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Veering triangulations admit strict angle structures
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Agol recently introduced the concept of a veering taut triangulation of a 3–manifold,
which is a taut ideal triangulation with some extra combinatorial structure. We define
the weaker notion of a “veering triangulation” and use it to show that all veering
triangulations admit strict angle structures. We also answer a question of Agol, giving
an example of a veering taut triangulation that is not layered.
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1 Introduction

A basic question in 3–dimensional topology is to relate the combinatorics of a triangu-
lation of a 3–manifold to the geometry of the manifold. The work of Guéritaud and
Futer [6] deals with the case of hyperbolic structures on once-punctured torus bundles
and complements of two-bridge knots and links. They study the angle structures
on the natural layered ideal triangulations of these manifolds, and use the volume
maximization approach of Casson and Rivin to show that these triangulations are
geometric, ie realized by positively oriented ideal hyperbolic tetrahedra.

In this paper, we introduce a new class of “veering triangulations,” which includes the
veering taut triangulations of Agol [1] and, in particular, the layered triangulations of
once-punctured torus bundles. Our main result shows that these veering triangulations
admit strict angle structures.

Throughout this section, M will denote the interior of an orientable 3–manifold with
boundary a disjoint union of tori, imbued with a fixed ideal triangulation.

Definition 1.1 (Taut angle structure) An angle-taut tetrahedron is an ideal tetrahedron
equipped with an assignment of angles taken from f0; �g to its edges so that two
opposite edges are assigned � and the other four are assigned 0. A taut angle structure
on M is an assignment of angles taken from f0; �g to the edges of each tetrahedron
in M , such that every tetrahedron is angle-taut and the sum of all angles around each
edge in M is 2� .
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The choice of adjective taut for these angle structures is standard, but slightly unfortu-
nate. Lackenby [10] introduced the following notion of a taut ideal triangulation in
analogy with a taut foliation.

Definition 1.2 (Taut structure) A taut tetrahedron is an ideal tetrahedron with a
coorientation assigned to each face, such that precisely two faces are cooriented into the
tetrahedron, and precisely two are cooriented outwards. Each edge of a taut tetrahedron
is assigned an angle of either � if the coorientations on the adjacent faces agree, or 0

if they disagree. See Figure 1(a) for the only possible configuration (up to symmetry).
An ideal triangulation of M is taut if there is a coorientation assigned to each ideal
triangle, such that every ideal tetrahedron is taut, and the sum of all angles around each
edge in M is 2� (see Figure 1(b)). This will also be called a taut structure on M .

(a) (b)
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Figure 1: Conditions for a taut ideal triangulation

A taut ideal triangulation comes with a compatible taut angle structure, but not every
taut angle structure arises from a taut structure. Examples of this are given in Section 4.

Agol [1] recently introduced extra structure on a taut ideal triangulation, which he terms
veering, using a local condition. We define the notion of veering for any triangulation
with a taut angle structure, and show that this new definition agrees with Agol’s for
taut ideal triangulations.

Let �3 be the standard 3–simplex with a chosen orientation. Suppose the edges of �3

are labelled by e , e0 and e00 , such that opposite edges have the same label and all three
labels occur. Then the cyclic order of e , e0 and e00 viewed from each vertex depends
only on the orientation of the 3–simplex, ie is independent of the choice of vertex. It
follows that, up to orientation preserving symmetries, there are two possible labellings,
and we fix one of these labellings as shown in Figure 2.
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Definition 1.3 (Veering structure) A veering tetrahedron is an oriented angle-taut
tetrahedron, where each edge with angle 0 is coloured either red or blue (drawn dotted
and dashed respectively), such that the cyclic order of the edges at each vertex takes the
� angle edge to a blue edge to a red edge. This is shown in Figure 2. We refer to the
red edges as right-veering and the blue edges as left-veering. Colours assigned to the �
angle edges are irrelevant to the definition of a veering tetrahedron. A triangulation T
with a taut angle structure is a veering triangulation of M if there is a colour assigned
to each edge in the triangulation so that every tetrahedron is veering. This will also be
called a veering structure on M .

Note that in a veering triangulation there are three different possible colourings of each
tetrahedron: both � angles red, both � angles blue, and one of each colour.

e

e0

e00

Figure 2: The canonical picture of a veering tetrahedron. The 0 angles are at
the four sides of the square, and the � angles are the diagonals. We indicate
the veering directions on the 0 angle edges of a tetrahedron by colouring the
edges. Note that this picture depends on a choice of orientation for the
tetrahedron.

In this paper, angle-taut tetrahedra will generally be drawn flattened onto the page as
in Figure 2, so that every tetrahedron appears as a quadrilateral with two diagonals, the
four boundary edges all having angle 0, and the two diagonals having angle � .

In Section 2, we will interpret the definitions in terms of normal surface theory, and
give a proof of the following result.

Proposition 1.4 For a taut ideal triangulation, Definition 1.3 is equivalent to the
definition of a veering taut triangulation given by Agol [1].

The main result of this paper is the following, a proof of which is given in Section 3.
Our more general notion of veering triangulations was motivated by this result, which
does not depend on the existence of a taut structure on M .
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Theorem 1.5 Veering triangulations of 3–manifolds admit strict angle structures.

In particular, using results of Casson and Thurston, it follows that any 3–manifold with
a veering triangulation admits a complete hyperbolic structure.

Question 1.6 Can all veering triangulations be realised as ideal hyperbolic triangula-
tions in which all tetrahedra are positively oriented?

Veering triangulations seem to be very special (see Remark 4.3 for some data from the
SnapPea census), but many manifolds have them. Agol [1] proves that if we take any
pseudo-Anosov mapping torus and puncture the surface along the singular points of the
invariant measured foliations, then the mapping torus with the restricted monodromy
has a layered triangulation with compatible veering and taut structures (see [1] for the
sense of compatibility here). A layered triangulation is obtained by stacking tetrahedra
on a triangulation of a surface. For instance, the canonical triangulations of once
punctured torus bundles are all layered, taut and veering. Agol points out that the
definition of veering does not depend on the triangulation being layered, and asks
whether there is a veering taut triangulation which is not layered. In Section 4 we give
such an example.

Question 1.7 In addition to layering, what other ways are there to generate veering
triangulations?

This work was supported by Australian Research Council grant DP1095760.

2 Definitions

2.1 Ideal triangulation

Let M be a topologically finite 3–manifold, ie the interior of a compact 3–manifold. An
ideal triangulation T of M consists of a pairwise disjoint union of standard Euclidean
3–simplices, z� D

Sn
kD1
z�k , together with a collection ˆ of Euclidean isometries

between the 2–simplices in z�, called face pairings, such that M Š .z�n z�.0//=ˆ. The
simplices in M may be singular. It is well-known that every noncompact, topologically
finite 3–manifold admits an ideal triangulation. We will assume throughout that M as
above is imbued with a fixed triangulation T . We will also assume that M is oriented
and that all 3–simplices in M are coherently oriented.

2.2 Quadrilateral types

Let �3 be the standard 3–simplex with a chosen orientation. As stated in the introduc-
tion, the edges of �3 are labelled by e , e0 and e00 , such that opposite edges have the
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same label and all labels occur. This determines the same cyclic order of e , e0 and e00

viewed from each vertex. Our convention is illustrated in Figure 2.

Each pair of opposite edges corresponds to a normal isotopy class of quadrilateral
discs in �3 , disjoint from the pair of edges. We call such an isotopy class a normal
quadrilateral type. There is a natural cyclic order on the set of normal quadrilateral
types induced by the cyclic order on the edges from a vertex, and this order is preserved
by all orientation preserving symmetries of �3 . The particular cyclic order chosen
corresponds to the 3–cycle .q q0 q00/, where q.k/ is dual to e.k/ .

Let M .k/ be the set of all k –simplices in M . If � 2M .3/ , then there is an orientation
preserving map �3 ! � taking the k –simplices in �3 to elements of M .k/ , and
which is a bijection between the sets of normal quadrilateral types. This map induces a
cyclic order of the normal quadrilateral types in � , and we denote the corresponding
3–cycle �� . It follows from the above remarks that this order is independent of the
choice of the map.

Let � denote the set of all normal quadrilateral types in M . Define the permutation �
of � by

� D
Y
�2M 3

�� :

See Figure 5 for an illustration of the action of � on the three quadrilateral types in a
tetrahedron.

If e 2M .1/ is any edge, then there is a sequence .qn1
; : : : ; qnk

/ of normal quadrilateral
types facing e , which consists of all normal quadrilateral types dual to e listed in
sequence as one travels around e . Then k equals the degree of e , and a normal
quadrilateral type may appear at most twice in the sequence. This sequence is well-
defined up to cyclic permutations and reversing the order.

2.3 Angle structures

Definition 2.1 (Generalised angle structure) A function ˛W �!R is called a gen-
eralised angle structure on M if it satisfies the following two properties.

(1) If �3 2M .3/ and q is a normal quadrilateral type supported by it, then

˛.q/C˛.�q/C˛.�2q/D �:

(2) If e 2 M .1/ is any edge and .qn1
; : : : ; qnk

/ is its normal quadrilateral type
sequence, then

kX
iD1

˛.qni
/D 2�:
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Dually, one can regard ˛ as assigning angles ˛.q/ to the two edges opposite q in the
tetrahedron containing q .

A generalised angle structure is called a taut angle structure on M if its image is
contained in f0; �g, a semiangle structure on M if its image is contained in Œ0; ��,
and a strict angle structure on M if its image is contained in .0; �/.

2.4 Agol’s definition

Throughout this subsection, suppose M has a veering triangulation with underlying
taut angle structure ˛W �!f0; �g. The conventions regarding orientations and normal
quadrilateral types immediately imply the following fact (compare Figure 5).

Lemma 2.2 Suppose � is a tetrahedron in M . Let q be the quadrilateral type dual
to the edges with label � . Then the edges dual to �.q/ are left-veering (blue) and the
edges dual to �2.q/ are right-veering (red).

If e 2M .1/ is any edge and .qn1
; : : : ; qnk

/ is its normal quadrilateral type sequence,
then there are precisely two normal quadrilateral types in this sequence on which ˛
takes the value � . These separate the sequence into two subsequences of consecutive
0–angle quadrilateral types, which we call the sides of e . Their lengths are called the
one-sided degrees of e .

Lemma 2.3 Each one-sided degree of e is at least one.

Proof At each vertex of a veering tetrahedron there is a cyclic order of the three edges
of the tetrahedron, taking the � –edge to the left-veering (blue) edge to the right-veering
(red) edge. Notice that the order is the same at every vertex. This implies that the two
normal quadrilateral types dual to the edge e having angle � cannot be adjacent in the
normal quadrilateral type sequence of e , since otherwise there would be a conflict in
the colouring. See Figure 3.

Corollary 2.4 The degree of each edge is at least four.

We now show that for a taut ideal triangulation, Definition 1.3 is equivalent to the
definition of a veering taut triangulation given by Agol [1, Definition 4.1]. According
to that definition, one needs to check two conditions for each edge in the triangulation.
The second condition is already given by Lemma 2.3. The first is verified by the
following lemma. See [1] for further context of the terms involved in its statement.

Geometry & Topology, Volume 15 (2011)
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Figure 3: The one-sided degree in a veering taut triangulation is at least one.

Lemma 2.5 Suppose that the triangulation of M is taut and veering, and has a taut
angle structure compatible with both. Let e be a right (resp. left) -veering edge in M .
Consider the sequence of oriented triangles incident to one side of e , and the vertices
of these triangles opposite e . If we order the vertices moving “upwards” according to
the coorientation of the triangles, they are also ordered from left to right (resp. right to
left) as viewed from e . Similarly for the other side of e .

See Figure 4(a) for a picture of triangles incident to a right veering edge, veering to the
right as the triangles are ordered approaching the reader.

(a) (b)

Figure 4: The triangles adjacent to a right-veering edge, and veering direc-
tions on the link of a right-veering edge

Proof The result is a consequence of stacking copies of tetrahedra coloured as in
Definition 1.3 at e so that the colours match. We have already observed the pattern on
the two tetrahedra with label � at e in Figure 3. The result now follows by induction
on the number of tetrahedra abutting e by considering the cases of whether e is left-
veering (blue) or right-veering (red). See Figure 4(b) for an example.
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Proof of Proposition 1.4 Lemma 2.3 and Lemma 2.5 immediately imply the forward
direction of Proposition 1.4. For the reverse direction: a taut triangulation satisfying
the conclusion of Lemma 2.5 has veering directions on the 0 angle edges of each
tetrahedron matching the colouring given by Definition 1.3. To see this, observe that
each of the 0 angle edges in Figure 2 has a pair of incident triangles, determining the
veering direction.

Remark 2.6 Lemma 2.2 points to a further generalisation of veering triangulations,
separated from an underlying taut angle structure. It consists merely of a choice of
normal quadrilateral type q in each oriented tetrahedron subject to compatibility of
edge veering directions, where for each tetrahedron the left and right-veering edges
are defined to be those dual to �.q/ and �2.q/ respectively. In the current sense of
veering, for each tetrahedron the choice of q satisfies ˛.q/D � .

3 Veering triangulations and angle structures

The main result of this paper is the following:

Theorem 1.5 Veering triangulations of 3–manifolds admit strict angle structures.

Work of Kang and Rubinstein [9] and Luo and Tillmann [11] links the existence of
angle structures to the normal surface theory of M using duality principles from
linear programming. The normal surface solution space C.M I T / is a vector subspace
of R7n , where n is the number of tetrahedra in T , consisting of vectors satisfying
the compatibility equations of normal surface theory. The coordinates of x 2 R7n

represent weights of the four normal triangle types and the three normal quadrilateral
types in each tetrahedron, and the compatibility equations state that normal triangles
and quadrilaterals have to meet the 2–simplices of T with compatible weights.

A vector in R7n is called admissible if at most one quadrilateral coordinate from each
tetrahedron is nonzero and all coordinates are nonnegative. An integral admissible
element of C.M I T / corresponds to a unique embedded, closed normal surface in M

and vice versa. As a reference for other facts from normal surface theory, please consult
Jaco and Oertel [7].

There is a linear function ��W C.M I T /!R, which agrees with the Euler characteris-
tic � on embedded and immersed normal surfaces. If T admits a generalised angle
structure ˛ , then the formal Euler characteristic �� can be computed by

2���.x/D
X

q

�2˛.q/xq;

where xq is the normal coordinate of the normal quadrilateral type q .

Geometry & Topology, Volume 15 (2011)
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Since a taut angle structure has image f0; �g, we have the following simple application
of Theorems 1 and 3 of [11].

Corollary 3.1 If M has a taut angle structure, then the following are equivalent:

(1) M admits a strict angle structure.

(2) For all x 2 C.M I T / with all quadrilateral coordinates nonnegative and at least
one quadrilateral coordinate positive, ��.x/ < 0.

(3) There is no x 2 C.M I T / with all quadrilateral coordinates nonnegative and at
least one quadrilateral coordinate positive and ��.x/D 0.

The quadrilateral coordinates in the solutions to the compatibility equations satisfy
the so-called Q–matching equations due to Tollefson [12]. Given the sequence
.qn1

; : : : ; qnk
/ of normal quadrilateral types facing an edge e , one associates a sign

".q/2 f˙1g to each element q in the sequence .�.qn1
/; �2.qn1

/; : : : ; �.qnk
/; �2.qnk

//

of quadrilateral types incident with e . If a normal quadrilateral type appears more
than once in this sequence, it may have different signs. The Q–matching equation
associated to e is X

".q/xq D 0;

where the sum is taken over the elements of .�.qn1
/; �2.qn1

/; : : : ; �.qnk
/; �2.qnk

//.
In the situation of a veering triangulation, the signs are as given in Figure 5. This
suggests another alternate interpretation of the colouring on a veering tetrahedron in
terms of the signs of the quadrilateral type dual to the � edges.

Definition 3.2 For a triangulation with a taut angle structure the three quadrilateral
types within each tetrahedron fall into two classes: (i) there are two kinds of vertical
quadrilateral types (denoted vertical-1 and vertical-2) which have two 0 angle and two
� angle corners, and (ii) one kind of horizontal quadrilateral type, which has four 0

angle corners. If q is the horizontal quadrilateral type in a tetrahedron, then �.q/ and
�2.q/ are the vertical-1 and vertical-2 quadrilateral types respectively. See Figure 5.

Note that a positive coordinate corresponding to a horizontal quadrilateral type con-
tributes negatively to ��.x/, whereas those corresponding to vertical quadrilateral
types contribute 0. We remark that the set of solutions to the Q–matching equations
also includes the so-called spun-normal surfaces, which do not appear as solutions
in C.M I T /. Thus nonexistence of solutions to the Q–matching equations under
the conditions of Corollary 3.1(3) implies (but is not implied by) nonexistence of
x 2 C.M I T / with those conditions, and we have the following:

Geometry & Topology, Volume 15 (2011)
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horizontal
quadrilateral

type

vertical-1
quadrilateral

type

vertical-2
quadrilateral

type

˛.q/D � ˛.�.q//D 0 ˛.�2.q//D 0

� �

�1 C1

C1 C1 �1 �1

C1

C1
�1 �1

�1 C1

Figure 5: The one horizontal and two vertical quadrilateral types in an angle-
taut tetrahedron, with associated signs in the Q–matching equations

Lemma 3.3 A triangulation with a taut angle structure admits a strict angle structure
if it admits no nonnegative solution to the Q–matching equations with at least one
quadrilateral coordinate positive and for which every nonzero quadrilateral type is
vertical.

Hence Theorem 1.5 follows from the following:

Proposition 3.4 If M has a veering triangulation, then there is no nonnegative solution
to the Q–matching equations with at least one quadrilateral coordinate positive and for
which every nonzero quadrilateral is vertical.

Proof By way of contradiction, suppose there is a nonnegative solution x to the
Q–matching equations with at least one quadrilateral coordinate positive and for which
every nonzero quadrilateral type is vertical.

Suppose q is a vertical-1 quadrilateral type with xq>0, supported by the tetrahedron � .
Then the signs associated to its corners on the red edges of � are both negative, and
hence its contribution to the respective Q–matching equations is negative. This cannot
be compensated for by vertical-2 quadrilateral types, since their positive signs are on
blue edges. It follows that it must be compensated for by vertical-1 quadrilateral types.

This implies that the total negative contribution of all nonzero vertical-1 quadrilateral
types to the sum of all Q–matching equations of the red edges equals the total positive
contribution of all vertical-1 quadrilateral types to the sum of all Q–matching equations
of the red edges. Hence a vertical-1 quadrilateral type with nonzero coordinate must
have all four corners on red edges; similarly for vertical-2 quadrilateral types and blue
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edges. So the Q–matching equations restricted to red edges and vertical-1 quadrilateral
types are independent of the Q–matching equations restricted to blue edges and
vertical-2 quadrilateral types. Therefore we may assume that xq D 0 for each vertical-2
quadrilateral type. This implies that the solution x is admissible. Since x is a convex
linear combination of the so-called admissible vertex solutions, we may assume that x

is an admissible vertex solution, and may hence choose a connected, oriented spun-
normal surface S in the projective normal isotopy class defined by x . The spun-normal
surface S may be noncompact or closed (normal). Since S is oriented, we can choose
a transverse orientation to S .

The argument in the previous two paragraphs goes through verbatim if we interchange
“vertical-1” with “vertical-2” and “red” with “blue”, as does the rest of the proof (also
interchanging “C1” with “�1”).

We now analyse how the quadrilateral discs of the surface S sit in the triangulation.
First notice that each quadrilateral disc has all of its corners on red edges. The two
corners with sign C1 inherit angle � , and the corners with sign �1 inherit angle 0.
Since S is embedded and the sum of angles around any edge equals 2� , it follows
that at any vertex in the induced cell structure of S , there are at most four quadrilateral
discs.

The next claim pertains to the tetrahedra with four edges of the same colour. As noted
above, all tetrahedra containing quadrilaterals of S have this property. We use the
notion of the sides of an edge, as introduced after Lemma 2.2.

Property .�/ Suppose edge e is red, and has the sequence .qn1
; : : : qnk

/ of quadrilat-
eral types facing it, where ˛.qn1

/D 0 and the tetrahedron � supporting qn1
has four

red edges. Then ˛.qn2
/D ˛.qnk

/D � , which implies that the subsequence .qn1
/ is a

side of e (and so the associated one-sided degree is 1).

We now prove Property .�/. The tetrahedron � has both � angles right-veering, and
has angle 0 at the edge e . See Figure 6. First consider the tetrahedron � 0 that is glued
to the triangle �, which is the triangle on the front of � that is incident to e . Since
� 0 is veering and its face � has two right-veering (red) edges, it follows that the edge
of � 0 opposite the left-veering (blue) edge of � is also left-veering (blue), since both
colours appear at each vertex of each tetrahedron. The cyclic order “�! blue! red”
at the vertex of � 0 incident with the two right-veering (red) edges of � now implies
that � 0 has angle � at e , ie ˛.qn2

/D � . A similar argument shows that the same is
true for the tetrahedron glued to the triangle on the back of � that is incident to e ,
giving ˛.qnk

/ D � . It follows that .qn1
/ is a side of e . See the right diagram of

Figure 6.
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e
e

�

Figure 6: On the left: a tetrahedron with both � angles right-veering (red).
On the right: this choice of veering implies that this tetrahedron contributes
the only 0 angle on its side of e .

Property .�/ places severe restrictions on the cell structure of S . If a quadrilateral
disc meets an edge e with one of its �1 corners, then it is contained in a tetrahedron
corresponding to the .qn1

/ side of e . Thus, at each vertex in the induced cell structure
of S , either precisely two quadrilaterals or precisely four quadrilaterals meet. Moreover,
the former is the case if deg.e/� 5, and the latter can only happen if deg.e/D 4. In
addition, each quadrilateral in S meets quadrilaterals (rather than triangles) along at
least two of its edges.

We will now use the transverse orientation and the natural geometry of quadrilaterals
to start exploring the subsurface of S made up of quadrilateral discs. See Figure 7.
Suppose we start on q0 . We set our compass so that one of the positive corners is north,
then the other is south and the negative corners are east and west. As we walk from q0

to another quadrilateral disc, we parallel transport our compass, and do not keep track
of whether we visited this disc previously. Given an arbitrary quadrilateral disc q ,
Property .�/ implies that we can always find a quadrilateral disc in S meeting q along
at least one of its two sides incident to a �1 corner. For q0 this means that it meets
a quadrilateral disc along either the northeast or southeast edge. This is true for any
quadrilateral disc we have parallel transported our compass to.

Suppose we cannot walk from q0 indefinitely in the northeasterly direction. Then after
travelling in the northeasterly direction across finitely many quadrilateral discs, we
reach a quadrilateral disc qk , which meets a normal triangle along its northeast side.
Since the eastern corner has a �1, qk must meet a quadrilateral disc along its southeast
side.

Claim We can walk from qk indefinitely in the southeasterly direction.

The proof is by contradiction and sketched in Figure 7. Suppose to the contrary that
after traversing discs qkC1; : : : ; qn�1 , we reach a disc qn which does not meet another
quadrilateral disc along its southeast side. Then it must meet another along its northeast
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N

(d) (e)

(a) (b) (c)

q0

q1

qk

qn�1

qn

�1
C1

�1

�1 �1
C1

�1

�1
C1
�1

C1
�1

�1 �1
C1

Figure 7: Traversing through quadrilateral discs

side in order to cancel its eastern �1 corner. But then the edge at its northern C1

corner is incident with three quadrilaterals, and hence must be incident with four. This
implies that this edge is of degree four. But then qn�1 is glued along its northeast edge
to another quadrilateral. This now propagates all the way to qk , giving a contradiction.
This proves the claim.

In all cases then, there is a quadrilateral disc q0 in S , from which one can walk
indefinitely across quadrilaterals. Let a be the normal arc in the boundary of q0 that we
walk across (as shown in Figure 8).We may assume that the transverse orientation of S

a

e

q0 q1

Figure 8: The dual edge remains the same as we walk across quadrilateral discs.
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induced on a points not to the ideal vertex of the triangle containing a, but to the ideal
edge e which a does not meet. Then q1 again has its transverse orientation pointing
towards e and is also dual to it. It follows inductively that all quadrilateral discs in the
indefinite path are dual to e , and that all quadrilateral types dual to e appear in S and
are therefore all vertical. But then the total angle sum at e is zero, contradicting the
fact that M has a taut angle structure.

Remark 3.5 If the given manifold with veering triangulation is known to be hyperbolic,
then we can alter the proof in the following way: Since the surface S is embedded, we
have �.S/D ��.x/D 0, and since it is orientable and connected it must be a torus
or a spun-normal annulus. Theorem 2.6 of [9] then tells us that this torus must be
nonboundary parallel and essential, leading to a contradiction to the assumption that
the manifold is hyperbolic. If there is an annulus, there are two cases. If the annulus is
boundary parallel, one can use this surface as a barrier (as in Jaco and Rubinstein [8])
and find a normal torus which is topologically but not normally parallel to the boundary,
giving a contradiction as in [9]. If there is an essential annulus then the manifold is
again not hyperbolic.

4 A veering taut triangulation that is not layered

Agol’s construction [1] gives us the existence of many veering taut triangulations, but
they are all layered triangulations. In this section we give an example of a veering taut
triangulation that is not layered. In fact, the manifold does not fibre over the circle. We
also list some examples of veering triangulations that do not fibre over the circle and
are not taut triangulations.

The main example is the manifold s227 from the SnapPea census [13], with the
triangulation as given in the census. See Figure 9. One can show that the manifold s227
is not fibred by applying a method due to Brown [2] to compute the BNS invariant.
More specifically, the fundamental group of the manifold is isomorphic to

� D ha; b j a4b2a�1b�1a�1b2a�1b�1a�1b2
D 1i;

and hence has two generators and one relator, with abelianisation isomorphic to Z˚Z4 .
An application of the algorithm described in [2, Theorem 4.2] verifies that there is no
epimorphism �! Z with finitely generated kernel.

Remark 4.1 This example was found by searching the SnapPea census using the
Regina software package by Ben Burton [3], together with a listing of SnapPea census
manifolds with data on whether or not they fibre compiled by Nathan Dunfield [5].
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Figure 9: The triangulation s227 from the SnapPea census, with the veering
taut structure indicated. There are six tetrahedra labelled from 0 to 5 and six
edges, also labelled from 0 to 5. Single arrows refer to degree 4 edges and
double arrows degree 8 edges. We have drawn the tetrahedra so that they are
taut, flattened onto the page as in Figure 2, with consistent coorientation of
the triangles in the direction out of the page towards the reader. Moreover,
the orientation of each tetrahedron agrees with the vertex sequence 0; 1; 2; 3 .

There is no guarantee that this is the “smallest” example of a nonfibred veering taut
triangulation, since we only checked the triangulation of each manifold as it appears in
the census. In addition we have not checked for layering directly; there are a number
of triangulations in the census with taut angle structures that are both taut and veering,
and it is likely that some of these examples are not layered even if the manifold fibres.

Remark 4.2 Examples of veering triangulations of manifolds that do not fibre over
the circle but that are not taut triangulations were found by a similar method. They
are s438, s772, s773, s779, v3128, v3243, v3244, v3377 and v3526, again with the
triangulations as given in the SnapPea census and taut angle structure as given in
Table 1. These manifolds do not fibre either by the BNS invariant again (as calculated
by Dunfield), or by Button [4].

Remark 4.3 There are 4,815 orientable triangulations in the SnapPea census, which
lists triangulations with up to 7 tetrahedra. On those triangulations we calculate a
total of 13,599 taut angle structures, of which 10,204 have a compatible taut structure
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and 158 have a compatible veering structure. There are 125 taut angle structures that
are both taut and veering; all but one (s227) of the associated manifolds have some
triangulation that is layered, according to Dunfield’s data. Thus, we have at least 34

veering structures not coming from Agol’s construction.

Remark 4.4 We have also attempted to find veering triangulations by randomised
retriangulation of the SnapPea census triangulations. Within the � 5 tetrahedron census
(a total of 301 orientable manifolds) we have so far found 56 distinct veering taut angle
structures on 54 distinct triangulations of 53 manifolds. The canonical triangulations
of the manifolds m135 and m136 each have two veering taut angle structures, while
the manifold m140 has two distinct triangulations (neither of which is canonical), each
with a veering taut angle structure. Of the 54 triangulations, 33 are canonical and the
remaining 21 are not. We think that it is likely that there are other veering triangulations
on these manifolds that our search did not find. Every veering triangulation we have
found so far seems to be geometric: SnapPea claims to find a complete hyperbolic
structure for the manifold for which every ideal tetrahedron is positively oriented in H3 .

Tetrahedron 0 1 2 3 4 5 6

s227 e02; e13 e01; e23 e01; e23 e02; e13 e03; e12 e03; e12 -
s438 e02; e13 e02; e13 e02; e13 e02; e13 e02; e13 e01; e23 -
s772 e02; e13 e01; e23 e01; e23 e01; e23 e01; e23 e02; e13 -
s773 e02; e13 e01; e23 e01; e23 e01; e23 e01; e23 e02; e13 -
s779 e02; e13 e01; e23 e01; e23 e01; e23 e01; e23 e02; e13 -

v3128 e02; e13 e02; e13 e02; e13 e02; e13 e02; e13 e02; e13 e01; e23

v3243 e01; e23 e02; e13 e02; e13 e02; e13 e02; e13 e01; e23 e02; e13

v3244 e01; e23 e03; e12 e03; e12 e03; e12 e03; e12 e01; e23 e03; e12

v3377 e02; e13 e02; e13 e02; e13 e02; e13 e02; e13 e01; e23 e02; e13

v3526 e01; e23 e03; e12 e03; e12 e02; e13 e02; e13 e03; e12 e01; e23

Table 1: Taut angle structures corresponding to veering triangulations for
manifolds that do not fibre. The edges with angle � are listed. The edge
subscripts are the vertex numbers as given in the SnapPea census.
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