Finite asymptotic dimension for CAT(0) cube complexes

NICK WRIGHT

We prove that the asymptotic dimension of a finite-dimensional CAT(0) cube complex is bounded above by the dimension. To achieve this we prove a controlled colouring theorem for the complex. We also show that every CAT(0) cube complex is a contractive retraction of an infinite dimensional cube. As an example of the dimension theorem we obtain bounds on the asymptotic dimension of small cancellation groups.

20F65, 20F69, 54F45

Introduction

CAT(0) cube complexes are a higher dimensional analogue of trees. They are a class of nonpositively curved spaces with useful combinatorial and geometric properties. Many interesting classes of groups, for example small cancellation groups, act properly on CAT(0) cube complexes, allowing geometric properties of the groups to be deduced from the corresponding properties of the cube complexes. Indeed by the results of Ollivier and Wise [15], “generic” groups act on finite dimensional CAT(0) cube complexes; more precisely random groups at density less than $\frac{1}{6}$ act freely and cocompactly on finite dimensional CAT(0) cube complexes with probability tending exponentially to 1.

It is well known that 1–dimensional CAT(0) cube complexes, ie trees, have asymptotic dimension at most 1. A product of trees gives a higher dimensional CAT(0) cube complex, and by the Hurewicz Theorem for asymptotic dimension proved by Bell and Dranishnikov [1], one again has that the asymptotic dimension is bounded above by the dimension of the cube complex. In this paper, we show that this holds in full generality. Note that we do not require the cube complex to be locally finite.

This paper extends the result of [3], where Brodzki et al show that finite dimensional CAT(0) cube complexes have property A. It also extends the result of Dranishnikov [6] showing that the asymptotic dimension of a right-angled Coxeter group does not exceed the dimension of its Davis complex.

Given that Thompson’s group F acts on a CAT(0) cube complex (see Farley [9]) it is interesting to compare the results of this paper with the results of Dranishnikov and
Sapir [8]. The cube complex is infinite dimensional, however the dimension of the cubes increases polynomially with the distance from an orbit, hence the results of this paper would suggest a positive answer to Dranishnikov’s question [7] about whether F has polynomial asymptotic dimension growth. However Dranishnikov and Sapir [8] have recently shown that F in fact has exponential asymptotic dimension growth, thus ruling out this attack on the question of whether or not Thompson’s group is exact (or in metric terms has Yu’s property A). As remarked by Sapir, the question of exactness of Thompson’s group “is considered almost as hard as amenability.”

In this paper we prove the following result.

Theorem 4.10 Let X be a CAT(0) cube complex of dimension D. Then for all $\varepsilon > 0$ there exists an ε–Lipschitz cobornologous map from X to a CAT(0) cube complex of dimension at most D. Thus X has asymptotic dimension at most D.

While one certainly can have equality of the dimension and asymptotic dimension, one could not expect to have this in general: the dimension of the cube complex can be increased without changing the asymptotic dimension by taking a product with a finite cube complex.

As an immediate corollary of the theorem we have:

Corollary 4.11 Let G be a group admitting a proper isometric action on a CAT(0) cube complex of dimension D. Then G has asymptotic dimension at most D.

As an example of this, we can apply the results of Wise [20] to obtain upper bounds for the asymptotic dimension of $B(4) - T(4)$ and $B(6)$ small cancellation groups in terms of the presentation complex for the group; see Example 4.12. These bounds are local, and can be determined from a presentation of the group. If G is a $B(4) - T(4)$ small cancellation group then the asymptotic dimension of G is at most $c/2$ where c is the maximal circumference of a cell in the presentation complex of G. In other words c is the maximal length of a relator (or at most twice the maximal length if some relators are of odd length). If G is a $B(6)$ group then the asymptotic dimension of G is at most $\max\{c, l\}$, where c is as above and l is the maximal cardinality of a complete graph in the generalised link of a vertex.

We remark that in the hyperbolic case, finite asymptotic dimension is well-known; see Gromov [11] and Roe [17] (for relatively hyperbolic groups see Osin [16]). Moreover Buyalo and Lebedeva [4] proved that the asymptotic dimension of a hyperbolic group is the dimension of its boundary plus 1. Nonetheless, given a presentation of a hyperbolic
group, the dimension of the boundary may not be obvious, whereas the dimension of the cube complex provides a computable estimate of the asymptotic dimension.

To prove Theorem 4.10, the strategy is to construct a Lipschitz map from a CAT(0) cube complex X into a quotient complex \hat{X}, with Lipschitz constant strictly less than one. By iterating the process we obtain arbitrarily contractive maps into a cube complex of dimension no greater than X, thus obtaining a bound on the asymptotic dimension.

In Section 2 we introduce the concept of controlled colourings on the set of hyperplanes; these are used in Section 4 to produce the quotient complex \hat{X}. The main result of Section 2 is an existence theorem for controlled colourings. In Section 3 we prove a projection theorem. Specifically we prove that every CAT(0) cube complex is a contractive retraction of an infinite dimensional cube. The retraction is constructed as an infinite composition of functions, and we give hypotheses under which a general infinite composition is well-defined. In Section 4 we use the controlled colouring to construct a large-scale contractive map from a CAT(0) cube complex X into a quotient \hat{X}. This map is 1–Lipschitz on small scales, and to complete the proof we carry out an interpolation argument, using the projection theorem from Section 3, to produce a map with Lipschitz constant strictly less than 1. The asymptotic dimension bound then follows.

1 Preliminaries

In this section we introduce some notation and basic structure on CAT(0) cube complexes. For further information on CAT(0) cube complexes, see Bridson and Häfliger [2], Chatterji andNiblo[5], Gromov [10], Nica [14], Roller [18] and Sageev [19].

Recall that a geodesic metric space (X,d) is CAT(0) if all geodesic triangles are slimmer than the corresponding Euclidean triangle. Consider a cell complexes built out of Euclidean cubes $[0,1]^n$, and with isometric attaching maps that take faces to faces of the same dimension. The metric on the cells extends to a path metric on the cell complex. If the resulting metric is CAT(0) then the complex is said to be a CAT(0) cube complex. The CAT(0) metric condition for a cube complex is equivalent to a combinatorial condition on the cells (see Gromov [10]): X is a CAT(0) cube complex if and only if it is simply connected and the link of each vertex is a flag complex.

CAT(0) cube complexes can also be equipped with a combinatorial metric. For x, y vertices of X, let $d(x,y)$ denote the minimum number of edges required to connect x and y. This is called the edge-path metric. We remark that this corresponds to the path metric on X produced by equipping each cube with the l^1 metric instead of the Euclidean (l^2) metric.
Recall that a CAT(0) cube complex can be equipped with a set of hyperplanes. Each hyperplane divides the vertex set of X into two halfspaces (or sides); see Niblo and Reeves [12] and Sageev [19]. We denote the set of hyperplanes of X by H. Given two hyperplanes h, k, one obtains four possible intersections of halfspaces, and h, k are said to intersect if each “quadrant” is nonempty. This occurs if and only if h and k cross a common cube, moreover (cf [19]), given a maximal collection of pairwise intersecting hyperplanes there is a unique cube which all of them cross. The dimension of a CAT(0) cube complex X is thus the maximum number of pairwise intersecting hyperplanes.

For x, y vertices of X, the interval from x to y, denoted $[x, y]$, is the subcomplex whose vertices lie in all halfspaces containing both x and y. Given three vertices x, y, z the intersection $[x, y] \cap [y, z] \cap [z, x]$ contains a unique vertex (cf [18]) called the median of x, y, z.

If x is a vertex of X, then x determines a choice of orientation for each hyperplane, that is a selection of one halfspace for each hyperplane. Let h_x denote the set of halfspaces containing x. These halfspaces have nonempty intersection, indeed their intersection is x. The halfspaces are, in particular pairwise intersecting. Moreover, if we fix a basepoint x_0 in X, then a choice of orientation (ie a halfspace) for each hyperplane of X will determine a vertex $x \in X$ if and only if the halfspaces intersect pairwise and only finitely many\(^1\) differ from h_{x_0}.

Given any subset \hat{H} of the set of hyperplanes of X, one can construct a CAT(0) cube complex \hat{X}. This construction, which is a generalisation of Sageev’s construction [19], is discussed in detail by Chatterji and Niblo [5] and Nica [14]. A vertex of \hat{X} is defined to be a set of halfspaces, one corresponding to each hyperplane in \hat{H}, whose total intersection is nonempty. When $\hat{H} = H$ one recovers the original complex X as the sets of halfspaces each yield a single vertex of X, while in general the space \hat{X} is a quotient of X. The set of hyperplanes of \hat{X} is (or rather is canonically identified with) \hat{H}. On vertices the quotient map restricts the family of orientations h_x to a family of orientations of the hyperplanes in \hat{H}. This is extended affinely to cubes.

We now fix a basepoint x_0 in X. This will give rise to an ordering on H, and we will establish some basic properties.

For a hyperplane h, we denote the halfspace containing x_0 by h^- and denote the halfspace not containing x_0 by h^+. We refer to these as respectively the inward and outward halfspaces of h.

\(^1\)If infinitely many choices differ from h_{x_0} then one obtains a point in the combinatorial boundary.
Definition 1.1 For $h, k \in H$, we say that k separates x_0 from h, denoted $k < h$, if k^+ strictly contains h^+ or equivalently k^- is strictly contained in h^-. If $k < h$ and there is no j in H such that $k < j < h$ then the hyperplane k is said to be a predecessor of h.

For $h, k \in H$ we say that h is opposite k if $h^+ \cap k^-$, $h^+ \cap k^+$, $h^+ \cap k^-$ respectively are empty, while h intersects k is the case where none of these are empty.

Lemma 1.2 For $h \in H$, the predecessors of h all meet. In particular h can have at most d predecessors where d is the dimension of X.

Proof We first observe that two predecessors of a hyperplane h cannot be opposite. Suppose k_1 is a predecessor of h and consider a hyperplane k_2 which is opposite k_1. Then k_1^+ contains h^+ but is disjoint from k_2^+. Thus h^+ must also be disjoint from k_2^+ ie k_2 is also opposite h, so it is not a predecessor of h. Now suppose that k_1, k_2 are predecessors of h. Then we cannot have $k_1 < k_2 < h$ or $k_2 < k_1 < h$ as this would contradict the fact that k_1 (resp. k_2) is a predecessor of h. Thus if k_1, k_2 are predecessors of h then k_1 must intersect k_2.

We conclude this section with the following proposition, which gives an alternative characterisation of predecessors.

Proposition 1.3 For x a vertex of X, let H_x denote the set of hyperplanes which are adjacent to x and separate x from x_0.

1. Let $h \in H$ and let x be a vertex in h^+. Then x is of minimal distance from x_0 if and only if $H_x = \{h\}$, and there is a unique such vertex.

2. Let $h \in H$, and let y be the vertex adjacent to h of minimal distance from x_0. That is y is adjacent across h to the vertex $x \in h^+$ of minimal distance from x_0. Then k is a predecessor of h if and only if $k \in H_y$.

This proposition gives a connection between predecessors and normal cube paths (cf [12]). The set H_x is the set of hyperplanes meeting the first cube on the normal cube path from x to x_0. The proposition says that the set of predecessors of h is the set of hyperplanes meeting the first cube on the normal cube path from y to x_0, where y is the vertex adjacent to h of minimal distance to x_0.
For (1) first suppose that x is of minimal distance from x_0. Since each k in H_x separates x_0, x, crossing any of these reduces the distance to x_0. If there were any $k \neq h$ in H_x, then crossing this we would remain in h^+. Hence by minimality of $d(x_0, x)$, and since H_x is nonempty, it follows that $H_x = \{h\}$.

Conversely suppose that $H_x = \{h\}$. Choose $x' \in h^+$ minimising $d(x_0, x')$. Let m be the median of x, x', x_0. Then $m \in h^+$ since x, x' are in h^+. Since m lies on a geodesic from x' to x_0, minimality of x' implies that $m = x'$. Thus x' lies on a geodesic from x to x_0. However since $H_x = \{h\}$ the first edge of every geodesic from x to x_0 crosses h. Thus we deduce that $x = x'$ and $d(x_0, x)$ is minimal.

This also proves uniqueness as if x is of minimal distance then $H_x = \{h\}$, and we have shown that for any x' of minimal distance we then have $x = x'$.

For (2) let k be a predecessor of h. As y is adjacent to h, k does not separate y from h, thus k must separate x_0, y. If k is not adjacent to y then there is some hyperplane j adjacent to y and separating y from k. This hyperplane cannot meet h otherwise it would also be adjacent to x contradicting $H_x = \{h\}$. Since j does not meet h we deduce that $k < j < h$ contradicting the fact that k is a predecessor. We thus deduce that the predecessors of h are adjacent to y and separate y from x_0.

Conversely suppose k is adjacent to y and separates y from x_0. As above it cannot meet h as this would contradict $H_x = \{h\}$. We have $x \in h^+$, and since k does not separate x, y and k^+ contains y we note that k^+ also contains x. Thus h, k are not opposite. On the other hand h separates x_0, y while k does not, so we deduce that $k < h$. If there were any j with $k < j < h$ then j would either separate y from h or from k. Since y is adjacent to both h, k this cannot happen. Hence we conclude that k is a predecessor of h.

\[\square\]

2 Controlled colourings

Let X be a CAT(0) cube complex, and let H denote the set of hyperplanes of X. In this section we introduce the concept of a controlled colouring of H, and prove that if X is finite dimensional then controlled colourings exist. Throughout we fix a basepoint x_0 of X.

In this paper, colourings will always use two colours, that is, a colouring of H is a map $c: H \to \{0, 1\}$.

Definition 2.1 A directed edge from x to y is inward if $d(x_0, y) < d(x_0, x)$. Equivalently, the hyperplane separating x, y lies in the set H_x of hyperplanes adjacent to x and separating x from x_0. An edge geodesic is inward if each edge is inward.
Definition 2.2 Given a colouring \(c : H \to \{0, 1\} \), a geodesic is monochromatic if it only crosses hyperplanes of a single colour.

Definition 2.3 An \(l \)–controlled colouring of \(H \) is a map \(c : H \to \{0, 1\} \) such that no monochromatic inward geodesic has length greater than \(l \).

We will construct a colouring which is \(l \)–controlled where the constant \(l \) depends only on the dimension of the CAT(0) cube complex \(X \).

To construct the colouring we will introduce a collection of rank functions on the hyperplanes. These in some sense measure the distance from a hyperplane to the basepoint \(x_0 \). Having established various important properties of these rank functions we will combine them into a rank-vector associated to each hyperplane, and it is this rank-vector which will allow us to define the colouring.

Definition 2.4 Let \(d > 1 \). An outward (resp. inward) \(d \)–corner in \(X \) is an intersection \(\bigcap_{i=1}^{d} h_i^+ \) (resp. \(\bigcap_{i=1}^{d} h_i^- \)), where all the hyperplanes \(h_i \) cross.

By convention a \(d \)–corner means an outward \(d \)–corner unless otherwise specified.

Definition 2.5 The \(d \)–rank of a hyperplane \(h \) is defined inductively as follows. Let \(H_{\geq 0}^d = H \). Having defined \(H_{\geq n}^d \), define \(H_{\geq n+1}^d \) to be the set of hyperplanes in \(H_{\geq n}^d \) which are contained in some \(d \)–corner bounded by hyperplanes in \(H_{\geq n}^d \). Define a hyperplane \(h \) to have \(d \)–rank \(n \) if \(h \) lies in \(H_{\geq n}^d \setminus H_{\geq n+1}^d \), that is \(h \in H_{\geq n}^d \) but \(h \) is not contained in any \(d \)–corner of hyperplanes in \(H_{\geq n}^d \).

In other words, \(h \) has \(d \)–rank 0 if it is not contained in any \(d \)–corner; \(h \) has \(d \)–rank 1 if it is contained in a \(d \)–corner of hyperplanes of \(d \)–rank 0, but not in any \(d \)–corner of hyperplanes which themselves are contained in a \(d \)–corner, etc. The example in Figure 1 shows the 2–ranks of a negatively curved 2–dimensional CAT(0) cube complex.

As noted in Section 1, associated to a subset \(\hat{H} \) of \(H \) there is a CAT(0) cube complex \(\hat{X} \) which is a quotient of \(X \), and whose hyperplanes are precisely \(\hat{H} \). An alternative way of formulating the definition of \(d \)–rank is to say that \(h \) has \(d \)–rank 0 if it does not lie in any \(d \)–corner, and inductively \(h \) has \(d \)–rank \(n \) if it has \(d \)–rank 0 as a hyperplane of the quotient \(X_{\geq n}^d \) whose hyperplanes are \(H_{\geq n}^d \).

Definition 2.6 A \((d, n)\)–corner is a \(d \)–corner bounded by hyperplanes of \(d \)–rank \(n \).

Lemma 2.7 (1) Let \(h \) be a hyperplane of \(d \)–rank \(n \). Then \(h \) is contained in a \((d, m)\)–corner if and only if \(m < n \).

(2) The \(d \)–rank is monotonic, that is, for \(k < h \) we have \(d \)–rank \(k \leq d \)–rank \(h \).
Proof

(1) It is immediate from the definition that \(d \text{–rank } h = n \) implies \(h \) lies in no corner bounded by hyperplanes in \(H_{\geq n} \) so it lies in no \((d, m)\) with \(m \geq n \).

On the other hand if \(n > 0 \) then consider a minimal \(k \) in \(H^d_{\geq n} \) with \(k \leq h \). As \(k \in H^d_{\geq n} \) it must lie in a \(d \)–corner of \(H^d_{\geq n-1} \), and \(h \) also lies in this corner. By minimality of \(k \) the hyperplanes bounding this corner cannot lie in \(H^d_{\geq n} \), so they are all of rank \(n - 1 \). Thus if \(d \text{–rank } h = n > 0 \) then \(h \) lies in a \((d, n-1)\)–corner. Applying this to the hyperplanes bounding the \((d, n-1)\)–corner we conclude that for every \(m < n \) there is a \((d, m)\)–corner containing \(h \).

(2) Using part (1) we note that the \(d \)–rank of a hyperplane is the maximal \(n \) for which the hyperplane lies in a \((d, n-1)\)–corner, or zero if there is no such \(n \). If \(k < h \) then every \(d \)–corner containing \(k \) also contains \(h \), hence the \(d \)–rank of \(h \) is at least the \(d \)–rank of \(k \).

If \(k \) is a predecessor of \(h \) then \(d \text{–rank } k \leq d \text{–rank } h \). In the special case that \(k \) is the only predecessor of \(h \) then we have equality. Indeed any \(d \)–corner containing \(k \) also contains \(h \), but conversely, for any \(d \)–corner containing \(h \), each hyperplane \(j \) bounding the corner must satisfy \(j < k < h \). Thus a \(d \)–corner contains \(k \) if and only if it contains \(h \).

Definition 2.8

A CAT(0) cube complex \(X \) is \(d \)–flat if every hyperplane of \(X \) has \(d \)–rank 0. Equivalently \(X \) is \(d \)–flat if no hyperplane of \(X \) lies in a \(d \)–corner.

The term “flat” is motivated by the observation that \(\mathbb{R}^n \) with the standard cubing is \(d \)–flat for all \(d \geq 2 \). Note also that \(X \) is \(d \)–flat for all \(d \) greater than the dimension of \(X \).
Definition 2.9 The flatness of X is the least d such that X is $(d+1)$–flat.

If X has dimension D then it is $(D+1)$–flat, hence the flatness is bounded above by the dimension.

Proposition 2.10 If X is $(d+1)$–flat then each hyperplane h of X has at most d predecessors and every predecessor has d–rank at least d–rank$(h) – 1$.

Proof If X is $(d+1)$–flat then no hyperplane lies in a $(d+1)$–corner, so in particular no hyperplane can have more than d predecessors.

Let $n = d$–rank h. If $n = 0$ then there is nothing to prove. Otherwise h lies in some $(d,n-1)$–corner S. If k is a predecessor of h then no hyperplane j bounding S can separate h,k. If for some j we have $j < k$ or $j = k$ then by monotonicity we deduce that d–rank $k \geq n - 1$ as required. This leaves the possibility that k crosses every j bounding S. But then intersecting S with k^+ we obtain a $(d+1)$–corner containing h. This contradicts $(d+1)$–flatness.

Definition 2.11 A chain in a path s is a set of hyperplanes meeting s, which is totally ordered by $<$.

Definition 2.12 An inward geodesic s is straight if the set of hyperplanes crossed by the geodesic is a chain in s, ie the hyperplanes are pairwise disjoint.

If h has more than one predecessor, then there is an inward corner associated to h, namely, the intersection $k_1^- \cap \cdots \cap k_p^-$ where k_1, \ldots, k_p are the predecessors of h. Let i_h denote this inward corner. By convention we take i_h to be empty when h has at most one predecessor.

Note that if s is a straight path then s is disjoint from i_h for each h meeting s. Indeed for s to have nonempty intersection with i_h then in particular it must cross every predecessor of h, contradicting straightness. Thus the following definition gives a generalisation of straightness. See Figure 2.

Definition 2.13 An inward geodesic s is bound to h if it is disjoint from i_h, and is bound if it is bound to h for all h meeting s.

If s is bound to h and h has more than one predecessor then there is at least one predecessor which s does not cross. Conceptually, s is bound to h if there is at least one direction in which s goes no farther towards the vertex x_0 than h does. For
Figure 2. Bound geodesics: (a) A straight geodesic – the hyperplanes crossed are disjoint; (b) A bound geodesic – the geodesic crosses hyperplanes $h_1, \ldots, h_5, k_1, \ldots, k_5$, and remains disjoint from their nonempty inward corners, $i_{h_1}, i_{h_2}, i_{h_3}, i_{k_1}, i_{k_2}, i_{k_3}$.

example in Figure 2(b) the bound geodesic cannot be extended farther, as it cannot go below the bottom of h_1, nor to the left of the end of k_1.

Ultimately we wish to construct a colouring for which the length of monochromatic geodesics is bounded. Our colouring will have the property that monochromatic geodesics are bound, so we will control the length of these by first controlling the variation in rank that can occur on a bound geodesic.

Proposition 2.14 Let X be a $(d+1)$–flat CAT(0) cube complex. If s is a bound inward geodesic and C is a chain in s then any two hyperplanes in C have d–ranks differing by at most 2. In particular a straight inward geodesic in X crosses hyperplanes whose d–ranks differ by at most 2.

Proof Without loss of generality we may assume that C is a maximal chain in s. Hence enumerating C as $h_0 > h_1 > \cdots > h_p$, for $i = 0, 1, \ldots, p-1$, the hyperplane h_{i+1} is a predecessor of h_i. Let n be the d–rank of h_0. By monotonicity, each h_i has d–rank at most n, thus we may assume $n > 2$, otherwise there is nothing to prove.

If for each $i = 0, 1, \ldots, p-1$, h_{i+1} is the unique predecessor of h_i then every hyperplane in C has rank n and we are done. Otherwise, consider the least i such
that \(h_i \) has more than one predecessor, and note that \(h_i \) has \(d \)–rank \(n \). As \(s \) is bound, there exists a predecessor \(k \) of \(h_i \), with \(k \) not meeting \(s \). By Proposition 2.10 the \(d \)–rank of \(k \) is at least \(n - 1 \), hence by Lemma 2.7(1), \(k \) lies in a \((d, n-2)\)–corner \(S \). We note that \(h_i \) lies in \(k^+ \) which is contained in \(S \), so \(h_i \) also lies in the \(d \)–corner \(S \).

Now suppose there exists a hyperplane \(l \) in \(C \) with \(d \)–rank \(l \leq n - 3 \). Let \(j \) be one of the hyperplanes bounding \(S \). We cannot have \(j < l \) by monotonicity, since \(d \)–rank \(j = n - 2 \) and \(d \)–rank \(l \leq n - 3 \). On the other hand, since \(k \) does not meet \(s \) we know that \(s \) lies in \(k^+ \) which is contained in \(j^+ \). Hence \(l \) meets \(j^+ \), but is not contained in it, so \(l \) and \(j \) must intersect. Since this holds for every \(j \) bounding \(S \), we have a \((d+1)\)–corner \(S \cap l^+ \) containing \(h_i \). This contradicts \((d+1)\)–flatness, so we conclude that every element of \(C \) has \(d \)–rank at least \(n - 2 \).

In the case where \(s \) is straight, the set \(C \) of all hyperplanes meeting \(s \) is a chain, hence hyperplanes crossing \(s \) have \(d \)–ranks differing by at most 2. \(\square \)

Let \(D \) be the dimension of \(X \). For a hyperplane \(h \) the \(d \)–ranks for \(d = D, D-1, \ldots, 2 \) give progressively finer information about \(h \). To make this precise, we associate to each hyperplane a \textit{rank-vector}.

Starting with \(X \), let \(H_{(n_D)} \) denote the set of hyperplanes of \(X \) with \(D \)–rank \(n_D \). Associated to this is a quotient \(X_{(n_D)} \) of \(X \), whose hyperplanes are \(H_{(n_D)} \). This is \(D \)–flat by construction, since any hyperplane lying in a \(D \)–corner of \(D \)–rank \(n_D \) hyperplanes must have \(D \)–rank greater than \(n_D \). We note that \(H = \bigsqcup_{n_D} H_{(n_D)} \).

Now let \(H_{(n_D,n_{D-1})} \) denote the set of hyperplanes of \(X_{(n_D)} \) with \((D-1)\)–rank \(n_{D-1} \), and let \(X_{(n_D,n_{D-1})} \) be the associated \((D-1)\)–flat complex. We have that \(H_{(n_D)} = \bigsqcup_{n_D} H_{(n_D,n_{D-1})} \), so \(H = \bigsqcup_{n_D,n_{D-1}} H_{(n_D,n_{D-1})} \). We repeat this process to produce \(H_{(n_D,n_{D-1},\ldots,n_2)} \) and \(X_{(n_D,n_{D-1},\ldots,n_2)} \), with \(H = \bigsqcup_{n_D,n_{D-1},\ldots,n_2} H_{(n_D,n_{D-1},\ldots,n_2)} \).

Definition 2.15 The \textit{rank-vector} of \(h \) is \(\tau(h) = (n_D, \ldots, n_2) \) if \(h \) lies in \(H_{(n_D,\ldots,n_2)} \).

Figure 3 illustrates the concept of rank vectors for the example of the \(\text{PGL}_2(\mathbb{Z}) \) \(\text{CAT}(0) \) cube complex from [5].

We equip the set of rank-vectors with the lexicographic order.

Lemma 2.16 The rank-vector function is monotonic.

Proof If \(k < h \) then \(D \)–rank \(k \leq D \)–rank \(h \). The \(D \)–rank is the first entry of the rank vector so if the inequality is strict then the rank-vectors satisfy the same inequality. Otherwise \(k, h \) lie in the same \(H_{(n_D)} \), and as \(k < h \) we have \((D-1)\)–rank \(k \leq (D-1)\)–rank \(h \).
in \(H(n_D) \). Repeating the argument we either have strict inequality at some point, giving a strict inequality of rank-vectors, or we conclude that \(k, h \) lie in the same \(H(n_D, \ldots, n_2) \), and we have equality of rank vectors.

Lemma 2.17 A hyperplane \(h \) has at most one predecessor with the same rank-vector.

Proof Let \((n_D, \ldots, n_2)\) be the rank-vector of \(h \). Then \(h \) is a hyperplane of \(X(n_D, \ldots, n_2) \). If \(k \) is a predecessor of \(h \) of the same rank then \(k \) is also a hyperplane of \(X(n_D, \ldots, n_2) \), and indeed must be a predecessor of \(h \) in \(X(n_D, \ldots, n_2) \). But \(X(n_D, \ldots, n_2) \) is 2–flat, so \(h \) has at most 1 predecessor in \(X(n_D, \ldots, n_2) \).

We are now in a position to define the colouring \(c \). We will require two key properties of the colouring.

1. If \(h \) has a predecessor \(k \) with \(c(h) = c(k) \) then \(h \) also has a predecessor \(j \) with \(c(h) \neq c(j) \).
2. If \(h \) has a predecessor \(k \) with \(\tau(h) = \tau(k) \) then \(c(h) \neq c(k) \).

This is achieved by the following definitions.

Definition 2.18 A predecessor \(k \) of \(h \) is \(\tau \)-maximal if \(\tau(j) \leq \tau(k) \) for all predecessors \(j \) of \(h \).

Figure 3. Rank vectors for the \(\text{PGL}_2(\mathbb{Z}) \) \(\text{CAT}(0) \) cube complex from [5]
Definition 2.19 The colouring \(c(h) \) of a hyperplane \(h \) is defined inductively to be
\[
\begin{cases}
1 & \text{if all } \tau \text{-maximal predecessors of } h \text{ are coloured 0,} \\
0 & \text{otherwise.}
\end{cases}
\]

The fact that this colouring satisfies (1) above is immediate: if all predecessors of \(h \) are coloured 0 then \(h \) will be coloured 1, while if all predecessors of \(h \) are coloured 1 then \(h \) will be coloured 0. To see that (2) is satisfied, if \(h \) has a predecessor \(k \) with \(\tau(h) = \tau(k) \) then by monotonicity this predecessor is \(\tau \)-maximal. By Lemma 2.17 there cannot be more than one predecessor having the same rank vector so \(k \) is the unique \(\tau \)-maximal predecessor of \(h \). Thus \(h \) is coloured 1 if \(k \) is coloured 0, and \(h \) is coloured 0 otherwise.

We will now show that monochromatic paths for this colouring are bound in the following strong sense.

Definition 2.20 An inward geodesic \(s \) is **totally bound** if \(s \) is bound, and the quotient of \(s \) in \(X_{(n_D,n_{D-1},\ldots,n_d)} \) is bound for all \(d \), and all \(n_D,n_{D-1},\ldots,n_d \).

Proposition 2.21 Let \(s \) be a monochromatic inward geodesic in \(X \). Then \(s \) is totally bound.

Proof We first show that \(s \) is bound. Let \(h \) be a hyperplane meeting \(s \). As \(s \) is monochromatic, every predecessor of \(h \) meeting \(s \) must have the same colour as \(h \). But by construction of the colouring, \(h \) cannot have the same colour as all of its predecessors, hence each \(h \) meeting \(s \) has a predecessor not meeting \(s \) as required.

To see that \(s \) is totally bound, consider the quotient \(s' \) of \(s \) in \(X_{(n_D,n_{D-1},\ldots,n_d)} \) for some \(d,n_D,n_{D-1},\ldots,n_d \). Suppose \(h \) meets \(s' \), that is \(h \) meets \(s \) and \(h \in H_{(n_D,n_{D-1},\ldots,n_d)} \). If \(h \) has a predecessor \(k \) meeting \(s' \), then the maximal rank-vector of a predecessor of \(h \) must be between \(\tau(h) \) and \(\tau(k) \), hence it is of the form \((n_D,n_{D-1},\ldots,n_d,?,\ldots,?)\). In particular the \(\tau \)-maximal predecessors of \(h \) all lie in \(H_{(n_D,n_{D-1},\ldots,n_d)} \). By construction of the colouring the \(\tau \)-maximal predecessors of \(h \) cannot all have the same colour as \(h \), thus as \(s \) is monochromatic there is an \(\tau \)-maximal predecessor of \(h \) not meeting \(s \) and hence not meeting \(s' \). We conclude that for each \(h \in H_{(n_D,n_{D-1},\ldots,n_d)} \) meeting \(s' \) there is a predecessor of \(h \) in \(H_{(n_D,n_{D-1},\ldots,n_d)} \) not meeting \(s' \) as required. \(\square \)

In Proposition 2.14 we established bounds on the number of different \(d \)-ranks that can occur on a bound geodesic. We will now prove a version of this for rank-vectors.

Proposition 2.22 Let \(s \) be a totally bound inward geodesic in \(X \) and let \(C \) be a chain in \(s \). Then the rank-vector function takes at most \(3^{f-1} \) different values on \(C \), where \(f \) is the flatness of \(X \).
Proof We prove this by induction on the flatness of \(X \). If \(X \) has flatness 1, i.e. it is 2–flat then every rank-vector is zero and there is nothing to prove.

For the induction step, if \(X \) has flatness \(f \), then the first nonzero entry, \(n_f \), of the rank-vector is precisely the \(f \)–rank. Since \(X \) is \((f+1)\)–flat, \(n_f \) takes at most 3 values by Proposition 2.14. For each of these values of \(n_f \), consider the quotient \(s_{(n_f)} \) of \(s \) in \(X_{(n_f)} \), and let \(C_{(n_f)} \) be the intersection of \(C \) with \(H_{(n_f)} \). Then \(s_{(n_f)} \) is a totally bound inward geodesic in \(X_{(n_f)} \) and \(C_{(n_f)} \) is a chain in \(s_{(n_f)} \). The quotient \(X_{(n_f)} \) is \(f \)–flat, so has flatness at most \(f-1 \). Hence by induction the rank-vector takes at most \(3^{f-2} \) values on each \(C_{(n_f)} \), for each of the 3 values of \(n_f \). Hence it takes at most \(3^{f-1} \) values on \(C \).

We are now ready to state and prove the colouring theorem. From Proposition 2.21 and Proposition 2.22 we know that monochromatic geodesics are totally bound and that chains in these geodesics therefore have a bounded number of rank-vectors. We combine this with an idea from [3] to prove the following.

Theorem 2.23 Let \(X \) be a CAT(0) cube complex of dimension \(D \) and flatness \(f \). Then the colouring \(c \) defined above is a \(3^{f-1}D \)–controlled colouring of \(H \). That is, no monochromatic inward geodesic can have length greater than \(3^{f-1}D \).

Proof Let \(s \) be a monochromatic inward geodesic. Let \(x, y \) be the initial and final vertices of \(s \). The set of hyperplanes meeting \(s \) is precisely the set of hyperplanes crossing the interval \([x, y]\). In [3] it is shown that an interval in a CAT(0) cube complex can be isometrically embedded as a subcomplex of the Euclidean space of the same dimension. In particular the set of hyperplanes crossing an interval of dimension at most \(D \) can be partitioned into \(D \) chains. Thus we have chains \(C_1, \ldots, C_D \) partitioning the hyperplanes that meet \(s \).

As \(s \) is monochromatic, by Proposition 2.21 it is totally bound. Hence by Proposition 2.22 for any chain \(C \) in \(s \) the rank-vector function takes at most \(3^{f-1} \) different values on \(C \). For each \(i \) we apply this to a maximal chain \(C'_i \) in \(s \), containing \(C_i \). Enumerate \(C'_i \) as \(h_0 > h_1 > \cdots > h_p \). For each \(j \), \(h_{j+1} \) is a predecessor of \(h_j \), by maximality, so as \(c(h_i) = c(h_{i+1}) \) we know that \(\tau(h_{j+1}) < \tau(h_j) \). Thus the rank-vector function takes \(|C'_i| \) different values on \(C'_i \), so \(|C'_i| \leq 3^{f-1} \).

We conclude that there are \(D \) chains \(C_1, \ldots, C_D \) partitioning the hyperplanes that meet \(s \), and as \(C_i \subseteq C'_i \), each chain \(C_i \) has cardinality at most \(3^{f-1} \). Hence there are at most \(3^{f-1}D \) hyperplanes meeting \(s \), that is \(s \) has length at most \(3^{f-1}D \). This completes the proof.

Geometry & Topology, Volume 16 (2012)
3 The projection theorem

In this section we will consider coordinates on a CAT(0) cube complex \(X \). These will give an embedding of \(X \) into \(l^1(H) \) where \(H \) is the set of hyperplanes of \(X \) (cf [13]). The main result of this section is a projection theorem which allows us to retract from a cube in \(l^1(H) \) onto the embedded copy of \(X \).

Let \(C = C_H \) denote the set of all finitely supported elements \(\xi = (\xi_h) \) of \(l^1(H) \) such that \(\xi_h \in [0, 1] \) for all \(h \in H \). Viewing \(C \) as the union of the finite dimensional cubes corresponding to finite subsets of \(X \), we see that \(C \) is a CAT(0) cube complex and indeed there is a canonical bijection between the hyperplanes of \(C \) and the hyperplanes \(H \) of \(X \). The restriction of the metric on \(l^1(H) \) to \(C \) gives the \(l^1 \) path metric on \(C \). The vertex set of \(C \) is precisely the finitely supported \{0, 1\}–valued functions on \(H \).

The CAT(0) cube complex \(X \) can be embedded into \(C \) as follows. For a vertex \(x \) in \(X \) we map \(x \) to the vertex \(\xi \) of \(C \) defined by \(\xi_h = 1 \) for all \(h \) separating \(x_0, x \) and \(\xi_h = 0 \) otherwise. We extend the map affinely to give a map from \(X \) to \(C \). The bijection between the hyperplanes of \(C \) and the hyperplanes \(H \) of \(X \) makes this map isometric on the vertex set (with edge-path metric) since the distance between two vertices of \(X \) is the number of hyperplanes separating them. We will see that it is isometric on the whole of \(X \) (equipped with the \(l^1 \) path metric) as a corollary of the projection theorem.

It is often convenient to identify \(X \) with its image in \(C \). Indeed one can think of the embedding as providing coordinates \((\xi_h) \) associated to a point \(x \) in \(X \).

Lemma 3.1 Let \(F \) be a finite set of hyperplanes in \(H \). A vertex \(\xi = \chi_F \) of \(C \) lies in the image of \(X \) if and only if

1. when \(k \in F \) and \(h < k \) then \(h \in F \), and
2. \(F \) contains no opposite pair of hyperplanes.

Proof If \(\xi = \chi_F \) lies in the image of \(X \) then \(F \) is the set of hyperplanes separating \(x_0, x \) for some \(x \in X \). Thus \(k \in F \) and \(h < k \) implies that \(h^+ \ni k^+ \ni x \), so \(h \in F \). Similarly \(h, k \in F \) implies \(h^+ \cap k^+ \) is nonempty (it contains \(x \)) so \(h, k \) are not opposite.

Conversely suppose that \(F \) is a finite set of hyperplanes in \(H \) satisfying (1), (2). For each \(h \) in \(H \) we choose the orientation \(h^+ \) if \(h \in F \), and \(h^- \) otherwise. Finitely many of these orientations differ from \(h_{x_0} = \{ h^- : h \in H \} \). Moreover we will show that these
halfspaces are pairwise intersecting. If \(h, k \in F \) then \(h^+ \cap k^+ \) is nonempty as \(h, k \) are not opposite, while if \(h, k \in H \setminus F \) then \(h^- \cap k^- \) is nonempty as it contains \(x_0 \). On the other hand if one of \(h, k \) lies in \(F \) and the other in \(H \setminus F \), say \(k \in F \) and \(h \in H \setminus F \) then by (1) we cannot have \(h < k \). That is \(h^+ \) does not contain \(k^+ \) so that \(h^- \cap k^+ \) is nonempty. Hence the orientations determine a vertex of \(X \), and \(\xi = \chi_F \) is the image of this vertex.

Definition 3.2 Let \(h, k \) be opposite hyperplanes. A point \(\xi \) in \(C \) is \((h, k)\)-intervalic if one or both of \(\xi_h, \xi_k \) is zero. We say that \(\xi \) is intervalic if it is \((h, k)\)-intervalic for all opposite pairs \(h, k \).

Definition 3.3 Let \(h, k \) be hyperplanes with \(h < k \). A point \(\xi \) in \(C \) is \((h, k)\)-actual if \(x_h = 1 \) or \(x_k = 0 \). Otherwise we say that \(\xi \) is \((h, k)\)-virtual. We say that \(\xi \) is actual if it is \((h, k)\)-actual for all pairs \(h < k \).

In terms of these definitions, Lemma 3.1 amounts to the statement that if \(\xi \in C \) is \(\{0, 1\} \)-valued then \(\xi \) is in the image of \(X \) if and only if \(\xi \) is intervalic and actual. We now extend this to general points of \(C \).

Lemma 3.4 A point \(\xi \) in \(C \) lies in the image of \(X \) if and only if \(\xi \) is intervalic and actual.

Proof First suppose that \(\xi \) in lies in the image of \(X \). Let \(F = \{ h \in H : 0 < \xi_h < 1 \} \). Then \(\xi \) lies in an \(|F|\) dimensional subcube of \(C \): the \(2^{|F|} \) vertices of this cube are obtained by letting \(\eta_h \) be either 0 or 1 for each \(h \) in \(F \), and setting \(\eta_h = \xi_h \) for \(h \notin F \). Since \(\xi \) lies in the image of \(X \), these vertices must also lie in the image of \(X \).

If \(\xi_h, \xi_k \) are nonzero then there is a vertex \(\eta \) such that \(\eta_h = \eta_k = 1 \). As this vertex is in the image of \(X \) we deduce that \(h, k \) cannot be opposite, hence \(\xi \) is intervalic. Similarly if \(\xi_h < 1 \) and \(\xi_k > 0 \) then there is a vertex \(\eta \) such that \(\eta_h = 0 \) and \(\eta_k = 1 \). Thus we cannot have \(h < k \), so \(\xi \) is actual.

Conversely, suppose that \(\xi \) is intervalic and actual. Let \(F = \{ h \in H : 0 < \xi_h < 1 \} \) and consider the vertices obtained by letting \(\eta_h \) be 0 or 1 for each \(h \) in \(F \), and setting \(\eta_h = \xi_h \) for \(h \notin F \). Once again these span a subcube of \(C \) containing \(\xi \). These vertices are intervalic and actual: if \(\eta_h, \eta_k \) are nonzero then the same is true of \(\xi_h, \xi_k \) so that \(h, k \) cannot be opposite, and if \(\eta_h = 0 \) and \(\eta_k = 1 \) then \(\xi_h < 1 \) and \(\xi_k > 0 \) so we cannot have \(h < k \). We deduce that the vertices of the subcube are all in the image of \(X \). Moreover the correspondence between the hyperplanes of \(X \) and those of \(C \) guarantees that the vertices in \(X \) whose images are the vertices of the subcube will themselves span a cube in \(X \). Hence the subcube of \(C \), and in particular the point \(\xi \) are in the image of \(X \). \[\square\]
To prove the projection theorem we will need to consider infinite compositions of functions. Let S be a set, and $(P_\lambda)_{\lambda \in \Lambda}$ a family of maps from S to itself. For $s \in S$ we say that the Λ–support of s, denoted Λ–Supp(s), is the set of $\lambda \in \Lambda$ such that P_λ does not fix s. If Λ is equipped with a total order \prec, and F is a finite subset of Λ then define $P_F = P_{\lambda_k} \circ \cdots \circ P_{\lambda_1}$ where F is enumerated as $\lambda_1, \ldots, \lambda_k$, ordered by \prec.

Lemma 3.5 Let S be a set, and $(P_\lambda)_{\lambda \in \Lambda}$ a family of maps from S to itself. Suppose that

1. for all $s \in S$ the Λ–support of s is finite,
2. for all s in S and for λ the \prec–least element of Λ–Supp(s), we have

$$\Lambda$–Supp$(P_\lambda(s)) \subseteq \Lambda$–Supp$(s) \setminus \{\lambda\}.$$

Then for F a finite subset of Λ containing Λ–Supp(s), the Λ–support of $P_F(s)$ is empty. Moreover $P_F(s)$ does not depend on the choice of F containing Λ–Supp(s), and if Λ–Supp(s) is empty then $P_F(s) = s$ for all F.

If S is a metric space, and each P_λ is contractive then the map $P : S \to S$ defined by $s \mapsto P_F(s)$ for any F containing Λ–Supp(s), is also contractive.

The map P can be regarded as the infinite composition of all P_λ ordered by \prec.

Proof Enumerate F in \prec–order as $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let $P_0(s) = s$ and for $i = 1, \ldots, k$, let $P_i(s) = P_{\lambda_i}(P_{i-1}(s))$. We claim that for each i the Λ–support of $P_i(s)$ is contained in $F_i = \{\lambda_1, \ldots, \lambda_k\} \cap \Lambda$–Supp$(s)$, hence in particular when $i = k$ we find that the Λ–support is empty.

For $i = 0$ this is true by hypothesis. Now supposing that Λ–Supp$(P_{i-1}(s))$ is contained in $F_{i-1} = \{\lambda_1, \ldots, \lambda_k\} \cap \Lambda$–Supp$(s)$ then either λ_i is the least element of Λ–Supp$(P_{i-1}(s))$ or λ_i is not in the Λ–support of $P_{i-1}(s)$. In the first case we have Λ–Supp$(P_{\lambda_i}(P_{i-1}(s))) \subseteq \Lambda$–Supp$(P_{i-1}(s)) \setminus \{\lambda_i\} \subseteq \{\lambda_{i+1}, \ldots, \lambda_k\} \cap \Lambda$–Supp$(s)$, while in the second case $P_{\lambda_i}(P_{i-1}(s)) = P_{i-1}(s)$, so the Λ–support is unchanged. By the induction hypothesis Λ–Supp$(P_{i-1}(s))$ is contained in F_{i-1}, but in this second case λ_i is not in the Λ–support, so we deduce that Λ–Supp$(P_i(s))$ is contained in F_i as required.

We note that if λ_i is not in the Λ–support of s, then it is not in the Λ–support of $P_{i-1}(s)$, and we have $P_i(s) = P_{i-1}(s)$. Hence in the composition we have

$$P_F(s) = P_{\lambda_k} \circ \cdots \circ P_{\lambda_{i+1}} \circ P_{\lambda_i}(P_{i-1}(s)) = P_{\lambda_k} \circ \cdots \circ P_{\lambda_{i+1}}(P_{i-1}(s)).$$
So \(P_F(s) = P_{F \setminus \{\lambda_i\}}(s) \). Removing all such \(\lambda_i \) we deduce that \(P_F(s) = P_{\Lambda - \text{Supp}(s)}(s) \), so is independent of the choice of \(F \). In the special case that \(\Lambda - \text{Supp}(s) \) is empty, each \(P_{\lambda_i} \) fixes \(s \) and we have \(P_F(s) = s \).

Now suppose that \(S \) is a metric space and each \(P_{\lambda} \) is contractive. Given \(s, t \in S \), take \(F \) to be a finite set containing both \(\Lambda - \text{Supp}(s) \) and \(\Lambda - \text{Supp}(t) \). Then \(P(s) = P_F(s) \) and \(P(t) = P_F(t) \), so as \(P_F \) is contractive we deduce that \(d(P(s), P(t)) \leq d(s, t) \). Since this is true for any pair \(s, t \) we conclude that \(P \) is contractive.

Before we prove the projection theorem, we examine a couple of simple examples. First consider \(X_1 \) a tree of three edges emanating from the basepoint \(x_0 \). We identify \(H_1 \) with \(\{1, 2, 3\} \) and hence \(l^1(H_1) = \mathbb{R}^3 \) with the \(l^1 \)-metric. The space \(X_1 \) is embedded in \(\mathbb{R}^3 \) as intervals along the three axes. In this example the image of \(X_1 \) is precisely the set of intervalic points in the cube (all intervalic points are actual). We project from the cube in \(\mathbb{R}^3 \) onto \(X_1 \) (ie the set of intervalic points) by first projecting onto two faces of the cube and then for each face projecting onto two edges of the face, as in Figure 4(a). The choice of which direction to project in first affects the map, but each choice will produce a retraction onto \(X_1 \).

For the second example, consider \(X_2 \) a line of three edges starting from the basepoint \(x_0 \). Again we have \(l^1(H_2) = \mathbb{R}^3 \) with the \(l^1 \)-metric, and the space \(X_2 \) is embedded in the cube as illustrated in Figure 4(b)(i). In this case the cube is intervalic, and the image of \(X_2 \) is the actual points. For this example, the order of the projections is important. We must first project in the \((1, 3)\)-plane, and then do the other two projections as in Figure 4(b)(i). Doing the projections in a different order we do not obtain the correct range. For example, doing \((1, 2)\) then \((2, 3)\), projects onto the union of a square and an edge on which the \((1, 3)\) projection is the identity; see Figure 4(b)(ii).

With these two examples in mind, we will now prove the theorem.

Theorem 3.6 (Projection Theorem) Let \(X \) be a CAT(0) cube complex, let \(H \) be the set of hyperplanes of \(X \) and let \(C \) be the cube of finitely supported elements \(\xi \in l^1(H) \) with \(\xi_h \in [0, 1] \) for all \(h \in H \). Embed \(X \) into \(C \) as above and let \(A \) denote the image of \(X \) in \(C \). Then there is a map \(P \colon C \to A \) such that

1. \(P \) is contractive,
2. the restriction of \(P \) to \(A \) is the identity,
3. if \(\xi \in C \) is intervalic then \(\|P(\xi)\|_1 = \|\xi\|_1 \).

Proof We note that \(A \) is precisely the set of intervalic and actual points in \(C \). Let \(I \) denote the set of intervalic points of \(C \). We will construct the projection \(P \) as a
composition \(P = P_A \circ P_I \), where both \(P_A, P_I \) are contractive, \(P_I \) is a retraction of \(C \) onto \(I \), \(P_A \) is a retraction of \(I \) onto \(A \), and \(P_A \) preserves the \(l^1 \) norm.

Let \(H^{op} = \{ \{ h, k \} : h, k \in H, h \text{ opposite } k \} \). We define a map \(p^{op} \) on \([0, 1]^2 \) by

\[
p^{op}(\xi_1, \xi_2) = \begin{cases}
(\xi_1 - \xi_2, 0) & \text{if } \xi_1 \geq \xi_2, \\
(0, \xi_2 - \xi_1) & \text{if } \xi_1 \leq \xi_2.
\end{cases}
\]

For \(\{ h, k \} \) in \(H^{op} \) we then define a map \(P^{h,k} \) on \(C \). Let \(P^{h,k}(\xi) = \xi' \) where \((\xi'_h, \xi'_k) = p^{op}(\xi_h, \xi_k) \) and \(\xi'_j = \xi_j \) for \(j \neq h,k \).

To show that each \(P^{h,k} \) is contractive it suffices to show that \(p^{op} \) is contractive. Take \((\xi_1, \xi_2), (\eta_1, \eta_2) \) in \([0, 1]^2 \). If \(\xi_1 \geq \xi_2 \) and \(\eta_1 \geq \eta_2 \) then

\[
\| p^{op}(\xi_1, \xi_2) - p^{op}(\eta_1, \eta_2) \|_1 = \|(\xi_1 - \xi_2 - (\eta_1 - \eta_2), 0) \|_1 \\
\leq |\xi_1 - \eta_1| + |\xi_2 - \eta_2| = \|(\xi_1 - \eta_1, \xi_2 - \eta_2) \|_1.
\]
Similarly if \(\xi_1 \leq \xi_2 \) and \(\eta_1 \leq \eta_2 \). Now suppose that \(\xi_1 \geq \xi_2 \) and \(\eta_1 \leq \eta_2 \). Then
\[
\| p^{\op}(\xi_1, \xi_2) - p^{\op}(\eta_1, \eta_2) \|_1 = \|((\xi_1 - \xi_2) - 0, 0 - (\eta_2 - \eta_1))\|_1 = \xi_1 - \xi_2 + \eta_2 - \eta_1 \\
\leq |\xi_1 - \eta_1| + |\xi_2 - \eta_2| = \| (\xi_1 - \eta_1, \xi_2 - \eta_2) \|_1.
\]

We conclude that \(p^{\op} \) is contractive, hence each map \(p^{h,k} \) is contractive.

To construct \(P_I \) we apply Lemma 3.5, for the family \(p^{h,k}, \{h, k\} \in H^{\op} \). We note that the \(H^{\op} \)-support of a point \(\xi \) is the set of all nonintervalic pairs \(\{h, k\} \) for \(\xi \). This is finite, since if \(\{h, k\} \) is in the \(H^{\op} \)-support of \(\xi \) then \(h \) and \(k \) are in the usual support of \(\xi \) as a function on \(H \). Note that each \(p^{h,k} \) reduces coordinates, so for any \(h, k \), a point which is \((h', k') \)-intervalic will remain so upon applying \(p^{h,k} \). In other words applying \(p^{h,k} \) does not increase \(H^{\op} \)-supports. The point \(p^{h,k}(\xi) \) is \((h, k) \)-intervalic by construction, hence we deduce that for any \(\lambda = \{h, k\} \),
\[
H^{\op} \text{-Supp}(P^\lambda(s)) \subseteq H^{\op} \text{-Supp}(s) \setminus \{\lambda\}.
\]

Thus choosing any ordering on \(H^{\op} \), we can apply the lemma to obtain a map \(P_I: C \to C \). This is a retraction onto those \(\xi \) such that the \(H^{\op} \)-support is empty, that is \(P_I \) is a retraction onto \(I \). As each \(p^{h,k} \) is contractive we deduce that \(P_I \) is also contractive. We have thus constructed a map \(P_I \) with the required properties.

We now move on to the construction of \(P_A \). Let \(H^< = \{(h, k): h, k \in H, h < k\} \). We define a map \(p^< \) on \([0, 1]^2 \) by
\[
p^<(\xi_1, \xi_2) = \begin{cases}
(\xi_1 + \xi_2, 0) & \text{if } \xi_1 + \xi_2 \leq 1, \\
(1, \xi_1 + \xi_2 - 1) & \text{if } \xi_1 + \xi_2 \geq 1.
\end{cases}
\]

For \((h, k) \) in \(H^< \), we define a map \(P^k_h \) on \(I \) by \(P^k_h(\xi) = \xi' \) where \((\xi'_h, \xi'_k) = p^<(\xi_h, \xi_k) \) and \(\xi'_j = \xi_j \) for \(j \neq h, k \).

Take \((\xi_1, \xi_2), (\eta_1, \eta_2) \) in \([0, 1]^2 \). If \(\xi_1 + \xi_2 \leq 1 \) and \(\eta_1 + \eta_2 \leq 1 \) then
\[
\| p^{\op}(\xi_1, \xi_2) - p^{\op}(\eta_1, \eta_2) \|_1 = \|((\xi_1 + \xi_2) - (\eta_1 + \eta_2), 0)\|_1 = \|((\xi_1 - \eta_1, \xi_2 - \eta_2)\|_1,
\]

similarly if \(\xi_1 + \xi_2 \geq 1 \) and \(\eta_1 + \eta_2 \geq 1 \). Now suppose \(\xi_1 + \xi_2 \leq 1 \) and \(\eta_1 + \eta_2 \geq 1 \). Then
\[
\| p^{\op}(\xi_1, \xi_2) - p^{\op}(\eta_1, \eta_2) \|_1 = \|((\xi_1 + \xi_2) - 1, 0 - (\eta_1 + \eta_2 - 1))\|_1 \\
= (1 - \xi_1 - \xi_2) + (\eta_1 + \eta_2 - 1) \\
= \eta_1 - \xi_1 + \eta_2 - \xi_2 \leq \|((\xi_1 - \eta_1, \xi_2 - \eta_2)\|_1.
\]

As \(p^< \) is contractive each \(p^k_h \) is contractive.

To construct \(P_A \) we again apply Lemma 3.5. In this case we must select the ordering \(< \) with more care to ensure that hypothesis (2) of the lemma is satisfied. We will say that
the *length* of a pair \((h, k)\) is \(l\) if \(l\) is the largest integer such that we can write \(h = h_0 < h_1 < h_2 < \cdots < h_l = k\). The length is one if and only if \(h\) is a predecessor of \(k\). We impose an ordering \(\prec\) on \(H^<\), by first declaring \((h, k) \prec (h', k')\) if the length of \((h, k)\) is greater than the length of \((h', k')\), and choosing any order on pairs of the same length.

The \(H^<\)-support of a point \(\xi\) is the set of pairs for which \(\xi\) is virtual. If \((h, k)\) is such a pair then \(k\) lies in the support of \(\xi\) as a function and \(h < k\), so the \(H^<\)-support is finite. Now suppose that \((h, k)\) is the \(\prec\)-least element of the \(H^<\) support of \(\xi\). Then in particular \((h, k)\) has maximal length. Suppose that \(\xi\) is actual for a pair \((h', k')\), but applying \(P^k_h\) makes it virtual. Then one of \(h', k'\) must be one of \(h, k\). Moreover, as \(P^k_h\) reduces the \(k\) coordinate, and increases the \(h\) coordinate we have either \(h = k'\) or \(k = h'\). Consider the first of these cases. We have \(h' < k' = h < k\), and \(\xi_{h'} < 1\) while \(\xi_k > 0\). It follows that \((h', k)\) is a virtual pair for \(\xi\) of greater length than \((h, k)\), contradicting \(\prec\)-minimality. Similarly in the case \(k = h'\) we deduce that \((h, k')\) a virtual pair for \(\xi\) of greater length than \((h, k)\). Thus applying \(P^k_h\) with \((h, k)\) being \(\prec\)-minimal cannot increase the \(H^<\)-support. The point \(P^k_h\) is \((h, k)\)-actual by construction, hence condition (2) of the lemma is satisfied. Thus applying the lemma we obtain a map \(P_A: I \to I\) which is a retraction of \(I\) onto those \(\xi\) in \(I\) such that the \(H^<\)-support is empty. In other words \(P_A\) is a retraction onto \(A\) as required. As each \(P^k_h\) is contractive we deduce that \(P_A\) is also contractive. Each \(P^k_h\) preserves the \(l^1\)-norm, and for each \(\xi\), the point \(P_A(\xi)\) is the image of \(\xi\) under a finite composition of the maps \(P^k_h\). Hence \(P_A\) preserves the \(l^1\)-norm.

To conclude, taking the composition \(P = P_A \circ P_I\) we have a contractive retraction of \(C\) onto \(A\), which preserves the \(l^1\)-norm on \(I\).

Corollary 3.7 If \(X\) is equipped with the \(l^1\)-path metric, then the embedding \(X \to A \subset C\) is an isometry.

Proof By definition, the \(l^1\)-path metric on \(X\) is the metric obtained by taking the infimum of path-lengths, where these path lengths are measured using the \(l^1\)-metric on each cube of \(X\). Identifying \(X\) with its image \(A\) in \(C\), the \(l^1\)-path metric is precisely the path metric induced from the \(l^1\)-metric on \(C\), hence the statement of the corollary amounts to the assertion that the restriction of the \(l^1\)-metric to \(A\) is a path metric.

Let \(d_1\) denote the \(l^1\)-metric on \(A\), and \(d_p\) the induced path metric. Given two points \(\xi, \eta\) in \(A\), the line \((1-t)\xi + t\eta\) is a path from \(\xi\) to \(\eta\) in \(C\) of length \(d_1(\xi, \eta)\). Since the projection \(P: C \to A\) is contractive, \(P((1-t)\xi + t\eta)\) gives a path from \(\xi\) to \(\eta\) of length at most \(d_1(\xi, \eta)\), and this path lies in \(A\). Thus we have \(d_p(\xi, \eta) \leq d_1(\xi, \eta)\). On the other hand, given any metric the induced path metric satisfies the converse inequality, that is \(d_p(\xi, \eta) \geq d_1(\xi, \eta)\), hence the two metrics coincide as claimed. \(\square\)
4 Asymptotic dimension

In this section we make use of the existence of controlled colourings to prove that for a finite dimensional CAT(0) cube complex, the asymptotic dimension is bounded above by the dimension. We begin with the definition of asymptotic dimension.

Definition 4.1 [11] Let X be a metric space. The R–degree of a cover U of X is the supremum over $x \in X$ of the cardinality of $\{ U \in U : B_R(x) \text{ meets } U \}$. The asymptotic dimension of X is the least D such that for every $R > 0$ there is a cover of X by sets of uniformly bounded diameter and with R–degree at most $D + 1$.

The following provides a useful characterisation of asymptotic dimension.

Definition 4.2 A map ϕ from a metric space X to a cell complex Y is uniformly cobounded if there exists $S > 0$ such that $\phi^{-1}(\sigma)$ has diameter at most S for all cells σ of Y. A map ϕ between metric spaces $\phi: X \to Y$ is cobornologous if for all $R > 0$ there exists $S > 0$ such that if $d(\phi(x_1), \phi(x_2)) \leq R$ then $d(x_1, x_2) \leq S$.

Definition 4.3 A uniform simplicial complex is a simplicial complex Y, equipped with the metric it inherits as a subcomplex of the infinite simplex in $l^2(V)$, where V is the vertex set of Y.

Lemma 4.4 [11; 1] A metric space X has asymptotic dimension D if and only if for every $\varepsilon > 0$ there exists an ε–Lipschitz uniformly cobounded map from X into a D–dimensional uniform simplicial complex.

Remark 4.5 Let Y be a connected uniform simplicial complex with metric d_u, and let d_p be the path metric agreeing with d_u on each simplex. Then d_p is the greatest metric which agrees with d_u on each simplex, so in particular $d_u \leq d_p$. It follows that if $\phi: X \to Y$ is ε–Lipschitz for d_p then it is also ε–Lipschitz for d_u. Moreover, since simplices have bounded diameter, if ϕ is cobornologous then it is uniformly cobounded. Hence for the “if” direction of Lemma 4.4 one is free to use either of these metrics, and require ϕ to be either uniformly cobounded or cobornologous.

Lemma 4.6 If for each $\varepsilon > 0$ there is an ε–Lipschitz uniformly cobounded (or cobornologous) map from X into a D–dimensional CAT(0) cube complex Y then X has asymptotic dimension at most D.
Proof This follows from Lemma 4.4 and the above remark. Given an \(\varepsilon \)-Lipschitz uniformly cobounded map from \(X \) into an \(n \)-dimensional CAT(0) cube complex \(Y \), triangulate each cube of \(Y \) to obtain a simplicial complex. As \(Y \) is finite dimensional the \(l^1 \)-path metric on \(Y \), and the simplicial path metric \(d_p \) on its triangulation are bi-Lipschitz equivalent, with constant \(\lambda \) depending only on the dimension. Hence we obtain a \(\lambda \varepsilon \)-Lipschitz map from \(X \) into a simplicial complex with the path metric \(d_p \).

As the map is uniformly cobounded for the cubical structure, it is also uniformly cobounded for the simplicial structure as each simplex lies in a cube.

The hypothesis of being cobornologous is stronger than uniformly coboundedness, so either hypothesis is sufficient.

Let \(X \) be a CAT(0) cube complex and let \(H \) denote the set of hyperplanes of \(X \). Given \(c \colon H \to \{0, 1\} \) a colouring of the hyperplanes, let \(\hat{H} \) denote the set of 0–coloured hyperplanes. As discussed in Section 1, by [5; 14] there is a CAT(0) cube complex \(\hat{X} \) whose hyperplanes are \(\hat{H} \), and a canonical quotient map \(\pi \colon X \to \hat{X} \). Recall that a vertex of \(X \) provides a choice of orientation for each \(h \in H \), namely the set \(h_x \) of halfspaces containing \(x \). On the other hand a vertex of \(\hat{X} \) is defined to be a set of halfspaces, one corresponding to each hyperplane in \(\hat{H} \), whose total intersection is nonempty. The map \(\pi \) is given simply by forgetting the orientations on all 1–coloured hyperplanes. Using the coordinates provided by embedding the complexes into \(l^1(H) \) and \(l^1(\hat{H}) \) respectively, the map takes a point in \(X \) with coordinates \(\xi = (\xi_h)_{h \in H} \) to \(\pi(\xi) = \xi|_{\hat{H}} \).

Lemma 4.7 If \(c \) is an \(l \)-controlled colouring of \(H \), then the canonical map \(\pi \) is cobornologous on the vertices of \(X \).

Proof Let \(x, y \) be vertices of \(X \), let \(m \) be the median of \(x, y, x_0 \). If \(d(x, m) \geq l + 1 \) then as the colouring is \(l \)-controlled and a geodesic from \(x \) to \(m \) is inward, then there must be at least one 0–coloured hyperplane separating \(x, m \). Indeed on any inward geodesic at least one in every \(l + 1 \) hyperplanes is 0–coloured, hence there are at least \([d(x, m)/(l + 1)] \geq d(x, m)/(l + 1) - 1 \) hyperplanes which are 0–coloured and separate \(x, m \).

A similar statement holds for the hyperplanes separating \(y \) and \(m \), hence there are at least \((d(x, m) + d(y, m))/(l + 1) - 2 = d(x, y)/(l + 1) - 2 \) hyperplanes which are 0–coloured and separate \(x, y \). It follows that if the distance between \(\pi(x) \) and \(\pi(y) \) is at most \(R \) then \(d(x, y)/(l + 1) - 2 \leq R \) thus \(d(x, y) \leq (l + 1)(R + 2) \). The map is thus cobornologous on the vertex set.
The problem with the canonical map is that while it is contractive i.e. 1–Lipschitz, it will not be \(\varepsilon \)–Lipschitz for any \(\varepsilon < 1 \). Indeed if \(h \) is a 0–coloured hyperplane, and \(x, y \) are vertices which are adjacent across \(h \) so that \(d(x, y) = 1 \), then \(h \) lies in \(\hat{H} \) hence \(\pi(x), \pi(y) \) are also separated by \(h \) and \(d(\pi(x), \pi(y)) = 1 \). On the other hand if \(x, y \) are far enough apart then they will be separated by some 1–coloured hyperplanes, hence \(\pi \) will reduce the distance between them. We therefore need to carry out an interpolation to produce a map which is more evenly contractive. We begin by choosing weights on pairs of hyperplanes.

For \(h \in \hat{H} \) and \(k \in H \) we define a weight

\[
\begin{cases}
1/(l+1) & \text{if } h = k, \\
1/(l+1) & \text{if } k \text{ is } 1\text{–coloured, } h < k, \\
0 & \text{and there is no } 1\text{–coloured hyperplane separating } h, k, \\
& \text{otherwise.}
\end{cases}
\]

Let \(C = C_H \) be the infinite cube in \(l^1(\hat{H}) \). We define a map \(\psi: X \to C \) as follows. For \(x \) in \(X \) with coordinates \((\xi_k)_k \in H \) we define \(\psi(x) = \zeta \) where

\[
\zeta_h = \min\left(1, \sum_{k \in H} w(h, k)\xi_k\right).
\]

If \(\zeta_h = 0 \) then we must have \(\xi_h = 0 \) since \(w(h, h) > 0 \). On the other hand if \(\zeta_h > 0 \) then either \(\xi_h > 0 \), or there exists \(k \) with \(h < k \) and \(\xi_k > 0 \). Since \(\xi \) is the coordinate vector of a point \(x \) in \(X \) we know that it is \((h, k) \)–actual, so \(\xi_h = 1 \). Hence \(\zeta_h = 0 \) if and only if \(\xi_h = 0 \). We conclude that the support of \(\zeta \) is the restriction to \(H \) of the support of \(\xi \), in particular it is finite, hence \(\zeta \) lies in the cube \(C \).

Lemma 4.8 The map \(\psi: X \to C \) is \((l/(l+1)) \)–Lipschitz.

Proof We will show that the map taking a point \(x \) with coordinates \(\xi_k \) to \(\eta_h = \sum_{k \in H} w(h, k)\xi_k \) is \((l/(l+1)) \)–Lipschitz, it being clear that truncating coordinates at 1 will only reduce distances.

Two points \(x, x' \) with coordinates \(\xi_k, \xi'_k \) have images \(\eta_h, \eta'_h \) with

\[
\eta_h - \eta'_h = \sum_{k \in H} w(h, k)(\xi_k - \xi'_k).
\]

Taking the \(l^1 \)–norm we get

\[
\sum_{h \in \hat{H}} \sum_{k \in H} w(h, k)|\xi_k - \xi'_k| = \sum_{k \in H} |\xi_k - \xi'_k| \left(\sum_{h \in \hat{H}} w(h, k)\right).
\]

It thus suffices to show that for each \(k \) in \(H \) we have \(\sum_{h \in \hat{H}} w(h, k) \leq l/(l+1) \).
If k is 0–coloured then $w(h, k)$ is zero except when $h = k$, so in this case the sum is just $w(h, h) = l/(l + 1)$. If k is 1–coloured then $\sum_{h \in \widehat{H}} w(h, k)$ is $1/(l + 1)$ times the number of 0–coloured hyperplanes h with $h < k$ and such that no 1–coloured hyperplane separates h, k. Taking y to be the vertex adjacent to k of minimal distance from x_0, there is a 0–coloured inward geodesic crossing all of these hyperplanes h. Hence as the colouring is l–controlled there are at most l such hyperplanes. Thus we again have $\sum_{h \in \widehat{H}} w(h, k) \leq l/(l + 1)$ as required. \hfill \Box

We now combine these results to prove the existence of an $(l/(l+1))$–Lipschitz cobornologous map from X to \widehat{X}.

Theorem 4.9 Let X be a CAT(0) cube complex of dimension D, with hyperplanes H. Let c be an l–controlled colouring of H. Then there exists a cobornologous, $(l/(l+1))$–Lipschitz map from X to the cube complex \widehat{X} with hyperplanes $\widehat{H} = c^{-1}({\{0\}})$.

Proof Let $\psi: X \to C = C\widehat{H}$ be as above. Identifying \widehat{X} with the space of actual intervalic coordinates in C, let $P: C \to \widehat{X}$ be the projection provided by Theorem 3.6. We define a map $\phi: X \to \widehat{X}$ by $\phi(x) = P(\psi(x))$. This map is $(l/(l+1))$–Lipschitz as ψ is $(l/(l+1))$–Lipschitz and P is contractive (Lemma 4.8 and Theorem 3.6). It remains to prove that ϕ is cobornologous.

Let x, y be points of X. Then there are vertices x', y' of X with $d(x, x'), d(y, y') \leq D$ where D is the dimension of X. As the colouring is l–controlled, following maximal 0–coloured inward geodesics from x', y' we reach vertices x'', y'' having no 0–coloured inward edges with $d(x', x'') \leq l$ and $d(y', y'') \leq l$. As ϕ is contractive we note that $d(\phi(x), \phi(x''))$, $d(\phi(y), \phi(y'')) \leq l + D$, hence if $d(\phi(x), \phi(y)) \leq R$ then $d(\phi(x''), \phi(y'')) \leq R + 2(l + D)$.

We consider the images of x'', y'' under the map ψ. Let ξ'' be the coordinates of x'' and consider $\eta_h = \sum_{k \in H} w(h, k)\xi''_k$. We have already remarked that the support of η is the support of the restriction of ξ'' to \widehat{H}, in other words it is the set of 0–coloured hyperplanes separating x_0, x''. Moreover as x'' has no 0–coloured inward edges, for any such h there exists a 1–coloured hyperplane k with $h < k$. It follows that $\eta_h \geq w(h, h) + w(h, k) = 1$. Hence $\xi'' = \psi(x)$ is precisely the characteristic function of the set of h in \widehat{H} separating x_0, x''. This is the image of x'' under the canonical quotient map, that is $\psi(x''') = \pi(x'')$.

Since $\pi(x'')$ lies in \widehat{X} its coordinates are intervalic and actual so we have

\[\phi(x'') = P(\psi(x''')) = P(\pi(x'')) = \pi(x''). \]
Similarly $\phi(y'') = \pi(y'')$. We know from Lemma 4.7 that π is uniformly cobounded. Hence given $R > 0$ there exists S such that for $d(\phi(x''), \phi(y'')) = d(\pi(x''), \pi(y'')) \leq R + 2(l + D)$ we have $d(x'', y'') \leq S$. It follows that if $d(\phi(x), \phi(y)) \leq R$ then $d(x, y) \leq S + 2(l + D)$, ie ϕ is cobornologous.

Applying this we deduce that finite dimensional CAT(0) cube complexes have finite asymptotic dimension.

Theorem 4.10 Let X be a CAT(0) cube complex of dimension D. Then for all $\varepsilon > 0$ there exists an ε–Lipschitz cobornologous map from X to a CAT(0) cube complex of dimension at most D. Thus X has asymptotic dimension at most D.

Proof Theorem 2.23 implies a D–dimensional CAT(0) cube complex X admits a $3^{D-1}D$–controlled colouring, as the flatness of X is at most D. Thus by Theorem 4.9 there exists a $3^{D-1}D/(3^{D-1}D + 1)$ contractive cobornologous map from X into \hat{X}, where \hat{X} is again a CAT(0) cube complex of dimension at most D. Iterating the process we can produce an ε–Lipschitz map for any $\varepsilon > 0$, and as this is a composition of cobornologous maps it is again cobornologous as required. The asymptotic dimension bound now follows from Lemma 4.6.

If G acts properly isometrically on a CAT(0) cube complex (or indeed any metric space) then each orbit is coarsely equivalent to the group G. Since asymptotic dimension is monotonic, one obtains the following immediate consequence.

Corollary 4.11 Let G be a group admitting a proper isometric action on a CAT(0) cube complex of dimension D. Then G has asymptotic dimension at most D.

As an application of this result, we examine the asymptotic dimension bound this gives us for small cancellation groups.

Example 4.12 Wise [20] showed that if G is a $B(4)−T(4)$ or $B(6)$ small cancellation group then G acts properly isometrically on a CAT(0) cube complex built from the presentation 2–complex. The presentation complex should be subdivided if necessary to ensure cells have even circumference. In the $B(4)−T(4)$ case the maximal cubes correspond to cells, and their dimension is half the circumference of the cell. Hence the CAT(0) cube complex has dimension $c/2$ where c is the maximal circumference of a cell in the presentation complex of G. By Corollary 4.11, it follows that for a $B(4)−T(4)$ group, the asymptotic dimension is at most $c/2$.

In the $B(6)$ case the maximal cubes correspond to cells, links or tricombs [20, Lemma 9.4]. Cubes corresponding to cells again have dimension at most $c/2$. For
each tricomb cube, one can find two cells in the presentation complex (a corner and a cell on the opposite side of the tricomb), such that all hyperplanes cross one or other of these cells. It follows that there are at most $2c/2 = c$ hyperplanes, so these cubes have dimension at most c. Finally, cubes corresponding to links have dimension at most l where l is the maximal size of a complete graph in the generalised link of a vertex. For $B(6)$ small cancellation groups we therefore deduce that the asymptotic dimension is at most $\max\{c, l\}$.

References

