Volume 16, issue 2 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The Dirichlet Problem for constant mean curvature graphs in $\mathbb{M}\times\mathbb{R}$

Abigail Folha and Harold Rosenberg

Geometry & Topology 16 (2012) 1171–1203
Bibliography
1 P Collin, H Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs, Ann. of Math. 172 (2010) 1879 MR2726102
2 A Folha, S Melo, The Dirichlet problem for constant mean curvature graphs in $\mathbb{H}\times\mathbb{R}$ over unbounded domains, Pacific J. Math. 251 (2011) 37 MR2794614
3 J A Gálvez, H Rosenberg, Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces, Amer. J. Math. 132 (2010) 1249 MR2732346
4 D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wissen. 224, Springer (1983) MR737190
5 L Hauswirth, H Rosenberg, J Spruck, Infinite boundary value problems for constant mean curvature graphs in $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{S}^2\times\mathbb{R}$, Amer. J. Math. 131 (2009) 195 MR2488489
6 H Jenkins, J Serrin, Variational problems of minimal surface type. I, Arch. Rational mech. Anal. 12 (1963) 185 MR0145194
7 H Jenkins, J Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966) 321 MR0190811
8 F Labourie, Un lemme de Morse pour les surfaces convexes, Invent. Math. 141 (2000) 239 MR1775215
9 Y Li, L Nirenberg, Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29 (2005) 257 MR2305073
10 L Mazet, M M Rodríguez, H Rosenberg, The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface, Proc. Lond. Math. Soc. 102 (2011) 985 MR2806098
11 B Nelli, H Rosenberg, Minimal surfaces in $\mathbb{H}^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 33 (2002) 263 MR1940353
12 A L Pinheiro, A Jenkins–Serrin theorem in $M^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 40 (2009) 117 MR2496117
13 H Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993) 211 MR1216008
14 H Rosenberg, Minimal surfaces in $\mathbb{M}^2\times\mathbb{R}$, Illinois J. Math. 46 (2002) 1177 MR1988257
15 H Rosenberg, R Souam, E Toubiana, General curvature estimates for stable \hbox$H$–surfaces in $3$–manifolds and applications, J. Differential Geom. 84 (2010) 623 MR2669367
16 J Spruck, Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 49 (1972) 1 MR0334010
17 J Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n\times R$, Pure Appl. Math. Q. 3 (2007) 785 MR2351645