
Geometry & Topology 15 (2011) 1927–1981 1927

Coarse differentiation and quasi-isometries
of a class of solvable Lie groups II

IRINE PENG

In this paper, we continue with the results in [12] and compute the group of quasi-
isometries for a subclass of split solvable unimodular Lie groups. Consequently, we
show that any finitely generated group quasi-isometric to a member of the subclass
has to be polycyclic and is virtually a lattice in an abelian-by-abelian solvable Lie
group. We also give an example of a unimodular solvable Lie group that is not
quasi-isometric to any finitely generated group, as well deduce some quasi-isometric
rigidity results.

51F99; 22E40

1 Introduction

A .�;C / quasi-isometry f between metric spaces X and Y is a map f W X ! Y

satisfying
1

�
d.p; q/�C � d.f .p/; f .q//� �d.p; q/CC

with the additional property that there is a number D such that Y is the D neighborhood
of f .X /. Two quasi-isometries f;g are considered to be equivalent if there is a number
E > 0 such that d.f .p/;g.p//�E for all p 2X .

Let GDRmÌ'Rn , G0DRm0Ì'0Rn0 be connected, simply connected nondegenerate
unimodular split solvable groups (see Section 2.1 for definitions). We say a map
from G to G0 is standard if it splits as a product map that respects ' and '0 (see
Definition 2.1.3). The main result of this paper is the following statement.

Theorem 5.3.6 (abridged) Let G , G0 be nondegenerate, unimodular, split abelian-
by-abelian solvable Lie groups, and �W G! G0 a .�;C / quasi-isometry. Then � is
bounded distance from a composition of a left translation and a standard map.

1.0.1 Definition A homomorphism 'W Rm ! GLn is called diagonalizable if its
image can be conjugated into the set of diagonal matrices.

Corollary 5.3.8 If ' is diagonalizable and '0 isn’t, then there is no quasi-isometry
between them.
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1.0.2 Corollary

QI.G/D
�Y
Œ˛�

Bilip.VŒ˛�/
�
ÌSym.G/

Here Œ˛� is an equivalence class of roots and Sym.G/ is a finite group, analogous
to the Weyl group in reductive Lie groups, that reflects the symmetries of G . (See
Section 2.1.)

As an application the work by Dymarz [2] on quasi-conformal maps on the boundary
of G and its generalization Dymarz and Peng [3], we have:

1.0.3 Corollary If � is a finitely generated group quasi-isometric to a G , then � is
virtually polycyclic.

1.1 Proof outline

Our starting point is Theorem 1.3.3 from Peng [12] (restated here in Section 3), which
says that given a large enough box, when we express it as a tessellation of smaller
boxes, the restriction of the map to most of those smaller boxes takes a product structure
f �g , where f W A!A0 and gW H!H0 satisfy some particular conditions. Our first
task is to show that the A0 part of the standard maps fi (see Definition 2.1.3) are affine.
This is done in Section 3, where will see that the linear part is a scalar multiple of a
finite order element in O.n/ (where n is the rank of G ). We also give interpretations
of the linear and constant parts of fi in terms of properties of G0 and the measure of
certain sets in the box where fi was partially defined. In Section 4, we show that the
linear part of the fi ’s in different boxes have to be the same up to scalar multiple in
the case that the rank of G is 2 or higher. The rank 1 case is the same as the content
in Eskin, Fisher and Whyte [5]. The proof for higher rank case basically consists of as
many rank 1 arguments as appeared in [5]. In the last section, we put all theses partially
defined standard maps together to produce a splitting of the original quasi-isometry.

Acknowledgements I would like to thank Alex Eskin and David Fisher for their
incredible patience and assistance. I also wish to thank Tullia Dymarz for helpful
conversations and coordinating results of her paper [2] with this one and to thank
Mikhail Ershov for finding me the reference of Hasegawa [9] containing the example
of a solvable Lie group that admits no lattices.

2 Preliminaries

Here we recall the settings from Peng [12] and define new terms that will be used in
this paper. Please see Sections 1.1 and 2.1 therein for further details.
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Coarse differentiation and quasi-isometries of a class of solvable Lie groups II 1929

2.1 Geometry of a certain class of solvable Lie groups

Nondegenerate, split abelian-by-abelian solvable Lie groups Let g be a (real) solv-
able Lie algebra, and a be a Cartan subalgebra, which is a self-normalizing subalgebra
and exists in any Lie algebras as long as the underlying field is infinite. Then there are
finitely many nonzero linear functionals ˛i W a!C called roots, such that

gD a˚
M
˛i

g˛i
;

where g˛i
Dfx 2 g W 8t 2 a; 9n such that .ad.t/�˛i.t/ Id/n.x/D 0g, Id is the identity

map on g, and ad W g! DerR.g/ is the adjoint representation. Let 4 denotes for the
set of roots. Then Aut.a/ acts on 4 in a natural way. We define Perm.g/ to be the
subgroup consisting A 2 Aut.a/ such that

(i) it leaves the set of roots invariant, ie A4D4;
(ii) for every ˛ 24, dim g˛ıA D dim g˛ .

In this way, elements of Perm.g/ induces a permutation on the set 4, and we define
Sym.g/ to be the image of Perm.g/ in the group of permutations of 4. For a generic g,
its Perm.g/ is trivial.

We say g is split abelian-by-abelian if g is a semidirect product of a and
L

i g˛i
, and

both are abelian Lie algebras; unimodular if the roots sum up to zero; and nondegenerate
if the roots span a� . In particular, nondegenerate means that each ˛i is real-valued,
and the number of roots is at least the dimension of a. Being unimodular is the same
as saying that for every t 2 a, the trace of ad.t/ is zero. We extend these definitions
to a Lie group if its Lie algebra has these properties, and write Perm.G/, Sym.G/ to
mean Perm.g/ and Sym.g/ where g is the Lie algebra of G .

In summary, a connected, simply connected solvable Lie group G that is nondegenerate,
split abelian-by-abelian necessary takes the form G DHÌ' A such that

(i) both A and H are abelian Lie groups;
(ii) 'W A! Aut.H/ is injective;

(iii) there are finitely many ˛i 2A�n0 which together span A� , and a decomposition
of HD

L
i V˛i

;
(iv) there is a basis B of H whose intersection with each of V˛i

constitute a basis
of V˛i

, such that for each t 2 A, '.t/ with respect to B is a matrix consists
of blocks, one for each V˛i

, of the form e˛i .t/N.˛i.t//, where N.˛i.t// is an
upper triangular with 1’s on the diagonal and whose off-diagonal entries are
polynomials of ˛i.t/.

If in addition, G is unimodular, then '.t/ has determinant 1 for all t 2 A.

Geometry & Topology, Volume 15 (2011)
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The rank of a nondegenerate, split abelian-by-abelian group G is defined to be the
dimension of A, and by a result of de Cornulier [1], if two such groups are quasi-
isometric, then they have the same rank.

We write 4 for the set of roots of G and coordinatize points in G as ..x˛/˛24; t/,
where x˛ D .x1;˛;x2;˛; : : : ;xdim.V˛/;˛/ 2 V˛ , t 2 A. A left invariant Finsler metric
that is quasi-isometric to a left invariant Riemannian is given by

d tC
X
˛24

e�˛.t/
�

dx˛C
X

j

Pj ;˛.˛.t//dxj ;˛

�
;

where Pj ;˛ is a polynomial. The following consequence is immediate.

2.1.1 Lemma If G is nondegenerate, split abelian-by-abelian, then it can be quasi-
isometric embedded into

Q
˛24 Hdim.V˛/C1 , where HsC1DRsÌ R is a nonunimodu-

lar solvable Lie group determined by  .t/D etN.t/, where N.t/ is a nilpotent matrix
(upper triangular with 1’s on the diagonal) with polynomial entries, equipped with a
left-invariant Finsler metric given by

dt C e�t

�
dxC

X
j

Pj .t/dxj

�
where Pj .t/ is a polynomial.

2.1.2 Remark When  .t/ is diagonal, HsC1 is just the usual hyperbolic space.

To understand the geometry of HsC1 better, we first note that the metric is bilipschitz
to one given by dt C e�t .1Cmaxj Pj .t//dx, which is quasi-isometric to one given
by dt C e�tQ.t/dx for some polynomial Q.t/. So a function quasi-isometric to the
metric on HsC1 is the following

(1) d..x1; t1/; .x2; t2//D

8̂<̂
:
jt1� t2j if e�ti Q.ti/jx1�x2j � 1 for i D 1; 2,

UQ.jx1�x2j/

� .t1C t2/

otherwise;

where UQ.jx1�x2j/D t0 satisfies

e�t0Q.t0/jx1�x2j D 1:

Since exponential grows faster than any polynomials, the function UQ has the following
property:

(2) ln.x/�CQ � UQ.x/� 2 ln.x/CCQ

for some constant C depending only on the polynomial Q.
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Back to the description of G , we declare two roots equivalent if they are positive
multiples of each other, and write Œ„� for the equivalence class containing „ 2 4.
Moreover, for „i ; „2 2 Œ„�, we say „1 less than „2 if „2=„1> 1. This makes sense
because all roots in a root class are positive multiples of each other. A left translate of
VŒ„� D

L
�2Œ„� V� will be called a horocycle of root class Œ„�.

A left translate of A, or a subset of it, is called a flat. For pD .x˛/˛ , qD .y˛/˛ points
in H, we compute subsets of pA and qA that are within distance O.1/ of each other
according to the embedded metric in Lemma 2.1.1, as the p and q translate of the
subset \

˛24W ln.jx˛�y˛ j/�1

˛�1ŒU˛.jx˛ �y˛j/;1�� A:

Since the roots sum up to zero in a nondegenerate, unimodular, split abelian-by-abelian
group, the set where two flats come together can be empty, ie the two flats have no
intersection. If it is not empty, then the equation above says that it is an unbounded
convex subset of A, bounded by hyperplanes parallel to root kernels. We will often
say that pA and qA come together at this set.

2.1.3 Definition Let G , G0 be nondegenerate, split abelian-by-abelian Lie groups.
A map from G to G0 or a subset of them, is called standard map if it takes the form
f �g , where gW H!H0 sends foliation by root class horocycles of G to that of G0 ,
and f W A!A0 sends foliations by root kernels of G to that of G0 . We will often refer
to f as the A part of a standard map.

2.1.4 Remark Note that when G has at least rank.G/C 1 many root kernels, the
condition on f means that f is affine, and when G is rank 1, the condition on f is
empty.

2.2 Notation

2.2.1 General remarks about neighborhoods

Neighborhoods We write B.p; r/ for the ball centered at p of radius r , and Nc.A/

for the c neighborhood of the set A. We also write dH .A;B/ for the Hausdorff
distance between two sets A and B . If ��Rk is a bounded compact set, and r 2R,
we write r� for the bounded compact set that is scaled from � with respect to the
barycenter of �.

Given a subset X � A, x0 2 X , the .�;C / linear neighborhood of X with respect
to x0 is the subset of A consisting of points y 2 A such that there is a yx 2 X with
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d.y; yx/D d.y;X /� �d.yx;x0/CC . If a quasi-geodesic � is within .�;C / linear (or
just �–linear) neighborhood of a geodesic segment  , where �� 1 and C � �j�j,
then we say that � admits a geodesic approximation by  .

2.2.2 Notation used in split abelian-by-abelian groups Let G DHÌA stands for
a nondegenerate, unimodular, split abelian-by-abelian group. Fix a point p 2G . We
define the following.
� For a root class Œ˛�, let lŒ˛�D

P
�2Œ˛� � be the sum of all roots in the equivalence

class. Let RG be the set of all lŒ˛� ’s for Œ˛� ranging over all root classes of G ,
and GR for the group of linear maps that leaves RG invariant. Since our group
is nondegenerate, ie that the roots span Hom.A;R/, it follows that RG is finite,
and so GR is a subgroup of O.n/.

� For ˛ 24 a root, we write ˛0 2A� for the positive multiple of lŒ˛� of unit norm
with respect to the usual Euclidean inner product on A and EvŒ˛� 2A for the dual
of ˛0 .

� Given Ev 2 A, we define

W CEv D
L
„.Ev/>0 V„

W �Ev D
L
„.Ev/<0 V„

W 0
Ev D

L
„.Ev/D0 V„:

We say a vector Ev 2 A is regular if „.Ev/ 6D 0 for all roots „, and a linear
functional `2A� is regular if its dual Ev` is regular. We extend this definitions to
a linear function ` by defining W C

`
, W �

`
, W 0

`
, as W CEv` , W �Ev` , W 0

Ev`
respectively,

where Ev` 2 A is the dual of `.
� The root kernels partition the unit sphere in A into convex subsets called cham-

bers. For vectors Eu; Ev in the interior of the same chamber b, W CEu DW CEv , and
we define W Cb for this common subspace of H and W �b for its complement
in H according to the root space decomposition, so that HDW Cb ˚W �b .

� Let �AW G �! A be the projection onto the A factor as .x; t/ 7! t.
� For a regular liner functional ` 2 A� with unit norm, we define …`W G !

W �` ÌREv` as .x; Et/ 7! .Œx�W �` ; `.t/Ev`/. We extend this to unit form vector Ev by
defining …Ev as …`Ev whereby `Ev is the dual of Ev .

Box associated to a compact convex set For ˛ 2 4, let b.r/ � V˛ be maximal
product of intervals of size 2r centered at the origin, ie Œ�r; r �dim.V˛/ . Let ��A be a
convex compact set with nonempty interior whose barycenter is the identity of A. We
define the box associated to �, B.�/, as the set

Q]
jD1 b.emax. j̨ .�///�. Fix a net n.

We write P.�/ for the set of n points in B.�/, so it is a finite set.

Geometry & Topology, Volume 15 (2011)
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2.2.3 Remark We will work with a representative of a quasi-isometry class defined
for particular choices of nets. Since any two nets in a space are bounded distance apart,
all the coarse arguments remains valid for that entire equivalence. Let ypW G ! X

assigns x 2G , a closest net point. In this way we tend to think of a set K �G as a
subset of the net X via the identification of K and yp.K/. In particular, all the objects
in a box defined by bullets points above are finite sets to us, and we equip a box with
a counting measure. By abuse of notation, we denote this counting measure by the
absolute value sign j � j.

The following lemma shows that G is amenable.

2.2.4 Lemma Let � � A be compact convex with nonempty interior centered at
the origin. Then, B.r�/, r !1 is a Fölner sequence. The volume ratio between
N�.@.B.r�/// and B.r�/ is O.�= diam.B.r�//.

Proof See [12, Lemma 2.2.7].

3 Shadows, slabs and coarsening

We recall the following from Peng [12].

3.0.5 Theorem Let G , G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups, and �W G!G0 be a .�;C / quasi-isometry. Given 0< �; ı < 1, there are
numbers L0 , 0< � < 1 with the following properties.

If �� A is a product of intervals of equal size at least L0 , then a tiling of B.�/ by
isometric copies of B.��/

B.�/D
G
j2J

B.!j /t‡

contains a subset J0� J of relative measure at least 1�� , such that for all j 2 J0 , there
is a subset P0.!j /� P.!j / with relative measure at least 1� � such that �jP0.!j / is
within O.ı diam.!j // of a standard map gj �fj .

In this section, we focus on a particular standard map gi�fi supported on the subset Ui

of a good box B.!i/, i 2 I0 . We will first show that the fi is affine for all ranks. Then
we will interpret its the translational and linear parts: the linear part has to come from a
finite set related to the geometry of G0 , and the translational part depends on measure
of certain subsets in B.!i/. We will drop the subscript i from now on.
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3.1 Definitions

In this section we define a list of objects that will be used for the remainder of this
section.

Root class half planes A set of the form p ˛�1
0
Œ�1; c� (resp. p ˛�1

0
Œc;1�), where

p 2H, c 2R, is called a Œ˛� negative (resp. positive) half plane. We write H�Œ˛� (resp.
HCŒ˛� ) for the set of Œ˛� negative (resp. positive) half planes. When we refer to a Œ˛�
half plane in a bounded set, we mean p ˛�1

0
.Œc; d �/, for some p 2 H, c; d 2 R. We

will also say that the length of this Œ˛� half plane is jc � d j (remember here that the
domain of a root is A, not the entire group G ).

Upper root boundary We define the upper boundary of root class Œ˛� , @CŒ˛� , as the
quotient of HCŒ˛� under the equivalence relation of bounded Hausdorff distance.

If two positive Œ˛� half-planes Ep , Eq where p; q 2H, are bounded Hausdorff distance
apart, then p , q can only differ by VŒ˛� coordinates. This means each equivalence
class can be identified with VŒ˛� , and the collection of all equivalence classes, @CŒ˛� , can
be identified with

L
Œˇ � 6D Œ˛ � VŒˇ� .

Lower root boundary We say two Œ˛� negative half planes Hp , Hq are equivalent
if there is a sequence Hi 2H�Œ˛� such that H0 DHp , Hq DHn and any two succes-
sive Hi ’s intersect at an unbounded convex set. This is an equivalence relation because
if Hp is equivalent to Hq , and Hq is equivalent to Hr , then concatenation of the
sequences used to connect the two pairs is a sequence that connects Hp and Hr . We
define the lower boundary of Œ˛� @�Œ˛� as the quotient of H�Œ˛� under this equivalence
relation.

We see that if Hp , Hq 2H�Œ˛� based at p; q 2H have nonempty intersection, then p

and q cannot differ by VŒ˛� coordinate. On the other hand, if p and q differ only in
some VŒˇ� coordinate, where Œˇ� 6D Œ˛�, then Hp\Hq 6D∅, so Hp is equivalent to Hq

in this case. This way, we see that the equivalence class containing Hp , p 2 H are
all those Hq 2HŒ˛� , where q 2H differ from p by some elements of

L
Œˇ � 6D Œ˛ � VŒˇ� ,

and consequently, @�Œ˛� an be identified with VŒ˛� .

The shadow of a set on a lower root boundary If p 2 G , we write ��Œ˛�.p/ � @
�
Œ˛�

for the set of equivalence classes that contain minimal negative Œ˛� half planes through
points at most distance � away from p . Here � is the scale of discretization. Since
VŒ˛� is the direct sum of V„ , where „ 2 Œ˛�, we will write ��� .p/, where � 2 Œ˛�, for
the projection of ��Œ˛�.p/ to V� . For A�G , we write ��Œ˛�.A/D

S
p2A�

�
Œ˛�.p/.
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Measures on lower root boundaries Since @�Œ˛� is a homogeneous space (the sub-
group VŒ˛� � H acts faithfully and transitively on it), it admits a Haar measure. We
normalize this measure j ˘ j by requiring that for each � 2 Œ˛�,

(3) j��� .p/je
��.p/

D 1 for all p 2G

Half-planes of a linear functional Let ` be a linear functional that is not multiple of
a root. A positive (resp. negative) half plane of ` refers to a set of the form p`�1Œc;1/

(resp. p`�1.�1; c�), denoted by HC
`

(resp. H�
`

).

Upper and lower boundaries of a linear functional We call the intersection of half
planes corresponding to two perpendicular linear functionals, a quarter plane. We define
an equivalence relation on HC` (resp. H�` ) as follows. Two positive (resp. negative)
` half planes Hp , Hq are equivalent if there is a sequence of Hi 2 HC` such that
H0 DHp , Hn DHq and the intersection between any two successive Hi ’s does not
contain a quarter plane. This is an equivalence relation because if Hp is equivalent
to Hq , and Hq is equivalent to Hr , then the concatenation of the sequences used to
connect the two pairs is a sequence that establishes equivalence between Hp and Hr .
We see that if the positive (resp. negative) ` half planes Hp;Hq based at p; q 2H are
equivalent, then p; q differ by an element of W �` (resp. W C` ).

We define the upper boundary of `, @C` , (resp. lower boundary of `, @�` ) as the quotient
of HC` (resp. H�` ) under this equivalence relation. In light of the forgoing discussion,
we see that @C` (resp. @�` ) can be identified with W C` (resp. W �` ).

Measure on upper and lower boundaries of a linear functional Let ` be a generic
linear functional. Since @C` can be identified with W C` which itself is a direct sum
of VŒ„� where `.Ev�/ > 0, and each of VŒ„� can be identified with @Œ„� , we can
identify @C` with

Q
Œ„� W `.Ev„/>0 @Œ„� , and equip it with the product measures on the

constituent root boundaries. The same procedure can be applied to @�` to turn into a
measure space.

The shadow of a set on the upper/lower boundaries of a linear functional If
p 2G , we write ��` .p/� @

�
` (resp. �C` .p/� @

C
` ) for the set of equivalence classes

that contain minimal negative (resp. positive) ` half planes through points at most
distance � away from p , where � is the scale of discretization. For A � G and
� 2 fC;�g, ��

`
.A/ is the union of �C` .p/, where p ranges over all points of A.

Branching constant The branching constant bŒ˛� of root class Œ˛� is the number such
that ebŒ˛�L represents the number of negative Œ˛� half planes of length L leaving a
point. It equals lŒ˛�=˛0 . Note that this is a number because ˛0 divides every root in Œ˛�.
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The branching constant b` , of a generic linear functional `, is a number such that
eb`L represents the number of ` half planes of length L leaving a point. Its value is
given by

(4) b` D
X

� W�.Ev`/>0

�.Ev`/D
X

� W�.Ev`/<0

�.Ev`/:

We will now redefine b` to take into account of the case when the linear functional `
might not have norm 1. So if z̀ is a linear functional whose norm is not 1, we will
write b z̀ for b z̀=kz̀k .

Distance functions on lower root boundaries Given p; q 2 @�Œ˛� � VŒ˛� , let tp;q be
the minimal t 2 R such that there exists negative Œ˛� half planes in the equivalence
class of p and q that are distance 1 (or � if the scale of discretization is not 1) at sets
whose �A projection is `�1

Œ˛� .t/.

Fix a positive number c , we define a pseudodistance DŒ˛� between p; q as follows.

DŒ˛�.p; q/D ectp;q

This can then be made into a metric by the usual procedure of defining the distance
between two points as the infimum of

P
i DŒ˛�.pi ;piC1/, taken over all finite chain of

points fpig connecting those two points. In this way, the space .@�Œ˛�;DŒ˛�/ becomes
those whose quasi-conformal maps are studied by Dymarz [2] and Dymarz and Peng [3].

Shadows, slabs Using the same root class as before, we define a Œ˛� block to be any
left translate of

L
Œˇ� 6DŒ˛� VŒˇ� Ì ker.˛0/. Given a Œ˛� block H , the restriction of ˛0

to H is a constant, which we denote by ˛0.H /.

For � > 1, we define the �–shadow of H , Sh.H; �/, as the union of minimal nega-
tive Œ˛� half planes containing a point in N�H . By minimal we mean with respect to
the order induced by coarse inclusion, where a set A is said to be coarse included in a
set B if A is within O.1/ Hausdorff neighborhoods of B . For h2 < h1 < ˛0.H /, we
define a slab of H , denoted by Sl12.H / as the intersection between Sh.H; �/ with the
part of ˛�1

0
.Œh2; h1�/ in the box, ie it is the subset of Sh.H; �/ in the box whose ˛0

value lies in between h2 and h1 .

Generalized slabs For E� � @
�
Œ˛� , EC � @CŒ˛� , compact K � ker.˛0/, h2 < h1 , we

call a set

S.E�;E
C;K; h2; h1/

D
˚
.xŒ˛�; .xŒˇ�/Œˇ�6DŒ˛�; t/ W t 2 Œh2; h1�K; xŒ˛� 2E�; .xŒˇ�/Œˇ�6DŒ˛� 2EC

	
a generalized Œ˛� slab. This generalizes the definition of slabs defined earlier.
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Coarsening We define a coarsening process as follows. For h 2R, EC � @CŒ˛� , the
coarsening of EC by h, Ch.E

C/ is a set of equivalence classes of positive Œ˛� half
planes such that an equivalence class H belongs to Ch.E

C/ if H has a representative
that intersects with a representative of an element of EC , and that the �A projection
of the intersection is a subset of ˛�1

0
Œh;1�.

Similarly, for E� � @
�
Œ˛� a subset of the lower boundary, the coarsening of E� by h,

Ch.E�/, is defined to be a set of equivalence classes of negative Œ˛� half planes such
that an equivalence class H belongs to Ch.EC/ if H has a representative that intersects
with a representative of an element of E� , and that the �A projection of the intersection
is a subset of ˛�1

0
Œ�1; h� (this is the same as the set of points in @�Œ˛� that is distance eh

from a point in E� ).

Observe that as long as h3 � h2 , h4 � h1 , we have

S.E�;E
C;K; h2; h1/D S.Ch3

.E�/; Ch4
.EC/;K; h2; h1/:

3.1.1 Lemma The number of Œ˛� planes in S D S.Ch3
.E�/; Ch4

.EC/;K; h2; h1/ is
comparable to

Vol.S/
jKj.h1� h2/

ebŒ˛�.h1�h2/:

That is, it is compatible to the area of the cross-section times ebŒ˛�.h1�h2/ .

Proof The slab S is a product set. That is, it is the product of a subset in H with
a subset in A. Furthermore component in the H factor is product set …Œ„��Œ„� for
subsets �Œ„� in root spaces VŒ„� ; the component in the A factor is K� Œh2; h1�. Since
the group is unimodular, the volume of S is .…Œ„�j�Œ„�j/jKjjh1� h2j.

The map �Œ˛�W G!VŒ˛�Ë.R/EvŒ˛� (which is defined as .xŒ˛�; xŒˇ�; : : :/t 7! .xŒ˛�; ˛0.t//)
induces an onto map HŒ˛� between negative Œ˛� half planes and negative half rays in the
negatively curved space VŒ˛� Ë .R/EvŒ˛� . Therefore to count the number of negative Œ˛�
planes in a set Q, we count the number of negative half rays in �Œ˛�.Q/, and multiply
it by the multiplicity of HŒ˛� restricted to Q.

The number of negative half rays in �Œ˛�.S/ is j�Œ˛�je
bŒ˛�.h1�h2/ , and the multiplicity

of HŒ˛�jS is …Œ„� 6DŒ˛�j�Œ„�j.

3.2 Improving the almost product map

Let h1; h2 be functions on Œ˛� blocks such that for any Œ˛� block H ,

h2.H / < h1.H / < ˛0.H /:
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Our setting from Theorem 3.0.5 says that the restriction of � on B.!/,

�W B.!/!G0

is a quasi-isometry such that on a subset U� � B.!/ of relative measure at least 1� � ,
the restriction �jU� , is within � diam.B.!// of a standard map y� D g � f . By the
construction of U� , there is a large subset of Œ˛� planes in B.!/ whose images under �
are within half planes corresponding to another root class that depends only on Œ˛�.
Consequently, we obtain induced maps on @CŒ˛� and @�Œ˛� by examining those positive
and negative Œ˛� half planes that contain the one of those half planes whose images can
be approximated by y� . By abuse of notation we continue to denote those maps by g .
Similarly, there is a large subset of left translates of H in B.!/ whose images are close
to another translates of H0 . This means that f is defined on a relative large set of ! .
Since ! is a subset of a space with polynomial growth, we know the O.� diam.!//
neighborhood of this subset contains ! , and we can extend f to all of ! by assigning
p 2 ! the f value of the point in the relative large subset closest to it.

Because ambient space has exponential growth and we only have measure control on the
set U� , describing the image of B.!/ under � is generally difficult because �.B.!//
need not be sublinear away from �.U�/. By restricting to certain subsets of B.!/, it
is possible to describe the image of those special types of subsets as demonstrated by
the following two lemmas.

3.2.1 Lemma Given � < ˇ� ˇ0� 1, there exist constants c1� 1 depending on
�; � , c2� 1 depending on c1 , and a subset E�� � @

�
Œ˛�.B/ of relative measure at least

1� c1 , such that whenever H is a Œ˛� block at least 2�ˇ0 diam.B.!// away from @B

and ��Œ˛�.H /\E�� 6D∅, then jh1.H /� h2.H /jj�A.H /j � ˇj!j implies

(5) jSl12.H /\U�j � .1� c2/jSl12.H /j:

Proof Let c2 be a constant to be chosen later. Let E1�@
�
Œ˛�.B/ be the subset such that

for x 2E1 , there exists a Œ˛� block Hx such that x 2 Ix D �
�
Œ˛�.Hx/ and Equation (5)

fails. Then we have a cover of E1 by intervals Ix . By Vitali covering there is a subset
of Ik ’s such that

P
k jIk j � 1=5jE1j, and whose elements are strongly disjoint ie

for j 6D k , d.Ij ; Ik/� 1=2 max.jIj j/, which means that the corresponding Œ˛� block
Hk ’s are also disjoint. By construction jSl12.Hk/\U c

� j � c2jSl12.Hk/j.

Summing over k yields

jB \U c
� j � c2

X
k

jSl12.Hk/j �
c2

2

X
k

jh1.Hk/� h2.Hk/jj�A.Hk/jjIk jj�
C
Œ˛�.Hk/j:
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As jB \U c
� j � � j!jj�

�
Œ˛�.B/jj�

C
Œ˛�.B/j and j�CŒ˛�.Hk/j D j�

C
Œ˛�.B/j, we obtain

jE1j � 5
X

k

jIk j �
10�

ˇc2

j@�Œ˛�.B/j:

Now choose c2 appropriately so that 10�=.ˇc2/� c1 .

3.2.2 Definition Let H be a Œ˛� block in B.!/, and q is the map on the hyperplanes
parallel to kernels of ˛0 induced by f , where y� D g�f is the standard map defined
on U� . We set�Sl12.H / WD S

�
Cq.h1/.g.�

�
Œ˛�.H ///; Cq.h2/.g.�

C
Œ˛�.H ///; f .�A.H /� Œh2; h1�/

�
3.2.3 Lemma Given � <ˇ�ˇ0�ˇ00� 1, there exist constants c3; c4 depending �
and � , and a subset E� � �

�
Œ˛�.B/ of relative measure at least 1�c3 with the following

properties.

Let H0 be a Œ˛� block in B.!/ such that

(a) the distance between H0 and @B is at least 4�ˇ00 diam.B.!//;

(b) the intersection ��Œ˛�.H0/\E� is not empty.

Suppose H is a Œ˛� block in

S D U�\S
�
��Œ˛�.H0/; �

C
Œ˛�.H0/; �A.H0/; `Œ˛�.H0/�ˇ

00 diam.B.!//; `Œ˛�.H0/
�

such that ��Œ˛�.H /\E¤∅. Then, ˇ0j!j � jh1.H /�h2.H /jj�A.H /j � ˇj!j implies

(6) j�Sl12.H /\NO.1/�.U�\Sl12.H //j � .1� c4/j�Sl12.H /j:

Here c3; c4 approach zero as � and � approach zero.

Proof Since we are interested only in the restriction to � to B.!/, first we need to make
sure that �Sl1

2
lies in �.B.!//. Recall that H0 is more than 4�2ˇ00 diam.B.!// away

from the boundary of B.!/. This means that S is also more than 4�2ˇ00 diam.B.!//
away from @B . By assumption, jh1.H /� h2.H /j � ˇ0j!j=j�A.H /j, so jh1� h2j �

ˇ0 diam.B.!//. Take q0 2
�Sl1

2
.H /. Then q0 is no further than ˇ0 diam.B.!// away

from a point q in the generalized Œ˛� slab S.g.��Œ˛�.H //;g.�CŒ˛�.H //; f .�A.H / �

Œh2.H /; h1.H /�//, and there is p 2 S � U� such that d.q; y�.p//� ˇ0 diam.B.!//.

By definition, y�.p/ lies on a Œ„� half plane that is � diam.B.!// away from the image
of a Œ˛� half-plane containing p , where Œ„� the image of Œ˛� under the permutation on
root spaces induced by the standard map y� . This means d.q; �.S//� 2ˇ0 diam.B.!//,
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and therefore d.q0; �.S//� 3ˇ0 diam.B.!//. Since d.S; @B/ > 4ˇ00 diam.B.!//, it
follows that q0 2 �.B/.

Let c3 be a constant to be chosen later. Let E2 � @
�
Œ˛�.B/nE1 be such that for x 2E2

there is a Œ˛� block Hx such that x 2 Ix D �
�
Œ˛�.Hx/ and Equation (6) fails. Thus we

have a cover of E2 by intervals Ix . By Vitali covering, we can find a subset of Ik ’s such
that the inequality opposite to above holds for each Hk , such that

P
k jIk j� .1=5/jE2j,

and that Ik ’s are strongly disjoint. (That is, for j 6D k , d.Ij ; Ik/� 1=2 max.jIj j; jIk j/.
In particular, this means �Sl1

2
.Hk/’s are disjoint as well.

So we have for every Hk ,ˇ̌�Sl12.Hk/\NO.1/

�
�.U c

� \Sl12.Hk//
�ˇ̌
� c4j

�Sl12.Hk/j:

Adding up all the Hk ’s and use the fact that the Ik ’s are strongly disjoint we have

(7) j�.B.!/\U c
� /j �

X
k

ˇ̌�Sl12.Hk/\NO.1/

�
�.U c

�\Sl12.Hk//
�ˇ̌
� c4

X
k

j�Sl12.Hk/j:

We now proceed to show that to any Œ˛� blocking set H satisfying the hypothesis, most
measures in �Sl1

2
.H / comes from �.Sl12.H /\U�/. More precisely, we show that

(8) �.U�\
�
NO.� diam.B.!///.Sl12.H //

�c
/\�Sl12.H /D∅:

Suppose this is not true. Then there is a p2U� that lies outside of the O.� diam.B.!///
neighborhood of Sl12.H / such that �.p/ is in �Sl1

2
. The fact �.p/ lies in �Sl1

2
.H / means

that there is an element q 2 Sl12.H /\U� such that the negative Œ„� half planes through
�.p/ and y�.q/ meet at a height at most q.h1/. Here Œ„� is the image of Œ˛� under
the permutation on root spaces induced by y� . So the negative Œ˛� planes through q

and p meets at a height no bigger than h1CO.� diam.B.!///, but this contradicts
the assumption that q lies outside of O.� diam.B.!/// neighborhood of Sl12.H /.

Equation (8) implies that j�Sl1
2
.H /j � .1� c/jSl12.H /\U�j for some constant c that

goes to zero as � goes to zero. So now, picking up (7) we have

j�.B.!/\U c
� /j � c4

X
k

j�Sl12.Hk/j

� c4.1� c/
X

k

j�.Sl12.H /\U�/j

� c4.1� c/.1� c2/
X

k

jSl12.Hk/j
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� c4.1� c/.1� c2/
X

k

j�A.Hk/jjh1.Hk/� h2.Hk/jjIk jj�
C
Œ˛�.Hk/j

� c4.1� c/.1� c2/ˇj!j
X

k

jIk jj�
C
Œ˛�.Hk/j:

Since �CŒ˛�.Hk/D �
C
Œ˛�.B/, and j�.U c

� /j � � j!jj�
C
Œ˛�.B/jj�

�
Œ˛�.B/j, we obtain

jE2j � 5
X

k

jIk j �
5�

c4ˇ.1� c2/.1� c/
j��Œ˛�.B/j:

So now choose c4 appropriately so that 5�=.c4ˇ.1� c2/.1� c//� c3 .

3.2.4 Corollary Let H be a Œ˛� block in B.!/ satisfying the hypothesis of Lem-
mas 3.2.1 and 3.2.3, and S as in Lemma 3.2.3. Suppose w1; w2 2R satisfy ˇ0j!j �
jw1�w2jj�A.H /j � ˇj!j. Then

jCw1
.g.��Œ˛�.H ///jjCw2

.g.�CŒ˛�.H /\S//j � d j��Œ˛�.H /jj�CŒ˛�.H /j;(9)

jCw1
.g.��Œ˛�.H ///jjCw2

.g.�CŒ˛�.H /\S//j � bj��Œ˛�.H /jj�CŒ˛�.H /j;(10)

where d and b depend only on � , C .

Proof Note that from the structure of U and the fact that � is a quasi-isometry, it
follows that for z1; z2 2 �A.B.!// we have

1

2�
jz1� z2j � � diam.B.!//� jq.z1/� q.z2/j � 2�jz1� z2jC � diam.B.�//:

This means q is essentially monotone, so there exist h1; h2 such that q.h1.H //D w1

and q.h2.H //D w2 . We now apply Lemmas 3.2.1 and 3.2.3 to the resulting Sl12.H /

and �Sl1
2
.H /. Lemma 3.2.1 gives

.1� c2/jSl12.H /j � j Sl12.H /\U�j � 2�j�Sl12.H /\�.U�/j � 2�j�Sl12.H /j:

On the other hand, by Equation (6) in Lemma 3.2.3, we know that j�Sl1
2
.H /\�.U�/j �

.1� c4/j�Sl1
2
.H /j. The structure of a standard map means that the ratio of measures of�Sl1

2
.H /\�.U�/ to that of Sl12.H /\U� lies in Œ1=2�; 2��. These facts shows that

.1� c4/j�Sl12.H /j � j�Sl12\�.U�/j � 2�jSl12.H /\U�j � 2�jSl12.H /j:

The claims now follow from the volume formula below.

jSl12.H /j D j��Œ˛�.H /jj�CŒ˛�.H /jj�A.H /jjh2� h1j;

j�Sl12.H /j D jCq.h1/g.�
�
Œ˛�.H //jjCq.h2/g.�

C
Œ˛�.H //jjf .�A.H //jjq.h1/� q.h2/j:
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3.3 The constant part of f

Continuing with the same notation from the previous section, we show in this subsection,
that qW A= ker.`Œ˛�/! A= ker.`Œ„�/ is affine and compute its constant/translational
term. To compute the constant term of this affine map, we make use of Corollary 3.2.4,
and the property that the standard map y� roughly preserves the number of root class
half planes.

3.3.1 Lemma Let H be a Œ˛� block in B.!/. Let F , zF denote the set of (maximal)
Œ˛�, Œ„� half planes in Sl12.H / and �Sl1

2
.H / respectively. Then

log jF j D log j zF jCO.� diam.B//:

Proof The claim is based on the fact that the map between Sl12.H / \ U� and�Sl1
2
.H / \ �.U�/ induces a map between the set of Œ˛� half planes in Sl12.H / and

the set of Œ„� half planes up to an error of eO.� diam.B// . Explicitly, let F 0 be the set
of Œ˛� half planes in Sl12.H / that are more than O.� diam.B// away from @B , and
spend at least 1�

p
c2 fraction of their measure in U� . Then F 0 has a relative large

measure in F by Chebyshev. Now, for each  2 F 0 there is a Œ„� half plane y 2 yF
such that �. \U�/ is within � diam.B/ of y . We define  . /D y . Note  is at
most e� diam.B/C

p
c2 diam.B/ to one since two Œ˛� planes with the same y� image must

be within � diam.B/ of each other whenever they are in U� . Inverse of  is defined
similarly.

3.3.2 Lemma For all h1; h2 2 Œzbot; ztop�, where ztopDmax˛0.B/, zbotDmin˛0.B/,

q.h1/� q.h2/D
bŒ˛�
bŒ„�

.h1� h2/CO.� diam.B//;

where Œ„�D f�Œ˛�.

Proof It is sufficient to check this for a Œ˛� block H , and h1; h2 satisfying the
hypothesis of Lemmas 3.2.1 and 3.2.3. Let F , zF denote the set of Œ˛�, Œ„� half planes
in Sl12.H / and �Sl1

2
.H / respectively. The number of Œ˛� half planes in Sl12.H / is

j��Œ˛�.H /j j�CŒ˛�.H /j ebŒ˛�.h1�h2/;

while the number of Œ„� half planes is

jCq.h1/g.�
�
Œ˛�.H //j jCq.h2/g.�

C
Œ˛�.H //j ebŒ„�.q.h1/�q.h2//:
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By Lemma 3.3.1,

jCq.h1/g.�
�
Œ˛�.H //j jCq.h2/g.�

C
Œ˛�.H //j ebŒ„�.q.h1/�q.h2//

D j��Œ˛�.H /j j�CŒ˛�.H /jebŒ˛�.h1�h2/ eO.� diam.B//:

Simplifying,

q.h1/� q.h2/

D
bŒ˛�
bŒ„�

.h1�h2/C
1

bŒ„�
log

j��Œ˛�.H /jj�CŒ˛�.H /j

jCq.h1/g.�
�
Œ˛�.H //jjCq.h2/g.�

C
Œ˛�.H //j

CO.� diam.B//:

The claim now follows because by Corollary 3.2.4,

j��Œ˛�.H /j j�CŒ˛�.H /j

jCq.h1/g.�
�
Œ˛�.H //j jCq.h2/g.�

C
Œ˛�.H //j

DO.1/:

3.3.3 Lemma The A0 part of a standard map is affine. Its natural action sends RG

to RG0 , hence can only take on one of finitely many possibilities.

Proof Lemma 3.3.2 already shows this in the case that G has rank 1. We now
consider G whose rank is at least 2. Every point of A and A0 is uniquely determined
by the intersection of rank.G/ many translates of root kernels, so Lemma 3.3.2 shows
that f is affine and takes foliations by root kernels of G to that of G0 .

Let A denote for the linear part of f , and � be the permutation that f induces
on the root classes. The existence of a standard map O.� diam.B// away from a
quasi-isometry means that for Eu ranges over a large subset of Sn�1 , Œ„� a root class,
then lŒ„�.Eu/ > 0 if and only if l�.Œ„�/.A.Eu// > 0, and lŒ„�.Eu/ D 0 if and only if
l�.Œ„�/.A.Eu//D 0. So l�.Œ„�/ ıAD cŒ„�lŒ„� for some cŒ„� > 0.

Since f is affine, the pushforward of ` 2 A� , f�.`/D ` ıA�1 , is an element of A0� .
Take ` a regular linear functional of unit norm, and H an Œ˛� block. Then, inside of
Sl12.H /, the number of maximal sets of the form p `�1Œc; d �, p 2H, d � c DL is

j��Œ˛�.H /j j�CŒ˛�.H /j exp
�

L
X

Œ„� W„.Ev`/>0

lŒ„�.Ev`/
�
;

while the number of f�` half planes in �Sl1
2
.H / is

jCq.h1/g.�
�
Œ˛�.H //j jCq.h2/g.�

C
Œ˛�.H /\S/j exp

�
L

X
Œ„� W„.Ev`/>0

l�.Œ„�/.AEv`/
�
:
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Simplifying using Lemma 3.3.1 and Corollary 3.2.4 yieldsX
Œ„� W„.Ev`/>0

l�.Œ„�/.AEv`/D
X

Œ„� W„.Ev`/>0

lŒ„�.Ev`/CO.� diam.B//:

Since the map from Sn�1 to disjoint union of root classes defined by sending Ev to
fŒ„� W„.Ev/ > 0gtfŒˇ� W ˇ.Ev/ < 0g is constant on chambers, and each chamber contains
a basis of A, we conclude that up to an error of O.� diam.B.!///,X

Œ„� W„.Ev`/>0

lŒ„� D
X

Œ„� W„.Ev`/>0

l�.Œ„�/ ıAD
X

Œ„� W„.Ev`/>0

cŒ„�lŒ„�:

In other words, we have two equationsX
Œ˛� W˛.Ev/>0

.1� cŒ˛�/lŒ˛� D 0;

X
Œˇ� Wˇ.Ev/<0

.1� cŒˇ�/lŒˇ� D 0;

therefore zRD f.1� cŒ˛�/lŒ˛�; Œ˛�an equivalence class of rootsg is a finite set of linear
functionals whose sum is zero and such that for any codimension 1 hyperplane, the sum
of those elements in zR lying entirely on a half plane is zero. Therefore zR consists of
zero linear functionals, so cŒ˛� D 1 for all root equivalence classes Œ˛�. But this means
l�.Œ˛�/ ıAD lŒ˛� . So A is a linear map that sends RG to RG0 .

The next proposition gives an interpretation to the translational part of f .

3.3.4 Proposition Let � < ˇ� ˇ0� ˇ00� 1 be as in Lemma 3.2.1. Take a gener-
alized Œ˛� slab S.E�;E

C;K; hbot; htop/ in B.!/. Suppose hbot < zbot < ztop < htop

with 4ˇ.htop � hbot/ � .ztop � zbot/ � ˇ
0.htop � hbot/, and jhtop � ztopj; jzbot � hbotj >

4�2ˇ00.htop� hbot/. Then for z 2 Œzbot; ztop�,

(11) q.z/D
bŒ˛�

bf�Œ˛�
zC

1

bf�Œ˛�
log
jCq.ztop/g.�

�
Œ˛�.H //j

j��Œ˛�.H /j
CO.� diam.B//;

where H is a Œ˛� block such that ˛0.Htop/D ztop .

Proof We know from Lemma 3.3.2 that

q.z/D
bŒ˛�

bf�Œ˛�
.z/C

�
q.ztop/�

bŒ˛�
bf�Œ˛�

.ztop/
�
CO.� diam.B//:

We now find an alternative expression for the term in the parenthesis.
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Let Htop �B be a Œ˛� block such that ˛0.Htop/D ztop . Then, by (3) and Lemma 3.3.2,

log
j��Œ˛�.H /je�bŒ˛�ztop

jCq.ztop/g.�
�
Œ˛�.H //je�bf�Œ˛�q.ztop/

DO.� diam.B//:

Simplifying gives

1

bf�Œ˛�
log

j��Œ˛�.H /j

jCq.ztop/g.�
�
Œ˛�.H //j

D
bŒ˛�

bf�Œ˛�
ztop� q.ztop/CO.� diam.B//:

3.3.5 Corollary There is a linear map T W A! A0 and a vector Ec 2 A0 such that for
z 2 A,

(12) f .z/D T .z/C EcCO.� diam.B//:

Proof By Proposition 3.3.4 and Lemma 3.3.3 we have

(13) log
jCq.h1/g.�

�
Œ˛�.H //j

j��Œ˛�.H /j
D f�˛0.z/�˛0.z/CO.� diam.B//;

for every root class Œ˛�, and z2A. Since j�Œ˛�.H /jDe˛0.H / and jCq.h1/g.�
�
Œ˛�.H //jD

ef�˛0.f�g.H //; where f � g.H / is a f�Œ˛� block. Since the left hand side of (13)
is linear in ˛0 it follows that the constant terms in (11) in different one dimensional
directions are compatible, and this implies the existence of Ec 2 A0 that gives rise to
(11) along each root class.

3.3.6 Remark In view of Corollary 3.3.5, by modifying f by O.� diam.B//, we
can assume that Equations (12) and (11) holding without error terms.

4 Aligning the linear part of standard maps

Again, we refer to Theorem 3.0.5. By Lemma 3.3.3, the linear part of fi ’s that appeared
in the conclusion of Theorem 3.0.5 sends RG of G , to RG0 of G0 . A priori, the linear
parts of the fi ’s do not have to be the same. For a generic G and G0 , the group of
permutations between RG and RG0 is trivial, in which case the linear parts of fi are
all the same.

In this section, we show that this is true in general. That is, when rank of G is 2 or
higher, the linear parts of the fi ’s have to be the same. When G is rank 1, there are
two root classes and the argument follows exactly the same proof as in Eskin, Fisher
and Whyte [5], with the modification of replacing x and y horocycles by left translates
of horocycles corresponding to those two root classes.

We aim to prove the following by the end of this section.
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4.0.7 Theorem Let G;G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups. Let �W G! G0 be a .�;C / quasi-isometry. Given 0 < �; � < 1, there is
a number L0 such that if † � A0 is a product of intervals of equal size at least L0 ,
then there is a subset U � ��1.B.†// of relative measure at least 1� � such that for
some permutation � between root classes of G and root classes of G0 , any root class
horocycle p VŒ˛� �G that spends at least

p
� proportion of its measure in U satisfies

d.�.pVŒ˛�\U /;p0V�.Œ˛�/\�.U //DO.� diam.†//:

Choose ı; �� 1. By Lemma 2.2.4, G0 is amenable and boxes have small boundary
compared to its volume, therefore the same is true of its image under ��1 . So we can
take a large box B in G0 , tile ��1.B/ by large boxes and apply Theorem 3.0.5 to each
of the tiling boxes in ��1.B/ to obtain a further tiling by smaller boxes, where most
of them support standard maps. In other words, we have a tiling of ��1.B/ by smaller
boxes Bi D B.�i/, where �i � A is compact convex, and all of �i ’s are translates
of each other.

(14) BD
G
i2I

�.Bi/t‡

where j‡ j �O.1=diam.B//jBj, and there is a subset I0� I of relative measure at least
1�� so that for each i 2 I0 , there is a subset Ui �Bi , also of relative measure at least
1� � , such that �jUi

is O.� diam.Bi// away from a standard map gi � fi , where fi

is affine. Furthermore, the linear part of fi sends RG to RG0 , and is of finite order.

Since each Ui has large measure, U�D
S

i2I0
Ui has relative measure at least 1�O.�/

in ��1.B/. For a subset V �G0 , we write I.V / for those i 2 I such that Bi \V 6D∅.

Theorem 4.0.7 finishes the alignment step because of the following consequences.

4.0.8 Corollary In the conclusion of Theorem 3.0.5, the linear part of fi ’s, i 2 I0 ,
are all the same.

Proof By Lemma 3.3.3 we know that linear part can only be one of finitely many
possibilities. Furthermore, they are uniquely determined by the permutations they
induce on the root classes, which is also reflected by the permutations on the different
root class horocycles. Therefore Theorem 4.0.7 implies that this permutation the same
for all good boxes, and the claim follows.
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4.0.9 Corollary Given 0 < �; � < 1, there is a number L0 such that if � � A is a
product of intervals of equal size at least L0 , then there is a subset U � ��1.B.�//
of relative measure at least 1� � , and a standard map y� D g � f where f is affine
defined on it such that

d.�jU ; y�/DO.� diam.B.�///:

Proof Repeat the proof of Theorem 3.0.5 to B.�/.

4.1 S graph, yS graph and the H` graphs

We continue with the setting from (14) and discretize B in this section so that it reflects
the structures of the standard maps y�i , for i 2 I0 . Recall that each box Bi tiling the set
��1.B/ is isometric to B.!/, the box associated to some convex compact set ! � A.
Let �i ,i D 1; 2; 3; 4; 5, be numbers such that �1� C , and �i � �iC1� � diam.!/.

The S graph Take a �1 net in B.R/ and connect two net points by an edge if 1)
their �A images are no further than �1 from each other and 2) that they are no further
than 10�1 apart. We metrize this graph by letting lengths of edges be the distance
between the corresponding points in G0 , so all edges have length O.�1/. We refer to
the discretization restricted to B as the S graph.

The sets U 0 and U Let U 0 be the union of the Ui ’s, for i 2 Ig as in (14). We will now
produce another set U with the property that U �N�5

.U 0/. First let U 00 DN�1
.U 0/,

and then let U c DN�5C�1
.U 00c/.

The sets zU and zU 0 We define zU ; zU 0 �U 0 using the following criteria. Let p 2U 0 ,
and y�p D fp �gp be local approximation of � around p . We say p 2 zU (resp. zU 0 )
if for every chamber b, and its image chamber .fp/�.b/, for at least some positive
(small lower bound) measure of linear functionals ` with Ev` 2 b, and positive measures
of Eu 2 .fp/�.b/,

� p.ker.`/ËWbC/\ �
�1.B/ spends at least 1�

p
� proportion of its measure

in U 0 (resp. U );

� the rank 1 subspace �.p/G0Eu in B spends at least 1 �
p
� proportion of its

measure in �.U 0/ (resp. �.U /).

That zU and zU 0 exist and of relative large measure follow from the same properties
of U 0 and U .
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Favourable chamber horocycle W ˙b We say a chamber horocycle W Cb or W �b is
favourable (resp. very favourable) if it has nonempty intersection with zU (resp. zU 0 ).

From now on we fix a favourable chamber horocycle H0D qW Cb and a very favourable
chamber horocycle H D pW Cb distance 3�5=5 away, such that for a positive measure
of linear functional ` in b, ker.`/ËH lies in the shadow of ker.`/ËH0 . Let S0 � b

be this subset of positive measure. Also fix constants ˛ , ˇ; ˇ0; ˇ00 so that �� ˛�

ˇ� ˇ0� ˇ00� 1. Let h1 D `.H /� .˛Cˇ/R and h2 D `.H /� .˛CˇCˇ0=2/R.

The sets I.H / and Ig.H / Let I.H /� I be the index of those Bi that have nonempty
intersection with H . Inside of I.H /, we define Ig.W / to be those i such that
jH \U 0\Bi j � .1� �

1=3/jH \Bi j> 0.

The sets W .H /` and �W .H /` For each ` 2 S0 , we will construct W .H /` as the
union of W .H /i;` for i ranges over I.H /.

� First, suppose i 2 Ig.H /. Since H is very favourable, it follows that the set
H` WD ker.`/ËH has the property that

jSl12.H`/\Ui j � .1� c2/jSl12.H`/j:

For each j between h2 and h1 , if we write �.j / for the relative proportion of
Sl12.H`/\ `

�1.j /\U c
i in Sl12.H`/\ `

�1.j /, the above condition means that

h1X
jDh2

�.j /� 2c2

which means that for some height hi
`
2 Œh2; h1�, �.hi

`
/� 2
p

c2 . Let

W .H /i;` D Sh.ker.`/ËH0; �1/\ `
�1.hi

`/\Bi :

� Now for i 2 I.H /nIg.H /, we define

W .H /i;` D Sh.ker.`/ËH0; �1/\ `
�1.h1/\Bi :

The set �W .H /` will be constructed as a union of �W .H /i;` ’s for i ranges over Ig .
Define �W .H /i;` WD S.��.H`/; �C.H`/; �A.H`/; .fi/�.`/.h

i
`//:
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`–Shadow vertices For each ` 2 S0 , the set of `–shadow vertices will be defined as
the union of good `–shadow vertices and bad `–shadow vertices. The bad `–shadow
vertices are define to be the S vertices that lie in �1 neighborhoods of �.U 0c\W .H /`/,
and those in �W .H /` that lie within 10�R of boundary of B.R/, as well as those that
are more than ˇ00R away from �.U 0/. The S vertices in �W .H /` that are not bad
shadow vertices are defined to be good `–shadow vertices.

4.1.1 Lemma For each ` 2 S0 , there is a constant c5 depending �; � such that the
proportion of bad shadow vertices is at most c5 , and c5 approaches zero with �; � .

Proof Bad shadow vertices are defined in two stages. First we have the set S1 of ver-
tices in �W .H`/ that are either within 10�ˇ00 diam.!/ of @B or outside of ˇ0 diam.!/
neighborhood of a point in �.U�/ whose ` value is hi

0
smaller than `.H`/. That this

set has small measure in �W .H`/ follows from two facts. First, the subset that are close
to @B has relative small measure by Lemma 2.2.4.

Second, if the proportion of S1 in �W .H`/ is � , then the set of points in �Sl1
2
.H`/\�.U

c
�/

contained in a ` half plane through a point of S1 has measure at most � relative to�Sl1
2
.H`/. However by Lemma 3.2.3, the proportion of �Sl1

2
.H`/\�.U

c
� / in �Sl1

2
.H`/

is at most c4 . Therefore � � c4 . In the second stage, we enlarge the set of bad vertices
in �W .H / by adding the set N�1

�.U c
� \

�W .H`//. That this set has small measure
follows from our choice of hi

0
.

The yS`—graph For each ` 2 S0 , we modify the S –graph near �.H`/ to produce a
yS` graph which reflects divergence property dictated by the standard maps.

For x 2W C` , y 2W �` and t 2 R, we write x;y.t/ for the preimage of .x;y; t/ 2
HÌREv` under the projection �`W G!HÌREv` ; similarly we write x;y.Œc; d �/ for
the

S
t2Œc;d � x;y.t/, which is a ` half plane of length jc � d j.

For each ` 2 S0 , i 2 Ig.H /, let

K`;i D

[
x2W C` ;y2W �`

x;y.Œ.fi/�`.H0/� �5=5; .fi/�`.h
i
`/�/\

�W`;i :

We begin by replacing K`;i as a subset of the S graph by disjoint union of x;y ’s,
then define the yS graph by declaring new sets of vertices and incidence relations. For
each tj 2 .j=�1/.fi/�`.H0/��5=5�.fi/�`.h

i
`
/ call the S vertices of x;y.tj /2K`;i

pre-vertices.

In the range, we tile left cosets of W �
.fi /�`

in ..fi/�`/
�1.tj / by rectangles T� ’s

of diameter 10�1 ; in the domain, we tile left cosets of W C` in `�1.q�1
i .tj // by

rectangles TC ’s of diameter 10�2�1 . We identify two vertices p; q if
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(i) p; q are in the same T� ;

(ii) y��1
i .p/ and y��1

i .q/ are in the same TC which has the property that

j@�` .TC/\
zE��j � 1=2j@�` .TC/j;

where zE�� is the union of E�� in each root lower boundaries that appear in @�
`

from each Bi , i 2 I0 as given by Lemma 3.2.1.

We also remove any edges in Ki that ends at a bad shadow vertex. A yS` vertex is
called irregular if it arise from the procedure above. Otherwise it is called regular.

In our original S graph, every point has the same valence provided the vertex is
not close to the boundary. However, upon the changes made for the yS` graph, the
homogeneity of valence is not so clear. That this change in valency is bounded is given
by the lemma below.

4.1.2 Lemma There are Ml , Mu 2R depending only on � , C such that for any two
yS vertices, the ratio of numbers of f�` half planes through them is bounded between
Ml and Mu .

Proof Let v be an irregular vertex, and let ztop D max.f�`/.B/. First, the num-
ber of f�` half planes of length ztop � .f�`/.v/ containing v and .f�`/�1.ztop/ is
ebf�`.ztop�f�`.v// .

As v is an irregular vertex, there exists a ` block H 0 in Bi such that v 2 �i.H
0/ and

@�` .H
0/ contains a point of E�� . The number of f�` half planes containing v and�Wi.H`/ (whose f�` and qi value is hi

`
) is

� jCqi .h
i
`
/gi.�

�
` .H

0//je�bf�`hi
` by (3) and (4)

� jCqi .h
i
`
/gi.�

�
` .H

0//j
jCqi .h2/g.�

C
` .H

0/\S/j

j�C` .H
0/j

e�b`q�1
i
.hi
`
/ by Remark 3.3.6

� j��` .H
0/je�b`q�1

i
.hi
`
/ by Corollary 3.2.4

� eb`
�
`.H 0/�q�1

i
.hi
`
/
�

by (3) and (4)

� ebf�`
�
qi .`.H

0//�hi
`

�
by Remark 3.3.6;

where � means up to a multiple constant that depends on the discretization.
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The H` graphs We now define the H` graph as a subgraph of the yS` graph consisting
of the irregular `–vertices, as well as the bad `–shadow vertices. The irregular `–
vertices are called good H` vertices and those bad `–shadow vertices are called bad
H` vertices. An edge of the H` graph is concatenation of edges in the yS` graph, all
of the same direction, that connects two H` vertices, or connect a good H` vertex
with @B. Because the valence of the yS` graph is bounded, the same is true for the H`

graph.

4.2 Averaging over the H` graph

For each ` 2 S0 , let V` and E` denote for the sets of vertices and edges in the H`

graph. Those in E` with one vertex in @B is called an leaf edge. Because we would
need to consider concatenations of edges that avoid the bad ` shadow vertices, we will
need to extract subsets of V` and E` such that paths in the induced subgraph have the
desired property, and we will achieve this by a series of averaging processes.

In the following, the ıi ’s, �i ’s �i ’s and �i ’s are all numbers less than 1 and approach
zero as � and � in Theorem 3.0.5 approach zero.

4.2.1 Definition

V1;` : The set of good vertices as in the definition of the H` graph.

E1;` : Either connects two vertices in V1 or is a leaf edge based on a vertex of V1 .

V2;` : The subset of V1 where at least 1� �2 proportion of the edges are in E1 .

E3;` : An E1 edge e such that for all yS vertices x 2 e , 1� �3 fraction of the forward
branching edges (ie edges in the same direction as e ) branching at x are in E1 .

E4;` : An E3 such that for any yS vertex x 2 e , 1� �4 fraction of the reverse edges
(ie edges in opposite direction as e ) branching at x are in E1 .

V3;` : The subset of V2 where at least 1� �3 proportion of edges belong to E4 .

V4;` : The subset of V3 that is not a strange vertex (see Definition 4.2.2 below).

4.2.2 Definition An S –vertex w is said to be marked by a V1;` vertex v if w
comes within O.�2/ of the cloud of v . A vertex v 2 V` is called strange if there is
a nonsingular direction Eu such that at least 1� �4 proportion of points that can be
reached from v along edges in direction Eu are marked by vertices in V1;`nV3;` .

4.2.3 Lemma At least 1� ı1 fraction of V` are in V1;` , and at least 1� �1 fraction
of E` are in E1;` .
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Proof The relative large fraction of V1;` in V` follows from the fact that H was
chosen to be a very favourable chamber horocycle. To see the second claim, recall that
Lemma 4.1.2 says that the valence of any S –vertex is bounded by two numbers Mu

and Ml . This implies that

1

Mu

jV`j
jE`j
�

1

Ml

:

jEc
1;`j � 2MujVc

1;`j;Now since

jEc
1;`
j

jE`j
� 2

Mu

Ml

jVc
1;`
j

jV`j
;it follows that

so �1 goes to zero because �1 � ı1 and ı1 goes to zero.

4.2.4 Corollary At least 1� �2 fraction of V` are in V2;` .

We now proceed to show the existence of those other edges and vertices.

4.2.5 Lemma At least 1� �3 proportion of edges in the H` graph are in E3;` .

Proof Suffice to show that for v 2 V2;` , almost all edges leaving v belongs to E3;` .

Take v 2 V2;` and let E.v/ denotes all edges incident to v whose directions are nonde-
generate, and so we can identify E.v/ with

Q
Ev2 zS

W CEv , where zS is the dense subset
of nondegenerate vectors in the unit sphere of A0 . Note that under this identification
E.v/ is a subset of doubling space and Vitaly’s covering lemma applies.

We know by definition of V2;` , most edges in E.v/ belong to E2;` , ie

jEc
2;` \ E.v/j � ı2jE.v/j:

Let Av D E.v/\Ec
3

denotes the subset of Ev not in E3 . We know that for any e 2Av ,
there is a x 2 e such that at least �3 of the edges (in the same direction as e ) branching
from e at x is not in E1 , so there is a neighborhood U of e such that

jEc
2 \U \ E.v/j � �3jU \ E.v/j:

We thus get a cover of Av by the U ’s. By Vitaly covering lemma, there exists
disjoint Uj ’s such that X

j

jUj j �
1

2
jAvj:

So jAvj � 2
X
jUj j �

2

�3

X
jUj \ Ec

2 \ E.v/j �
2

�3

jEc
2 \ E.v/j �

2

�3

ı2jE.v/j;

and we see that we can make Av relatively small by choosing appropriate �3 .
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4.2.6 Lemma At least 1� �4 fraction of the edges in the H` graph are in E4;` .

Proof We already know that the nonleaf edges have the desired reverse branching
property. So suffice to assume that the proportion of leaf edges is at least �1=6

1
D ˛ .

Let Y be the set of paths (concatenation of edges in the same direction) joining @B,
and Y 0 � Y be those consisting of paths which pass through a point not in V1 . Let
D. /D 1 if  2 Y 0 and D. /D 0 otherwise. By Lemma 4.2.3 and our assumption
on the proportion of leaf edges, we haveX

2Y

D. /� �1jE`j �
�1

˛
jEleafj:

For a point v 2 @B, let Yv denote the set of geodesics emanating from v . We haveX
v2@B

X
2Yv

D. /�
X
v2@B

�1

˛
jEleaf.v/j;

where Eleaf.v/ denotes the set of leaf edges emanating from v . Let � 0 to be chosen
later, and define

P D

�
v 2 @B W

X
2Yv

D. /� � 0jEleaf.v/j

�
:

By Chebyshev, the set P has relative small measure, so it suffices to show that for
v 62 P , most of the leaf edges leaving v are in E4 .

Take v 2 @BnP , then X
2Yv

D. /� � 0jEleaf.v/j

and let Av be those leaf edges leaving v that are not in E4 . As before, we identify
Eleaf.v/ with

Q
Eu W C Eu, where Eu ranges over nonsingular unit vectors. The definition

of Av means that for any e 2Av , there is a x 2 e such that at least �4 fraction of the
edges branching from e at x are not in E2 . So then there is a neighborhood U � Yv
with e 2 U such that jEc

1
\U j � �4jU j, and soX
2U

D. /D jEc
1 \U j � �4jU j:

By extracting from the U ’s, a disjoint subcollection that covers at least half of the
measure of Av we have

jAvj � 2
X

j

jUj j �
2

�4

X
j

X
2Uj

D. /�
2

�4

X
2Yv

D. /�
2� 0

�4

jEleaf.v/j:

Choose � 0 appropriately.
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4.2.7 Lemma At least 1� ı6 fraction of V` are in V4;` .

Proof The claim follows from the observations that the number of H` vertices that
can mark a given S –vertex is O.�1/ (because they must come from good boxes), and
that V1;`nV3;` has relative small measure in V1;` .

So now to each H` graph, we have a relative large subset V0
`
� V` of H` vertices for

which most geodesics leaving them are very good in quality.

4.2.8 Lemma There is an S –vertex �.x/, where x 2 U� with the following proper-
ties. There is a relative large subset S0 � b and a positive subset S 0

0
of b0 , where b0 is

the image of b under the standard map supported around x , such that

� for every ` 2 S0 , V0
`
\B.�.x/; �R/ 6D∅;

� for every p 2 V0
`
\B.�.x/; �R/ 6D ∅, Eu 2 S 0

0
, most geodesics leaving p in

direction Eu belong to E4 .

Proof To each V` we further break it up according to its H coordinate, so that
V` D

S
x2H Vx;` where we recall that H is the very favourable chamber horocycle.

Let � be the characteristic function of the set
S
`2S0

V`nV0
`

. Then we know

1

jVj
X

x2H

X
p2Vx;`

�.p/� ı6:

There is a subset zH �H of (relative large) positive measure such that for every x 2 zH ,
those in

S
` Vx;` that do not belong to

S
` V0

`
have small relative measure. Fix such

a x 2 zH , and now look at all the V`;x for `’s ranging over S0 . Without loss of
generality we can assume �.x/ to be an S –vertex. Let fx �gx be the standard map
supported around x , and let b0 D f�.b/ be the image chamber. Each of V0

`;x
are good

for some length in the b0 directions. Note that the preimages of Vx;` as ` ranges
over S0 all lie on a common flat. This might not be true of the vertices

S
`2S0

Vx;`

themselves. However if this is not the case, then we can push forward two parallel
paths in the domain and if the images are located far too far away from where the flats
coarsely intersect each other, then we will have a contradiction. So we conclude that
out of

S
` V 0

x;`
is a subset U0

x of positive measure that all lie on a common flat as
the S vertex �.x/. Now, to each element of U0

x is a large subset of good directions
in b0 . Let y� denotes the characteristic function of pairs .z; Eu/ where z is an element
of Vg

x D
S
` U0

x;`
and Eu is a direction such that most of the edges in that direction
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does not belong to E4 . Then we know X
z2Vg

x

X
Eu2b0

y�� ı7

X
Eu2b0

X
z2Vg

x

y�D
X

z2Vg
x

X
Eu2b0

y�� ı7:and

So there is a subset of b0 of large proportion that are good for a large proportion of
vertices in Vg

x .

4.3 Some geometric lemmas

An idea behind the proof of Theorem 4.0.7 is the following observation. In HnC1 (as
in Lemma 2.1.1) suppose two travelers leave a common starting point via segments of
diverging vertical geodesics. If they are to meet up again without having to travel for
long, then they can only do so in some neighborhood of the starting point. In short,
this section is the same as Section 5.3 in Eskin, Fisher and Whyte [5].

Recall that for three points x;y; z in a metric space, the Gromov product is defined as

.yjz/x D
1

2
.d.y;x/C d.z;x/� d.y; z//:

In a ı hyperbolic space X , the geodesic yz joining y to z satisfies

d.yz;x/� ı � .yjz/x � d.yz;x/:

The projection …` Let …`W G!W �` ÌREv` be the projection defined by .x; t/ 7!
.Œx�W �` ; `.t// (where Œx�W �` denotes for the W �` coordinate of x). Let H be a ` block,
and write �`.p; q/D .…`.p/;…`.q//…`.H / for the Gromov product of …`.p/ and
…`.q/ with respect to …`.H / in the negatively curved space W �` ÌREv` .

For the remaining of this section, H denotes for a ` block. Also, until the end of
Section 4, � is a positive number less than 1 such that O.diam.B//� e� diam.B/ , and
� diam.!/� � diam.B/. The lengths of all paths in this section are less than e� diam.B/ .

We now list some properties of �` . In the lemma below, � is used to denote two
quantities whose ratio depends only on �;C , ` and the space G .
4.3.1 Lemma (i) Suppose that d.p0;p/ � d.p;H /, d.q0; q/ � d.q;H / and

�`.p; q/�minfd.p;H /; d.q;H /g. Then �`.p; q/� �`.p0; q0/.

(ii) Suppose that `.p0/<`.p/, `.q0/<`.q/, and each of the pairs .p;p0/, .q; q0/ lie
on common flats such that d.…`.p

0/;…`.p//��d.p;p0/, d.…`.q
0/;…`.q//�

�d.q; q0/. If d.p;H /; d.q;H /� �`.p; q/, then �`.p; q/� �`.p0; q0/.

(iii) If �`.p; q/; �`.q; q0/� s , then �`.p; q0/� s .
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4.3.2 Lemma Suppose p; q 2G can be connected by a path y of length less than e�R

such that

(i) `.�A.p//; `.�A.q//� `.H /� �4 ;

(ii) the ` values of y decreases for at least �R units at both ends, and the ` values
of points on the remaining subsegment are no more than `.H /� �R.

Then, �`.p; q/��.�4/.

Proof Let p0 and q0 be the closest points to p and q on y whose ` values first dip
below `.H /� �R. Since the length of y is less than e�R , so is the length of …`.y /,
which connects …`.p/ and …`.q/, as well as the subsegment of …`.y / between
…`.p

0/ and …`.q0/. This means that if …`.p/ 6D…`.q/, then any path connecting
…`.p

0/ to …`.q0/ whose ` value stays �R units below `.H / would have length at
least e�R , contradicting the assumption about the length of y .

4.3.3 Lemma Let p0; q0 be good ` vertices, and  be an E0 edge connecting them.
Let p; q 2  be points that are within the same good box as p0 and q0 respectively.
Then the following holds:

(i) Except near the end points,  never pass through any irregular ` vertices.

(ii) We have �`.y��1.p/; y��1.q//��.�4/.

Proof Starting from p0 , let p1 be the first place where  hits �W .H`/. As  is
a E0 edge, it does not hit a bad ` shadow vertex, and so there is a good ` shadow
vertex p0

1
2U�\W .H`/ such that y�.p0

1
/Dp1 and d.��1.p1/;p

0
1
/DO.� diam.!//.

Note that p0
1

and ��1.p1/ are both �.� diam.B// away from @.��1.B//. Let p0
2
D

��1.p2/ be the next point after p0
1

when ��1. / intersects U�\W .H`/. We know
there must be such a point because the length of  is less than e� diam.B/ , so whenever
it moves transverse to H` , it must do so in `�1Œhi

0
;1�. Since  does not hit a bad

shadow vertex, p0
2
2 `�1.hi

0
/ at i 2 Ig.`/, so p2 is a good shadow vertex. Therefore

continuing  after p2 hits a vertex in �.U�/\H` , which is a good ` vertex, and must
be q0 . By Lemma 4.3.1,

�`.y�
�1.p/; y��1.q//D�`.y�

�1.p1/; y�
�1.p2//��`.�

�1.p1/;�
�1.p2//��.�4/:

4.3.4 Lemma Suppose p0; q0 are good ` vertices and p0q0 is a E0 edge connecting
them. If for some �1� s� �3� �4 , we have p; q 2 p0q0 in the same good box as
p0 and q0 satisfying

.fi/�`.p/� .fi/�`.p0/D .fj /�`.q/� .fj /�`.q0/D s; where i; j 2 Ig.`/:

Then, there is an ` block H 0
`

such that p; q are within O.�1/ of y�.H 0
`
/.
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Proof Let p0; q0 be points on p0q0 close to where it enters respective good boxes. By
Lemma 4.3.3, �`.y��1.p0/; y��1.q0//��.�4/. Since s� �3 < �4 , we conclude that
the ` values of y��1

i .p/ and y��1
j .q/ are the same: both are s lower than that of H` ,

and so …`.y��1
i .p// and …`.y��1

j .q// are within 2ı of a common point, where ı is the
thin triangle constant in the negatively curved space W �

`
ËREv` . But this is the same

as saying that y��1
i .p/ and y��1

j .q/ are within O.�1/ of a ` block H 0
`

as claimed.

4.3.5 Lemma Let n be 4 or 6. Suppose for 0� i � n� 1, pi are yS vertices whose
� preimages support standard maps. Let pi�1pi be subsegments of E0 edges in H

graph, where the indices are counted mod n.

Let r.pi/Dminfj.fi/�`.v/� .fi/�`.pi/j; v is a good ` vertex.g, where �i D gi �fi

is the standard map supported in a neighborhood of ��1.pi/.

Suppose there is an index k such that r.pk/ � �4 , and for all i 6D k , r.pi/ >

r.pk/C 2�1 . Then pkpkC1 and pkpk�1 cannot have only pk in common.

Proof We can assume k D 0. Let H 0
`

be the ` block passing through y��1.p0/.
By Lemma 4.3.4, we can consider H 0

`
in place of H` . Namely, we can replace the

appearance of H` in the definition of ` vertices by H 0
`

. Let pCi and p�i be the first
and last time that pi�1pi leaves �W .H`/. Suppose the claim is not true, then by
Lemma 4.3.3 �`.y��1.pC

i�1
/; y��1.p�i //��.�4/ for all i 6D 0. But we also know that

�`.y�
�1.p�

0
/; y��1.pC

0
//� �1 . This is a contradiction to Lemma 4.3.1

4.4 Proof of Theorem 4.0.7

Let Rk Ì� R be an unimodular rank 1 space with roots ˛i , � ǰ ’s, where ˛i ; ǰ > 0,
and �.t/ is a matrix consisting of blocks of the form e˛i tNi.˛i t/, e� ǰ tNj . ǰ t/ where
Ni , Nj are unipotent matrices with polynomial entries. For the following two lemmas,
let BŒT � denote for the subset .

Q
i �i �

Q
j Uj / Ì Œ�T;T �, where �i � V ˛i , and

Uj � V � ǰ , and ˛i ; ǰ > 0, j�i je
�˛i T ; jUj je

� ǰT � 1. We call the set��Y
i

�i �

Y
j

Uj

�
;�T

�
[

��Y
i

�i �

Y
j

Uj

�
;T

�
the top and bottom of B[T], denoted by x@BŒT �.

4.4.1 Lemma The total number of geodesics in BŒT � is

eT .
P

i ˛iC
P
j ǰ /

Y
i;j

j�i jjUj j;

and the number of geodesics in BŒT � through each vertex is eT .
P

i ˛iC
P
j ǰ / .
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Proof To specify a geodesic in BŒT �, we need to specify its coordinates in ˛i , ǰ

root spaces, and for every choice of ˛i and ǰ coordinate, there is a unique geodesic
segment in BŒT � going from the top to the bottom. The number of different coordinates
in ˛i root spaces is

Q
i j�i je

˛i T , and those in ˇi root spaces is
Q

j jUj je ǰT , so the
number of geodesics is �Y

i

j�i je
˛i T

��Y
j

jUj je ǰT

�
:

We know that in BŒT �,

# geodesics � # vertices on a geodesic

D # vertices� # geodesics through each vertex:

The number of vertices on each geodesic is 2T , and the number of vertices is
2T .

Q
i �i/.

Q
j Uj /, and we now see the number of geodesics through each point

is indeed as claimed.

Since Rk Ì� R is unimodular, let m denotes the common values of
P

i ˛i and
P

j ǰ .

4.4.2 Lemma (Hypothesis as in Lemma 4.4.1) Let X � BŒT � be a subset of ver-
tices. If F is a family of geodesics in BŒT � with size �e2mT

Q
i;j j�i jjUj j, where

�� 2T=em�2 , then there is a vertex v 2X , and two geodesics from F through v that
stay together for shorter than �2 units.

Proof Suppose the claim is not true. Then for each X vertex v , every pairs of
geodesics through v stay together at least �2 units. If v is within �2 neighborhood
of top and bottom of BŒT �, the number of geodesics through v with properties is
e.2T�h.v//m=em�2 , where h is the height function on Rm ÌR. On the other hand, if
v is outside of �2 neighborhood of top and bottom of BŒT �, the number of geodesics
through v with this property is

eh.v/
P

i ˛i

em�2

e.2T�h.v//
P
j ǰ

em�2
D

e2mT

e2m�2
:

The number of X vertices outside of �2 neighborhood of the top and bottom of BŒT � is
at most 2.T ��2/

Q
i;j j�i jjUj j, and the number of X vertices within �2 neighborhood

of top and bottom of BŒT � is at most 2�2

Q
i;j j�i jjUj j. So the number of geodesics

satisfying this scenario is at mostX
v2N�2

x@BŒT �

e.2T�h.v//m

em�2
C

e2mT

e2m�2
2.T � �2/

Y
i;j

j�i jjUj j �
e2T m

em�2
.2T /

Y
i;j

j�i jjUj j:
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Since the size of F is larger than this number, it is not possible that every pairs of
geodesics in F satisfy the scenario described above. So there is a X vertex v , and two
geodesics in F that stay together for less than �2 units after passing through v .

In the remainder of this section, given a regular vector Eu, we write I�;Eu.p/, p 2G0 ,
for the subset of pW CEu that can be reached by two geodesics of length � in the rank 1

space G0Eu D H0 ÌREu containing p , that first moves in the direction Eu followed by
another one in direction �Eu. We also denote by I 0

�;Eu.p/
for the subset of the left W �Eu

coset that can be reached from p by a geodesic in direction Eu (or in direction �Eu as
viewed from p ) of length �.

For the next two propositions, we make the following assumptions.

(i) Let v be a b vertex such that ��1.v/ locally supports a standard map �v D
fv Ìgv . Since fv is affine and permutes root classes of G to root classes of G0 ,
its linear part induces a permutation from the chambers of G to chambers of G0

and we write .fv/� for this permutation.

(ii) Suppose for ` 2 .A/� a regular linear functional, and Eu 2A0 , the vectors Ev` and
.fv/

�1
� Eu lie in a common chamber b of G .

The existence of such vertex is given by Lemma 4.2.8.

4.4.3 Proposition If � is a number such that at least � fraction of geodesics leaving
v in direction Eu are unobstructed by H` vertices for length at least �C �2 , where
� � 2�=ebEu�2 . Suppose � >O.�/ for some � < 1, then at least 1�O.�/ fraction of
the yS vertices in I�;Eu.v/ are H` vertices.

Proof Let E denote the set of geodesics leaving v in direction Eu that are unobstructed
by ` vertices of length at least �C�2 . Let E� be the subset of I 0�;Eu.v/ passing through
an element of E . By assumption, we have

jE�j � �ebEu�:

Let F 0
0

be the union of geodesics leaving E� in direction �Eu. (as viewed from E� ).
Applying Lemma 4.4.2 to F 0

0
, where X means ` vertices, we see that either there is an

` vertex whose Eu� D hEu; �A.˘/i value is at most �2 from that of v , or that there is an
` vertex w whose Eu� value differ from that of v by more than �2 , and two geodesics
in GEu through w1 that stay together for less than �2 units after passing through w1 .
Suppose the latter happens. Let x;y 2 I 0�;Eu.v/ be two upper end points of those two
geodesics, and w1 be the first time that wx diverge from wy . See Figure 1 below.
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v

x y

w1

w

z

Figure 1: The loop in the proof of Proposition 4.4.3. Filled boxes are H` vertices.

Let z be the first time that vx diverge from vy . Applying Lemma 4.3.5 to the loop
z�y�w1�x�z creates a contradiction. So there is an ` vertex whose Eu�DhEu; �A.˘/i
value is at most �2 from that of v . That is, there is an ` vertex in the �2 neighborhood
of I�;Eu.v/.

Let U 0 � I�;Eu.v/ be those vertices that can be reached by two elements of F 0
0

. Since
every vertex in I�;Eu.v/ can be reached by at most jE�j geodesics in I 0�;Eu.v/, it follows
that the relative measure of U 0 in I�;Eu.v/ is at least 1�O.�/.

Now suppose w 2 U 0 , and let x;y 2 I 0�;Eu.v/ be such that xw;yw are element of F 0
0

that are not obstructed by ` vertices. Applying Lemma 4.3.5 to the loop v�x�w�y�v ,
and noting that r.v/D 0, r.x/; r.y/� �2 , it follows that r.w/D 0 (otherwise r.v/

would be the smallest, a contradiction), which means that w is a ` vertex.

4.4.4 Proposition (Hypothesis as in Proposition 4.4.3) Let F be the union of
geodesics in direction Eu leaving a point of I�;Eu.v/. Then at least 1�O.�/ fraction
of F are unobstructed by H` vertices for length �C �2 .

Proof Let E� � I 0�;Eu.v/, U 0 � I�;Eu.v/ and F 0
0

be as in Proposition 4.4.3. Note that
the measure of U 0 is at least 1�O.�/ that of I�;Eu.v/.

Let F 00 be the set of geodesics leaving U 0 in direction Eu. Let F 00long be the set of
geodesics coming from extending elements of F 00 by extending �4 units on the I�;Eu.v/
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(ideally, we would like to apply Lemma 4.4.2 to the family F 00 in a rank 1 box of
size �, but in order to use illegal circuit we need the stub-vertical segment from H`

instead of being on H` . Hence the choice of H 0
`

lower down). Let H 0
`

be the ` block
whose ` value is �4 less than `.H`/. We call the resulting vertices `0 vertices if we
replace occurrence of H` in the definition of ` vertices by H 0

`
.

If all elements of F 00long are unobstructed by images of `0 vertices, then at least 1�O.�/

proportion of all elements of F are unobstructed by ` vertices. Let U 0long be the set of
`0 vertices that are within �4 of U 0 .

We have that jF 00longj � .1�O.�//ebEu.2�C�4/ . Lemma 4.4.2 allows us to conclude that
either there is an ` vertex whose Eu� value is within �2 to @B\G0Eu , or that there is an
` vertex q whose Eu� value differ from that of @B\G0Eu by more than �2 units, and
two elements of F 00long that stay together for less than �2 units after passing through q .

Suppose the latter scenario happens. Then there are w1; w2 2 I�;Eu.v/ and a `0 vertex q

such that w1q , w2q 2 F 00long . Let q� be the first point where w1q and w2q come
together. Then by assumption, the d.q; q�/ < �2 . Let x1 2 I 0�;Eu.v/ be the first point
where geodesics in direction Eu leaving w1 and v first meet, and let x2 2 I 0�;Eu.v/ be
similarly defined for w2 and v . Let r.˘/ now denotes for the distance to the closest `0

vertex. Then in the loop v�x1�w1� q��w2�x2� v , (see Figure 2) the r value
of all points but q� are at least �4 , while r.q�/ � �2 , which is a contradiction by
Lemma 4.3.5. Therefore if elements of F 00long is to contain a `0 vertex, this vertex is

v

x1 x2

w2

u2

q

q�

yv

w1

u1

Figure 2: The loop in the proof of Proposition 4.4.4. Filled boxes are H`0 vertices.

within �2 neighborhood of @B\G0Eu , which is just saying that no elements of F 00long
are obstructed by `0 vertices, therefore at least 1�O.�/ proportion of elements in F
are unobstructed by ` vertices by construction.
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4.4.5 Theorem Let v be a b vertex and y�v D fv �gv be a standard map supported
in a neighborhood of ��1.v/. Let �0D d.v; @B/. Then at least 1�O.�/ proportion of
vertices in vW C.fv/�b are b vertices, where O.�/ is the proportion of geodesics leaving
��1.v/ that admits a geodesic approximation of length �.diam.!//.

Proof Here we give a proof when rank is at least 2. The rank 1 case in general follows
that of the arguments in Eskin, Fisher and Whyte [5].

Let sEu be the difference in v�
Eu

values between @B\G0Eu and v .

Fir a �2 D �sEu . For every ` 2 S0 , and w 2 I�;Eu.v/, we let f`.w; �/ denotes the
proportion of geodesics leaving w that are unobstructed by H` vertices for length at
least �C �2 . Let

f �` .v; �/D sup
w2I�;Eu

f`.w; �/:

In view of Propositions 4.4.3 and 4.4.4, if f �
`
.v; �/�O.�/, then f �

`
.v; �/� 1�O.�/.

Then, either for all �� sEu , we have f �
`
� 1�O.�/; or that there is a maximal number

�Eu;` � 1 such that f �
`
.v; �Eu;` � 1/� 1�O.�/, but f �

`
.v; �Eu;`/ <O.�/. We are done

if the latter does not happen. We now proceed to show that this is indeed the case.

In the second scenario, we know that �Eu;`� � diam.!/, and at least 1�O.�/ proportion
of vertices in I�Eu;`;Eu.v/ and I 0�Eu;`;Eu.v/ are H` vertices. That is, they are � images of
U�\ .x0W Cb Ì ker.`//.

Claim If �Eu;� > �Eu;` for �; ` 2 S0 , then �Eu;� ��Eu;` >O.� diam.!//.

Suppose not. Then we will have subsets, one in ker.�/ and one in ker.`/ that are
within O.� diam.!// Hausdorff distance from each other. This can only happen if the
subsets are within O.� diam.!// of ker.�/\ ker.`/. But this would mean that most
of I 0�Eu;`;Eu.v/ come from � images of x0W Cb Ì .ker.�/\ ker.`//, contradicting the
assumption that �Eu;� is the minimal height t where most of the I 0t;Eu.v/ are obstructed
by H� vertices.

In this way, the image of the map S0 ! Œ0; sEu� defined by sending � ! �Eu;� is a
O.� diam.!// discrete set. Let y�Eu be the minimal image value whose preimages has
positive measure. This means that most elements of I 0y�Eu;Eu

.v/ and I y�Eu;Eu.v/ are �
images of U� \ x0W Cb , thus the subset of S0 consisting of elements � such that
�Eu;� > y�Eu is empty. Since for all t < y�Eu , the preimages of t in S0 has zero measure,
this means not only does the preimages of y�Eu has positive measure, it has full measure.

Now pick another direction Eu0 in the same chamber as Eu, but not in the �1=2 neighbor-
hood of the Eu orbit under the finite group of affine maps permuting Rg to RG0 , and
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repeat the same argument as above to obtain a number y�Eu0 such that most of I 0y�Eu0 ;Eu0
.v/

come from � images of x0W Cb .

Pick y0 2 I 0y�Eu
.v/ and y 2 I 0y�Eu0

.v/ so that each locally supports a standard map. Take
two geodesics leaving y0 in direction Eu (as viewed from v ) that stay together for tEu
units (where �1=2 diam.!/� tEu� diam.!/) after they leave y0 , followed by a short
segment diam.!/ away from v , before joining the geodesics connecting v to y . Let’s
say they stay together for tEu0 units before coming to a stop at y . See Figure 3.

�A

�A.v/

�A.y0/

�A.y/

y0

y

v

Eu

Eu0

Figure 3: The loop that prevents blocking. Filled boxes represent b vertices.
The left hand is the �A projection image of the loop on the right.

As most of I 0y�Eu
.v/ and I 0y�Eu0

.v/ come from U� \W Cb , for a full measure of ` 2 b,
Lemma 4.3.5 requires

…`�
�1
y0
.tEu Eu/�…`�

�1
y .tEu0 Eu

0/; as well as …`�
�1
y0
.tEu Eu/�…`�

�1
y .tEu0 Eu

0/:

This means that f �1
y0
.tEu Eu/D f

�1
y .tEu0 Eu

0/, where fy0
and fy are linear part of standard

maps �y0
and �y . That is, tEu=tEu0 2 Œ1=.1� �/; 1C ��, and tEu Eu lies in the � diam.!/

neighborhood of the orbit of tEu0 Eu
0 under the finite group of linear maps that permutes

RG to RG0 . But this contradicts our choice of Eu0 and tEu .

Proof of Theorem 4.0.7 As any root class horocycle is the intersection of finitely
many left translates of W Cb , where b is a chamber, it suffices to show that the claim
holds for left translates of W Cb0 of G0 in place of left translates of VŒ˛�0 of G0 .
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We start with B.†/ sufficiently large so that we can apply Theorem 3.0.5 to ��1.B.†//
and obtaining a tiling as in Equation (14). Let U� D

S
i2I0

Ui . Since U� has large
measure relative to ��1.B.†//, for a fixed chamber b, we can find a large subset
Ub � U� with the property that for every point p 2 Ub , there is a subset S0 � b of
relative proportion at least 1�# such that E`.p/ is very favourable for every ` 2 S0 .
By constructing the corresponding yS and H graph, application of Theorem 4.4.5 to a
point v 2 �.Ub/ shows that the ��1 image of vW Cc \B.†/ is O.� diam.B.†// away
from a left translate of W Cb , where c is the image of b under the linear part of the
standard map supported in a neighborhood of ��1.v/.

5 Patching

In the previous section, we aligned the linear part of standard maps appeared in
Theorem 3.0.5 by showing that they are all the same. In this last section, we remove
the condition that standard maps are only defined for a subset of relative large measure
and align the translational part of the standard maps by adopting the procedure used to
achieve this in Eskin, Fisher and Whyte [4].

5.1 A weak version of an affine map

We have by now seen that given a box, there is a subset of large measure supporting a
standard map. In this section, by controlling the sizes of increasingly larger and larger
boxes, we remove the constraint of “subset of large relative measure”s and extend the
result to all pairs of points p; q 2 G on the same flat. The precise statement is the
following.

5.1.1 Theorem Let G;G0 be nondegenerate, unimodular, split abelian-by-abelian
Lie groups and �W G! G0 be a .�;C / quasi-isometry between them. Given 0 < ı ,
�� z� < 1, then there exists � < 1, M depending on ı , �, z�, and .�;C / such that
whenever x;y belong to the same left coset of H,

(15) j�A.�.x//��A.�.y//j � �d.x;y/CM;

where � ! 0, M !1 as the input parameters approach zeros.

The setup to the proof of Theorem 5.1.1 follows the same sequence of steps as the
analogue result in Section 6.1 of Eskin, Fisher and Whyte [4].

Fix 0< ı; �� z� < 1. Let ��A be a product of intervals of size L0 with barycenter
located at the origin of A. By Corollary 4.0.9, there is a subset P0 � P.�/ of relative
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large measure which is the support of a standard map g � f where f is affine. Let
# � 1 satisfies jP0j � .1� #/jP.�/j, and set % D

p
# . Let P be a left translate

of H, and we can assume P contains the identity element. Let R.�/D B.�/\P, and
R.�/D

S
g2R.�/ g.%�/. The following is a rehash of Corollary 4.0.9.

5.1.2 Corollary There is a standard map f �g where f is affine with linear part Af ,
defined on P0�P.R.�//, with jP0j � .1�%/jP.R.�//j, such that d.�jP0 ; f �g/�

� diam.B.�//. Furthermore, if p 2 P0 , there is a subset L0.p/ � L.p/ of relative
large measure such that the � image of every element � 2 L0.p/ is within �–linear
neighborhood of a geodesic segment.

The tiling Choose �� & � 1. For each j 2 N , set �j D .1C &/
j�. We tile P

by R.�j /, where each tile is denoted by Rj ;� , � 2 N . For x 2 G , we write Rj Œx�

for the tile in the j –th tiling containing the point in P that lies on the same flat as x .
Note that the number Rj ;k ’s needed to cover a rectangle RjC1Œp� is on the order of
e
Pj4j

iD1
& maxf˛i .�/g .

The sets Uj For each tile Rj ;k in the j –th tiling of P, Corollary 5.1.2 produces a
subset P0

j ;k
� P.Rj ;k/ of relative large measure. We set

Uj D

[
k2N

P0
j ;k :

In view of Corollary 5.1.2, for any x 2 Uj ,

(16) sup
y2RŒx�\Uj

j�A.�.x//��A.�.y//j � � diam.B.�j //:

Recall that 40 is the set of roots in G0 , and we write n for the rank of G (which is
also the rank of G0 ). We also have the following generalization:

5.1.3 Lemma For any x 2 Uj , and y 2 RjC1Œx�\Uj ,

j�A.�.x//��A.�.y//j � 4nj40j� diam.B.�j //:

Proof Without loss of generality, we can assume that there is a horocycle HŒ˛� that
intersect both RŒx�\Uj and RŒy�\Uj . (If not, then we can find a sequence of points
x D p0;p1; : : : ;pl D y where l � j40j such that for each pair of consecutive points,
there is a horocycle intersecting RŒp��\Uj and RŒp�C1�\Uj ). Let x12HŒ˛�\RŒx�\Uj ,
y1 2HŒ˛�\RŒy�\Uj be points of intersection. Therefore by Equation (16),

j�A.�.x//��A.�.x1//j � % diam.B.�j //;

j�A.�.y//��A.�.y1//j � % diam.B.�j //:
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Since d.x1;y1/� diam.B.�jC1//, for �D 1; 2 we can find geodesic segments x1;� ,
y1;� leaving x1;y1 respectively such that QD fx1;�; y1;�g�D1;2 is a 0–quadrilateral.
Additionally, because x1;y1 2 Uj \HŒ˛� , we can assume for � D 1; 2, � D x1;y1 ,
the subsegment y�;� � �;� containing � and satisfies jy�;�j D .1=.1C &//j�;�j admit
geodesic approximation to its � image. That is, �.y�;�/ is within �jy�;�j Hausdorff
neighborhood of another geodesic segment.

Let l�;� be a geodesic approximation to �.y�;�/. Then angle between the direction
of l�;� and that of y�;� is at most sin�1.�/. Therefore by modifying each l�;� by an
amount at most �2� diam.Q/� � diam.B.�jC1//, we can assume l�;� all have parallel
directions. Since &� 1, the four geodesic segment l�;� do constitute a quadrilateral zQ
and [12, Lemma 4.1.10] applied to zQ yieldsˇ̌

�Ev ı…Ev.�.x1//��Ev ı…Ev.�.y1//
ˇ̌
� � diam.B.�j /;

where Ev is parallel to edge directions of zQ. Thereforeˇ̌
�Ev ı…Ev.�.x//��Ev ı…Ev.�.y//

ˇ̌
� � diam.B.�j /C 2% diam.B.�j //

� 4� diam.B.�j //

since % � � . The claim now follows by constructing quadrilaterals whose image is
approximated by quadrilaterals whose edge direction ranges over at least n many
linearly independent directions.

5.1.4 Lemma Suppose p 2 Rj Œx�\Uj , q 2 RjC1Œx�\UjC1 . Then,

j�A.�.x//��A.�.y//j � .4j4jnC 2/� diam.B.�jC1//:

Proof Both the relative measures of the projections of the sets RjC1Œx�\Uj and
RjC1Œx�\UjC1 to RjC1Œx� are at least 1�%. Therefore we can find p02RjC1Œx�\Uj ,
q0 2 RjC1Œx�\UjC1 , and j�A.�.p

0//��A.�.q
0//j � % diam.B.�jC1//.

j�A.�.p//��A.�.p
0//j � 4nj4j� diam.B.�j //;By Lemma 5.1.3,

j�A.�.q
0//��A.�.q//j � � diam.B.�jC1//:and by (16),

The claim now follows by triangle inequality.

Proof of Theorem 5.1.1 We have

R0Œx��R1Œx��R2Œx�� � � �

and R0Œy��R1Œy��R2Œx�� � � � .
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There exists N with diam.B.�N // is comparable to d.x;y/ (after possibly shifting the
N ’s grid by a bit) such that RN Œx�DRN Œy�. Now for 0�j �N , pick xj 2Rj Œx�\Uj ,
yj 2 Rj Œy�\Uj . We may assume that xN D yN . By Lemma 5.1.4,

j�A.�.x0//��A.�.y0//j

�

N�1X
jD0

j�A.�.xjC1//��A.�.xj //jC

N�1X
jD0

j�A.�.yjC1//��A.�.yj //j

� 2.4j4jnC 2/

N�1X
jD0

� diam.B.�jC1//

� 4.2j4jnC 1/
�

&
diam.B.�N //;

where last inequality comes from diam.B.�jC1// D .1 C &/ diam.B.�j //. Now
since x0 2R0Œx� j�A.�.x//��A.�.x0//j � 2�d.x;x0/� 2� diam.B.�//DM , and
similarly j�A.�.y//� �A.�.y0//j �M . The claim now follows by noting that we
chose diam.B.�N //=d.x;y/ 2 Œ1=2; 2� and & � � .

5.2 Consequence of weak height preservation – flats go to flats

Theorem 5.1.1 is the first statement we have that places no additional constraints on
the points other than their natural relation in G . In this subsection we show that as a
first consequence, the image of a flat is within O.1/ of another flat, which eventually
culminating in the proof of Theorem 5.3.6 in the next section.

5.2.1 Proposition The quasi-isometry � sends a flat to within O.1/ of a flat.

We now proceed to establish some necessary observations.

5.2.2 Lemma There is a linear map A0W A! A0 and numbers y� < 1, �M > 0 such
that for any x;y 2G ,

(17)
ˇ̌
.�A.�.x//��A.�.y///� .A0.�A.x//�A0.�A.y///

ˇ̌
� y�d.x;y/C �M :

Proof Let B be a box such that diam.B/=d.x;y/2 Œ1=2; 2�. By Corollary 4.0.9, there
is a subset P0 � P.B/ of relative measure at least .1�

p
�/ that supports a standard

map which is � diam.B/ away from �jP0 . Write A0 for the linear part of the A0 part
of the standard map. Without loss of generality we can assume that xH\P0 6D ∅,
and yH\P0 6D∅. Let yx 2 xH\P0 , and yy 2 yH\P0 . Then by Theorem 5.1.1,ˇ̌

.�A.�.yy//��A.�.y///� .A0.�A.yy//�A0.�A.y///
ˇ̌
� �d.yy;y/CM:
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Since �A.yy/D �A.y/. By Corollary 4.0.9 we also haveˇ̌
.�A.�.yx//��A.�.yy///� .A0.�A.yx//�A0.�A.yy///

ˇ̌
� � diam.B/;

and by Theorem 5.1.1 again, we haveˇ̌
.�A.�.x//��A.�.yx///� .A0.�A.x//�A0.�A.yx///

ˇ̌
� �d.x; yx/CM:

Summing all three equations and apply triangle inequality to the left hand side we haveˇ̌
.�A.�.x//��A.�.y///� .A0.�A.x//�A0.�A.y///

ˇ̌
� .2� C �/ diam.B/C 2M

� 2.2� C �/d.x;y/C 2M;

since � and � depends on our initial �; ı , and approach zero as the initial inputs approach
zero, we can assume that 2.2� C �/ < 1, and we set y� D 2.2� C �/, �M D 2M .

5.2.3 Corollary There is a number M0 such that if p; q 2 G are two points on the
same flat and �A.�.p//D �A.�.q//, then d.x;y/�M0 .

Proof In Equation (17) substitute x;y by p; q and note that since p; q lies on the
same flat, j�A.p/��A.q/j D d.p; q/. So we have .1�y�/d.p; q/� �M , to which the
result follows. Alternatively, this can be obtained from Theorem 5.1.1 applied to the
inverse map ��1 and �.p/, �.q/, for then Equation (15) becomes

j�A ı�
�1.�.p//��A ı�

�1.�.q//j � �d.�.p/; �.q//CM � ��d.p; q/CM CC

j�A.p/��A.q/j D d.p; q/� ��d.p; q/CM CC

d.p; q/�
M CC

1� ��
:

5.2.4 Definition A subset L of A0 ' Rn is called a “grid” if it is the image of an
injective homomorphism  W Zn ! A0 . A line in L refers to a subset of the form
f .cC tu/ W t 2 Zg for some c;u 2 Zn , and each coordinate of u is either C1;�1

or 0. A grid is said to be good if none of its lines are parallel to root kernels.

5.2.5 Lemma Let fxig �G0 be a sequence of points with the following properties:

(i) �A.xj / 6D �A.xi/ if i 6D j .

(ii) f�A.xi/g � A0 is a good grid.

(iii) For any subsequence fxij g such that f�A.xij /g is a line, fxij g is within O.1/

of a (bi-infinite) geodesic.

Then fxig is within O.1/ of a flat.
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Proof Write f�A.xi/g D L. Let fx1j g, and fx2j 0
g be two subsequences such that

their �A images are two parallel lines, and let l1 , l2 be two geodesics within O.1/

of fx1j g and fx2j g respectively. We note that to every x1j , there is an x2j such
that �A.x2j / is closest to �A.x1j / amongst f�A.x2j /g. Furthermore, there is a line
in L containing �A.x1j / and �A.x2j /, and by assumption, this means that there is a
geodesic ylj (whose direction is the same for all j ) within O.1/ of x1j and x2j . Now,
if l1 and l2 are not in the same flat, then there must be a root „ such that �„.l1/ and
�„.l2/ fork out with respect to the orientation we previously fixed on l1 and l2 . When
x1j , x2j are far away from the fork point, this causes a contradiction because the
existence of yl mean that �„.x1j / and �„.x2j / can be connected by a vertical geodesic
in V„ , but they lie far away from the forking point of two geodesics. Therefore if
fxij g is a subsequence for which their �A image is a affine 2–subspace, then fxij g lie
within O.1/ of an affine 2–subspace in a flat.

Now suppose whenever fxij g is a subset whose �A image is an affine I –subspace,
fxij g is within O.1/ of a flat. Let fx1j g, fx2j g be two subsets such that f�A.x1j /g,
f�A.x2j /g are two parallel I –hyperplane, and h1 , h2 be two affine I subspace within
O.1/ of fx1j g and fx2j g respectively.

Then we know for every x1j , there is a x2j such that there is a line in L containing
�A.x1j / and �A.x2j /, so by assumption, x1j , x2j are within O.1/ of a (straight)
geodesic ylj . Furthermore we can assume without loss of generality that the direction
of ylj are the same for all j . Therefore if h1 and h2 lie on two different flats, then for
some root „, �„.h1/ and �„.h2/ are two vertical geodesic that fork apart. Therefore
for x1j , x2j such that �„.x1j /, �„.x2j / lying very far from the fork point where
�„.h1/ and �„.h2/ diverge from each other, this is a contradiction to the existence
of ylj within O.1/ of x1j and x2j , for the latter would imply that �„.x1j / and �„.x2j /

are within O.1/ of a vertical geodesic in V„ .

Proof of Proposition 5.2.1 Let L be a good grid in A0 under a group isomorphism  .
We can further make sure that for each basis ei 2 Zn , j .ei/� .E0/j D 4M0 , where
M0 is as in Corollary 5.2.3. The same corollary also implies that for every point
b 2 L, the subset sb D fx 2 �.F/ W �A.x/ D bg of G0 is contained in a ball of
radius at most M0 . Therefore for distinct points b;d 2L, sb\ sd D∅. Furthermore,
modifying � a bounded amount if necessary, we can make sure that sb 6D ∅ for all
b 2L.

Let fxj g � �.F/ be a subset such that xj 2 sb for some b 2 L. We choose xj ’s so
that if j 6D i , xj 2 sb , xi 2 sc for b 6D c. Such choice of fxj g is said to be adapted
to the grid L. Now let fxij g be a subsequence whose �A images is a line in L, and
fyij g � F be their �–preimages in F . Then by Equation (17), d.yij ;yijC1

/� yC .L/,
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for all j , for some constant yC depending on L. This means that d.xij ;xijC1
/� 2� yC

for all j . Applying (i) of [12, Lemma 3.3.3] to fxij g shows that the sequence is
within O. yC / of a (bi-infinite) geodesic. The desired claim now follows by applying
Lemma 5.2.5 to all possible choices of fxj g adapted to the grid L.

5.3 Consequences of flats go to flats

In this section we will see that a quasi-isometry of G induces quasi-similarities among
the .@Œ˛�;DŒ˛�/’s.

5.3.1 Definition We call a map F W X ! Y between metric spaces .N;K/–quasi-
similarities if

N=Kd.x;y/� d.F.x/;F.y//�NKd.x;y/:

When K D 1, the map is called a similarity. We write the group of quasi-similarities
of a space by QSim.X /.

5.3.2 Definition Let V D V1 � V2 � � � � � Vs be a finite filtration of subspaces in a
vector space V . A map f W V ! V is called an almost translation with respect to the
filtration fVig if it sends left cosets of Vi to left cosets of Vi (ie respects the foliation
structures induced by the filtration) and induces a translation map on each Vi=ViC1 .

If one wants to express in terms of coordinates, then by choosing a basis in each
VinViC1 , an almost translation is a map of the form

.Ex1; Ex2; : : : ; Exs/

7! .Ex1CB1; Ex2CB2.Ex1/; Ex3CB3.Ex1; Ex2/; : : : ; ExsCBs.Ex1; Ex2; : : : ; Exs�1//;

where the Bi ’s are functions.

5.3.3 Remark We will use Definition 5.3.2 to the subspaces VŒ„� D
L
˛2Œ„� V˛

corresponding to each root class Œ„�. Since roots of the same root class are all positive
multiples of each other, there is a well-defined linear order on them which in turn
induces a filtration in VŒ„� . More explicitly, let ˛1 > ˛2 > � � � be the linear order on
the roots in Œ„�, then we have the filtrationM

i

V˛i
�

M
i�2

V˛i
�

M
i�3

V˛i
� � � � :

5.3.4 Definition An almost similarity is a composition of a similarity followed by an
almost translation. Later we will use the notation ASim.@�

Œ
„�/ to denote the group of

almost similarities whose almost translations are with respect to the filtration on VŒ„�
as in Remark 5.3.3.
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5.3.5 Proposition Let  W G DHÌ' A!G0 DH0 Ì'0 A0 be a quasi-isometry such
that the image of left translate of A is within O.1/ neighborhood of a left translate
of A0 .

(i) There is a bijection � between the root classes of G and the root classes of G0 .

(ii)  sends foliations by Œ„� root kernel of G to the foliations by �.Œ„�/ root
kernel of G0 , for all root classes Œ„�.

(iii)  sends foliations by Œ„� root class horocycles of G to foliations by �.Œ„�/
root class horocycles of G0 , for all root classes Œ„�.

(iv)  is within O.1/ of a product map f � g , where f W A! A0 is affine whose
linear part is some scalar multiple of a finite order element of O.n/; while
g D .g1;g2; : : : ;gs0

/, each gi is a bilipschitz map from VŒ˛� to V�.Œ˛�/ .

(v) For each root class Œ„�, if we list the roots �1 < �2 < �3 < � � � < �l , then f
induces a map on the roots such that f��1 <f��2i < � � �<f��l , where ff��g D
�.Œ„�/. Furthermore, with respect to this order of roots, gjVŒ„�W VŒ„�! Vf�Œ„�
respects the filtration induced by the ordering of the roots as well as the degree of
nilpotency induced by the Jordan blocks within each eigenspace. In coordinates,

.Ex1; Ex2; : : : ; Exl/ 7! .g1.Ex1; Ex2; : : : ; Exl/; : : : ;gl�1.Exl�1; Exl/;gl.Exl//;

where Exj 2 V�j such that for each i , any xj 2 V�j for j > i , the map

� 7! gi.�;xiC1; : : : ;xl/

on V�i
, is a .ef��i .t0/; 2�ec/ quasi-similarity, where t0 is the constant part of f ,

and c is a constant depending on  .

(vi)  induces an quasi-similarity between root boundaries of G and G0 .

Proof Since two flats are within a finite Hausdorff distance of each other if and only
if they are the same flat, our assumption means that a flat yF within O.1/ Hausdorff
neighborhood of  .F/ for F a flat, is unique. Moreover, as

dH .�.@.F1\F2//; @. yF1\
yF2//�M0;

and two flats intersect at a set bounded by hyperplanes parallel to root kernels, claim
(i) and (ii) follow since any root kernels have codimension 1 in a flat and hyperplanes
parallel to two distinct root kernels must intersect.

To see (iii), we consider two cases depending on the number root kernels in G . In the
case that G has rank.G/ distinct root kernels, we take two points p; q in the same
root class horocycle, say of root class Œ˛�, and build a quadrilateral Q with p; q as
two if its vertices (see [12, Definition 4.1.5]) in the direction

T
Œ„� W Œ„� 6DŒ˛� ker.Œ„�/.
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As each one of the hyperplanes parallel to a root kernel Œ„� arise as the intersection
between two flats, the image of Q is close to another quadrilateral yQ whose direction is
parallel to

T
Œ„� W Œ„�6D�.Œ˛�/ ker.Œ„�/, and this shows that  .p/;  .q/ lies within O.1/

neighborhoods of a �.Œ˛�/ root horocycle.

In the case that G has more than rank.G/ many distinct root kernels, we already know
that the restriction of  on each flat has to be affine since it has to preserve at least
rank.G/C 1 many parallel families of hyperplanes, and in particular, geodesics go to
bounded neighborhoods of geodesics. So for two points p; q in Œ˛� root horocycle, we
build quadrilaterals using finitely many (and actually a positive measure many of them)
nonsingular vectors Eui 2 A such that

T
W
�i

Eui
D VŒ˛� , where �i 2 fC;�g, depending

on whether VŒ˛� expands or contracts with respect to Eui . Since geodesics are roughly
preserved, the images of those quadrilaterals with p; q as part of the vertices are also
roughly preserved, and are bounded distances from quadrilaterals in the direction Evi .
By choosing sufficiently many Eui we can ensure that

T
W
�i

Evi
D VŒˇ� for some root

class Œˇ�, which will have to be �.Œ˛�/ by (i) and (ii).

This also shows that left translate of H are taken to bounded neighborhoods of left
translates of H, and it follows that the restrictions of  to flats based at different points
in H are the same. Denote this common map by f . We need to show that f is affine
in the case that G has rank.G/ many root kernels. To this end we observe that left
translate of ker.˛i/ in G (resp. left translates of ker.ˇi/ in G0 ) can be identified with
a rank 1 space G˛i

DHÌR.Ev˛i
/ (resp. G0

ˇi
DH0 ÌR.Evˇi

/), and so (ii) implies that
 induces a quasi-isometry from G˛i

to G0
ˇi

that sends left translates of H to O.1/

neighborhood of left translates of G0
ˇi

. By Proposition 5.8 of Farb and Mosher [6], we
conclude that the f –induced map from A= ker.˛i/ to A0= ker.ˇi/ is bounded distance
from an affine map. Since this is true for all root classes, it follows that f itself is
bounded distance from an affine map. So now we know that regardless of the number
of root kernels,  splits into f �g , where f W A!A0 affine and respects root kernels,
while gW H! H0 takes root class horocycles to root class horocycles. Furthermore,
the permutation on root classes induced by f and g agree.

We now proceed to show that the f actually induces a bijection between roots of G

and G0 (not just root classes). Since we know now the  restricted to any flat is
the map t 7!M.t/C t0 . This means that (straight) geodesics are taken to straight
geodesics, and we can compare the rate of divergence between two geodesics in the
same direction but at based at different points of H.

Specifically, take „ a root, and let p; q be two points on a common „ horocycle.
Pick some Ev 2 A, and let lx D x.t Ev/, ly D y.t Ev/ be two geodesic rays in direction Ev
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leaving x;y respectively. Then  .lx/,  .ly/ are within O.1/ of lx0 D x0.tM.Ev// and
ly0 D y0.tM.Ev// respectively, where x0;y0 are within O.1/ of a left translate of VŒˇ� .

The rate of divergence between lx and ly is P .t„.Ev//et„.Ev/ , for some polynomial P ;
the divergence rate between lx0 and ly0 is Q.t�.M.Ev///et�.M.Ev// , for some � 2 Œˇ�,
and some polynomial Q. Since the two rates are coarsely equivalent to each other, there
must be some ž 2 Œˇ� such that „.Ev/D ž.M.Ev//, and that the degree of P .t„.Ev//

(as a function of t ) and Q.t�.M.Ev/// are the same. But Ev is arbitrary, so „D žıM ,
and degree of P is the same as degree of Q, and that x0;y0 are in the same left
translate of

L
�2Œˇ� W ��ž

V� (but not in any proper subspace). What this shows is that
the quasi-isometry f �g not only sends root horocycles to root horocycles, but that it
also respects the of filtrations induced by the Jordan blocks (ordered by the degree of
nilpotency) in each root horocycle.

For x;y 2 V„ , write g„.x/;g„.y/ 2 V�.„/ for the V�.„/ coordinate of g.x/;g.y/,
and for each � < �.„/, write zg�.x/; zg�.y/ 2 V� for their V� components, so that
g.x/Dg„.x/C

P
� zg�.x/, g.y/Dg„.y/C

P
� zg�.y/. Pick a t2A, then the distance

between .t;x/ and .t;y/ with respect to path metric in tH is e�„.t/jx � yj. The  
images of .t;x/, .t;y/ is c away from .M tC t0;g.x// and .M tC t0;g.y//, so we
have the inequality

1

2�
e�cP .„.t//e�„.t/jx�yj �

�
e��.„/.M tCt0/Q.�.„/.M tCt0//jg„.x/�g„.y/j

�
C

� X
�<�.„/

e��.M tCt0/Q�.�.M tCt0//jzg�.x/�zg�.y/j

�
� 2�ecP .„.t//e�„.t/jx�yj:

Since �.„/ ıM D„ and the degrees of P and Q are the same, dividing both sides
by e�„.t/P .„.t// and let „.t/!1 produces

1

2�
e�ce�.„/.t0/jx�yj � jg„.x/�g„.y/j � 2�ece�.„/.t0/jx�yj:

So the restriction of gjV„ W V„! V�.„/ is a .e�.„/.t0/; 2�ec/–quasi-similarity.

To summarize,  is O.1/ from a map of the form .x; t/ 7! .g.x/;mAf .t/Ct0/, where
m> 0, Af W A! A0 is a finite order element in O.n/ that preserves foliations by root
kernels, while gW H!H0 sends root horocycles to root horocycles and furthermore
respects the graded foliations in each root horocycle.

Let � be the permutation on root classes induced by M . Then as  sends negative
Œ˛� half planes to bounded neighborhood of negative �.Œ˛�/ half planes,  induces
a map from @�Œ˛� to @��.Œ˛�/ for every root class Œ˛� of G . Furthermore, the map
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yqW R � A= ker.˛0/! A= ker.�.˛/0/ � R is bounded distance from an affine map
with linear term as m and constant term as �.˛/0.t0/. We now show the induced map
on lower root boundaries is a quasi-similarity. Take p; q 2 @Œ˛� � VŒ˛� . Then, up to
quasi-symmetry we can take DŒ˛�.p; q/ as

DŒ˛�.p; q/D emtp;q

and under � , we have
D�.Œ˛�/.g.p/;g.q//D eyq.tp;q/;

therefore

mtp;qC �.˛/0.t0/� c � yq.tp;q/�mtp;qC �.˛/0.t0/C c

emtp;q
e�.˛/0.t0/

ec
� eyq.tp;q/ � emtp;q e�.˛/0.t0/ec

1

ec
.e�.˛/0.t0/DŒ˛�.p; q//�D�.Œ˛�/.g.p/;g.q//� ec.e�.˛/0.t0/DŒ˛�.p; q//:

5.3.6 Theorem Let G , G0 be a nondegenerate, unimodular, split abelian-by-abelian
solvable Lie group, and �W G ! G0 a .�;C / quasi-isometry. Then � is bounded
distance from a composition of a left translation followed by a map of the form .x; t/!
.g.x/; f .t//, where f is affine whose linear part is a positive of a finite order element
Af 2 O.n/ (n is the rank of G ) that preserves foliations by root kernels, while g D

.g1;g2; : : : ;g]/, gi is a bilipschitz map from VŒ˛i � to VŒ˛i � with bilipschitz constants
depending only on �;C .

Proof This follows from Proposition 5.2.1 and Proposition 5.3.5.

5.3.7 Corollary If two nondegenerate, unimodular, split abelian-by-abelian solv-
able Lie groups G D H Ì' A, G0 D H0 Ì'0 A0 are quasi-isometric, then there is an
isomorphism f W A! A0 such that ' and '0 ıf have the same absolute Jordan form.

5.3.8 Corollary Let G D H Ì' A be a nondegenerate, unimodular, split abelian-
by-abelian group such that '.A/ is diagonalizable, while G0 D H0 Ì'0 A0 is another
nondegenerate, unimodular, split abelian-by-abelian group such that '0.A0/ is not
diagonalizable. Then G and G0 are not quasi-isometric.

Proof If there were, then Theorem 5.3.6 implies that geodesics are taken to geodesics
and the induced height function on the geodesics are affine, which means that we can
compare rates of divergence between two geodesics in the same direction. In G0 , we
would detect exponential polynomial growth while in G , only exponential growth can
be detected, and those two growth types cannot be related via a quasi-isometry.
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Uniform subgroups of quasi-similarities of the root boundaries are analyzed in Dy-
marz [2] and Dymarz and Peng [3], and we can now say something about an arbitrary
finitely generated group in its quasi-isometric class.

5.3.9 Corollary Let G DHÌ A be a nondegenerate, unimodular, split abelian-by-
abelian solvable Lie group. If � is a finitely generated group quasi-isometric to G ,
then � is virtually polycyclic.

Proof Let 'W � ! G be a .�;C / quasi-isometry. For each  2 � , write L for
the left translation of  , and zL D ' ıL ı '

�1 . Then z� D fzL g2� constitute an
uniform subgroup of QI.G/, all with the same quasi-isometry constants (they are all
.�;C / quasi-isometries).

By Theorem 5.3.6, each zL induces a permutation on root classes. Therefore the map
from z� into the permutations on root classes of G is a well-defined homomorphism,
whose kernel, z�0 is finite index in z� .

Since z� is a uniform subgroup of QI.G/, by Proposition 5.3.5 z�0 is a uniform subgroup
of
Q
Œ˛� QSim.@�Œ˛�/. Applying Theorem 2 in Dymarz [2] and Dymarz and Peng [3] to

the image of z�0 in each QSim.@�Œ˛�/ factor, we can conjugate z�0 into
Q
Œ˛� ASim.@�Œ˛�/,

the group of almost similarities. Denote the image of z�0 in
Q
Œ˛� ASim.@�Œ˛�/ by y�0 .

For each zL 2 z�0 write gŒ„�; for the almost similarity on .@�
Œ„�
;DŒ„�/ and tŒ„�; the

corresponding similarity constant, as induced by the image of zL in y�0 .

Claim For each zL 2 z�0 , there is a s 2 A such that tŒ„�; D e„0.s / for each root
class Œ„�.

We know that for each zL , there is a t0; 2 A such that zL induces .e„0.t0; /; ec/

quasi-similarity zgŒ„�; on .@Œ„�;DŒ„�/. Theorem 2 of Dymarz [2] and Dymarz and
Peng [3] says that we can find FŒ„� 2 Bilip.@Œ„�;DŒ„�/ with bilipschitz constant K0

such that for every root class Œ„� and every zL 2 z�0 ,

FŒ„�zgŒ„�;F�1
Œ„� D gŒ„�; :

Therefore tŒ„�; , the similarity constant of gŒ„�; satisfies

(18) tŒ„�; 2 Œe
„0.t0; /

1

ecK02
; e„0.t0; /ecK02� for all root classes Œ„�:

Since the sum of roots is zero and

0D
X

˛ roots
˛ D

X
Œ„�

„0

lŒ„�
„0

;
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it follows that

(19)
Y
Œ„�

.e„0.t0; //lŒ„�=„0 D 1:

Therefore

(20)
Y
Œ„�

.tŒ„�; /
lŒ„�=„0 D 1

because the ratio of the left hand sides of (19) and (20) lies in an interval those end
points are constants independent of  , so if the left hand side of (20) was not 1, then
the ratio of left hand sides of (19) and (20) for sufficiently high powers of  would
escape the interval.

On the other hand, for a generic linear functional `, we know that

0D
X
Œ„�

lŒ„�.Ev`/D
X
Œ„�

„0.Ev`/
lŒ„�
„0

D

X
Œ„�

„0.t0; /
„0.Ev`/

„0.t0; /

lŒ„�
„0

;

and so Y
Œ„�

.1=ecK02/„0.Ev`/=„0.t0; /lŒ„�=„0 �

Y
Œ„�

.tŒ„�; /
„0.Ev`/=„0.t0; /lŒ„�=„0

�

Y
Œ„�

.ecK02/„0.Ev`/=„0.t0; /lŒ„�=„0 :
(21)

Because gŒ„�; is an almost similarity, tŒ„�;n D tn
Œ„�;

. By (18) we must then have
t0;n D nt0; C Eun , with kEunk D o.n/. So now (21) becomesY
Œ„�

�
1

ecK02

�
O.1/.„0.Ev`/=.n„0.t0; ///.lŒ„�=„0/

�

Y
Œ„�

.tŒ„�; /
.„0.Ev`/=„0.t0; //.lŒ„�=„0/

�

Y
Œ„�

.ecK02/O.1/.„0.Ev`/=.n„0.t0; ///.lŒ„�=„0/:

As the middle term doesn’t depend on n, we must have

(22)
Y
Œ„�

.tŒ„�; /
.„0.Ev`/=„0.t0; //.lŒ„�=„0/ D 1:

By letting ` ranging over a subset of positive measure, Equation (22) and (20) means
that the tŒ„�; must be of the form e„0.s / for some s 2 A.
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This means that for each zL 2 z�0 , fgŒ„�; gŒ„� determines an element   2 QI.G/ of
the form

  ..xŒ„�/Œ„�; t/D
�
.gŒ„�; .xŒ„�//Œ„�; tC s

�
and we can define a homomorphism hW y�0! A as  7! s .

The kernel of h consist of elements with no translations, so they leave the subgroup H
invariant.

Since � is quasi-isometric to G , the quasi-action of z�0 on G is proper, which means
y�0 and ker.h/ quasi acts properly on

Q
Œ„�.@

�
Œ„�
;DŒ„�/. By combining Theorem 18 of

Dymarz [2] and Theorem 11 in Dymarz and Peng [3], we conclude that � is virtually
polycyclic.

In a group G , an element x 2G is called exponentially distorted if there are numbers
c; � such that for all n 2 Z,

1

c
log.jnjC 1/� � � kxn

kG � c log.jnjC 1/C �;

where kxnkG is the distance between the identity and xn in G . In the case of a
connected, simply connected solvable Lie group G , Osin showed in [11] that the set of
exponentially distorted elements forms a normal subgroup Rexp.G/.

5.3.10 Lemma Let G be a connected, simply connected solvable Lie group such that

1!Rexp.G/!G!Rs
! 1;

where Rexp.G/ is abelian. Then the above sequence splits and G is a semidirect
product of Rexp.G/ and Rs .

Proof Let h be a Cartan subalgebra of g, the Lie algebra of G . Then v, the Lie
algebra of Rexp.G/, is generated by root spaces in the decomposition of g with respect
to h. Since this is abelian, it means that g is a semidirect product of h and v. Since
g=v is abelian, h is abelian.

5.3.11 Corollary Let G D HÌ A be a nondegenerate, unimodular, split abelian-
by-abelian solvable Lie group where  is diagonalizable. If � is a finitely generated
group quasi-isometric to G , then � is virtually a lattice in a unimodular semidirect
product of H and A.

Proof By Corollary 5.3.9, � contains a finite index subgroup that is polycyclic.
By a theorem of Mostow (see Theorem 4.28 of Raghunathan [13]) which says that a
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polycyclic group contains a finite index subgroup that embeds as a lattice in a connected,
simply connected Lie group, we have L, a connected, simply connected solvable Lie
group The crux of the proof consists of showing that L satisfies the short exact sequence
in Lemma 5.3.10, and the argument is practically that of Section 4.3 in [2] with minor
modifications. We reproduce the skeleton of the proof below, and refer the readers to
the relevant sections in [2] for details.

We are now going to construct a continuous homomorphism zhW L! ADRn that is
onto, whose Lie group kernel is not only quasi-isometric to H, but also coincides with
the exponential radical of L. As any Lie group in the same quasi-isometric class as Rn

must be virtually Rn , by Lemma 5.3.10, L is virtually a semidirect product of A and
H. If this semidirect product were not unimodular, then L would be nonamenable,
which is a contradiction because amenability is preserved under quasi-isometry.

The zh is going to be the composition of the following three homomorphisms:
� AW L!

Q
Œ˛� QSim.@�Œ˛�/

� B , conjugation of a uniform subgroup of
Q
Œ˛� QSim.@�Œ˛�/ into AIsom.G/,

where AIsom.G/ consists of maps of the form

  ..xŒ„�/Œ„�; t/D
�
.gŒ„�; .xŒ„�//Œ„�; tC s

�
� C W hW

Q
Œ˛� AIsom.@�Œ˛�/! ADRn

The homomorphism A We can assume without loss of generality, that � itself is a
lattice in L. We start with the following construction which can be found in Section 3.2
of Furman [7]. Choose some open subset E � L with compact closure, such that L
is the union of left translates of E by � . Also fix a function pW L! � such that
x 2p.x/E for every x 2L. Then by defining qhW �!� as qh. /Dp.h / for every
h 2 L, we obtain a homomorphism from L into QI.�/. Since � is quasi-isometric
to G , conjugating by the quasi-isometry between � and G , we obtain a homomorphism
from L into QI.G/, where the images have uniform quasi-isometric constants. By
Proposition 5.3.5(v), we can realize QI.G/ as a subgroup of

Q
Œ˛� QSim.@�Œ˛�/. By

passing to a finite index subgroup of L if necessary, we now have the homomorphism A

from L to
Q
Œ˛� QSim.@�Œ˛�/, whose image is a uniform subgroup of quasi-similarities.

Continuity of the homomorphism A follows from Proposition 26 of Dymarz [2] where
continuity in each factor was obtained.

The homomorphism B Theorem 2 of Dymarz [2] and Dymarz and Peng [3] says
that we can conjugate the image of the homomorphism A into

Q
Œ˛� ASim.@�Œ˛�/. That

elements of
Q
Œ˛� ASim.@�Œ˛�/ can be realized as elements of AIsom.G/ follows from

the Claim in the proof of Corollary 5.3.9. The homomorphism B is continuous because
conjugation is continuous.
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The homomorphism C The definition of AIsom.G/ means that we have a well-
defined homomorphism into ADRn , which is our homomorphism C . Now if qi is a
sequence in AIsom.G/ approaching to identity, then the map each one of them induces
on the A factor also has to approach that of what the identity does. Since the identity
map produces no change in the A factor, it follows that the image of qi ’s under the
homomorphism C approaches E0 2 A.

Since � is quasi-isometric to G , the quasi-action (conjugating each left translation
of � by the quasi-isometry between � and G gives a quasi-action on G ) of � , and
therefore L, on G is cobounded, it follows that zh must be onto because it is continuous.

We now claim that Rexp.L/D ker.zh/. To this end, we need the following from [11].

5.3.12 Lemma [11, Lemma 2.1] Suppose G , H are locally compact groups gen-
erated by some symmetric compact neighborhoods of the identities, k � kG , k � kH are
canonical norms on G and H , and distG , distH are the induced metrics. Assume
�W G!H is a continuous surjective homomorphism, then there is a constant K such
that

distH .�.g1/; �.g2//�K distG.g1;g2/:

Applying the lemma above to zh gives us that

kzh. /k �Kj jL for all  2 L:

Now let  2Rexp.L/ such that jzhj D c . Then for any n,

cnD jzh. n/j �Kj n
jL DK log.nC 1/:

So we must have zhD E0, hence Rexp.L/� ker.zh/.

de Cornulier showed in [1] that for a connected, simply connected solvable Lie group X ,
the asymptotic dimension, defined as the dimension of X=Rexp.X / is a quasi-isometric
invariant. This means that

dimL=Rexp.L/D dim G=Rexp.G/D dim AD n:

However as zh is onto, the dimension of L= ker.zh/ also equals n. So ker.zh/ cannot be
strictly bigger than Rexp.L/.

By construction, L quasi-acts properly on G as a uniform group of quasi-isometries,
which means ker.zh/ quasi-acts properly on H as a uniform group of quasi-similarities,
so ker.zh/ is finitely generated by Proposition 20 in [2]. Fix a p 2 G . Then  7!
BıA. /.p/ is a quasi-isometry from L to G . Here B;A refers to the homomorphisms
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mentioned above. The restriction of this map to ker.zh/DRexp.L/ produces a quasi-
isometric embedding of Rexp.L/ into H. However since the cohomological dimension
is a quasi-isometry invariant by Gersten [8], the dimension of Rexp.L/ must equal that
of H. Now by Theorem 7.6 of Farb and Mosher [6], this embedding must be coarsely
onto, which means Rexp.L/ is quasi-isometric to H, so Rexp.L/ must be virtually H
since the latter is abelian.

An unimodular solvable Lie group not quasi-isometric to any finitely generated
groups Here we reproduce from Hasegawa [9], an example of a simply connected,
unimodular solvable Lie group that has no lattices. (The example is not present in the
journal version [10] of [9].)

Let G be a semidirect product between R and the (3–dimensional) Heisenberg group,
where the R acts on the Heisenberg group by the diagonal matrix with entries e1t , e1t ,
e�2t . It has no lattice because if an elements of SL3.Z/ has two distinct eigenvalues
and one of them with multiplicity 2 then they have to be �1;�1; 1. (See Lemma 2.2
of [9]. Alternatively one can see this by examining a characteristic polynomial of an
element of SL.Z/.) But the diagonal matrix with those eigenvalues as entries is not
conjugate to the action of R the Heisenberg group. (ie the diagonal matrix with entries
e1; e1; e�2 .)

The following result is stated in Eskin, Fisher and Whyte [4]. Its proof is completed by
Dymarz in [2].

5.3.13 Theorem [2, Theorem 1] If the rank of a nondegenerate, unimodular, split
abelian-by-abelian solvable group is 1, then a finitely generated group � quasi-
isometric to it is virtually a lattice in it.

So now Theorem 5.3.13 says that the group G in the example above cannot be quasi-
isometric to any finitely generated groups.
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