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Coarse differentiation and quasi-isometries
of a class of solvable Lie groups I

IRINE PENG

This is the first of two papers that aim to understand quasi-isometries of a class of
unimodular split solvable Lie groups. In the present paper, we show that locally (in a
coarse sense), a quasi-isometry between two groups in this class is close to a map
that respects their group structures. In the sequel to this paper [11], we will use this
result to show quasi-isometric rigidity.

51F99; 22E40

1 Introduction

A .�;C / quasi-isometry f between metric spaces X and Y is a map f W X �! Y

satisfying
1

�
d.p; q/�C � d.f .p/; f .q//� �d.p; q/CC

with the additional property that there is a number C such that Y is the C neighborhood
of f .X /. Two quasi-isometries f;g are considered to be equivalent if there is a number
E > 0 such that d.f .p/;g.p// � E for all p 2 X . A class of groups G is quasi-
isometrically rigid if any groups quasi-isometric to an element of G is in G . While it
is well-known that finitely generated solvable groups are not quasi-isometrically rigid
(see Dyubina [5]), it is often conjectured that the subclass of polycyclic groups form
a quasi-isometrically rigid class (see Eskin, Fisher and Whyte [6, Conjecture 1.2]).
The first result that support the conjecture was proved by Eskin, Fisher and Whyte on
the quasi-isometries of the three dimensional solvable group SOLV. In this two-part
paper, we generalize the SOLV results to a class of higher rank solvable Lie groups by
generalizing the techniques introduced by Eskin, Fisher and Whyte in [6; 7; 8].

1.1 Nondegenerate, split abelian-by-abelian solvable groups

By a result of Auslander, a connected and simply connected solvable Lie group is any
Lie group L satisfying the sequence

(1) 1! U ! L!Rs
! 1;
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1884 Irine Peng

where U , called the nilradical of L, is its unique maximal normal connected nilpotent
subgroup; see Auslander [1].

In a group G , an element x 2G is called exponentially distorted if there are numbers
c; � such that for all n 2 Z,

1

c
log.jnjC 1/� � � kxn

kG � c log.jnjC 1/C �;

where kxnkG is the distance between the identity and xn in G . Guivarc’h [9] (redis-
covered later by Osin [10]) showed that in a connected, simply connected solvable Lie
group L, the set of exponentially distorted elements form a normal subgroup, called
the exponential radical, inside of the nilradical. We call a solvable Lie group G split if
the sequence (1) splits and its exponential radical coincides with its nilradical; abelian-
by-abelian if in addition, its nilradical is abelian. We can therefore represent a split
abelian-by-abelian solvable Lie group G as a semidirect product HÌ'A where both H
and A are abelian. The dimension of A is called the rank of G . We say such a group is
nondegenerate if every (nontrivial) element of '.A/ has at least one eigenvalue whose
absolute value is not one. So for example, SOLV is a rank 1 unimodular, nondegenerate,
split abelian-by-abelian solvable group.

1.2 Statement of results

Associated to nondegenerate, split abelian-by-abelian G DH Ì' A, where 'W A �!
Aut.H/, is a finite set 4 of real-valued linear functionals on A, called roots that arise
from the simultaneous triangulation of linear maps f'.a/ga2A , and a decomposition
of H into direct sums of subspaces fV˛g˛24 . (See Section 2.1).

Given a homomorphism 'W A ! GL.n;R/, the absolute Jordan form of ' , is a
homomorphism j'jW A! GL.n;R/ where j'j.t/, t 2 A, is the matrix whose entries
are absolute values of that of '.t/ (see Definition 2.1.1).

Corollary [11, Corollary 5.3.7] If two nondegenerate, unimodular, split abelian-by-
abelian solvable Lie groups G D H Ì' A, G0 D H0 Ì'0 A0 are quasi-isometric, then
there is an isomorphism f W A! A0 such that ' and '0 ı f have the same absolute
Jordan form.

We now introduce an equivalence relation on the set of roots: two roots are equivalent
if they are positive multiples of each other. Let Œ„� denote the equivalence class
containing the root „. In this way we have a coarser decomposition

HD
L
Œ˛� VŒ˛�
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Coarse differentiation and quasi-isometries of a class of solvable Lie groups I 1885

where VŒ˛� D
L
„2Œ˛� V„ . We call a left translate of VŒ˛� , a Œ˛� horocycle; and by Œ˛�

horocycle foliations in G (resp. in H) we mean the set of Œ˛� horocycles in G (resp.
in H). Similarly, for each root class Œ„�, we call a left translate of the kernel of „, a
Œ„� kernel leaf ; and by Œ„� kernel foliations in G (resp. in A) we mean the set of all
Œ„� kernel leaves in G (resp. in A).

A map �W G ! G0 is standard if it is a product map f � g , where f W A ! A0 ,
gW H!H0 satisfying the following: For some bijection � between root classes of G

and root classes of G0 ,

� f sends hyperplanes parallel to kernels of Œ„� to hyperplanes parallel to kernels
of �Œ„�;

� g sends foliations by Œ„� horocycles to foliations by Œ�f .„/� horocycles, for
each root class Œ„�.

Theorem [11, Theorem 5.3.6] (abridged) Let G DH Ì' A, G0DH0Ì'0 A0 be non-
degenerate, unimodular, split abelian-by-abelian solvable Lie groups, and �W G �!G0

a .�;C / quasi-isometry. Then � is bounded distance from a composition of a left
translation and a standard map.

Corollary [11, Corollary 1.0.2]

QI.G/D
�Y
Œ˛�

Bilip.VŒ˛�/
�

Ì Sym.G/:

Here Sym.G/ is a finite group, analogous to the Weyl group in reductive Lie groups.
It reflects the symmetries of G . (See Section 2.1).

We can also distinguish such groups base on the diagonalizability of ' in the following.

Corollary [11, Corollary 5.3.7] Let GDHÌ'A, G0DH0Ì'0A0 be nondegenerate,
unimodular, split abelian-by-abelian solvable Lie groups. If ' is diagonalizable and '0

is not, then there is no quasi-isometry between them.

Using the work of Dymarz [3] on quasi-similar maps on the boundary of G when '
is diagonalizable, its generalization by Dymarz and the author [4], and a theorem of
Mostow, we obtain the following.

Corollary [11, Corollary 5.3.9, Corollary 5.3.11] If � is a finitely generated group
quasi-isometric to a unimodular, nondegenerate split abelian-by-abelian G DH Ì' A,
then � is virtually a lattice in a semidirect product of H with A, so in particular is
virtually polycyclic.
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1.2.1 Remark Note that the semidirect product between H with A in the corollary
above does not have to be isomorphic to G , nor does the lattice � have to commensurate
with a subgroup in G . Examples showing that this is the best one can do can be
constructed by following the idea of Bridson and Gersten [2, Theorem 5.8].

1.3 Main result in the present paper

A compact convex set ��Rn determines a bounded set B.�/ in G (see Section 2.2).
We write �� for the compact convex set obtained by scaling � by a factor of � from
the barycenter of �. All the arguments in this paper are local in nature. We state the
main result below.

1.3.1 Definition A map �W G ! G0 is called “standard” if for some bijection � ,
between root classes of G and that of G0 , � D f �g where f W A! A0 , gW H!H0

such that for each root class Œ„�, f sends Œ„� kernel foliations to �.Œ„�/ kernel
foliations, and g sends Œ„� horocycle foliations to �.Œ„�/ horocycle foliations.

1.3.2 Remark Note that when G has at least rank.G/C 1 many root kernels, the
condition on f in Definition 1.3.1 means that f is affine; when G is rank 1, the
condition on f is empty.

1.3.3 Theorem Let G , G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Given 0< �; ı < 1, there are
numbers L0 , 0< � < 1 with the following properties.

If �� A is a product of intervals of equal size at least L0 , then a tiling of B.�/ by
isometric copies of B.��/

B.�/D
G
j2J

B.!j /t‡

contains a subset J0� J of relative measure at least 1�� , such that for all j 2 J0 , there
is a subset P0.!j /� P.!j / with relative measure at least 1� � such that �jP0.!j / is
within O.ı diam.!j // of a standard map gj �fj .

Acknowledgements I would like to thank Alex Eskin for his patience and guidance.
I also owe much to David Fisher for his help and support.

2 Preliminaries

In this section, we first describe the geometry of a class of unimodular solvable Lie
group mentioned in the Introduction, followed by a list of notation that will be used in
the remainder of this paper.
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2.1 Geometry of nondegenerate, split abelian-by-abelian groups

Let G D A Ë' H be a nondegenerate, split abelian-by-abelian solvable Lie group.
Its Lie algebra also admits a semidirect product structure as g D a Ëx' h, where
x'W a! End.h/. Fix a basis B of h such that for every t 2 a, x'.t/ is in real Jordan
form, and so x'.t/D ıtC �tC �t where ıt is diagonal, �t is superdiagonal and �t is
skew-symmetric. The entries of ıt are real-valued linear functionals of a, and are
called roots. For each root ˛ , let V˛ � h be the subspace on which ıt is ˛.t/ times
the identity matrix. Requiring the nilradical to coincide with the exponential radical is
the same as demanding that the constant function zero is not a root. By identifying a

with A, and similarly h with H via the exponential maps, we have

'.t/D eıtC�te�t :

Since �t is skew-symmetric, it follows that e�t is in the compact group O.dim.H /;R/.
The nondegenerate condition is equivalent to saying that the roots span Hom.a;R/.
This also shows that G is unimodular if and only if '.t/ has determinant 1 (or that the
sum of all the roots is the constant function zero.)

2.1.1 Definition By the absolute Jordan form of ' , we mean the map j'jW A !
GL.dim.H/;R/ given by

j'j.t/D eıtC�t :

We label the elements of B as fe˛i g˛24;1�i�n˛ , where fe˛i gi is a basis of V˛ . In this
way the restriction of j'j.t/ to V˛ , when expressed in terms of basis B \ V˛ is the
product between the scalar e˛.t/ and the matrix

N.t/D

0BBBBBBB@

1 u u2=2! � � � un�1=.n� 1/! un=n!

1 u � � � un�2=.n� 2/! un�1=.n� 1/!

1 � � � un�3=.n� 3/! un�2=.n� 2/!
: : :

:::
:::

1 u

1

1CCCCCCCA
where uD ˛.t/=j˛j, and j˛j is the standard Euclidean norm of ˛ .

Fix a basis fEj gj in A (for example, the duals of a subset of roots), and for each t2A,
write tj for its Ej coordinate. We coordinatize a point�X

˛24

x˛
�
.t/D

�X
˛24

nX̨
iD1

xi;˛e˛i

�
.t/ 2H Ì' A;

Geometry & Topology, Volume 15 (2011)
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by the dim.G/–tuple of numbers ..xi;˛/i;˛; .tj // 2Rdim.G/ . In this coordinate system,
a left invariant Riemannian metric at ..x˛/˛; .tj /j / isX

j

d.tj /2C
X
˛24

e�2˛.t/
˛iX

iD1

�
dxi;˛C

nX̨
�DiC1

P˛
i;�.˛.�t//dx�;˛

�2

;

where P˛
i;� is a polynomial with no constant term. We see that the above Riemannian

metric is bilipschitz to the left invariant Finsler metric

jd tjC
X
˛24

e�˛.t/
nX̨

iD1

�
1CQi;˛.j˛.�t/j/

�
jdxi;˛j;

where jd tj means
P

j jd tj j, and Qi;˛ is a polynomial with no constant term. In
particular when the split abelian-by-abelian solvable group has just one root a> 0, the
Finsler metric given above becomes the following, where Pi is a polynomial with no
constant term:

(2) jdt jC e�at
X

i

�
1CPi.at/

�
jdxi j:

Rank one abelian-by-abelian solvable groups with nonzero roots will feature quite
prominently in this paper, so we now make it a definition.

2.1.2 Definition We label a group of the form Rs Ë R, where  gives rise to a
single nonzero root, by HsC1 .

2.1.3 Remark The space HsC1 defined above is just a slight generalization of the
usual hyperbolic plane. In particular, when  is diagonal, HsC1 is the sC1 dimensional
hyperbolic space (after some change of variables).

2.1.4 Lemma If G is a nondegenerate, split abelian-by-abelian, then it can be quasi-
isometrically embedded into

Q
˛24Hdim.V˛/C1 .

Proof Consider the map G �!
Q
˛24 Hdim.V˛/C1 sending ..x˛/˛; t/ to .x˛; ˛.t//˛ .

The claim now follows from the inequality below.

1

j4j

X
˛24

�
jd˛.t/jC e�˛.t/

nX̨
iD1

�
1CQi;˛.j˛.�t/j/

�
jdxi;˛j

�

� jd tjC
X
˛24

e�˛.t/
nX̨

iD1

�
1CQi;˛.j˛.�t/j/

�
jdxi;˛j

�

X
˛24

�
jd˛.t/jC e�˛.t/

nX̨
iD1

�
1CQi;˛.j˛.�t/j/

�
jdxi;˛j

�
:
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Recommendation to the reader The reader can assume ' is diagonal on first reading,
because the geometry of a general HsC1 is qualitatively the same as that of a hyperbolic
space, as we will see in the next paragraph.

To understand the geometry of HsC1 better, we can assume without loss of gener-
ality that the root a is the constant function 1, so the Finsler metric in (2) becomes
dt C e�tQ.t/dx for some polynomial Q.t/. Since exponential grows faster than
polynomials, for any large positive number x , there is a t0 such that e�tQ.t/x � 1

for all t � t0 . So a function quasi-isometric to the distance function on HsC1 is the
following:

(3) d..x1; t1/; .x2; t2//D

8̂<̂
:
jt1� t2jC 1 if e�ti Q.ti/jx1� x2j � 1

for i D 1; 2;

jT � t1jC jT � t2jC 1 otherwise,

where T D U.jx1� x2j/ is the smallest value of t such that

e�tQ.t/jx1� x2j � 1:

Furthermore, the following relation

1

et
<

Q.t/

et
<

e.1=2/t

et
for t sufficiently large

and the fact that both e�t and Q.t/e�t are decreasing functions when t becomes
big enough means that we have the following inequalities for the inverses of et and
et=Q.t/:

(4) ln.x/�CQ � UQ.x/� 2 ln.x/CCQ for x > 1

for some constant C depending only on the polynomial Q.

A left translate of A, or a subset of it, is called a flat. For two points p; q 2 H with
coordinates .x˛/˛24 and .y˛/˛24 , we call the subsets of pA and qA that are within
distance O.1/ of each other, the coarse intersection between pA and qA.

According to the embedded metric in Lemma 2.1.4, the coarse intersection of pA and
qA is the p and q translates of the following subset of A:\

˛24Wln.jx˛�y˛ j/�1

˛�1ŒU˛.jx˛ � y˛j/;1�:

As the roots sum up to zero in a nondegenerate, unimodular, split abelian-by-abelian
group, the coarse intersection of two flats can be empty. If it is not empty, then the
equation above says that it is a convex subset of A bounded by hyperplanes parallel to
root kernels. Often we will say that pA and qA come together along this subset of A.
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2.2 Notation

2.2.1 General remarks about paths, neighborhoods

Division of a curve By scale we mean a number 0< � � 1. We will often examine a
quasi-geodesic on different scales, and see if the quasi-geodesic on that scale satisfies
certain properties. This roughly means that we subdivide the quasi-geodesic into
subsegments whose lengths are � proportion of the length of the original one, and see
if each one of them has the desired properties.

In practice, instead of dealing with length, we use distance between end points of a
curve. Let �W Œa; b�! Y be a mapping (not necessarily continuous).

� Choose r > 0, we can divide the image of � into subcurves whose end points
are r apart. That is, yS.�; r/D fqig

nr

iD1
, is the set of dividing points on � , where

q0 D �.a/, qnr
D �.b/, and

��1.qiC1/Dminft � ��1.qi/ j d.�.t/; qi/D rg:

We define the r length of � to be

k�kr WD
X

i

d.qi ; qiC1/:

� Given two points p; q 2 � , we write �Œp;q� for the part of � between p and q .
Define S.�; r/Df�Œqi ;qiC1�g, to be the set of subcurves after division by yS.�; r/.

� Let P be a statement. Define S.�; r;P/ D f�i 2 S.�; r/j�i satisfies Pg to be
those subcurves satisfying the statement P.

2.2.2 Definition We say a mapping �W Œa; b�! Y (not necessarily continuous) is a
.�;C / coarsely rectifiable curve if for all r1; r2 � C ,

k�kr1

k�kr2

� �:

We will often use k�k to denote k�kC and call it the coarse length of � if it is clear
from the context what the implied C is.

2.2.3 Remark A quasi-geodesic is an example of a coarsely rectifiable curve.
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Neighborhoods We write B.p; r/ for the ball centered at p of radius r , and Nc.A/

for the c neighborhood of the set A. We also write dH .A;B/ for the Hausdorff
distance between two sets A and B . If ��Rk is a bounded compact set, and r 2R,
we write r� for the bounded compact set that is scaled from � with respect to the
barycenter of �. Given a set X , a point x0 2X , the .�;C / linear neighborhood of X

with respect to x0 consists of points y such that there is a yx 2 X with d.y; yx/ D

d.y;X /� �d.yx;x0/CC g. If a quasi-geodesic � is within the .�;C / linear (or just
�–linear) neighborhood of a geodesic segment  , where �� 1 and C � �j�j, then
we say that � admits a geodesic approximation by  .

2.2.4 Notation used in split abelian-by-abelian groups

Subspaces of G Let G DH Ì A stands for a nondegenerate, split abelian-by-abelian
group. Recall that 4 is the set of roots. Fix a point p 2G . We define the following:

� For ˛24 a root, we write Ev˛ 2a with norm 1 with respect to the usual Euclidean
metric such that with respect to the usual Euclidean inner product h � ; i, the
functional hEv˛; � i is a positive multiple of ˛ . Note that Ev˛ is well-defined as a
function of root class Œ˛�.

� Given Ev2A, the subgroup GEvDHÌR<GDAË'H given by tHt�1D'.t Ev/H,
has a natural flow which allows for a H left-invariant splitting on the tangent
bundle of H

TeHDEC
Ev
˚E0

Ev
˚E�

Ev

be defined as follows.

W CEv D
L
„.Ev/>0 V„ D Exp.EC

Ev
/

W �Ev D
L
„.Ev/<0 V„ D Exp.E�

Ev
/

W 0
Ev D

L
„.Ev/D0 V„ D Exp.E0

Ev
/

If W 0
Ev is not trivial, then we say the vector Ev is singular. We call left trans-

lates of W CEv , W 0
Ev and W �Ev , respectively, the expanding/unstable, neutral, and

contracting/stable leaves of GEv .

� Let �AW G DH Ì A �! A be the projection onto the A factor as .x; t/ 7! t.

� A context in which the space HsC1 in Definition 2.1.2 arises naturally in our
group G is the following. For each root ˛ , let Ev˛ be its dual. We label the
semidirect product between hEv˛i and V˛ , the generalized eigenspace corre-
sponding to ˛ , as H˛ . There is a natural projection map �˛W G �! H˛ as
.x1; x2; : : : ; xj4j/t 7! .xi ; ˛.t/Ev˛/.
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Boxes and associated objects For ˛ 24, let b.r/� V˛ be a product of intervals of
size 2r centered at the origin, ie Œ�r; r �dim.V˛/ . Let �� A be a convex compact set
with nonempty interior. We call a subset �� A rounded if for every root ˛ˇ̌

Projker˛ .�/
ˇ̌

j�j
�

j4j

diam.�/
:

For example, a metric ball in A is rounded. For a rounded compact convex set �� A
centered at the origin, we define B.�/, the box associated to �, as the union of left
translates of � over all elements of

�Qj4j
jD1

b.emax. j̨ .�///
�
. In other words,

B.�/D
� j4jY

jD1

b.emax. j̨ .�///

�
�:

2.2.5 Remark A box B.�/ as defined above is just a union of left translates of ��A
by a subset of H whose size happens to be determined by �. The size of this subset
was chosen so that a large proportion of points in the box B.�/ lie on a quadrilateral
(see Definition 4.1.5). In the definition above we have defined this subset of H as a
product of intervals, but this is just a choice of convenience.

Associate to the box B.�/, we use the following notation.

� L.�/ is the set of geodesics in B.�/ whose �A images begin and end at points
of @� such that the ratio between its length and the diameter of � lies in the
interval Œ1=m; 1�. We fix the value of m once � is chosen, and will often omit
the m in the expression.

� For i D 2; 3; : : : ; n, write Li.�/ for the set of i dimensional hyperplanes (see
bullet point under “Subspaces in G”) in B.�/ such that the ratio between its
diameter and the diameter of � lies in the interval Œ1=mi ; 1�.

� P.�/ (or P.B.�//) is the set of points in B.�/.
� Let S be an element of

Sn
iD2 Li.�/

S
L.�/

S
P.�/. We write L.S/, Li.S/

for the subset of L.�/, Li.�/ contained or containing S , and P .S/ for the
subset of P.�/ contained in S .

2.2.6 Remark Typically we will work with a representative of a quasi-isometry class
defined for particular choices of nets. Since any two nets in a space are bounded
distance apart, all the coarse arguments remains valid for that entire equivalence. Let
ypW G! X assigns x 2 G , a closest net point. In this way we tend to think of a set
K �G as a subset of the net X via the identification of K and yp.K/. In particular,
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all the objects in a box defined by bullets points above are finite sets to us, and we
equip a box with a counting measure. By abuse of notation, we denote this counting
measure by the absolute value sign j � j.

2.2.7 Lemma Let G D H Ì A be a nondegenerate, unimodular, split abelian-by-
abelian Lie group. Let ��A be a rounded compact convex set with nonempty interior.
Then, B.r�/, r !1 is a Fölner sequence. The volume ratio between N�.@.B.r�///
and B.r�/ is O.�= diam.B.r�//.

Proof For each root j̨ , write j̨ .�/D Œbj ; aj �. Since the sum of roots is zero, the
volume element is ĵ dxj ^ d t. Therefore vol.B.r�// D

�Q
j eraj

�
rnj�j. On the

other hand, the area of the boundary isˇ̌̌̌
@

�Y
j

Œ0; eraj �.r�/

�ˇ̌̌̌
D

ˇ̌̌̌
@

�Y
j

Œ0; eraj �

�
.r�/

ˇ̌̌̌
„ ƒ‚ …

.1/

C

ˇ̌̌̌�Y
j

Œ0; eraj �

�
@.r�/

ˇ̌̌̌
„ ƒ‚ …

.2/

:

Since box B.�/ is the product of a set in H with � in A, the boundary of B consist
of the boundary of the set in H with �, whose area is the term labeled .1/, and the
product of the set in H with the boundary of �, whose area is the term labeled .2/.

We estimate the size of each term.

.2/ W

ˇ̌̌̌�Y
j

Œ0; eraj �

�
@.r�/

ˇ̌̌̌
D

�Y
j

eraj

�
rn�1
j@�j;

.1/ W

ˇ̌̌̌
@

�Y
j

Œ0; eraj �

�
.r�/

ˇ̌̌̌

D 2
X

j

Z
t2r�

Z
x12b.er a1 /;:::;xi2be

r ai
e�˛1.t/dx1 � � � e

�˛i .t/dxi � � �„ ƒ‚ …
i 6Dj

d t

D 2
X

j

�Y
i 6Dj

erai

Z
t2r�

e j̨ .t/d t
�

� 2
X

j

�Y
i 6Dj

erai .eraj � erbj /jProjker. j̨ /.r�/j

�
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D 2

�Y
i

erai

�
rn�1

�X
j

jProjker. j̨ /.�/j.1� e�.raj�rbj //

�

� 2j4j

�Y
i

erai

�
rn�1 max

j
jProjker. j̨ /.�/j;

where we used unimodularity in the second equality. Since � is rounded,ˇ̌
@
�Q

j Œ0; e
raj �.r�/

�ˇ̌
jB.r�/j

D
.1/�Q

j eraj
�
rnj�j

C
.2/�Q

j eraj
�
rnj�j

�
1

r

j@�j

j�j
C 2j4j

1

r

maxj jProjker. j̨ /.�/j

j�j

DO

�
1

r

1

diam.�/

�
DO .1= diam.B.r�/// :

3 Quasi-geodesics

The purpose of this section is to prove the following.

Theorem 3.5.1 Let G , G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Given 0< �; ı < 1, there are
numbers L0 , 0< � < 1 with the following properties.

If �� A is a product of intervals of equal size at least L0 , then a tiling of B.�/ by
isometric copies of B.%�/

B.�/D
G
j2J

B.!j /t‡

contains a subset J0 � J with a relative measure at least 1� � such that for all j 2 J0 ,

(i) there is a subset L0.!j / � L.!j / with relative measure least 1� � , such that
their images under � are within ı linear neighborhood of geodesic segments;

(ii) there is a subset P0.!j / � P.!j / with relative measure at least 1 � � , such
that for every p 2 P0.!j /, at least 1� � proportion of geodesics passing within
O.ı diam.!j // of x , belong to L0.!j /.

In the next few sections we will collect the necessary lemmas and prove the above
theorem in Section 3.5.
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3.1 Quasi-geodesics in nondegenerate, split abelian-by-abelian groups

In this section, G denotes a nondegenerate, split abelian-by-abelian group. By Lemma
2.1.4, we can use the embedded metric on G . We will use the metric property of these
HsC1 spaces to obtain the following proposition, which says that if a quasi-geodesic
in G is long, then its projection in A (its image under �A ) has to be long as well.

3.1.1 Proposition Let �W Œ0;L�!G be a .�;C / quasi-geodesic segment. Suppose
f�A.�.t//g lies in a ball of diameter s . Then for any p; q 2 � , d.p; q/� „s , where „
is a constant that depends only the values of � , C and the number of roots.

3.1.2 Corollary (Assumptions as in Proposition 3.1.1) If there are two points p; q

on � such that d.p; q/ > „s , then there is a point r 2 Œ��1.p/; ��1.q/� such that
d.�A.p/; �A.�.r/// > s .

To prove Proposition 3.1.1, we need the following two lemmas whose verifications can
be found in the Appendix. In Hn0C1 DRn0 Ì R, we write h for the projection onto the
R factor.

3.1.3 Lemma Let �W Œa; b�! Hn0C1 be a continuous path such that

� the image of h ı � is contained in an interval of length no bigger than s , where
s > �.Cn0/

2.> 2/ and Cn0 is a constant depending only Hn0C1 (as in (4));

� whenever i1 � i2 � � � � � in 2 Œa; b�,P
j d.�.ij /; �.ijC1//

d.�.i1/; �.in//
� 2�:

Then, for any p; q 2 �.Œa; b�/, d.p; q/� yC .2�/s , where yC depends only on Cn0 .

Proof See the Appendix.

3.1.4 Lemma Let a; b � 0, A;B > 0. Suppose

aC b

ACB
D c˛

a

A
C cˇ

b

B
;

with c˛C cˇ D 1. If c˛ � cˇ , then A� B .

Proof See the Appendix.
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Proof of Proposition 3.1.1 We proceed by induction on the number of roots. The base
step where there is just one root is Lemma 3.1.3. Since � is a .�; c/ quasi-geodesic,
for any i0 � i1 � i2 � i3 � � � � � in 2 Œ0;L�, we must have

(5)

P
j d.�.ij /; �.ijC1//

d.�.i0/; �.in//
� 2�:

We recall from Lemma 2.1.4 that d. � ; � / D
Pj4j

lD1
d˛l .�˛l

. � /; �˛l
. � //, and pro-

ceed to simplify Equation (5) by writing d˛l .�˛l
.�.ij //; �˛l

�.ijC1// as d
˛l

j , and
d˛l .�˛l

.�.i0//; �˛l
.�.in/// as d˛l . Now (5) becomesP

j .d
˛1

j C d
˛2

j C � � �C d
˛j4j
j /

d˛1 C d˛2 C � � �C d˛j4j
� 2�:

Suppose for some weight, say ˛1 , we have

(6)

P
j d

˛1

j C
P

j .d
˛2

j C d
˛3

j C � � �C d
˛j4j
j /

d˛1 C .d˛2 C d˛3 C � � �C d˛j4j/

D c˛

P
j d

˛1

j

d˛1
C cˇ

P
j .d

˛2

j C d
˛3

j C � � �C d
˛j4j
j /

.d˛2 C d˛3 C � � �C d˛j4j/
;

where c˛C cˇ D 1, and c˛ � cˇ . Therefore c˛ � 1=2. Since Equation (6) is bounded
above by 2� , we now have an upper bound for the first term:

1

2

P
j d

˛1

j

d˛1
� 2�:

That is, f�˛1
.�.ij //g �H˛1

are points whose heights lie in an interval of width no
bigger than s (since �A.�.ij // lies in a ball of diameter s ), soP

j d˛1.�˛1
.�.ij //; �˛1

.�.ijC1///

d˛1.�˛1
.�.i0//; �˛1

.�.in///
� 4�:

By Lemma 3.1.3,

d˛1.�˛1
.�.i0//; �˛1

.�.in///� yC .4�/s:

Since c˛ � cˇ , Lemma 3.1.4 says d˛1 �
Pj4j

lD2
d˛l , which makes

d.�.i0/; �.in//D d˛1 C

j4jX
lD2

d˛l � 2 yC .4�/s D 22 yC .2�/s:
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If the first possibility (6) doesn’t occur, then for every weight ˛i0 , we must have

(7)

P
j .d

˛1

j C d
˛2

j � � � d
˛j4j

j /

d˛1 C d˛2 C � � �C d˛j4j

D c˛i0

P
j d

˛i0

j

d˛i0
C cˇi0

P
j .d

˛1

j C d
˛2

j � � � d
˛i0�1

j C d
˛i0C1

j � � � d
˛j4j
j /P

l 6Di0 d
˛l

with c˛i0
; cˇi0

� 0, c˛i0
Ccˇi0

D 1, but c˛i0
� cˇi0

. We fix such an i 0 . Then cˇi0
� 1=2.

Since (7) is bounded above by 2� , we obtain an upper bound for the second term:P
j .d

˛1

j C d
˛2

j � � � d
˛i0�1

j C d
˛i0C1

j � � � d
˛j4j
j /P

l 6Di0 d
˛l

� 4�:

By the inductive hypothesis,X
l 6Di0

d˛l .�˛l
.�.i0//; �˛l

.�.in///D
X
l 6Di0

d˛l � 22.j4j�2/ yC .4�/s:

Finally, since c˛i0
� cˇi0

, Lemma 3.1.4 says d˛i0 �
P

l 6Di0 d
˛l which means

d.�.i0/; �.in//D d˛i0 C

X
l 6D i 0d˛l � 222.j4j�2/ yC .4�/s D 22.j4j�1/ yC .2�/s:

3.2 Efficient scale

This section is based on [6, Definition 4.5 and Lemma 4.6].

3.2.1 Definition (�–Efficient at scale zr ) Let Y be a metric space, and �W Œ0;L�!Y

a rectifiable curve. We say that � is �–efficient at scale zr , 0< zr � 1 ifX
j

d.pj ;pjC1/� .1C �/d.�.0/; �.L//; wherefpj g D
yS.�; zrd.�.0/; �.L///:

3.2.2 Remark Note that being efficient at scale r does not necessarily imply being
efficient at all scales zr < r .

Efficiency provides with us the closest description of being “straight” in Rn , whose
meaning is made precise by the following lemma.

3.2.3 Lemma If �W Œa; b�!Rn is �–efficient at scale r , then

dH .�; �.a/�.b//� .1:5�
1=4
C r/d.�.a/; �.b//:

That is, � is close to a straight line.
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Proof Let m D rd.�.a/; �.b//, and fpj g
N
jD0
D S.�;m/ so that d.p0;pN / D

d.�.a/; �.b// D L. Let hp0pN
be the orthogonal projection of � onto p0pN and

zpi D hpq.pi/, so d. zpj ; zpjC1/ � d.pj ;pjC1/Dm. Since zp0 D p0 , zpN D pN , we
have

SN�1
iD0 zpi zpiC1D p0pN , and the Lemma in the Appendix gives that d.pj ; zpj /�

1:5�1=4L. So if Pp 2 �, letting pj be the closest point in S.�;m/, we then have
d. Pp;p0pN / � d. Pp;pj /C d.pj ;p0pN / �mC 1:5�1=4L. Similarly for Rp 2 p0pN ,
there is a j such that Rp 2 zpj zpjC1 , with d. Rp; zpj /�d. Rp; zpjC1/ which gives d. Rp; �/�

d. Rp; zpj /C d. zpj ; �/�
1
2
mC 1:5�1=4L.

3.3 Monotone scale

The purpose of this section is to prove Proposition 3.3.2. It is based on [7, Section 4.1].

3.3.1 Definition (ı–Monotone) Let G be a split abelian-by-abelian group, and
�W Œ0;L� �!G , a .�;C / quasi-geodesic segment such that there exists a line segment
AB � A satisfying

dH .�A.�/;AB/� �k�A.�/k;

for some 0 � � < 1. Let hABW �A.�/! AB be the map that sends every point of
�A.�/ to the closest point on AB by orthogonal projection. We say that � is

� ı–monotone, if whenever

hAB.�A ı �.t1//D hAB.�A ı �.t2//

we have

d.�.t1/; �.t2//� ıd.�.0/; �.L//;

with �j�A.�/j � ıd.�.0/; �.L//.

� .�;C1/ weakly monotone if whenever

hAB.�A ı �.t1//D hAB.�A ı �.t2//

for t1 > t2 , we have

d.�.t1/; �.t2//� �d.�.t1/; �.0//CC1;

with �j�A.�/j � C1 � �d.�.t1/; �.0//.

Note that the definition of weakly monotone is not symmetrical to both end points: it
is biased towards the starting point �.0/. The merit of a monotone path is that in a
nondegenerate group, it is close to a geodesic segment as stated in the next proposition.
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3.3.2 Proposition Let G be a nondegenerate, split abelian-by-abelian group, and
�W Œ0;L�!G a .�;C / quasi-geodesic whose �A image is �–efficient. Then

(i) when � is ı monotone, � is within O.ıL/ neighborhood of a geodesic segment;

(ii) when � is .�;C1/ weakly monotone, � is in j4j�–linear CO.1/ (Recall that
4 is the set of roots of G ) neighborhood of a geodesic.

Note that a monotone path is efficient by definition. So being close to a geodesic
segment is the same as asking that the movement of the path along H direction (this
is H in G D A Ë H) is not too big. We will prove Proposition 3.3.2 by using the
observation that for a monotone path in G , admitting a geodesic approximation is
the same as saying that for any root ˛ 2 4, its �˛ (recall that �˛W G �! H˛ ; see
last bullet point under “Subspaces of G” in Section 2.2.4) image admits a (vertical)
geodesic approximations (See Lemma 3.3.5 below).

The next lemma sets out one scenario where we have (vertical) geodesic approximation
in HnC1 D Rn Ì R Recall that  .t/ is etN.t/, where N.t/ is a nilpotent matrix
with polynomial entries. We coordinatize points in HnC1 as .x; t/, where x 2Rn , and
t 2R. Let h denotes the projection .x; t/ 7! t .

3.3.3 Lemma Let fpig
t
iD�s , where s; t 2 ZC , be points in HnC1 such that for some

h0 > 2, h.pj / D h.pj�1/ C h0 for all j . For i > 0, let di denote the distance
between pi and the vertical geodesic passing through pi�1 ; for i < 0, let di denote
for the distance between pi and the vertical geodesic passing piC1 .

(i) If for all j , dj � r , and 2r � h0 , then there is a geodesic 0 such that
d.0;pj /� 2r for all j .

(ii) If for all j , dj � �jj jCC1 , where �� 1 and 2C1� h0 , then there is a geodesic
0 such that d.0;pj /� 2�jj jC 2C1 .

Proof We first produce geodesic C and � that stay close to fpi ; i � 0g and
fpi ; i � 0g respectively. Then we show that C and � coarsely intersect at some pj ,
j � 0, and show that there is a geodesic 0 with the desired property.

Write pj D .xj ; tj /. We can assume without the loss of generality that p0 D .0; 0/.
Note that the distance between .x1; t1/ and the vertical geodesic passing through
.x2; t2/ is U.jx1�x2j/� t1 by Equation (3).

� Then, by Equation (4), for j > 0,

ln jxj �xj�1j � j h0 � dj :
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Hence for all k � 0,

jxk j �

kX
jD1

jxj �xj�1j �

X
j

edjCjh0 :

Let C be the geodesic passing through p0 . Then for k � 0,

d.pk ; 
C/� 2 ln

� kX
j

edjCjh0

�
� 2kh0 D 2 ln

� kX
jD1

edjC.j�k/h0

�
� For j < 0, again by Equation (4)

lnjxjC1�xj j � j h0 � dj ;

jxjC1�xj j � edjCjh0 :hence

Note that under the assumptions of (i) or (ii), x�1 D limj!�1 xj exists. So
for all k < 0,

jxk �x�1j �

1X
jDk�1

edjCjh0 :

Let � be the vertical geodesic passing through .x�1; 0/. Then for k < 0,

d.pk ; 
�/� 2 ln

� �1X
k�1

edjCjh0

�
� 2kh0 D 2 ln

� �1X
jDk�1

edjC.j�k/h0

�
:

(i) In this case, d.pk ; 
C/� 2r for all k � 0; d.pk0 ; 

�/� 2r for all k 0 � 0. In
particular, d.p0; 

�/ � 2r . Since C 3 p0 , the height at which C and �

come together is at most h.p0/C 2r < h.p1/ by assumption. In other words,
the parts of � and C above height h.p0/C 2r < h.p1/ are within O.1/

Hausdorff neighborhood of each other. So we can take 0 to be � .

(ii) In this case, d.pk ; 
C/� .2�/kC2C1 for k � 0; d.pk ; 

�/� .2�/.�k/C2C1

for k � 0. In particular, d.p0; 
�/� 2C1 , so the height at which C and �

come together occurs no higher than h.p0/C 2C1 . For the same reason as in
case (i), we can take 0 to be � .

Recall that for each root ˛ , there is a corresponding projection map �˛W G �!H˛

onto a negatively curved space, and h˛W H˛ �!R is the associated height projection.

3.3.4 Lemma Let  be a quasi-geodesic in G such that for some weight ˛ , the
image h˛ ı�˛. / lies in a ball of radius c2 , where c2�kk. Then �˛. / is within
O.log.kk// Hausdorff neighborhood of a (vertical) geodesic segment.
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Proof Let c be the additive constant of the quasi-isometry that defines  . Then every
time we move C units in the domain of  , h˛ ı �˛. / moves at most 2�C units
horizontally in H˛ , but this means that by the end of the  , �˛. .0// and �˛. .kk//
is at most O.log.kk// apart.

3.3.5 Lemma Let  be a path in G such that for each root ˛ , �˛. / is within
c1 –Hausdorff neighborhood of a (vertical) geodesic, then  itself is within O.c1/

Hausdorff neighborhood of (straight) geodesic.

Proof In order to specify a geodesic segment in G , we need to specify a direction in
the A factor and a point in H factor. The latter is given by the base points of geodesics
in each �˛.G/. The former exists because the various geodesic segment approximate
the �˛ images of a fixed path.

We now proceed to prove Proposition 3.3.2 by showing that if a path is monotone, then
for any root ˛ , its �˛ image satisfies the hypothesis of Lemmas 3.3.3 and 3.3.4.

Proof of Proposition 3.3.2 Set

� s D ıkABk

� tj Dmaxft j hAB ı�A ı�.t/D j sg

� t 0j Dminft 2 Œtj�1; tj � j hAB ı�A ı�.t/D j sg.

Therefore for t 2 Œtj�1; t
0
j �, we must have hAB ı �A ı �.t/ 2 Œ.j � 1/s; j s�. Since

d.�A.�/;AB/� �jABj, the set f�A.�.t//; t 2 Œtj�1; t
0
j �g lies in a ball of diameter at

most zs D
p

s2C .2�jABj/2 D
p
ı2C 4�2jABj, which means d.�.tj�1/; �.t

0
j //� „zs

by Proposition 3.1.1.

(i) In the case that � is ı monotone,

hAB.�A ı�.tj //D hAB.�A ı�.t
0
j //H) d.�.tj /; �.t

0
j //� ıd.�.0/; �.L//:

(ii) If � is .�;C1/ weakly monotone,

hAB.�A ı�.tj //D hAB.�A ı�.t
0
j //H) d.�.tj /; �.t

0
j //� �d.�.tj /; �.0//CC1:

Therefore d.�.tj�1/; �.tj //� d.�.tj�1/; �.t
0
j //C d.�.t 0j /; �.tj //� ‡ , where

‡ D

(
„zsC ıd.�.0/; �.L// when � is ı–monotone;

„zsC �d.�.tj /; �.0//CC1 when � is .�;C1/ weakly monotone:

The claim now follows from applying Lemmas 3.3.3 or 3.3.4 to f�„.�.tj //gj in the
„ weight hyperbolic space for each root „, followed by Lemma 3.3.5.
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3.4 Finding a good scale

In this section we show that given any �; ı , if a quasi-geodesic is sufficiently long, then
there is a scale at which the �A projection is � efficient and the geodesic itself at that
scale is ı monotone.

3.4.1 Proposition Let G be a nondegenerate, split abelian-by-abelian group. Given
any N � 2, 0< �; ı; � < 1, satisfying ı=„> 1:5�1=2C �, there is a number L0 such
that whenever �W Œ0;L�!G is a .�;C / quasi-geodesic satisfying

L0 � 2�L;

then there is a scale 0< �J < 1 such that

jS.S; �J k�k;P/j
jS.�; �J k�k/j

�
1

N
;

where P denotes the property “not within ı�J k�k Hausdorff neighborhoods of geodesic
segments”.

Proof Actually we will prove the statement

jS.S; �J k�k;Q/j
jS.�; �J k�k/j

�
1

N

for the statement Q being “not � efficient or ı monotone”, and the claim would then
follow from Proposition 3.3.2.

If �A.�/ is already �–efficient and � itself ı monotone then we are done. Otherwise
let �i D �

i , i D 1; 2; : : : ;D be D many scales, and demand the curve be long enough
so that it remains coarsely visible at the smallest scale. More precisely, demand L0 to
satisfy

L0�D � 2�C:

We start the proof by setting

fpi
j g D

yS.�A.�/;Li/; where Li D �ik�A.�/k

and let zpi
j be the corresponding point on � whose �A image is pi

j . There are three
possibilities for each �Œ zpi

j
; zpi
jC1

� :

� �A.�/Œpi
j
;pi
jC1

� is not �–efficient at scale �.

Say pi
j D piC1

s1
, pi

jC1
D piC1

s2
. Then

(8)
s2X

tDs1

d.piC1
t ;piC1

tC1
/� d.pi

j ;p
i
jC1/C �d.p

i
j ;p

i
jC1/D d.pi

j ;p
i
jC1/C �Li :
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� �A.�/Œpi
j
;pi
jC1

� is �–efficient at scale � but �Œ zpi
j
; zpi
jC1

� is not ı–monotone.

In this case there are two points t1; t2 2 Œ�
�1. zpi

j /; �
�1. zpi

jC1
/� such that

(9) h
pi
j
;pi
jC1

.�A ı �.t1//D h
�A.p

i
j
/;�A.p

i
jC1

/
.�A ı �.t2//

with

(10) d.�.t1/; �.t2//� ıd. zp
i
j ; zp

i
jC1/:

Equation (9) and the assumption that �Œpi
j
;pi
jC1

� is �–efficient at scale � imply that

(11) d.�A.�.t1//; �A.�.t2///� .1:5�
1=2
C �/Li

by Lemma 3.2.3.

On the other hand, by Corollary 3.1.2, (10) implies there must be a t 2 Œt1; t2� such that

(12) d.�A.�.t//; �A.�.t1///�
ı

„
Li :

Say pi
j D piC1

s1
, P i

jC1
D piC1

s2
. Then (11) and (12) imply that

s2�1X
tDs1

d.piC1
t ;piC1

tC1
/

� d.pi
j ; �A.�.t1///C d.�A.�.t2//;p

i
jC1/C

2X
�D1

d.�A.�.t�//; �A.�.t///

� d.pi
j ; �A.�.t1///C d.�A.�.t2//;p

i
jC1/C

2ı

„
Li � d.�A.�.t1//; �A.�.t2///

� d.pi
j ;p

i
jC1/C

2ı

„
Li � 2d.�A.�.t1//; �A.�.t2///

� d.pi
j ;p

i
jC1/C 2

�
ı

„
� 1:5�1=2

� �

�
Li :(13)

The first three lines are triangle inequalities, and the last one uses (11).

� In the remaining possibility we certainly have

(14)
s2�1X
tDs1

d.piC1
t ;piC1

tC1
/� d.pi

j ;p
i
jC1/:
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Adding up (8), (13) and (14) we haveX
j

d.piC1
j ;piC1

jC1
/�

X
j

d.pi
j ;p

i
jC1/C

� number of
nonefficient segments

�
� �Li

C

� number of
nonmonotone segments

�
� 2

�
ı

„
� 1:5�1=2

� �

�
„ ƒ‚ …

y�

Li

�

X
j

d.pi
j ;p

i
jC1/C [i

k�A.�/k

Li
�Li C \i

k�A.�/k

Li
y�Li

D

X
j

d.pi
j ;p

i
jC1/Cminf�; y�g.[i C \i/k�A.�/k;(15)

where [i and \i represent respectively, the proportion of nonefficient and nonmonotone
segments. Writing �i D

P
1�j�ni

d.pi
j ;p

i
jC1

/ and using (15) we have

k�A.�/k � �D ��0 D

D�1X
iD0

�iC1��i �minf�; y�g
D�1X
iD0

.[i C \i/k�A.�/k:

Now divide both sides by k�A.�/k to get

(16)
1

minf�; y�g
�

D�1X
iD0

.[i C \i/

and note that by choosing L0 large enough, we can take D as large as needed, so there
is a scale �J such that [J C \J � 1=N .

3.4.2 Corollary Let G be a nondegenerate, split abelian-by-abelian group. For any
2� N0 < N , 0 < �; ı; � < 1, satisfying ı=„ > 1:5�1=2C �, there is a number L0

such that whenever F D f�ig is a finite set of .�;C / quasi-geodesics such that every
element of F , �i W Œ0;Li �!G satisfies

L0 � 2�Li ;

then there is a scale 0< �J < 1 and a subset F0 such that

(i) jF0j � .1�N0=N /jF j;
(ii) for every �i 2 F0 ,

jS.�i ; �J k�ik;P/j
jS.�i ; �J k�ik/j

�
1

N0

;

where P is the statement of “not within ı�J k�k Hausdorff neighborhoods of a
geodesic segment”.
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Proof Apply Proposition 3.4.1 to each �i 2F , and follow its proof until (16). Summing
over all elements of F produces

1

minf�; y�g
�

1

jF j
X
�2F

D�1X
iD0

.[i C \i/D

D�1X
iD0

1

jF j
X
�2F

.[i C \i/:

The choice of D implies there is a 1� J <D such that

1

N
�

1

jF j
X
�2F

.[i C \i/:

Let Fb be those � 2F whose .[iC\i/ value is more than 1=N0 . Applying Chebyshev
we see that

1

N
�
jFbj

jF j
1

N0

:

So the claim follows by taking F0 D F �Fb .

3.5 Proving Theorem 3.5.1

Recall that we need to prove the following.

3.5.1 Theorem Let G , G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Given 0< �; ı < 1, there are
numbers L0 , 0< � < 1 with the following properties.

If �� A is a product of intervals of equal size at least L0 , then a tiling of B.�/ by
isometric copies of B.%�/

B.�/D
G
j2J

B.!j /t‡

contains a subset J0 � J with a relative measure at least 1� � such that for all j 2 J0 ,

(i) there is a subset L0.!j / � L.!j / with relative measure least 1� � , such that
their images under � are within ı linear neighborhood of geodesic segments;

(ii) there is a subset P0.!j / � P.!j / with relative measure at least 1 � � , such
that for every p 2 P0.!j /, at least 1� � proportion of geodesics passing within
O.ı diam.!j // of x , belong to L0.!j /.

So far our results from previous sections only require the group to be nondegenerate and
split abelian-by-abelian. From now on, we will require all our groups to be unimodular.
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3.5.2 Lemma Let G be a nondegenerate, unimodular, split abelian-by-abelian Lie
group. Let �� A be a product of intervals of size L0 centered at the origin, then for
any �D 1=n, where n 2N , we can write

B.�/D
G
j

B.!j /t‡;

where the measure of the set ‡ is at most O.�/ proportion of that of B.�/, and each
B.!j / is isometric to B.��/.

Proof The unimodularity of G guarantees that most of the volume is concentrated in
the interior of B. The tiling is just translates of the smaller box.

Proof of Theorem 3.5.1 Set � D ı4 , � D ı8 , N D b1=�c, N0 D
p

N and apply
Corollary 3.4.2 to �.L.�// to obtain a scale �J , a cut-off number L0 , and a large
subset F0 of �.L.�//D F .

Let nD b1=�J c and set �D 1=n. Then apply Lemma 3.5.2 to get a tiling of B.�/.
Let Y be the set consisting of pairs .�;x/ where � 2 �.L.�//, x 2 � and define
Y .x/� F be those that pass within ı� diam.�/ of x . Note that jY .x/j D c for some
number c depending on �, so

jY j D
X
�2F

X
x2�

1D
X

x2�.P.�//

X
�2Y .x/

1D
X

x2�.P.�//

jY .x/j D cjB.�/j:

If f .�;x/ is a function on the set Y , we have

1

jY j

X
�2F

X
x2�

f .�;x/D
1

jY j

X
x2�.P.�//

X
�2Y .x/

f .�;x/

D
1

jY j

X
x2�.P.�//

1

jY .x/j

X
�2Y .x/

jY .x/jf .�;x/(17)

D
1

cjB.�/j

X
x2�.P.�//

1

jY .x/j

X
�2Y .x/

cf .�;x/:

Now apply (17) with f being the characteristic function of the set .�;x/ where x 2 �

and � 62 F0 . We get

1

jB.�/j

X
x2�.P.�//

�
1

jY .x/j

X
�2Y .x/

f .�;x/

�
DO.1=N0/:

The theorem now follows from Chebyshev applied to the function enclosed by the big
parenthesis.
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4 Inside of a box

The purpose of this section is to give the proof of the main theorem of the paper.

Theorem 1.3.3 Let G , G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Given 0< �; ı < 1, there are
numbers L0 , 0< � < 1 with the following properties.

If �� A is a product of intervals of equal size at least L0 , then a tiling of B.�/ by
isometric copies of B.��/

B.�/D
G
j2J

B.!j /t‡

contains a subset J0� J of relative measure at least 1�� , such that for all j 2 J0 , there
is a subset P0.!j /� P.!j / with relative measure at least 1� � such that �jP0.!j / is
within O.ı diam.!j // of a standard map gj �fj .

4.1 Geometry of flats

In this section, we note down some geometric properties of nondegenerate, unimodular,
split abelian-by-abelian groups relevant to Theorem 1.3.3. Specifically, we will show
if a large proportion of geodesics in a box are taken to bounded neighborhoods of
geodesics under a quasi-isometry � , then most flats in that box are also taken to
bounded neighborhoods of flats, and the restriction of � to a large proportion of that
box is close to a standard map.

4.1.1 Definition Given subsets Ui ’s in G , we say that they coarsely lie on a common
flat if there is a flat F and subsets yUi � F such that the dH.Ui ; yUi/DO.1/.

4.1.2 Lemma Let G be a nondegenerate, split abelian-by-abelian group, and  , �
are geodesic segments in G making an angle of at least sin�1.z�/ with root kernels such
that for some �� z� < 1, and supx2� infy2 d.x;y/D �.kkCk�k/. Then,  and �
coarsely lie on a common flat for at least �=z� proportion of their lengths.

Proof The assumption that ; � make an angle at least sin�1.z�/ with the root kernels
means that k�˛. /k� z�kk, k�˛.�/k� z�k�k. Now, if the claim is not true, then there
is a root ˛ such that �˛. / and �˛.�/ disagrees for more than �=z� of their length.
But this means that

sup
x2�

inf
y2

d.x;y/� sup
x2�˛.�/

inf
y2�˛. /

d.x;y/ >
�

z�
.k�˛. /kCk�˛.�/k/� � .kkCk�k/ ;

contradicting the assumption that supx2� infy2 d.x;y/D �.kkCk�k/.
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4.1.3 Definition Let G be a nondegenerate, split abelian-by-abelian Lie group. We
define the following objects in G .

� A 2–simplex � is a set of three pair-wise intersecting geodesic segments. This
includes the degenerate case of a geodesic segment and two subsegments of it.
Elements of � are called edges of �.
Note that a 2–simplex is just a triangle. The term “2–simplex” is used here only
because it makes the description more consistent.

� A filled 2–simplex z� consists of a 2–simplex � together with all the 2–
simplices ı satisfying the following properties: two of the three edges of ı
are subsegments of two edges of �. The edges of � are called faces or edges
of z�.

For I � 3, we define

� an I –simplex � as a set of I C 1 many filled .I�1/–simplices such that they
pairwise intersect at their I �2 faces. An element of � is called an .I�1/–face
of �.

� a filled I –simplex z� consists of an i –simplex � together with all i –simplices ı
satisfying the following properties: I many faces of ı are subsets of I many
faces of �. By faces of z� we mean faces of �. (See Figure 1.)
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Figure 1: The big tetrahedron together with the two smaller shaded tetrahe-
dron that are parts of a filled 3–simplex

Geometry & Topology, Volume 15 (2011)



Coarse differentiation and quasi-isometries of a class of solvable Lie groups I 1909

If the faces of a simplex behaves well under the quasi-isometry � , eg if their images
under � admit approximations by hyperplanes of appropriate dimensions, then we can
approximate the image of a simplex by a simplex. This is the content of the next lemma,
which deals with one instance where it is possible to approximate a quasi-simplex by a
simplex.

4.1.4 Lemma Let G be a nondegenerate, split abelian-by-abelian Lie group and B a
family of geodesic segments such that

(i) maxfj�j; 1=j�j; � 2 Bg DM �1;

(ii) for � 2 B , �.�/ is within �j�.�/j Hausdorff neighborhood of another geodesic
segment y� , and y� makes an angle at least sin�1.z�/ with the root kernels. We
call y� a geodesic approximation of �.�/.

Then for I � n, the � images of any I –simplex or filled I –simplex made out of
elements of B is within O.�M / Hausdorff neighborhood of another simplex or filled
simplex of the same dimension lying on a flat.

Proof We prove the claims by induction on I , starting with a 2–simplex, then filled
2–simplex followed by 3–simplex, filled 3–simplex, etc. . . .

The base step is the 2–simplex case. Before we start, we make the following ob-
servations. First, in Rn , an I –simplex is entirely determined by its projection onto
n many 1–dimension spaces given by a basis. Second, the image under �„ of an
2–simplex, whose edges are not parallel to any root kernels, is a collection of three
pairwise intersecting vertical geodesic segments, ie a degenerate triangle on a line.

Now take a 2–simplex with sides labeled as c1 , c2 , and c3 . By assumption, their
images under � admits approximations by geodesic segments zc1 , zc2 and zc3 , with the
properties that the end point of zci is no more than �.kcikCkciC1k/ away from the
starting point of zciC1 . For each weight „, each of �„.zci/’s is a vertical geodesic
segment. There are six possible configurations shown in Figure 2 below. To specify a
2–simplex on a flat that is close to these three geodesics, it is enough to specify the
root space coordinates of this flat, and this is given by the root space coordinate of the
gray line in each configuration.

To get an actual 2–simplex that approximates zc1 , zc2 and zc3 we can take it to be the
2–simplex L� that projects to the 2–simplex approximations for at least a basis worth
of weight vectors.

Now we examine the case of a filled 2–simplex. Let z� D f�g [ fıigi be a filled
2–simplex, and y�, yıi ’s denote for the 2–simplex approximation of �.�/, �.ıi/’s, as

Geometry & Topology, Volume 15 (2011)



1910 Irine Peng

Figure 2: The six configurations in the Base step, 2–simplex case of proof to
Lemma 4.1.4. The three vertical segments are zci , i D 1; 2; 3 , and the gray
line contains a degenerate 2–simplex, whose faces are close to the zci ’s.

given by the 2–simplex case above. Fix a i . Let F and Fi represent the flats that house
y� and yıi . By assumption, two edges 1; 2 of ıi are subsegments of �1 and �2 of �.
Therefore there are L1; L2 �

yıi that approximate �.1/ and �.2/. Similarly, there
are L�1 and L�2 in y� that approximate �.�1/ and �.�2/. Therefore the pair . Li ; L�i/,
satisfies the hypothesis of Lemma 4.1.2, and so F and Fi must have nontrivial coarse
intersection (because the conclusion of Lemma 4.1.2 says that .zi ; Li/ coarsely lie on
a common flat). Since the coarse intersection between two flats is convex, therefore
that there is a 2–simplex Mıi lying on F such that dH .yıi ; Mıi/� �M , and z1; z2 �

Mıi .

We now proceed with the inductive step and supposing that the claim is true for i –
simplices and their filled versions for i � I � 1. Let � D fzıigIiD0

where each zıi
is a filled .I�1/–simplex, and Lıi be their filled I � 1 simplex approximations as
yielded by the inductive hypothesis. Then we know for each weight „, �„. Lıi/ is a
vertical geodesic segment, and for any Lıi ; Lıj , �„. Lıi/, �„. Lıj / come together at some
subsegment. If modulo �=z� proportion of the ends, �„. Lı/’s do not coarsely lie on a
common vertical geodesic segment, then the relationship between �„. Lıi/, �„. Lıj / is
that of a forking Y ; see Figure 3 below. But this contradicts the existence of another Lık
that shares a face with Lıi and another face with Lıj . So modulo at most �=z� proportion
of their ends, �„. Lıi/, �„. Lıj / must coarsely lie on a common vertical geodesic. The
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same argument applied to every other weights means that we can translate each Lıi
to Mıi so that Mıi , Mıj share a common face. The collection of all Mıi ’s forms our desired
y� I –simplex. (Note that the inductive step is not a replacement of the 2–simplex case
in the base step because here, faces intersects at filled simplex of dimension I � 2,
which has diameter compatible to that of the diameter of the I –simplices of concern,
whereas in the 2–simplex case, the pair-wise intersection of edges consist of just one
point for each pair, so the same forking argument wouldn’t work there.)

Figure 3: Inductive step, I –simplex case in the proof of Lemma 4.1.4: the
solid and dotted lines represent �„. Lıi/ and �„. Lıj / .

We now examine the case of a filled I –simplex. Let z�D f�g[ fıig where each of �
and ıi is a I –simplex , and let y� and yıi ’s denote the I –simplex approximations of
�.�/ and �.ıi/’s. Then for every I many faces of yıi there are I many corresponding
faces of y� to which they are a subset of, and this means the corresponding subsegments
of edges of faces of y� and the edges of faces of yıi satisfy the hypothesis of Lemma 4.1.2,
so they coarsely lie on a common flat. This means the flats housing y� and yıi respectively
must coarsely intersect. Since the coarse intersection between two flats is convex, we
conclude therefore that there is a I –simplex Jıi in the flat containing y� such that
dH . Jıi ; yıi/� �M , and Jı share I of its faces with faces of y�. Then L�D fy�g[ fJıig
has the desired property.

4.1.5 Definition Let 0� � < 1. A .�;C /–quadrilateral QD fTig
3
iD0

in G is a set
of 4 oriented geodesic segments Ti satisfying the following.

(i) There is a nonsingular Ev 2 A such that the directions of Ti ’s are all parallel to
Ev (see Section 2.2.4 for definition of being singular).

(ii) kTik> 2�
P3

jD0kTjk, for every i .

(iii) For all i taken mod 4, some number C � �maxfkTikg,
� d.ei ; biC1/� �.kTikCkTiC1k/CC ,
� d.bi ; eiC1/� .1� �/.kTikCkTiC1k/CC ,

where bi ; ei denote the beginning and end points of Ti .
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We refer to Ti ’s as edges of Q, and write diam.Q/ for the maximum length of its
edges. The orientation of Ti is “up” (resp. “down”) if its direction is parallel to a
positive (resp. negative) multiple of Ev .

Example Suppose the rank of G is 1. Let VC;V� denote for the two root class
horocycles based at the identity element. Let x 2VC , y 2V� , and the word xyx�1y�1

represents a loop in HD VC˚V� . If we choose d.e; zx/, d.e; zy/DO.1/, such that
x D t zxt�1 , and y D t�1 zyt , then we obtain a loop representing a quadrilateral. Note
that the same construction works if G is rank 1 and nonunimodular, as long as there
are expanding and contracting leaves.

4.1.6 Remark The first requirement of a quadrilateral means a quadrilateral exists
in any nondegenerate rank 1 solvable abelian-by-abelian Lie group. Since any higher
rank, nondegenerate, abelian-by-abelian solvable Lie group contains at least one rank 1

subgroup, quadrilaterals exist in higher rank for the same reason that they exist rank 1

spaces as illustrated by the previous example.

4.1.7 Lemma Let QD fTig
3
iD0

be a .�;C /–quadrilateral. Then the direction of Ti

and TiC2 are positive multiple of each other, and that of Ti and TiC1 are negative
multiple of each other.

Proof There are 16 possibilities to the relationship among directions of all the Ti ’s
(being positive or negative multiples of each other). One checks that only the combina-
tion stated above is allowed. An argument is given in the Appendix.

Let A.t/ be a 1–parameter matrix consisting of blocks of the form e˛tN.t/ where
˛ 6D 0, N.t/ a nilpotent matrix with polynomial entries, and R ËA Rm be a semidirect
product for which r 2R acts on Rm by linear map A.r/. Write an element of RËARm

as .r; x/, where r 2R, x 2Rm , and W C (resp. W � ) for the direct sum of positive
(resp. negative ) eigenspaces of A.t/.

4.1.8 Lemma In R ËA Rm , suppose for some � � 1, we have r0; r1; r2; r3 > 0,
u0;u2 2W C , u1;u3 2W � such that for index j taken mod 4 satisfy
� d.uj ; e/� �.rj C rjC1/ for all j ;

� rj � 2�
P3
�D0 r� for all j ;

� the word .r0; 0/u0.�r1; 0/u1.r2; 0/u2.�r3; 0/u3 is trivial.

Then jri � riC1j � d.e;uiC1/C d.e;uiC3/. In particular this implies that the sizes of
the ri ’s are equal up to an error of at most �

P3
iD0 ri .

Proof See the Appendix.
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4.1.9 Remark The main jest of the Lemma 4.1.8 is that the length of a quadrilateral
is essentially determined by one number.

4.1.10 Lemma Let QD fTig
3
iD0

be a .�;C /–quadrilateral. Then

(i) kTik�kTjk � �
�P3

iD0 kTik
�

for all i; j ;

(ii) j�Ev ı…Ev.ei/��Ev ı…Ev.bi�1/j � d.ei ; biC1/C d.eiC2; biC3/ for all i ;

(iii) f…Ev.bi/;…Ev.eiC1/;…Ev.biC2/;…Ev.eiC3/g are within �
�P3

iD0 kTik
�

neighbor-
hood of a coset of W CEv (or W �Ev ) if i D 0 mod 2, and of a coset of W �Ev (or
W CEv ) otherwise.

Proof Modifying Ti ’s by an amount of at most �
P

j kTjk, we can assume �A.ei/D

�A.biC1/ for all i . Furthermore, the divergent assumption between bi and eiC1 means
that e�1

i .biC1/ 2W CEv (resp. W �Ev ) if the direction of Ti is positive (resp. negative)
multiples of Ev . The result now follows from Lemma 4.1.8.

A schematic illustration for a quadrilateral with the correct orientation and lengths for
its edges is given in Figure 4 below.

p0
2

T2

T3

p1

T4

q1

p2

q0
2q2

p01

T1

q01

Figure 4: A schematic illustration of a quadrilateral

4.1.11 Lemma Let QD fj g
3
jD0

be a .0;C /–quadrilateral in G such that each j
is properly contained in a geodesic segment zj , whose � image is within �kzjk

neighborhood of another geodesic segment whose direction is parallel to a nonsingular
Evj 2 A. Suppose further that kzj \ zjC1k > �

P3
�D0kz�k. Then, there is an .y�;C 0/–

quadrilateral yQ satisfying dH .�.Q/; yQ/�y� diam.Q/, where y�Dmaxf�.kzjk=kjk/gj
and C 0 D �C CC .
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Proof For each j , let zTj be an geodesic approximation of �.zj /. Since Q is a
.0;C /–quadrilateral, zj \ zjC1 is a geodesic segment with positive length, the angle
between the Evj and EvjC1 is at most sin�1.�/, and d. zTj ; zTjC1/� �.k zTjkCk

zTjC1k/.
By moving each zTj by an amount at most �

P
� k
zT�k, we can assume the directions

of zTj ’s are all parallel to some Ev with W 0
Ev Df0g, and zTj\

zTjC1 is a geodesic segment
of positive length. Let Tj �

zTj be the subsegment closest to �.j /. Then yQD fTj g

is a .y�;C 0/–quadrilateral.

4.1.12 Remark In practice, when we apply Lemma 4.1.11 and Remark 4.1.12 to the
quasi-isometric image of a quadrilateral, we will often omit mentioning the extended
edges zj ’s.

4.2 Averaging

In this section, we put together some of the observations in the last two sections to show
that if a large percentage of geodesic segments in a box admit geodesic approximations
to their � images, then for i � 2, a large percentage of i –hyperplanes in the box also
admit i –hyperplane approximations to their � images. In particular, there is a large
subset of flats in the box whose � images are close flats.

The following is an averaging lemma that will be used repeatedly for the reminder of
this section.

4.2.1 Lemma Let .A; �˛/,.B; �ˇ/ be two finite measure space, and � is a relation
between them. For a 2A, write Ba D fb 2 B; b � ag as the subset of B consisted of
elements related to a, and Ab , for b 2 B , as the subset of elements of A related to b .

Suppose �ˇ.Ba/=�ˇ.Ba0/�MA for any a; a0 2A, and �˛.Ab/=�˛.Ab0/�MB for
any b; b0 2 B .

If for some s � .1/=MAMB , As �A with �˛.As/� s�˛.A/, then the subset Bs;t D

fb 2 B W �˛.Ab \As/� t�˛.Ab/g, satisfies �ˇ.Bs;t /� .s=t/MAMB�ˇ.B/.

Proof See the Appendix.

4.2.2 Remark Lemma 4.2.1 will often be used to show that for subset A0 � A of
relative large measure, the subset of B consisting of elements b 2 B such that the
measure of Ab \A0 is large relative to that of Ab , has large relative measure.

4.2.3 Lemma Let G D H Ì A, G0 D H0 Ì A0 be nondegenerate, unimodular, split
abelian-by-abelian Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Let ��A
be a product of intervals of equal size. Suppose for some 0 � ı < � < 1, there are
subsets L0 � L.�/, P 0 � P.�/, both with relative measures at least 1� � , with the
following properties:
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� If � 2 L0 , then �.�/ admits a straight geodesic approximation.

� If p 2P 0 , then at least 1�� proportion of geodesics within ı diam.�/, belongs
to L0 .

There is a subset P0 � P 0 of relative measure at least 1� � such that if p; q 2 P0 are
two points on the same flat, then �.p/; �.q/ are within O.ı diam.�// neighborhood
of a flat.

4.2.4 Remark The conclusion of Lemma 4.2.3 implies that a flat whose points are
mostly in P 0 is mapped close to another flat under � . This is because if not, then we
would have three points p; q; r such that the flat that is close to �.p/ and �.q/ is not
within O.ı diam.�// neighborhoods of the flat close to �.q/ and �.r/. So then under
some weight space projection, the configurations of the three points would trace out
a fork as in Figure 3 in the proof of Lemma 4.1.4, contradicting the assumption that
�.p/ and �.r/ are close to a common flat.

Proof The idea of the proof is to set up a situation where we can apply Lemma 4.1.4.
We now construct subsets L0

i � Li.�/ for i D 1; 2; 3; : : : ; n, and P0 � P.�/, all
with relative proportion at least 1� � such that

� for every S 2 L0
i .�/,

jLi�1.S/\L0
i�1j � .1� �/jLi�1.S/jI

� for every p 2 P0 ,

jLi.p/\Li.�/\L0
i j � .1� �/jLi.p/\Li.�/j;

where Li.p/ means the i –dimensional hyperplanes that contain p .

We construct those subsets inductively, starting with base case when i D 2, since
L0

1
D L0 is already given.

Incidence is a relation between L.�/ and L2.�/, so by Lemma 4.2.1 we can choose
s2.�/ < 1 appropriately such that the set

L0
2 D fS 2 L2.�/ W jL1.S/\L.�/\L0

j � .1� s2/jL1.S/\L.�/jg

jL0
2j � .1� �

1=2/jL.�/j:satisfies

Fix a S 2 L0
2

. Define P .S/bad � P .S/ as

P .S/bad
D fp 2 P.�/ W jL.p/\L.S/\L.�/nL0

j � sbjL.p/\L.S/\L.�/jg:
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We obtain a bound on the relative size of P .S/bad as follows.

Let � be the characteristic function of the subset of

f.p; �/ W p 2 P .S/; � 2L.S/\L.�/;p 2 �g

consisting of pairs .p; �/ where � 2L.S/\
�
L.�/nL0

�
. Then, starting fromX

x2P.S/

X
2L.x/\L.S/\L.�/

�D
X

2L.S/\L.�/

X
p2P. /

�

we haveX
x2P.S/

X
2L.x/\L.S/\L.�/Œm�

��
X

x2P.S/bad

sbjL.x/\L.S/\L.�/Œm�j

� sbjP .S/
bad
jminfjL.x/\L.S/\L.�/j W x 2 Sg;X

2L.S/\L.�/

X
p2

�� s2jL.S/\L.�/jmaxfjP .�/j W � 2L.S/\L.�/g

which yieldsˇ̌
P .S/badˇ̌

�
s2

sb

jL.S/\L.�/j maxfjP .�/j W � 2L.S/\L.�/g
minfjL.x/\L.S/\L.�/j W x 2 Sg

�
s2

sb

k jP .S/j

where k depends only on G . By choosing sb D s
1=2
2

, we have that the measure of
P .S/bad is at least 1� s

1=2
2

times that of P .S/.

We now apply Lemma 4.2.1 to P .S/, L.S/\L.�/, and P .S/bad to conclude that
for some �2� 1, the subset

L.S/bad
D f� 2L.S/\L.�/ W jP .�/\P .S/bad

j � �2 jP .�/jg

jL.S/bad
j � �02 jL.S/jsatisfies

for some �0
2
� 1 depending on �2 . Apply Lemma 4.2.1 again to P .S/, L.S/\L.�/,

and L.S/goodD .L.S/�L.S/bad/\L0 to conclude that for some y�2� 1, the subset

P .S/w D fp 2 P .S/ W jL.p/\L.�/\L.S/good
j � .1�y�2/jL.p/\L.�/jg

jP .S/wj � z�2jP .S/jsatisfies

for some z�2� 1. Now set P .S/0 as P .S/�P .S/bad �P .S/w , and let P2 as the
union of P .S/0 as S ranges over L0

2
.
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In general, once L0
i�1

is constructed, we repeat the argument above by replacing
subscript 1 and 2 by i � 1 and i respectively, to arrive at subsets L0

i , P .S/0 � P .S/

for every S 2 L0
i , and Pi as the union of all the P .S/0 as S varies over L0

i . Set P0

as the intersection of all the Pi ’s. Since each Pi has large proportion relative to P.�/,
the same is true for P0 .

We now show that P0 has the claimed property. Take p; q 2 P0 . We claim that it is
sufficient to assume that d.q; @B.�//� 1

3
diam.B.�//, and d.p; q/� 1

3
diam.B.�//.

To see that this is sufficient observe that if the initial pair p; q fails either conditions,
we find a third point z0 2 P0 from the same flat such that p; z0 and q; z0 do, and that
�.p/ and �.q/ lies within O.ı diam.�// neighborhood of a flat follows at once from
triangle inequality applied to the pairs �.p/; �.z/ and �.q/; �.z/.

Denote the set of codimension 1 hyperplanes in B.�/ through p and q by Grn�1.p/

and Grn�1.q/ respectively. We place on them invariant measures coming from viewing
them as homogeneous spaces. To each element of Grn�1.p/ that does not contain q ,
we give it an orientation (that is, an element En 2 A) so that it points to the half
space containing q . Similarly for an element of Grn�1.q/ that does not contain p ,
we give it a normal that points towards the half space containing p . We proceed to
extract a nonempty subset Grgood � .Grn�1.p//

n
�Grn�1.q/ such that its element

gives us a n simplex containing p and q , by making the following demands. If
.Q1;Q2; : : : ;Qn;S/ 2 Grgood , then

(1) p 2 Qi , but d.q;Qi/ � 2ı diam.B.�// for all i , and q 2 S but d.p;S/ �

2ı diam.B.�//;

(2) d.q;Qi \S/� .1=6/ diam.B.�// for every i ;

(3) 0<† EnQi\S ; EnQj\S � 2 cos�1..1=6/=.1=3�ı//, for every i; j , where EnQi\S

denotes the normal of Qi\S in S as inherited from Qi , and † EnQi\S ; EnQj\S

means the angles between them.

We now justify the existence of Grgood . First, we note that the subset of Grn�1.p/

that comes within 2ı diam.B.�// of q has measure O.ı/ relative to the whole of
Grn�1.p/. This is because in order for an element of Grn�1.p/ to come within
2ı diam.B.�// of q , the angle between its normal and the vector �!pq has to lie in the
interval centered at �=2 of width O.ı/. The reasoning is symmetrical in p and q , so
we conclude that the subset of .Grn�1.p//

n
�Grn�1.q/ that fails condition (1) has

relative measure O.ı/.

Now fix a S 2Grn�1.q/ and consider the subset of Grn�1.p/ satisfying condition (2).
Certainly this is a nonempty set because we can just take a hyperplane S 0 � S of
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codimension 1 (in S ) that is no more than .1=6/ diam.B.�// away from q and let
Q 2 Grn�1.p/ be the element determining by S 0 and p . Conversely every element of
Grn�1.p/ satisfying condition (2) arises this way. Furthermore, if Q 2Grn�1.p/ fails
condition (2), then by writing out the linear equation for Q using the distance between
the S 0DQ\S and q , we see that failing condition (2) is equivalent to saying that the
angle between EnS and EnQ lies outside of some interval I , with size less than � and
depends only on the choice 1=6 and the 1=3 appearing in the lower bound of d.p; q/.
(Note that we state an lower bound on the angle between EnS and EnQ here because our
particular choices of orientations on the normals.) So in this way see that the subset of
Grn�1.p/ meeting the requirement of condition (2) is a set of positive measure.

Keeping the S fixed as before, we now impose condition (3) on the set that satisfies
condition (2). From the previous paragraph we identify Q 2 Grn�1.p/ satisfying con-
dition (2) with a pair .z; r/, where 2ı diam.B.�//< r < d.q; @B.�//�ı diam.B.�//,
and z 2Sn�2.q/ is an element of the radius 1 sphere centered at q , such that the vector
from q to the point on Q closest to it is r�!qz . By the way, �!qz is parallel to EnQ , the
normal of Q, but with opposite orientation.

In doing so, we set up a diffeomorphism between the subset of Grn�1.p/ satisfy-
ing condition (2) with the product measure between that of Sn�2 and the interval
.2ı diam.B.�//; d.q; @B.�//� ı diam.B.�///. We can thus identify those two sets
and use the measures on either spaces, since they are related up to constant multiple.
Now given Qi ;Qj satisfying condition (2), let .zi ; ri/, .zj ; rj / be the aforemen-
tioned pairs corresponding to them. By drawing a great circle through zi and zj

and recalling that d.q; @B.�// � 1
3

diam.B.�//, we see at once that condition (3)
is the same as asking the spherical distance d.zi ; zj / be nonzero and smaller than
2 cos�1..1=6/=.1=3� ı//.

Putting the last paragraphs together we see that subset of Grn�1.p/
n satisfying (2)

and (3) has positive measure, and the set Grgood has positive measure also because the
subset of Grn�1.p/

n �Grn�1.q/ failing condition (1) goes to zero with ı while the
relative measure of those fulfilling conditions (2) and (3) does not decrease with ı .

Now we show elements of Grgood give rise to simplices. Take .Q1;Q2; : : : ;Qn;S/ 2

Grgood . If we can show that their nonempty pairwise intersections (inside of B.�/)
are of the right dimension then we are done. This is certainly true of the intersections
between the S and the Qi ’s by virtue of condition (2). As for intersections between
the Qi ’s, demanding that their intersection inside of the box to have the correct
codimension is the same as asking the intersection between Qi\S and Qj\S to have
nonempty intersection with the interior of the box, since Qi \S and Qj \S are not
parallel by assumption, and any two nonparallel codimension 1 hyperplanes intersect
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at a codimension 2 subspace. We can make sure their intersections intersect the interior
of the box by demanding that the d.q;Qi \S \Qj / < d.q; @B.�//� ı diam.B.�//.
By considering the quadrilateral with one vertex in S \Qi \Qj and the remaining
being q , and the points on Qi \ S , Qj \ S closest to q we have the statement of
condition (3).

So now �.p/ and �.q/ lie within O.ı diam.�// of a common flat by Lemma 4.1.4.

4.3 Proof of Theorem 1.3.3

Apply Theorem 3.5.1 to B.�/ to obtain a tiling

B.�/D
G
i2I

B.!i/[‡;

where each B.!i/ is isometric to B.��/ and a subset I0 � I of relative large measure
such that for every i 2 I0 , there is a subset L0i �L.!i/ of relative large measure whose
images under � are within O.ı diam.!i// neighborhoods of geodesic segments. Fix
one such i 2 I0 , and apply Lemma 4.2.3 and Remark 4.2.4 to conclude that �jP 0 sends
flats to flats.

To obtain a product structure on P0 , we proceed to show that �jf and �jf 0 for
f; f 0 2 L0

rank.G/ are identical up to an error of � diam.B.�i//. In the process of doing
so, we will show that left cosets of root spaces are sent to left cosets of root spaces,
and left cosets of H are sent to left cosets of H0 up to an error of the same order.

First we show that the claim is true for two flats f; f 0 2 L0
rank.G/.!i/ that contain

points p 2 f \P0.!i/, p0 2 f 0\P0.!i/ such that p;p0 lie on a common root class
horocycle, and d.p;p0/� 8ı diam.!i/.

Since to any pairs of distinct root classes there exists at least one nonsingular vector such
that the pair has nontrivial intersection with the corresponding expanding and contracting
subspaces, it follows that a root class can be uniquely defined by the its signs (expanding
or contracting) with respect to some O.1/ number of nonsingular directions in A. So
for p;p0 2P0.!i/�P0 , we can find geodesic segments lp;1; lp;2 2L0.�/ containing
p , lq;1; lq;2 2L0.�/ containing q such that for some subsegments yl�;� � l�;� , �Dp; q ,
�D 1; 2, QD fylp;�;ylq;�g�D1;2 is a .0;C /–quadrilateral.

As d.p; q/� 8ı diam.!i/, by Lemma 4.1.11 and Remark 4.1.12, there is a .O.ı/; yC /–
quadrilateral yQ within O.ı diam.!i// Hausdorff distance away from �.Q/. Applying
Lemma 4.1.10 to yQ, we see that �.p/ and �.p0/ are within O.ı diam.!i// neigh-
borhood of a left translate of W CEv or W �Ev where Ev is the direction of edges of yQ.
Since p; q 2 P0.!i/, we can build quadrilaterals Q1;Q2; : : : ;Qk for k � nC 2, the
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edges of each are elements of L0.�/ such that their respective approximating quadri-
laterals yQ1; yQ2; : : : ; yQk , with edge directions Ev1; Ev2; : : : ; Evk satisfies

Tk
�D1W

�.�/

Ev�
with �.�/ 2 fC;�g, is VŒ˛� for some root class Œ˛�. For the same reason as before,
we see that �.p/ and �.q/ lie within O.ı diam.!i// Hausdorff neighborhood of a
translate W �.�/ for �D 1; 2; : : : ; k , therefore �.p/ and �.q/ lie within O.ı diam.!i//

Hausdorff neighborhood of a translate of VŒ˛� . By using more quadrilaterals, the
argument above also shows that �jf\P0.!i /

are the same as �jf 0\P0.!i /
up to an error

of O.ı diam.!i//.

In general, for two arbitrary points p; q 2 P0
i in the same left coset of H, we can

find at most 2j4j number of points p0 D p;p1;p2; : : : ;pl D q , such that each
consecutive pair of points lie on a common root class horocycle, and distance at least
8ı diam.!i/ away. The quadrilateral argument above then shows that �.p/ are �.q/
within O.ı diam.!i// neighborhood of a translate of H0 .

Let f W A!A0 be a map that is within O.ı diam.!i// away from �jf\P0.!i /
for any

flat f 2 L0
n.!i/. We now show that f has to preserve root kernels. Take p 2 P0.!i/,

and f1; f2 be two flats in L0
n.!i/ containing p . Then p 2 f1\f2 , so f1\f2 6D∅,

hence �.f1/ \ �.f2/ 6D ∅, and any two flat approximations to �.f1/ and �.f2/

have nonempty intersection as well. Since two flats come together at a convex set
whose boundary is a union of hyperplanes parallel to root kernels, this means that the
restriction of � to any flats f 2 L0

n.!i/ preserves hyperplanes parallel to root kernels
up to an error of O.ı diam.!i//.

Appendix

Proof of Lemma 3.1.3 We will use the notation from Equation (3). Write pD .x; t/,
q D .x0; t 0/. By assumption, jt � t 0j � s . If U.jx � x0j/ � minft; t 0g, then assume
t � t 0 . Then

d..x; t/; .x0; t 0//� d..x; t/; .x0; t//C d..x0; t/; .x0; t 0//� 2.t � t 0/C 1� 3s

and we are done. Now suppose U jx�x0j � t; t 0 , but U jx�x0j � 4s . Then

d..x; t/; .x0; t 0//� d..x; t/; .x;U.jx�x0j///Cd..x;U.jx�x0j//; .x0;U.jx�x0j///

Cd..x0;U.jx�x0j//; .x0; t 0//� 2U.jx�x0j/� .tC t 0/C1

� 8sC1� 12�s

and we are done.

Finally suppose U.jx�x0j/� t; t 0 , and U.jx�x0j/� 4s . Since � is continuous, we
can find i0 � i1 � i2 � i3 � � � � � in 2 Œa; b� and therefore points fpj D �.ij /g

n
jD1

such
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that p D .x; t/D �.i0/D p0 , pn D �.in/D q D .x0; t 0/, and U.jxj � xjC1j/D 4s ,
for all j except maybe the last one, where U.jxn�1�xnj/� 4s .

Then by Equation (3),Pn�1
jD0

�
U.jxj �xjC1j/� .tj C tjC1/

�
.U.jx0�xnj/� .t0C tn//

�

Pn�1
jD0 d.pj ;pjC1/

d.p0;pn/
� 2�:

Simplifying using Equation (4) yields

.n� 1/2s

2 ln.ne4s/
� 2�

which means .n� 1/s � 2�.ln.n/C 4s/, so n� 20� . So

d.p0; q0/�

n�1X
jD0

d.pj ;pjC1/�

n�1X
jD0

�
U.jxj�xjC1j/�.tjCtjC1/

�
� 20�sD 80�s:

Proof of Lemma 3.1.4 The claim is clear if c˛ D 1. Otherwise we know

c˛

cˇ
D
jb=B � .aC b/=.ACB/j

ja=A� .aC b/=.ACB/j

Therefore c˛ � cˇ gives us thatˇ̌̌̌
a

A
�

aC b

ACB

ˇ̌̌̌
�

ˇ̌̌̌
b

B
�

aC b

ACB

ˇ̌̌̌
:

� Suppose b=B < a=A. Writing b D c1a, B D c2A, we have

1�
1C c1

1C c2

<
1C c1

1C c2

�
c1

c2

;

c2.c2� 1/ < c1.c2� 1/;

If A < B D c2A, then 1 < c2 , and this gives us c2 < c1 , which means 1 < c1=c2 .
Multiplying both sides by a=A this means a=A< b=B , contradiction. So A� B .

� Now suppose a=A < b=B . Then again, that a=A is closer to .aC b/=.ACB/

than b=B means
aC b

ACB
�

a

A
<

b

B
�

aC b

ACB
;

1C c1

1C c2

� 1<
c1

c2

�
1C c1

1C c2

;

c1.c2� 1/ < c2.c2� 1/:

If A<B , then c2 > 1, and this gives us c1 < c2 , which means c1=c2 < 1. Multiplying
by a=A this says b=B < a=A, contradiction. So A� B .
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Lemma Given a triangle in R2 with vertices A;B;C and opposites of length a; b; c ,
satisfying .aC b/=c � 1C � for some � 2 Œ0; 0:5�, then

� d.C;AB/� 1:5�1=4AB ;

� minfA;Bg �max
˚
� � cos�1.�1C

p
�=.1C �//; sin�1.

p
�=.1C �/=2/

	
.

Proof The condition on the length means

1�
c2

.aC b/2
D
.aC b/2� 2ab.1C cos.C //

.aC b/2
�

1

1C �
:

Writing 1=.1C �/D 1�y� , (note that y� D 1� 1=.1C �/ � � ) for some small y� > 0,
we have

0�
2ab

.aC b/2
.1C cos.c//� y�

which means either .1C cos.C //�
p
y� or 2ab=.aC b/2 �

p
y� .

In the first case, cos.C /��.1�
p
y�/, so A;B <ACB � � � cos�1.�1C

p
y�/ and

d.C;AB/D jAC j sin.A/� jABj sin.� � cos�1.�1C
p

y�//

D jABj sin.cos�1.�1C
p

y�//:

d.C;AB/� jABj

q
1� .1�

p

y�/2 � jABj

q
.1� 1C

p

y�/.1C 1�
p

y�/Hence

� jABj

q
2
p

y�:

In the second case, the condition is equivalent to

2 sin.A/ sin.B/
.sin.A/C sin.B//2

�

p

y�:

Divide top and bottom by sin.B/ (if sin.A/D sin.B/D 0 then we are done, so assume
one of them is not zero) so

2 sin.A/� 2
sin.A/
sin.B/

�
2.sin.A/= sin.B//�

1C sin.A/=sin.B/
�2 �py�

yields A � sin�1.
p
y�=2/. Since � � 0:5, y� D 1� .1/=1C � � 1

3
. So †A � 16:78ı .

Since C CB D � �A, Without loss of generality C � B , C � � �A=.2/� 45ı so
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tan.C /� 1. Therefore

Hence

jAC j

jABj
D

sin.B/
sin.C /

D
sin.� �C �A/

sin.C /
D

sin.� �C / cos.A/
sin.C /

�
sin.A/ cos.� �C /

sin.C /

D cos.A/C
sin.A/
tan.C /

� cos.A/C sin.A/� 2:

d.C;AB/D sin.A/jAC j � sin.A/2jABj �

p
y�

2
2jABj D

p

y�jABj:

Proof of Lemma 4.1.7 The quadrilateral is the same as the loop below.

T1

T2

T3

T4

V1

V2

U1

U2

Figure 5: The loop given by a quadrilateral

Write TiDTiv . Since jU1j, jU2j, jV1j, jV2j are all less than �.
P
jTi j/, the first claim

that
P4

iD1Ti � �.
P4

iD1jTi j/ follows by walking around the loop associated to Q.

So it cannot be the case that all the Ti ’s are of the same sign. Without loss of generality
we can assume T2 > 0, and T3 < 0. Furthermore, regardless of the signs of the
remaining Ti ’s, there must be another pair of adjacent Ti ’s of opposite signs, and either
this pair involves one of fT2;T3g, or that it doesn’t. In the latter case, T1 > 0 and
T4< 0, and the projection of this quadrilateral into hviËRm is a quadrilateral with two
consecutive upward and two consecutive downward edges, and such a quadrilaterals
doesn’t exist. So either T2 or T3 is involved in a pair of oppositely signed edges.
Without loss of generality, we assume T1 < 0. Then by (iv) in the definition of a
quadrilateral, we have that d.e;…

W
C
v
.U1// � 1, because T1 < 0 and T2 > 0; and

d.e;…W �v .V1// � 1, because T2 > 0 and T3 < 0, where …
W
C
v
W .x; t/ 7! �

W
C
v
.x/

for �
W
C
v

the usual projection from Rm to W Cv . …W �v is defined similarly.

Suppose T4 < 0. Then jT2j D jT1jC jT3jC jT4j. Writing the loop as

e D T2V1T3U2T4V2T1U1

D .T2V1T�1
2 /.T2T3U2T�1

3 T�1
2 /.T2T3T4V2T1/U1;
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we see that only in the first bracket do we have a coordinate of size ejT2j . So T4 > 0,
and again by (iv) in the definition of quadrilateral, we conclude that for i D 1; 2,
d.e;…

W
C
v
.Ui//� 1, d.e;…W �v .Vi//� 1.

Proof of Lemma 4.1.8 Summing the R coordinates we see that r0C r2 D r1C r3 .
The identity word can be written as

e D .r0; 0/u0.�r1; 0/u1.r2; 0/u2.�r3; 0/u3

D ..r0; 0/u0.�r0; 0//..r0� r1; 0/u1.r1� r0; 0//..r3; 0/u2.�r3; 0//u3:

We see that jr0 � r3j � d.e;u0/C d.e;u2/, and jr0 � r1j � d.e;u1/C d.e;u3/ by
comparing the W C and W � coordinates.

Similarly by looking at the word starting from .�r1; 0/ we have

e D .�r1; 0/u1.r2; 0/u2.�r3; 0/u3.r0; 0/u0

D ..�r1; 0/u1.r1; 0//..�r1C r2; 0/u2.�r2C r1; 0//..�r0; 0/u3.r0; 0//u0

which gives us that jr1�r0j � d.e;u1/Cd.e;u3/, and jr2�r1j � d.e;u2/Cd.e;u0/.
We obtain the desired claim by writing the word starting at .r2; 0/ and .�r3; 0/ and
argue similarly as above.

Proof of Lemma 4.2.1 Equip the set A�B with the product measure �D �˛ ��ˇ .
The measure of the set RD f.a; b/ W a � bg is therefore �.R/D

R
A �ˇ.Ba/ d�˛ DR

B �˛.Ab/ d�ˇ . Hence

(18)
1

MB

�.R/

�ˇ.B/
� �˛.Ab/min; �ˇ.Ba/max �

�.R/

�˛.A/
MA:

Let � be the characteristic function of the set f.a; b/ W a� b; a 2Asg. ThenZ
B

�Z
Ab

� d�˛

�
d�ˇ D

Z
A

�Z
Ba

� d�ˇ

�
d�˛ D

Z
As

�ˇ.Ba/ d�˛

� s�˛.A/�ˇ.Ba/max;Z
B

�Z
Ab

� d�˛

�
d�ˇ �

Z
Bs;t

�Z
Ab

� d�˛

�
d�ˇ � t

Z
Bs;t

�˛.Ab/ d�ˇ

� t�˛.Ab/min�ˇ.B
s;t /:

Therefore

�ˇ.B
s;t /�

s�˛.A/ �ˇ.Ba/max

t�˛.Ab/min
�

s

t
MAMB �ˇ.B/;

where the last inequality comes from Equation (18).
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