Theorem 11.1 There is a canonical map

ˆW HC.M 0; � 0; � 0/! HC.M; �; �/:

In this section we will treat the case of contact homology; the proofs for embedded
contact homology are similar.

According to Lemma 4.10, there is a contact 1–form ˛0 which is adapted to the sutured
contact manifold .M 0; � 0;U.� 0/; � 0/ and an extension to .Mn; ˛n;g0;g1

/ which is
contactomorphic to .M; �;U.�/; �/. Here n> 0 and g0;g1 are functions depending
on n. In this section we assume that V �D2 is the union of all the fillings of M 0

n ,
unlike in Section 4.4 where it was assumed to be just one connected component. It is
clear that there is an inclusion

ˆW A.M 0; � 0; ˛0;J 0/!A.Mn; ˛n;g0;g1
;Jn;g0;g1

/I

we would like to prove that ˆ is a chain map.
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Our first task is to prove that, given K > 0, for sufficiently large n there exist g0;g1

so that the inclusion

ˆK W A�K .M
0; ˛0;J 0/!A.Mn; ˛n;g0;g1

;Jn;g0;g1
/

is a chain map, ie ˆK ı @
0 D @ ıˆK , where @ and @0 are boundary maps for Mn

and M 0 . For this, it suffices to show the following:

Lemma 11.2 Suppose the orbits of 
 are contained in .M 0; ˛0/. Then for sufficiently
large n> 0 there exist g0;g1 (depending on n) such that

Mg.
 I 

0
IR�M �

n ;Jn;g0;g1
/DMg.
 I 


0
IR� .M 0/�;J 0/;

if the orbits of 
 0 are contained in .M 0; ˛0/, and

Mg.
 I 

0
IR�M �

n ;Jn;g0;g1
/D∅;

otherwise.

Proof Let F D .a; f /W .†; j ;m/! .R�M �
n ;Jn;g0;g1

/ be an element of the moduli
space Mg.
 I 


0IR�M �
n ;Jn;g0;g1

/. It suffices to show the following:

(1) There is no F from 
 to 
 0 , where some component of 
 0 is not strictly
contained in M 0 .

(2) No F from 
 to 
 0 with all components of 
 0 in M 0 has Im.f / which non-
trivially intersects V �D2 , SC

1
� f

n
2
g or S�

1
� f

n
2
g.

(1) is easy since we can choose n, g0;g1 so that all the closed orbits in .Mn; ˛n;g0;g1
/

which are not in .M 0; ˛0/ have arbitrarily large action; see Lemma 4.10.

We now argue (2). First take n sufficiently large so any F2Mg.
 I 

0IR�M �

n ;Jn;g0;g1
/

with image inside R � .M 0
n/
� has image inside R � .M 0/� . This can be done by

Lemma 8.2. In addition to n, the functions g0;g1 will depend on the choice of B > 0.
In particular, we take B so that Im.g0;g1/ contains the line segment between .a; 1/
and .a;B/. Let UB � V �D2 be the subset consisting of points .x; r; �/, where
.g0.r/;g1.r// is contained in this line segment. Also let ˇ0

0
be the restriction of ˛0

to @RC.� 0/. On UB , ˛n;B D ˛n;g0.B/;g1.B/ is of the form ad� CˇB , where ˇB is a
symplectization of ˇ0

0
in the �r –direction. Alternatively, we write M 00

n;B
DM 0

n[UB

and use coordinates .t; �;x/ on

UB ' .R=aZ/� Œ0; �B ��V

so that ˛n;B D dt C e�ˇ0
0
.x/. Let ySCi be the extension of SCi to M 00

n;B
so that

@ ySCi � @M
00
n;B

. Let .JB/0 be an almost complex structure on ySCi which is adapted to
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the symplectization d.e�ˇ0
0
.x//, and let Jn;B be a tailored almost complex structure

on M �
n whose projection to ySCi equals .JB/0 .

We claim that, for sufficiently large B > 0, all holomorphic maps FB D .aB; fB/ 2

Mg.
 I 

0IR�M �

n ;Jn;B/ are disjoint from R�UB . (Note that, by the strict plurisub-
harmonicity of � , Fn;B is disjoint from UB if and only if Fn;B is disjoint from @M 00

n;B
.)

The argument is similar to that of Lemma 9.2, only easier. Arguing by contradiction,
suppose there is a sequence FBi

D .aBi
; fBi

/ where fBi
nontrivially intersects UBi

and Bi ! 1. Writing vBi
as the projection of fBi

to Œ0; �Bi
� � V whenever

applicable, in the limit as Bi ! 1 we eventually obtain a finite energy cylinder
v1W Œ0;1/�S1! Œ0;1/�V . However, this contradicts the energy bound as follows:
First, the FBi

have bounded d˛n;Bi
–energy since 
 and 
 0 are fixed. On UBi

,
d˛n;Bi

D d.e�ˇ0
0
/, and a cylinder over a Reeb orbit of ˇ0

0
has unbounded d.e�ˇ0

0
/–

area, a contradiction.

Once we know that FB is disjoint from R�UB , by our choice of n� 0, FB has
image inside R� .M 0/� by Lemma 8.2. This concludes the proof of Lemma 11.2.

Case of dimension three We give an alternate, more straightforward proof of Lemma
11.2 when dim M D 3.

Lemma 11.3 Let F D .a; f /W .†; j ;m/! .R �M �
n ;Jn;g0;g1

/ be a holomorphic
map which is asymptotic to 
 at s ! C1 and asymptotic to 
 0 at s ! �1. If
dim M D 3 and the orbits of 
 and 
 0 lie in M 0 , then the image of f is disjoint from
V � f0g if n is sufficiently large.

Proof By Lemma 4.10, the contact form ˛n;g0;g1
has the property that every connected

component of V �f0g is a periodic orbit of the Reeb flow. Hence all intersection points
between V � f0g and C D Im.f / are positive, by the positivity of intersections in
dimension four. Observe that V � f0g is the oriented boundary of a surface S which
is an extension of RC.�

0/ �M 0 to Mn , and RC.�
0/ is disjoint from 
 [ 
 0 . We

may assume without loss of generality that C t S . If C has nontrivial intersection
with @S , then there is a properly embedded arc c on S which connects from @S to
itself. However, C and V � f0g D @S intersect positively at one endpoint of c and
negatively at the other endpoint, a contradiction. We conclude that the image of f is
disjoint from V � f0g.

We claim that C D Im.f / is contained in .M 0
n/
� . Assume for convenience that V

is connected. By Lemma 11.3, C is disjoint from V � f0g. Let TrD1 be the torus
fr D 1g�V �D2 . It then follows that C \TrD1 is homologous to ∅ on TrD1 . On the
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other hand, on TrD1 the Reeb vector field is parallel to @� and C must be positively
transverse to @� by intersection positivity. (By a slight perturbation if necessary, we
may assume that C \ TrD1 is an immersion.) If we take an oriented identification
TrD1DR2=Z2 with orientation on TrD1 equal to the boundary orientation of V �D2

and choose coordinates .�=.2�/;x/, and we set †0 D†� f �1.V �D2/, then dx is
everywhere positive on f j@†0 . Since f j@†0 is not homologically zero if C intersects
TrD1 , we conclude that C does not enter V �D2 . Now we can apply the argument
in Lemma 8.2 to show that, for sufficiently large n, no f intersects SC

1
� f

n
2
g and

S�
1
� f

n
2
g as described in Section 4.4. Hence we can view F as sitting inside R�.M 0/� .

Returning to the proof of Theorem 11.1, we now define two chain maps ‰n
B;BC1

and
‰

n;nC1
B

, where n and B are positive integers:

The first chain map Given contact forms ˛n;B and ˛n;BC1 on Mn , arrange them
via an isotopy so that the forms agree on M 00

n;B
and the contact structures agree on

Mn�M 00
n;B

. We also assume that Jn;B and Jn;BC1 agree on M 00
n;B

, and are induced
by J 0 on M 0 . Then interpolating between ˛n;B and ˛n;BC1 and between the almost
complex structures gives us a symplectic cobordism and a corresponding chain map

‰n
B;BC1W A.Mn; ˛n;B;Jn;B/!A.Mn; ˛n;BC1;Jn;BC1/:

An argument identical to that of Lemma 11.2 shows that, given K > 0, for sufficiently
large n there exists B0.n/ such that for B � B0.n/ the following diagram commutes:

(42)

A�K .M
0; ˛0;J 0/

ˆK;n;B - A.Mn; ˛n;B;Jn;B/

A.Mn; ˛n;BC1;Jn;BC1/
?

‰n
B;BC1

ˆ
K
;n;B
C

1

-

In particular, if 
 2A�K .M
0; ˛0;J 0/, then ‰n

B;BC1
ıˆK ;n;B.
 /DˆK ;n;BC1.
 /.

The second chain map Given ˛n;B on Mn and ˛nC1;B on MnC1 , we take a dif-
feomorphism i W Mn

�
!MnC1 which is similar to the one defined in the paragraph

before Lemma 8.3: it takes M 0 to M 0 by the identity and sends M 00
n;B

�
!M 00

nC1;B
,

while stretching M 00
n;B
� M 0 in the @t –direction (ie the Reeb direction) so that

i�.dt C ˇ0/ D df C ˇ0 and j@f=@t � 1j D O.1=n/. Also assume that Jn;B and
JnC1;B agree with J 0 on M 0 and project to the same almost complex structure on ySCi .
Interpolating between ˛n;B and i�˛nC1;B , we obtain

‰
n;nC1
B

W A.Mn; ˛n;B;Jn;B/!A.MnC1; ˛nC1;B;JnC1;B/:
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Given K > 0, for sufficiently large n there exists B0.n/ such that for B � B0.n/ the
following diagram commutes:

(43)

A�K .M
0; ˛0;J 0/

ˆK;n;B - A.Mn; ˛n;B;Jn;B/

A.MnC1; ˛nC1;B;JnC1;B/
?

‰
n;nC1

B

ˆ
K
;nC

1;B

-

Moreover, if 
 2A�K .M
0; ˛0;J 0/, then ‰n;nC1

B
ıˆK ;n;B.
 /DˆK ;nC1;B.
 /. First

we pick n so that any F 2Mg.
 I 

0IR�M �

n ;Jn;B/ with image inside R� .M 0
n/
�

has image inside R� .M 0/� , as in Lemma 8.3. Next, we pick B0.n/ to bound the
� –direction as in the proof of Lemma 11.2.

Definition of the map ˆ By repeatedly composing the maps of type ‰n
B;BC1

and
‰

n;nC1
B

, we obtain the chain map

‰
n;n0

B;B0
D‰

n0�1;n0

B0
ı � � � ı‰

n;nC1
B0

ı‰n
B0�1;B0 ı � � � ı‰

n
B;BC1:

Here iK ;K 0 is the natural inclusion. Given K0 > K > 0, there exist n0 > n > 0 and
B0DB0.n0/ >B DB.n/ > 0 so that ˆK ;n;B and ˆK 0;n0;B0 both map 
 7! 
 and the
following diagram commutes:

(44)

A�K .M
0; ˛0;J 0/

ˆK;n;B - A.Mn; ˛n;B;Jn;B/

A�K 0.M
0; ˛0;J 0/

iK;K 0

?
ˆK 0;n0;B0- A.Mn0 ; ˛n0;B0 ;Jn0;B0/

?

‰
n;n0

B;B0

Taking direct limits, we have

ˆW lim
K!1

HC�K .M
0; ˛0;J 0/! lim

n!1
HC.Mn; ˛n;B.n/;Jn;B.n//:

Since the HC.M 0; ˛0/ D limK!1HC�K .M
0; ˛0/ and the maps ‰n;n0

B;B0
are always

isomorphisms, we have defined the map ˆ in Theorem 11.1.

Proof that ˆ is independent of choices Let .˛0/i , i D 0; 1, be two contact forms
which are adapted to .M 0; � 0;U.� 0/; � 0/ and let .J 0/i be almost complex structures
tailored to .˛0/i . Also let .Mn; ˛

i
n;B
;J i

n;B
/ be the extensions of .M 0; .˛0/i ; .J 0/i/,

as described earlier. Let .ˇ0/i
0
D .˛0/i j@RC.� 0/ and .ˇ0/i D .˛0/i jRC.� 0/ . As in the
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proof of Proposition 10.7, we can write .˛0/0 D f .˛0/1 and .ˇ0/0
0
D .ˇ0/1

0
. Also, if

the manifold Mn is fixed, then we can write ˛0
n D fn;B˛

1
n;B

.

We construct a 1–parameter family f .�/.˛0/1 , � 2 Œ0; 1�, f .0/ D f , f .1/ D 1, to
construct a symplectic cobordism and a continuation map

‚0W A.M 0; .˛0/0; .J 0/0/!A.M 0; .˛0/1; .J 0/1/:

Next we extend f .�/ to fn;B.�/, so that fn;B.0/ D fn;B and fn;B.1/ D 1. Using
fn;B.�/˛

1
n;B

, we obtain a continuation map

‚n
BW A.Mn; ˛

0
n;B;J

0
n;B/!A.Mn; ˛

1
n;B;J

1
n;B/:

Let K > 0. Then there exists K0 > 0 such that

‚0.A�K .M
0; .˛0/0; .J 0/0//�A�K 0.M

0; .˛0/1; .J 0/1/:

For sufficiently large n there exists B0.n/ such that for B � B0.n/ the following
diagram commutes:

(45)

A�K .M
0; .˛0/0; .J 0/0/

ˆ0
K;n;B- A.Mn; ˛

0
n;B;J

0
n;B/

A�K 0.M
0; .˛0/1; .J 0/1/

‚0

?
ˆ1

K 0;n;B- A.Mn; ˛
1
n;B;J

1
n;B/

?
‚n

B

Taking direct limits, we obtain the commutative diagram

(46)

HC.M 0; .˛0/0; .J 0/0/ - lim
n!1

HC.Mn; ˛
0
n;B.n/;J

0
n;B.n//

HC.M 0; .˛0/1; .J 0/1/

‚0

?
- lim

n!1
HC.Mn; ˛

1
n;B.n/;J

1
n;B.n//

?
‚

which proves that the two versions of the map ˆ agree.
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