Volume 15, issue 3 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Non-commutative Donaldson–Thomas theory and vertex operators

Kentaro Nagao

Geometry & Topology 15 (2011) 1509–1543
Abstract

In [K Nagao, Refined open non-commutative Donaldson–Thomas theory for small toric Calabi–Yau 3–folds, Pacific J. Math. (to appear), arXiv:0907.3784], we introduced a variant of non-commutative Donaldson–Thomas theory in a combinatorial way, which is related to the topological vertex by a wall-crossing phenomenon. In this paper, we (1) provide an alternative definition in a geometric way, (2) show that the two definitions agree with each other and (3) compute the invariants using the vertex operator method, following [A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: “The unity of mathematics”, Progr. Math., Birkhäuser (2006) 597–618] and [B Young, Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, Duke Math. J. 152 (2010) 115–153]. The stability parameter in the geometric definition determines the order of the vertex operators and hence we can understand the wall-crossing formula in non-commutative Donaldson–Thomas theory as the commutator relation of the vertex operators.

Keywords
Donaldson–Thomas theory, wall-crossing, vertex operator
Mathematical Subject Classification 2000
Primary: 14N35
References
Publication
Received: 17 November 2009
Revised: 23 April 2011
Accepted: 3 June 2011
Published: 3 August 2011
Proposed: Jim Bryan
Seconded: Richard Thomas, Simon Donaldson
Authors
Kentaro Nagao
RIMS
Kyoto University
Kyoto 606-8502
Japan