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Long knots and maps between operads

WILLIAM DWYER

KATHRYN HESS

We identify the space of tangentially straightened long knots in Rm , m � 4 , as
the double loops on the space of derived operad maps from the associative operad
into a version of the little m–disk operad. This verifies a conjecture of Kontsevich,
Lambrechts and Turchin.

18D50, 55P48; 18G55, 57Q45

1 Introduction

A long knot in Euclidean m–space Rm is a smooth embedding R!Rm which agrees
with inclusion of the first coordinate axis on the complement of some compact set in R;
a tangential straightening for the knot is a null homotopy (constant near 1) of the
map R! Sm�1 obtained by taking the unit tangent vector of the knot at each point.
See Sinha [23, 5.1] for more details. Starting from work of Goodwillie, Klein, and
Weiss [9; 10; 11; 24] on embedding spaces, Sinha [23] has proved that the space of
tangentially straightened long knots in Rm is equivalent to the homotopy limit of an
explicit cosimplicial space constructed from the m–th Kontsevich operad Km .

Let A denote the associative operad. The cosimplicial space Sinha considers is derived
by formulas of McClure and Smith [19] from an operad map A!Km ; more generally,
McClure and Smith build a cosimplicial space O� from any operad O of spaces and
operad map A!O . Our main theorem gives an independent formula for the homotopy
limit of this construction. Say that the operad O is reduced if O0 and O1 are weakly
contractible.

1.1 Theorem (Section 8) Let O be a reduced operad of simplicial sets, !W A!O
an operad map, and O� the cosimplicial object associated to ! by [19]. Then there is a
natural weak homotopy equivalence

holimO� ��2 Maph.A;O/! :
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The space on the right is the double loops, based at ! , on a derived space of operad
maps A! O . See below for more details. Let Sing.�/ be the singular complex
functor. Since Km is reduced, applying Theorem 1.1 with O D Sing.Km/ shows
that the space of tangentially straightened long knots in Rm is weakly homotopy
equivalent to the double loop space on a space of operad maps from the associative
operad to Sing.Km/. This verifies a conjecture of Kontsevich (see Sinha [23, 2.17 ff])
as adjusted by Lambrechts and Turchin and re-expressed simplicially. The operad Km

is a pared-down model of the little m–disk operad; see Kontsevich [14] and Sinha [23,
Section 4]. A result similar to Theorem 1.1 has been announced recently by Lambrechts
and Turchin.

Theorem 1.1 is derived from a very general result about monoids and bimodules in a
not-necessarily-symmetric monoidal category; see Theorem 1.7 or 3.11. This result is
relevant to (and sometimes familiar in) many different contexts; see Section 1.13.

1.2 More details From this point on in the paper “space” means “simplicial set.” Let
Sp denote the category of spaces and S the category of graded spaces (sequences of
spaces indexed by the nonnegative integers). The composition product X ıY of graded
spaces is given by

.1:3/ .X ıY /n D
a

i; j1C���jiDn

Xi �Yj1
� � � � �Yji

:

An operad is a monoid object for this associative (but nonsymmetric) product. See
May [17] or Sinha [23, 2.13], but note that we do not impose constraints on an operad
in levels 0 and 1. The associative operad A is the graded space which has a single
point at every level n, n� 0; it has a unique operad structure. We will let O denote
the category of operads.

The category S is a simplicial model category in which a map X ! Y is an equiv-
alence, cofibration, or fibration if and only if each individual map Xn! Yn has the
corresponding property in the usual model structure on spaces; see Hovey [13, 3.2]. It
follows from Rezk’s thesis [21] (see also Rezk [22, Proof of 7.2]) that O is a simplicial
model category in which a map P!Q is an equivalence or a fibration if and only if
the underlying map in S has the corresponding property. The derived mapping space
Maph.A;O/ in Theorem 1.1 is the simplicial mapping space MapO.Ac;Of/, where
Ac is a cofibrant replacement for A and Of a fibrant replacement for O .

In describing the left hand side of Theorem 1.1, it is convenient to write a point f 2Oi

as if it were a function f .x1; : : : ;xi/ of i formal variables. If the image h of a tuple
.f;g1; : : : ;gi/ under the operad structure map O ıO!O is written as a composite

h.x1; : : : ;xJ /D f .g1.x1; : : : ;xj1
/; : : : ;gi.xJ�jiC1; : : : ;xJ //
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(where gk 2 Ojk
and J D

P
jk ), then the operad identities for the structure map

express the associativity of composition. (Writing h as a composite in this way amounts
to pretending for the sake of notation that O is the endomorphism operad of a space.)
Given a map A!O , let � 2O0 and � 2O2 be the images respectively of A0!O0

and A2!O2 . We will think of � as a multiplication and temporarily write x �y for
�.x;y/. For each n� 0 the cosimplicial space O� has On in cosimplicial degree n;
the coface and codegeneracy operators on f 2On are given by

.d if /.x1; : : : ;xnC1/D

8<:
x1 �f .x2; : : : ;xnC1/ i D 0;

f .xi ; : : : ;xi �xiC1; : : : ;xnC1/ 1� i � n;

f .x1; : : : ;xn/�xnC1 i D nC 1;

.sif /.x1; : : :xn�1/D f .x1; : : : ;xi�1; �;xi ; : : : ;xn�1/:

For other descriptions of O� see [23, 2.17] or [19, Section 3].

1.4 Method of proof Oddly enough, our proof of Theorem 1.1 comes down to
applying a single principle twice, in very different cases; each application gives rise to
one instance of �. Before looking at these applications, we will describe the principle.

1.5 A connection between maps and bimodules Suppose that .C;˘; e˘/ is a cate-
gory with a monoidal product ˘ for which e˘ is the unit, and that M is the category
of monoids in C. It is not necessary for ˘ to be symmetric monoidal. Given monoids
R, S in C, the notions of left R–module, right S –module, and R�S –bimodule are
defined as usual. A pointed module or bimodule X is one which is provided with a
C–map e˘!X ; a monoid under R�S is a monoid T together with monoid maps
R! T and S ! T .

Suppose that there is a model category structure on C which induces compatible
(Section 3) model structures on all monoid and bimodule categories. There is a
forgetful functor \ from monoids under R�S to pointed R�S –bimodules, with the
basepoint for \T given by the unit map e˘! T . Assume that \ has a left adjoint E

(the enveloping monoid functor) with the property that .E; \/ forms a Quillen pair, and
let Eh denote the left derived functor (Remark 3.3) of E .

Say that a pointed right S –module X is distinguished if the map

S Š e˘ ˘S !X ˘S !X

induced by e˘ ! X and X ˘ S ! S is an equivalence; an R�S –bimodule is
distinguished if it is distinguished as a right S –module. Similarly a monoid T under
R�S is distinguished if T is distinguished as a right S –module, or equivalently, if
the structure map S ! T is an equivalence. There is one major axiom:
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1.6 Axiom E If X is a distinguished R�S –bimodule, then Eh.X / is a distinguished
monoid under R�S .

The next theorem is the source of �.

1.7 Theorem (Theorem 3.11) Let !W R!S be a map of monoids in C. Then under
the above assumptions, and some additional technical conditions, there is a fibration
sequence

�Maph
M.R;S/!!Maph

R�R.R;S/!Maph
C.e˘;S/ :

In this statement Maph stands for the general model category theoretic derived mapping
space (Section 2.1), which agrees with the appropriate derived simplicial mapping space
if the model category involved is a simplicial model category. The middle space is
computed in the category of R�R–bimodules, with S treated as an R�R–bimodule
via ! . The right hand map is induced by the unit map e˘! R, and the homotopy
fibre is meant to be computed over the unit map e˘! S .

1.8 The first application of Theorem 1.7 Here .C;˘; e˘/ is .S; ı; eı/; the unit eı
is a graded space which is empty except for a single point at level 1. The monoids
in C are the operads. For any graded space X , the mapping space Maph

S.eı;X / is
equivalent to X1 , and so Theorem 1.7 gives the following.

1.9 Theorem (Section 6) Suppose that !W A! O is a map of operads, with O1

contractible. Then there is an equivalence

�Maph
O.A;O/! �Maph

A�A.A;O/ ;

where on the right O is treated as a A�A–bimodule via ! .

1.10 The second application of Theorem 1.7 This is more peculiar. For any two
objects X , Y of S, the graded cartesian product XˇY is the graded space defined by

.X ˇY /n D
a

iCjDn

Xi �Yj :

The unit for ˇ is the graded space eˇ which is empty except for a single point at
level 0; under the pairing ˇ the category S becomes a symmetric monoidal category.

It is easy to see that a graded space X is a ˇ–monoid (X ˇX !X ) if and only if it
is a left A–module (A ıX !X ). But more is true. For any three graded spaces X ,
Y , Z there is a natural distributive isomorphism

.1:11/ .X ˇY / ıZ Š .X ıZ/ˇ .Y ıZ/ :
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This guarantees that if X and Y are right modules over an operad P , then X ˇ Y

is also naturally a right module over P ; indeed, ˇ provides a symmetric monoidal
structure on the category SP of right P –modules, such that the monoids in .SP ;ˇ; eˇ/

are exactly the A�P –bimodules in .S; ı; eı/.

In our second application of Theorem 1.7, we take P DA in the above remarks and
we let .C;˘; e˘/ be .SA;ˇ; eˇ/. Let A denote the associative operad A with an
emphasis on its role as a monoid in SA . Theorem 1.7 then translates to this.

1.12 Theorem (Section 7) Suppose that ˛W A!X is a map of A�A–bimodules,
and that X0 � �. Then there is an equivalence

�Maph
A�A.A;X /˛ �Maph

A�A;A.A;X / :

The mapping space on the right is computed in the category of A�A–bimodules with
respect to ˇ in a setting in which all of the graded spaces involved are right A–modules
with respect to ı! Fortunately, this category is a lot less complicated than it looks;
in fact it is exactly the category of cosimplicial spaces. We thank the referee for
highlighting this. Theorem 1.1 now follows easily from Theorems 1.12 and 1.9.

1.13 Some additional comments Axiom E is a disguised form of another assump-
tion. In fortunate cases, enhancing a distinguished right S –module XS to an R�S –
bimodule amounts to giving a map from R to an enriched endomorphism object
EndC.XS /, but Axiom E suggests that such an enhancement amounts to a map R!S

of monoidal objects. In spirit, then, Axiom E is the assumption that S � EndC.XS /

or more explicitly, given that XS is distinguished, that S is equivalent to the enriched
endomorphism object of S itself as a right S –module. One feature of Axiom E is
that it avoids any direct consideration of what such an enriched endomorphism object
might be.

In practice we prove a delooped version of Theorem 1.7. Let Md.R;S/ denote the
moduli space of distinguished R�S –bimodules; this is the nerve of the category whose
objects are distinguished R�S –bimodules and whose morphisms are the equivalences
between them. This can be identified (Section 2.1) as

Md.R;S/�
a
fX g

B AuthR�S .X / ;

where fX g runs over equivalence classes of distinguished R�S –bimodules, and
AuthR�S .X / is the space of derived self-equivalences of X .
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1.14 Theorem (cf Theorem 3.9) In the situation of Theorem 1.7 there is an equiva-
lence

Maph
M.R;S/�Md.R;S/ :

There is another way to express Theorem 1.14. Let Mpd.R;S/ denote the moduli space
of all potentially distinguished R�S –bimodules, ie, bimodules which are (abstractly)
equivalent to S as right S –modules, so that in particular Mpd.e˘;S/ is the moduli
space of all potentially distinguished right S –modules. This last space is weakly
equivalent to B AuthS .S/, where the notation indicates that Auth is computed in
the category of right S –modules. Unpacking the basepoint from Theorem 1.14 (cf
Theorem 3.10) reveals that there is a fibration sequence

.1:15/ Maph
M.R;S/!Mpd.R;S/!Mpd.e˘;S/ :

Here are some contexts .C;˘; e˘/ in which (1.15) comes up.

Simplicial monoids Here C is the category Sp and ˘ is cartesian product. A
monoidal object is a simplicial monoid. If G and H are two simplicial monoids
which happen to be simplicial groups, then (1.15) can be identified with the fibration
sequence

Map�.BG;BH /!Map.BG;BH /! BH :

Operads Here C is the category of symmetric sequences in Sp, ˘ is the appropriate
analog of the composition product, and the monoidal objects are †–operads. Let P
and Q be two †–operads. Under the additional assumption that Q is an endomorphism
operad, the fibration (1.15) for Maph

M.P;Q/ appears as [21, 1.1.5].

Ring spectra Here C is the category of spectra, ˘ is smash product and the monoidal
objects are ring spectra. Let R and S be two ring spectra. Lazarev [15] gives a
calculation of �Maph

M.R;S/ very similar to Theorem 1.7. In this case (1.15) gives a
fibration sequence

Maph
M.R;S/!Mpd.R;S/! BS� ;

where S� is the group-like simplicial monoid of units in S .

1.16 Notation and terminology The word equivalence usually refers to equivalence
in an ambient model category; to avoid certain ambiguities, we sometimes use weak
equivalence or weak homotopy equivalence to refer to an equivalence in the usual model
category of simplicial sets. We sometimes elide the distinction between a category
and its nerve, so that a functor is described as a weak equivalence if it induces a
weak equivalence on nerves. Adjoint functors are always weak equivalences; more
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generally, a functor F W C! D is a weak equivalence if there is a functor GW D! C
such that the composites FG and GF are connected to the identity functor by zigzags
of natural transformations. If C is a category with some notion of equivalence, the
moduli category M.C/ is the category of equivalences in C. The moduli space of C
(denoted identically) is the nerve of the moduli category.

If F W C! D is a functor and d is an object of D, F&d denotes the over category
(comma category) of F with respect to d . This is the category whose objects are pairs
.c;g/ where c 2C and g is a map F.c/! d in D; a morphism .c;g/! .c0;g0/ is a
map c! c0 in C rendering the appropriate diagram commutative. The corresponding
under category is denoted d&F . If F is the identity functor on D, these categories
are denoted D&d and d&D.

Suppose that F W C! D is a functor such that for every hW d ! d 0 in D the map
F&d ! F&d 0 induced by composition with h is a weak homotopy equivalence; in
this circumstance Quillen’s Theorem B guarantees that for any d 2 D the homotopy
fiber of (the nerve of) F over the vertex of D represented by d is naturally weakly
homotopy equivalent to F&d . A similar result holds with over categories replaced by
under categories.

Our symbol for coproduct is usually t, or tD if the ambient category is specified; in
Sections 4 and 6 the symbol [ is used for the coproduct of graded spaces. We refer to
the dimension of a simplex in a space, the level or grade of a constituent of a graded
space and the simplicial degree of a constituent of a (co)simplicial (graded) space.

1.17 Remark In this paper we work only with non–† operads, also called planar
operads. Many of our results apply to †–operads (symmetric operads) or even to
multicategories, but we decided to leave this generality for later.

Organization of the paper Section 2 sets up some model category machinery, which
is used in Section 3 to give a proof of Theorem 1.7. Section 4 moves to a more concrete
consideration of model structures on operads of spaces and proves the crucial result
that the coproduct functor preserves equivalences. Section 5 describes the Hochschild
resolution of an operad P as a bimodule over itself and shows that applying an
enveloping construction to the Hochschild resolution leads to a resolution of P as an
operad; Section 6 uses this last resolution to give a proof of Theorem 1.9. The final two
sections transpose the earlier results to the context of classic monoids in the category
of graded spaces, and go on to deduce Theorems 1.12 and 1.1.

For our approach to the homotopy theory of operads we are deeply indebted to the results
of Rezk [22]. The first author was partially supported by NSF grant DMS 0354787.
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2 Model categories

In this section we develop basic properties of model categories which we will need
later on; Hovey [13] and Goerss and Jardine [8] are two background references. The
underlying definition of model category is from [13, 1.1.4]; in particular, a model
category is closed in the sense of Quillen [20], has functorial factorizations [13, 1.1.1],
and has all small limits and colimits.

2.1 Some generalities Suppose that D is a model category. The symbol � marks
equivalences in D. A (co)fibration is acyclic if it is also an equivalence. A cofibrant
replacement for an object X is an equivalence X c �!X with cofibrant domain, usually
obtained (functorially) by factoring the map from the initial object to X as a cofibration
followed by an acyclic fibration. A fibrant replacement X

�
!X f is constructed similarly.

Quillen pairs and Quillen equivalences An adjoint pair �W D$ E W� of functors
between model categories is a Quillen pair [13, 1.3.1] if � preserves cofibrations and
acyclic cofibrations (equivalently, � preserves fibrations and acyclic fibrations). In this
case, � preserves equivalences between cofibrant objects and � preserves equivalences
between fibrant objects. The pair .�; �/ forms a Quillen equivalence [13, 1.3.3] if
for all cofibrant X 2 D and fibrant Y 2 E, a map �X ! Y is an equivalence in E
if and only if the adjoint X ! �Y is an equivalence in D. Let Dc , Df , etc., denote
appropriate full subcategories of cofibrant or fibrant objects. Given a Quillen pair .�; �/
there is an induced diagram of moduli spaces

.2:2/

M.Dc/
� //

�

��

M.D/ M.Df/
�oo

M.Ec/
� //M.E/ M.Ef/

�

OO

�oo

in which (by functorial fibrant/cofibrant replacement constructions) the indicated arrows
are homotopy equivalences with explicit homotopy inverses. It is not hard to see that if
.�; �/ is a Quillen equivalence, then both vertical arrows are weak homotopy equiva-
lences, and that these arrows are homotopy inverse to one another in an appropriate
sense; see Dwyer et al [4, 17.5]. In particular, if � preserves all equivalences, then the
map M.E/!M.D/ induced by � is a weak homotopy equivalence.

Derived mapping spaces If X and Y are objects of D, Maph
D.X;Y /DMaph.X;Y /

denotes the simplicial set of derived maps X ! Y ; technically, this is defined in terms
of the hammock localization (see Dwyer and Kan [5]), and it depends only on the
equivalences in D. If D is a simplicial model category [8, II.3], then Maph.X;Y / is
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canonically weakly homotopy equivalent to the space MapD.X
c;Y f/ (see [6]). The

bifunctor Maph.�;�/ converts an equivalence in either variable into a weak homotopy
equivalence. By [5, 1.1] the space Maph.X;Y / is canonically weakly equivalent to
the nerve of the category depicted pictorially as follows

.2:3/

X1

��

�

yy

// Y1

��

X Y:

�
ee

�yy
X2

�

ee

// Y2

In this convention, zigzagging across the top gives one object of this category, zigzagging
across the bottom another, and the entire commutative diagram with the dotted arrows
drawn in represents a morphism from the top object to the bottom one. Dugger has
shown [3] that if X is cofibrant, Maph.X;Y / is equivalent to the nerve of the less
complicated category

.2:4/

Y1

��

X

99

%%

Y:

�
ee

�yy
Y2

Remark Note that this is a certain subcategory of the category of objects under X tY .
If D is a category of monoids in some underlying monoidal category (Section 1.5), then
this is the category of distinguished monoids under X tY . Any such distinguished
monoid has an underlying distinguished X�Y bimodule, and in this paper we exploit
the fact that in fortunate circumstances passing to distinguished bimodules does not
alter the homotopy type of the categorical nerves (Theorem 3.9).

2.5 Left proper model categories We need a slight generalization of Dugger’s result.
The model category D is left proper if the pushout of an equivalence along a cofibration
is again an equivalence [8, II.8.P2]. In [22, 2.7], Rezk observes that D is left proper if
and only if for any equivalence Z!Z0 in D the restriction functor �W Z0&D!Z&D
is the right adjoint of a Quillen equivalence. Since � preserves all weak equivalences,
it follows that � induces a weak equivalence M.Z0&D/ �!M.Z&D/ (see (2.2) ff).

2.6 Proposition Suppose that D is left proper, and that X and Y are objects of D
such that X c tY !X tY is an equivalence. Then the nerve of the category (2.4) has
the weak homotopy type of Maph.X;Y /.

Geometry & Topology, Volume 16 (2012)



928 William Dwyer and Kathryn Hess

Proof Let ZDX ctY and Z0DX tY . The nerve of (2.4) is a union of components
of M.Z0&D/, and according to Dugger, the corresponding union of components of
M.Z&D/ computes Maph.X;Y /. If f W Z!Z0 is an equivalence, it follows from
Rezk’s observation above that the map of moduli spaces induced by restriction over f
is a weak equivalence. Since this map preserves the appropriate components, the
conclusion follows.

2.7 Remark Let AuthD.X / D Auth.X / denote the union of those components of
Maph.X;X / which are invertible up to homotopy. There is a natural weak homotopy
equivalence

.2:8/ B Auth.X /�M.D/X ;

where M.D/X is the component of the moduli space M.D/ (Section 1.16) corre-
sponding to X . This is proved by stringing together results from [7, 5.5; 5, 2.2;
6, 4.6(ii)].

2.9 Quillen pairs and homotopy fibres of moduli spaces Suppose that .�; �/ is a
Quillen pair as above, such that � preserves all equivalences and thus induces a map
M.�/WM.E/!M.D/. We are interested in showing that the homotopy fibre of
M.�/ over A 2M.D/ is often given by the nerve of the under category A&M.�/.

2.10 Proposition Suppose that �W D$ E W� is a Quillen pair such that � preserves
all equivalences. Then the homotopy fibre of M.�/ over A 2M.D/ is given by
A&M.�/ if either

(1) A is cofibrant, or

(2) E is left proper and �.Ac/! �.A/ is an equivalence.

Proof Consider the following two categories:

A&M.�/ W

�X1

�f

��

A

� 88

� &&
�X2

X1

� f

��
X2

M.�A&E/ W

X1

�

��

�.A/

˛1
88

˛2 &&
X2

The fact that � preserves equivalences implies that A&M.�/ is isomorphic to the
union of the components of M.�A&E/ containing maps ˛W �A!X whose adjoint
˛[W A! �X is an equivalence. Two conclusions follow. First, if assumption (2) holds
the natural map A&M.�/!Ac

&M.�/ is a weak homotopy equivalence (Section 2.5),
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and hence without loss of generality we can assume that (1) holds and A is cofibrant.
Secondly, if A!A0 is an equivalence between cofibrant objects of D, the natural map
A0&M.�/!A&M.�/ is a weak homotopy equivalence [22, 2.5].

We now perturb the problem into one which can be solved by combining this last
observation with Quillen’s Theorem B (Section 1.16). Let Dc � D be the subcategory
of cofibrant objects, and consider the two categories described pictorially below (all
arrows are equivalences).

M.E/ W

X1

��
X2

M.Dc/&M.�/ W

Bc
1

//

��

�.X1/

�.f /

��
Bc

2
// �.X2/

X1

f

��
X2

The category M.Dc/&M.�/ is a path space construction in which an object consists
of object X1 2 E, an object Bc

1
2 Dc , and an equivalence Bc

1
! �.X1/; a morphism

consists of equivalences X1 ! X2 and Bc
1
! Bc

2
making the indicated diagram

commute. Let uW Dc! D denote the inclusion. There is a diagram of functors

M.E/

M.�/

��

M.Dc/&M.�/
voo

w

��
M.D/ M.Dc/

M.u/oo

where v picks out X1 and w picks out Bc
1

; the square commutes up to an explicit
natural transformation. The functors M.u/ and v are weak homotopy equivalences,
since there are oppositely oriented functors (given by choosing functorial cofibrant
replacements) such that composites are connected to appropriate identity functors by
natural transformations. If A is cofibrant, it is easy to construct a functor A&M.�/!

A&w (natural in A) which is a weak homotopy equivalence. As above, this implies that
any equivalence A!A0 in Dc induces a weak homotopy equivalence A0&w!A&w .
By Quillen’s Theorem B, the homotopy fibre of w over A, or equivalently the homotopy
fibre of M.�/ over A, is weakly homotopy equivalent to A&w �A&M.�/.

2.11 Quillen pairs and mapping spaces We will also need that Quillen pairs are
topologically adjoint with respect to model-category theoretic mapping spaces. A
version of this up to homotopy is included in [13, 5.6.2] (cf [12, 17.4.15]), but we
prefer a slightly more rigid formulation. As usual, Ac �!A and Y

�
! Y f are cofibrant

and fibrant replacements.
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2.12 Theorem Suppose that �W D$ E W� is a Quillen pair, and that A and Y are
objects of D and E respectively. Then there is a natural weak homotopy equivalence

Maph
D.A; �.Y

f//�Maph
E.�.A

c/; Y / :

Proof We can assume without loss of generality that A is cofibrant and Y is fibrant.
Consider the category Z described by the diagram

.2:13/

A1

��

�

yy

// Y1

��

A Y

�
ee

�yy
A2

�

ee

// Y2

where an undulating arrow Ai
// Yi represents (equivalently) a map Ai! �.Yi/

in D or a map �.Ai/ ! Yi in E. We will show that Z is weakly equivalent to
Maph.�A;Y /; a dual argument shows that it is weakly equivalent to Maph.A; �Y /.

Let Dc be the category of cofibrant objects in D. A functorial factorization argument
shows that Z is weakly homotopy equivalent to the full subcategory Zc consisting
of zigzags with A1 2 Dc . Picking off A1

�
!A gives a functor F W Zc!M.Dc/&A.

Given an object U D hA0
�
!Ai of M.Dc/&A, the over category U&F has objects

consisting of diagrams of the form

A0
�

ww

��
A

A1
�

gg

// Y1 Y
�
oo

This is an object of U&F ; in this category, A, A0 and Y are fixed, but A1 and Y1 are
allowed to vary. This category is homotopy equivalent to the subcategory consisting
of objects in which A0! A1 is the identity map; by (2.4), this subcategory has the
weak homotopy type of Maph

E.�.A
0/;Y / and so in particular the weak homotopy type

is independent of the choice U of object. By Quillen’s Theorem B, Maph
E.�A;Y / is

equivalent to the homotopy fibre of F . Since the target M.Dc/&A of F is contractible
(this category has a terminal object), it follows that Maph

E.�A;Y / is weakly equivalent
to Z.

3 Monoidal categories and the proof of Theorem 1.7

In this section we work out the machinery sketched in Section 1.5. The triple .C;˘; e˘/
will be a monoidal category in the sense of [16, VII.1], and M the category of monoids
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in C [16, VII.3]. For the rest of this section R and S are two fixed objects of M. We
use the following notation:
� CS D the category of right S –modules,
� CR;S D the category of R�S –bimodules, and
� MR;S D the category of monoidal objects under R and S .

A point for an object X 2C is defined to be a C–map e˘!X ; a map between pointed
objects is required to respect the points. A superscript e indicates a category of pointed
objects, so that for instance,
� Ce

R;S
D the category of pointed R�S –bimodules.

Note that the category of pointed R�S –bimodules is isomorphic to the category of
R�S –bimodules under R˘S . We now introduce the axioms under which Theorem 1.7
holds.

3.1 Axiom I The categories C, M, CS ,and CR;S possess compatible (see below)
model category structures.

The term compatible means that a map in one of these categories is an equivalence or a
fibration if and only if the underlying map in C has the same property. For general
reasons, the above model category structures on M and on CR;S extend to compatible
model structures on MR;S and Ce

R;S
[13, 1.1.8 ff].

There is a forgetful functor \W MR;S !Ce
R;S

, with the point for \.T / provided by the
unit map e˘! T .

3.2 Axiom II The functor \W MR;S ! Ce
R;S

has a left adjoint E .

3.3 Remark The compatibility condition in Axiom I guarantees that \ preserves
fibrations and equivalences, and it follows that .E; \/ forms a Quillen pair. We will let
Eh denote the left derived functor of E , which is given by Eh.X /DE.X c/, where
X c!X is a functorial cofibrant replacement in Ce

R;S
. See [13, 1.3.2], but note that

for us the codomain of Eh is MR;S , not the homotopy category of MR;S .

Given X 2 Ce
S

, there is a right S –module map

S Š e˘ ˘S !X

derived from the point in X . The object X is distinguished if this map is an equivalence.
An object of Ce

R;S
is distinguished if it is distinguished as a pointed right S –module.

Similarly, an object T 2 MR;S is distinguished if the structure map S ! T is an
equivalence.
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3.4 Axiom III The derived functor EhW Ce
R;S
! MR;S preserves distinguished

objects.

The remaining axioms are more technical and have the flavor of nondegeneracy as-
sumptions. Let Rc!R be a cofibrant replacement for R in M.

3.5 Axiom IV One of the following two conditions holds:

(1) R itself is cofibrant as an object of M, or

(2) M is left proper (Section 2.5), and the map RctMS!RtMS is an equivalence.

In the next statement, S c! S is a cofibrant replacement in CS .

3.6 Axiom V One of the following two conditions holds:

(1) S itself is cofibrant as an object of CS , or

(2) CR;S is left proper, and the map R˘S c!R˘S is an equivalence.

3.7 Remark It is very tempting to assume that S is necessarily cofibrant as an object
of CS , since S is the free right S –module on one generator. But the notion of “one
generator” here is tricky: it is more accurate to say that S is the free right S module
on the object e˘ of C. The real issue is whether e˘ is cofibrant in C.

If M is an R�R–bimodule and !W R ! S is a map of monoidal objects, write
M ˘!

R
S for the coequalizer of the two maps M ˘R˘S!M ˘S obtained by pairing

the central R either with M or (via ! ) with S ; the coequalizer is to be computed in the
category CR;S . The functor M 7!M ˘!

R
S is left adjoint to the functor CR;S!CR;R

induced by composition with ! .

3.8 Axiom VI Suppose that !W R! S is a map of monoidal objects, ec
˘! e˘ is

a cofibrant replacement for e˘ in C, and Rc ! R is a cofibrant replacement for R

in CR;R . Then the following two conditions hold.

(1) ec
˘ ˘S ! e˘ ˘S Š S is an equivalence (in CS ), and

(2) Rc ˘!
R

S !R˘!
R

S Š S is an equivalence (in CR;S ).

We first prove Theorem 1.14, which relates maps between monoid objects to moduli
spaces of pointed bimodules. Recall from Section 2.1 that Maph

M.R;S/ denotes the
space of maps R! S provided by the model category structure on M. Let Cd

R;S

be the subcategory of Ce
R;S

given by the distinguished objects; all morphisms in this
category are equivalences, so M.Cd

R;S
/D Cd

R;S
is just the nerve.
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3.9 Theorem If Axioms I–IV hold, then there is a natural weak equivalence of spaces

Maph
M.R;S/�M.Cd

R;S / :

Proof of Theorem 3.9 Combining Axiom IV with Section 2.5 shows there is a natural
weak equivalence Maph

M.R;S/�M.Md
R;S

/, where Md
R;S

is the category of all distin-
guished objects in MR;S and all maps (necessarily equivalences) between them. Recall
that for X 2Ce

R;S
, Eh.X / can be computed as E.X c/, where X c �!X is a functorial

cofibrant replacement for X . The functor \ restricts to a functor Md
R;S
! Cd

R;S
and

it follows from Axiom III that Eh restricts to a functor Cd
R;S
!Md

R;S
. The arrows

E..\T /c/! T and X  X c
! \.E.X c//

show that the composites E\ and \E of these restricted functors are each connected to
the respective identity functor by a chain of natural transformations; it follows Cd

R;S

and Md
R;S

have weakly equivalent nerves.

Call a right S module potentially distinguished if it is (abstractly) equivalent to S

itself, and let Cpd
S

denote the full subcategory of CS containing the objects which
are potentially distinguished. Similarly, let Cpd

R;S
be the full subcategory of CR;S

containing bimodules which are potentially distinguished as right S –modules.

The next statement unbundles the basepoint from Theorem 3.9.

3.10 Theorem If Axioms I–V hold, then there is a natural fibration sequence

Maph
M.R;S/!M.Cpd

R;S
/!M.Cpd

S
/ ;

where the fibre is to be taken over S 2 Cpd
S

.

Proof Consider the adjoint functors �W CS $ CR;S W� , where � forgets the left R–
structure and �.X / D R ˘X . As in Remark 3.3, .�; �/ forms a Quillen pair. By
Axiom V and Proposition 2.10, the homotopy fibre of M.�/ over S is naturally weakly
homotopy equivalent to M.Cd

R;S
/, and hence, by Theorem 3.9 to Maph

M.R;S/. The
theorem follows from the fact that M.Cpd

S
/ is the component of M.CS / containing S ,

while M.Cpd
R;S

/ is the inverse image of this component in M.CR;S /.

Finally, we loop down the fibration sequence from Theorem 3.10 and rewrite the spaces
involved.
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3.11 Theorem Suppose that Axioms I–VI hold, and that !W R! S is a map of
monoidal objects. Let S! denote S considered via ! as an R�R–bimodule. Then
there is a natural fibration sequence

�Maph
M.R;S/!!Maph

CR;R
.R;S!/!Maph

C.e˘;S/ :

3.12 Remark In this statement, �Maph
M.R;S/! denotes the loop space taken

with ! as the basepoint, and R is to be treated as an R�R–bimodule in the natural
way. The right hand map is induced by the unit e˘!R, and the fibre is meant to be
taken over the unit e˘! S .

Proof of Theorem 3.11 Looping down the fibration sequence from Theorem 3.10
gives a sequence

�Maph
M.R;S/!!�M.Cpd

R;S
/!!�M.Cpd

S
/S :

We begin by considering the right hand space. By general properties of moduli spaces
in (2.8), this loop space is equivalent to the subspace AuthCS

.S/ of Maph
CS
.S;S/

consisting of homotopically invertible maps. By Axiom VI(1) and Theorem 2.12 (this
last applied to the forgetful functor CS ! C and its left adjoint � ˘ S ) the space
Maph

CS
.S;S/ is weakly equivalent to Maph

C.e˘;S/.

For similar reasons, the middle space is equivalent to the subspace AuthCR;S
.S!/ of

Maph
CR;S

.S! ;S!/ consisting of homotopically invertible maps. By Axiom VI(2) and
Theorem 2.12 (this last applied to the restriction functor !�W CR;S ! CR;R and
its left adjoint �˘!

R
S ), the space Maph

CR;S
.S! ;S!/ is naturally weakly equivalent

to Maph
CR;R

.R;S!/.

All in all, there is a commutative diagram

AuthCR;S
.S!/

��

// Maph
CR;S

.S! ;S!/

��

oo � // Maph
CR;R

.R;S!/

��
AuthCS

.S/ // Maph
CS
.S;S/ oo

� // Maph
C.e˘;S/

in which the left horizontal arrows are component inclusions. Since a map S!! S!
in CR;S is an equivalence if and only if the underlying map of right S –modules is
an equivalence, the left hand square is a homotopy fibre square. Consequently, the
homotopy fibre over the identity map of S on the left, namely �Maph

M.R;S/! , is
equivalent to the homotopy fibre over the image of this identity map on the right. We
leave it to the reader to check that this image is the unit e˘! S , and that the right
vertical map is as described.
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4 Model structures, free operads and coproducts of operads

In this section we develop a few homotopical properties of operads. Deep in the
background is the symmetric monoidal category .Sp;�;�/ of simplicial sets with
cartesian product, but the ambient monoidal category in this section is the category SD
.S; ı; eı/ of graded spaces, with the (nonsymmetric) composition monoidal structure
from Section 1.2. An operad is a monoid in S. The category Sp has a simplicial model
category structure in which the equivalences are the weak homotopy equivalences and
the cofibrations are the monomorphisms [8, I.11]. This model structure extends to S
by declaring a map in S to be an equivalence (resp. cofibration, fibration) if and only if
on each level it gives an equivalence (resp. cofibration, fibration) in Sp.

Let Se denote the category of graded spaces furnished with a basepoint at level one, let
O denote the category of operads, and for two chosen operads P;Q, let SQ and SP;Q
denote respectively the categories of right Q–modules and P�Q–bimodules. The
forgetful functor O! S has a left adjoint ˆ (the free operad functor), and the forgetful
functor O! Se obtained by retaining the unit as a basepoint has a left adjoint ˆe . In
this section we study model structures on these categories, and prove that ˆ, ˆe , and
the coproduct functor on O are homotopy invariant.

4.1 Proposition [21, Section 3; 22] The categories O, SQ , and SP;Q have simplicial
model structures compatible (Axiom I) with the model structure on S.

4.2 Remark Rezk produces these model category structures in the setting of †–
operads, but the case of planar operads is a bit simpler; the arguments follow the lines
of Goerss and Jardine [8, II.4.1 and II.5.1] (see also Rezk [22, 7.1]). It will be useful
later on to understand the cofibrations in these model categories. As in [22, Section 6],
a degeneracy object is a simplicial object without face operators. According to [22,
Section 6], a map X ! Y in one of these model categories is a cofibration if it is (a
retract of) a monomorphism with the additional property that, as a degeneracy object,
Y is isomorphic to the coproduct of X with a free degeneracy object. The notions
of free and coproduct here are to be interpreted in the relevant operad or (bi)module
setting.

4.3 Proposition The coproduct construction on operads preserves equivalences. The
category O is a left proper model category.

4.4 Proposition The functors ˆ and ˆe preserve equivalences.

The rest of this section is devoted to proofs of Propositions 4.3 and 4.4; these are
routine but involve a substantial amount of notation and bookkeeping.
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4.5 Identities and compositions The identity element of an operad P is denoted 1P .
Given a point a 2 Pn , and n elements bi 2 Pki

(1 � i � n), we use composition
notation a.b1; : : : ; bn/ to denote the image of a tuple .a; b1; : : : ; bn/ under the operad
structure map.

4.6 Trees and free operads We first describe the set of isomorphism classes of
(planar rooted) trees. Each tree t has a height �.t/, a leaf count �.t/, and a branching
count ˇ.t/. The set of trees is defined recursively on height by declaring that there is
one tree of height 0, called the trivial tree and denoted e . Its leaf count is 1, and its
branching count is 0. A tree of height k > 0 is then a tuple ŒnI t1; : : : ; tn�, where n> 0

is an integer, each ti is a tree of height less than k , and at least one ti has height k�1.
The numerical invariants of a nontrivial tree are given inductively by

�ŒnI t1; : : : ; tn�D 1Cmaxf�.ti/g height;

�ŒnI t1; : : : ; tn�D
X

�.ti/ leaf count;

ˇŒnI t1; : : : ; tn�D 1C
X

ˇ.ti/ branching count.

Here are some examples:

.4:7/

ı

ı

��

ı

��

ı

��
�

ı

��

ı

��

ı

��

ı

��

�

��
�

On the left is e : one leaf resting on the ground, no branching. The middle tree
is Œ3I e; e; e�: height one, three leaves, one branching. The tree on the right is
Œ2I Œ3I e; e; e�; e�: height 2, 4 leaves, 2 branchings. Trees of branching at most 1,
such as the trees on the left above, are sometimes called corollas.

Given a graded space X , define a space t.X / for each tree t by declaring e.X /D �,
and, if t D ŒnI t1; : : : ; tn�, setting

t.X /DXn �
Q

i ti.X / :

This is called the space of labelings of the tree t with labels from X . We will denote
such a labeling l by ŒxI l1; : : : ; ln�, where x2Xn and li is a labeling of ti , ie, li 2 ti.X /.
We treat t.X / as a graded space concentrated at level �.t/, and let T .X / denote the
union of the graded spaces t.X /, taken over all trees t . This is the space of trees with
labels from X . In the pictorial terms of (4.7), a labeling of a tree by X is a choice, for
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each solid dot in the sketch of the tree, of a simplex in Xn , where n is the number of
edges pointing inward towards the dot.

4.8 Remark For x2Xn , it is convenient to use Œx� to denote the labeling ŒxI l1; : : : ; ln�
in which each li is the unique labeling of the trivial tree. The map x 7! Œx� gives a map
X ! T .X / of graded spaces. Each labeling l in T .X / has an underlying tree sh.l/,
called the shape of l ; the labeling inherits its depth �.l/, leaf count �.l/ and branching
count ˇ.l/ from the shape. The assignment l 7! sh.l/ gives a map from T .X / to
the graded discrete space T of all trees. The set Lab.l/ of labels in l is defined by
initializing Lab.�/ D ∅ and constructing Lab.ŒxI l1; : : : ; ln�/ by adjoining x to the
union of the sets Lab.li/, 1 � i � n. This object is a set of simplices in X . The
assignment l 7! Lab.l/ gives a map from T .X / to the powerset of the union

S
n Xn .

The following proposition is elementary.

4.9 Proposition If X is a graded space, T .X / is naturally isomorphic to the free
operad ˆ.X /.

4.10 Remark The operad composition in T .X / is defined as follows. Given a
labeling a 2 T .X / with �.a/ D m and m labelings bi 2 T .X /, 1 � i � m, it is
sufficient to specify the composite labeling a.b1; : : : ; bm/. This is given inductively
by setting �.b1/D b1 and specifying that if aD ŒxI l1; : : : ; ln� then

a.b1; : : : ; bm/D ŒxI l1.b1; : : : ; b�.l1//; : : : ; ln.bm��.ln/C1; : : : ; bm/� :

The unique labeling of the trivial tree e serves as 1T.X / .

4.11 Reflexive coequalizers A reflexive pair in some category is a diagram which
looks like the one-truncation of a simplicial object; more explicitly, it consists of two
objects X1 , X0 , maps d0; d1W X1 ! X0 , and a map s0W X0 ! X1 such that both
composites d0s0 and d1s0 give the identity map of X0 . An augmentation for the pair
is an object X and a map d W X0!X such that dd0D dd1 . The colimit of a reflexive
pair is isomorphic to the coequalizer of .d0; d1/. An augmented reflexive pair is exact
if the natural map from the coequalizer of .d0; d1/ to X is an isomorphism, in which
case the diagram is called a reflexive coequalizer diagram. Reflexive coequalizers
commute with finite products in the category of sets [22, 3.2], and it follows easily from
this that reflexive coequalizers of just about any algebraic species can be computed in
the appropriate underlying category. See [22, 4.3] or the monograph [1]. In particular,
reflexive coequalizers of operads of spaces can be computed in the category of graded
spaces.
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4.12 A formula for the coproduct Let U W O! S be the forgetful functor, ie, the
right adjoint to ˆ, and let F W O ! O be the composite ˆU . For any operad P ,
adjointness considerations give maps �P W F.P/! P and �P W F.P/! F2.P/, and
it is not hard to check that these give rise to a natural exact augmented reflexive pair
F2.P/) F.P/! P with d D �P , d0 D �FP , d1 D F.�P/, and s0 D �P . Let [
denote coproduct on the category of graded spaces. Since colimits commute with one
another and ˆ as a left adjoint commutes with colimits, it follows that for any two
operads P , Q there is a natural right exact augmented reflexive pair

.4:13/ ˆ.FP [FQ/)ˆ.P [Q/! P tQ :

We have suppressed forgetful functors here (eg, P[Q really signifies UP[UQ) and
in order to avoid clutter we will continue to do this in what follows. For the rest of this
section we fix P and Q, set X1 D ˆ.FP [FQ/, X0 D ˆ.P [Q/, and let d0 , d1

and s0 refer to the maps in the above reflexive pair involving X1 and X0 . Note again
that the operad coproduct P tQ is isomorphic as a graded space to the coequalizer of
.d0; d1/ in the category of graded spaces, because this coequalizer is reflexive.

The simplices of X0 are labeled trees lD ŒaI l1; : : : ; ln� in which the labels, eg, a, range
over simplices of P and of Q; simplices of X1 are labeled trees vD ŒuI v1; : : : ; vn� in
which the labels are taken from F.P/ and F.Q/. The maps d0 , d1 and s0 preserve
identities; their inductive descriptions are

.4:14/

d0ŒuI v1; : : : ; vn�D u.d0v1; : : : ; d0vn/;

d1ŒuI v1; : : : ; vn�D Œ�.u/I d1.v1/; : : : ; d1.vn/�;

s0ŒaI l1; : : : ; ln�D ŒŒa�I s0.l1/; : : : ; s0.ln/� :

In each case the label u is a simplex of FP [FQ in level n, treated in the obvious
way as a simplex of ˆ.P [Q/; a is a simplex of P [Q. In the upper formula the
composition operation takes place in ˆ.P[Q/. In the middle formula the composition
operations implicitly involved in computing �.u/ take place either in P or in Q
(depending on whether u 2 FP or u 2 FQ). It is clear from the lower formula that
a simplex v in X1 is in the image of s0 if and only if each label in v has branching
count 1.

4.15 An inductive construction of the coproduct It is helpful to introduce some
terminology.

4.16 Definition Suppose that R and S are operads, and that l D ŒaI l1; : : : ; ln� is a
nonidentity simplex of ˆ.R[S/.

(1) l has color R (resp. color S ) if a 2R (resp. a 2 S ),
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(2) l displays adjacent colors if any li does, or if any li ¤ e has the same color as
l (e itself does not display adjacent colors),

(3) l is unital if 1R 2 Lab.l/ or 1S 2 Lab.l/, and
(4) l is collapsible if l displays adjacent colors or l is unital.

Let Tk.P;Q/ � T .P [Q/ D X0 denote the graded space of all labeled trees of
branching count k , and T c

k
.P;Q/ the subobject of collapsible labeled trees. Let Filtk

be the subspace of PtQ given by the union of the images of Tj .P;Q/ for j �k . The
main proposition we use to prove homotopy invariance of coproducts is the following.

4.17 Proposition For each k � 1 there is a pushout diagram of graded spaces

T c
k
.P;Q/ //

��

Tk.P;Q/

��
Filtk�1

// Filtk

which is also a homotopy pushout diagram.

Proof of Proposition 4.3 (given Proposition 4.17) The graded space Tk.P;Q/ is
homotopy invariant as a functor of P and Q, since it is formed by taking disjoint unions
of products of the graded constituents of these two operads. The subobject T c

k
.P;Q/ is

similarly homotopy invariant, since it is determined by selecting appropriate components
(picking labeled trees that display adjacent colors) or by imposing basepoint restrictions
on appropriate cartesian factors (picking unital labeled trees). Since Filt0 D f1PtQg is
a single point, it follows by induction that each object Filtk depends in a homotopy
invariant way on P and Q, and so P tQD colimk Filtk also does. The statement that
O is left proper follows as in [22, 9.1] from the fact that the coproduct construction is
homotopy invariant.

In order to obtain Proposition 4.17 from the coequalizer presentation (4.13), we will
have to trim X1 a bit, without changing the value of the graded space coequalizer (4.13).
Note that the terminology of Definition 4.16 applies to X1DT .FP[FQ/; moreover,
the labels with which the trees in X1 are decorated lie in FP or FQ, and thus have
branching counts in their own right. In the context of Definition 4.16, say that a labeled
tree is alternating if it does not display adjacent colors. Define two subobjects XC

1

and X�
1

of X1 as follows:
� v 2XC

1
if v is alternating, 1FP and 1FQ do not appear as labels in v , and at

least one label in v has branching count > 1.
� v 2X�

1
if v is alternating, 1FP or 1FQ appear among the labels, Œ1P � or Œ1Q�

do not appear as labels, and all of the labels in v have branching count � 1.
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Every v 2XC
1

is an alternating composite of elements of the form Œl �, l 2 FP [FQ,
such that no l is 1FP or 1FQ and at least one l is itself a nontrivial composite (in FP
or FQ). Every element in X�

1
is an alternating composite of the elements Œ1FP �

and Œ1FQ� (at least one of which must appear) with elements of the form ŒŒa�� where
a 2 P [Q and a does not equal 1P or 1Q .

It may be helpful in understanding these definitions is to think of the case in which P
and Q are graded discrete objects concentrated at level 1, equivalently, classic monoids
(Section 7). The free monoid on a set A has as elements the sequences .a1; : : : ; ak/

(k � 0) in which the terms ai are taken from A (in our language, this is a labeling
of a linear tree: the ai ’s are the labels, and the sequence length k is the branching
count). Multiplication is given by concatenation; the empty sequence is allowed, and
serves as the identity element. Then X0 has as elements the sequences above in which
each ai is taken either from P or from Q. Similarly X1 is made up of sequences
v D .u1; : : : ;uk/, (k � 0), such that each ui itself is either a sequence of elements
from P or a sequence of elements from Q. Note that the empty sequence of elements
in P (1FP ) is to be distinguished from the empty sequence of elements in Q (1FQ ).
The map d0 concatenates the sequences ui together; this usually results in a longer
sequence, but not always, because both varieties 1FP and 1FQ of empty sequence
collapse when the concatenation is performed. The map d1 contracts each sequence ui

by multiplying it out (either in P or Q, as appropriate) to a single element xui , thus
obtaining a sequence .xu1; : : : ; xuk/ in X0 . A sequence v belongs to XC

1
if the ui

alternate in being sequences from P and sequences from Q, no ui is an empty sequence,
and at least one ui is a sequence of length > 1. This guarantees that the length of
d0.u/ is greater than the length of u, while the length of d1.u/ equals the length of u.
A sequence u belongs to X�

1
if the ui again alternate, at least one ui is an empty

sequence, each of the ui has length � 1, and no ui is a length 1 sequence consisting
solely of 1P or 1Q . This guarantees among other things that the length of d0v is less
than the length of v , while the length of d1.v/ equals the length of v . These length
(branching count) considerations play a role in the proof of Proposition 4.17.

Given a graded subspace Y � X1 , and l; l 0 2 X0 , write l �Y l 0 and say that l is
congruent to l 0 mod Y if l and l 0 have the same image in the S–coequalizer of
.d0jY ; d1jY /. Say that Y is saturated if the equivalence relation �Y respects operad
composition in X0 . Let X˙

1
DXC

1
[X�

1
.

4.18 Lemma The graded subspace X˙
1
�X1 is saturated.

Proof This is a straightforward calculation, but writing it out in detail is tedious. Each
label in X0 is either from P or from Q. Congruence mod XC

1
allows adjacent labels
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of the same color to be composed, so that every simplex of X0 is congruent mod XC
1

to
a unique alternating element. Now observe that for vD Œ1FP �, for instance, d0vD 1X0

while d1vD Œ1P �. This implies that additionally allowing congruence mod X�
1

permits
leaving out terms of the form Œ1P � or Œ1Q� from an alternating element of X0 . Of
course, excising such a term renders the element nonalternating, and so it must be
reduced further by congruence mod XC

1
. (This reduction might introduce other terms

of the form Œ1P � or Œ1Q� since some composite of elements in P1 for instance, might
be 1P , but the reduction process is bound to stop eventually.) The upshot is that every
labeled tree in X0 is congruent mod X˙

1
to a unique alternating labeled tree which

contains no labels of the form 1P or 1Q . Compatibility with composition is not hard
to check inductively.

Let d˙
0

and d˙
1

denote the restrictions of d0 and d1 to X˙
1

. In the statement of the
following lemma, coequalizers are to be computed in S.

4.19 Lemma The natural map from the coequalizer of .d˙
0
; d˙

1
/ to the coequalizer

of .d0; d1/ is an isomorphism of graded spaces.

Proof Since X˙
1

is saturated, it is enough to prove that if v 2 X1 has branching
count 1, then d0v is congruent to d1v mod X˙

1
. But this is obvious: either vD Œ1FP �

or Œ1FQ� (in which case v 2X�
1

), vD ŒŒa�� for a 2P [Q (in which case d0vD d1v ),
or v D Œl � for some l 2 FP [FQ of complexity > 1, in which case v 2XC

1
.

Proof of Proposition 4.17 Let f (resp. g ) be the map X˙
1
! X0 given by d0

on XC
1

and d1 on X�
1

(resp. d1 on XC
1

and d0 on X�
1

). By Lemma 4.19, P tQ
is the coequalizer of .f;g/. It is easy to check that f raises branching count on XC

1

and preserves branching count on X�
1

, whereas g preserves this invariant on XC
1

and lowers it on X�
1

. The effect of the coequalizer is thus to identify trees of high
branching count in the image of f with trees of lower branching count in the image
of g . Observe that a simplex of Tk.P;Q/ is in f .X˙

1
/ if and only if it belongs to

T c
k
.P;Q/. The first statement of the proposition now follows from relatively routine

considerations. The fact that the pushout is a homotopy pushout is a consequence of
the fact that the upper arrow is a cofibration.

Proof of Proposition 4.4 The fact that ˆ preserves equivalences follows from
Proposition 4.9. To see that ˆe also preserves equivalences, note that if X is a pointed
graded space, there is an exact augmented split coequalizer diagram XCC)XC!X

in the category of pointed graded spaces, obtained by combining the forgetful functor
from pointed objects to unpointed ones with its left adjoint .�/C . Applying ˆe , using
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the fact that (as a left adjoint) ˆe commutes with colimits, and observing that for,
any Y , ˆe.YC/Dˆ.Y /, gives an augmented reflexive coequalizer diagram

ˆ.XC/)ˆ.X /!ˆe.X /

which is exact both in O and in S. One of the arrows ˆ.XC/!ˆ.X / in this diagram
preserves branching count, the other lowers it. We leave it to the reader to exploit this
in order to give an inductive homotopy invariant construction for ˆe.X / along the
lines of Proposition 4.17.

5 Resolutions of bimodules and operads

In this section we describe a particular operad resolution that will play a key role in
Section 6. This resolution begins as a resolution of a bimodule Proposition 5.2, but
it is promoted to a resolution of an operad by application of an enveloping functor
Proposition 5.4.

First, the enveloping functor. From now on in this section, P and Q are chosen operads.
The category Se

P;Q is the category of pointed P�Q–bimodules; an object X of this
category has a basepoint in level 1, or equivalently, is supplied with a bimodule map
P ıQ!X . Similarly, OP;Q is the category .P tQ/&O of operads under P and Q.
Retaining the identity element as basepoint gives a forgetful functor \W OP;Q! Se

P;Q .
The following proposition is elementary (it’s easy to describe values of the left adjoint
by generators and relations).

5.1 Proposition The forgetful functor \W OP;Q! Se
P;Q has a left adjoint E .

From now on in this section, P is a fixed operad. The Hochschild resolution of P as a
bimodule over itself is the simplicial pointed bimodule H.P/ with

Hn.P/D Pı.nC2/ :

The object on the right is a composition power of P , with the evident left and right
actions. The face map di is given by using operad multiplication to combine factors
i C 1 and i C 2 in Pı.nC2/ , and the degeneracy map si is given by using the unit
inclusion eı ! P to insert the unit between factor i C 1 and factor i C 2. The images
of H0.P/ under the degeneracy maps provide the necessary basepoints.

The diagonal dH.P/ is the P�P –bimodule whose n–simplices are the n–simplices of
Hn.P/. Operad multiplication maps Pın!P induce a bimodule map ˛W dH.P/!P ,
and the basepoints P ıP! Hn.P/ pass to a basepoint P ıP! dH.P/.
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5.2 Proposition The bimodule dH.P/ is a cofibrant object of Se
P;P , and the map

dH.P/! P above is an equivalence.

Proof The first statement amounts to a claim that P ıP ! dH.P/ is a cofibration
of P�P –bimodules, and this is immediate from the description of cofibrations in
Remark 4.2. The second one is as usual a consequence of the fact that, after forgetting
from simplicial bimodules to simplicial graded spaces, there are extra degeneracy maps
s�1W Hn.P/! HnC1.P/ which insert the unit as the first composition factor.

Applying the functor E of Proposition 5.1 to H.P/ degree by degree gives a simplicial
operad under P tP . The diagonal dEH.P/ is then an operad under P tP , and it too
is also supplied with a map dEH.P/! P which factors the fold map P tP ! P .
This last is a consequence of the easily verified fact that if P is treated as a pointed
bimodule over itself in the natural way, E.P/ is isomorphic as an operad under P tP
to P itself, supplied with the fold map P tP ! P . We now observe that the same
result can be obtained by applying E to the diagonal bimodule dH.P/.

5.3 Proposition There two operads E.dH.P// and dEH.P/ are isomorphic in a
natural way (in the category of operads under P tP and over P ).

Proof Let Pk be the operad of sets obtained by taking the dimension k simplices
of P , and Ek the left adjoint to the forgetful functor from operads under Pk tPk

to Pk�Pk –bimodules. It is elementary to see that the functor E is cobbled together
from the functors Ek ; in other words, if X is a pointed bimodule over P and Xk

is the bimodule over Pk obtained by taking the collection of k –simplices in X , the
E.X / is an operad in simplicial sets with E.X /k D Ek.Xk/. The result follows
immediately.

5.4 Proposition The operad dEH.P/ is a cofibrant object of OP;P , and the map
dEH.P/! P is an equivalence.

5.5 Remark The diagonal principle which figures in the following proof states that
if X ! Y is a map of simplicial (graded) spaces which is an equivalence in each
simplicial degree, then the induced map diag X ! diag Y is an equivalence [8, IV.1.7].

If S is a simplicial set and A is an object in some category with coproducts, we let
S �A denote the coproduct of S copies of A. This construction is functorial in S , and
so for a simplicial set K there is a simplicial object K �A which in simplicial degree n

consists of Kn �A. If A is itself a simplicial object, then K �A denotes the diagonal
of the bisimplicial object fKi �Aj g.
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Proof of Proposition 5.4 The functor E is left adjoint to a functor which preserves
fibrations and equivalences, and so E preserves cofibrant objects and equivalences
between cofibrant objects 2.9. The statement that dEH.P/ is cofibrant now follows
from Propositions 5.3 and 5.2.

Say that the operad P is good if dEH.P/ ! P is an equivalence. There is an
isomorphism

E Hn.P/ŠEPı.nC2/
Š P tˆe.Pın/tP;

and so it follows from Propositions 4.3 and 4.4 that E Hn.P/ depends on P in a
homotopy invariant way. Hence (by the diagonal principle) if P!Q is an equivalence,
then Q is good if and only if P is. In particular, in order to check whether P is good,
we may assume that P is cofibrant as an operad (Remark 4.2). Another application of
the diagonal principle (cf the proof of Proposition 5.3) shows that P is good if for each
n � 0 the discrete operad Pn is good, where Pn is the operad of n–simplices in P .
The upshot is that in order to prove that any operad P is good, it is enough to treat
the special case in which P is the free operad ˆX on a graded set (discrete graded
space) X .

Given P DˆX , we identify H.P/ with dH.P/, since H.P/ is constant in the internal
simplicial direction. We will construct a cofibrant object J of Se

P;P together with an
equivalence J ! H.P/, such that E.J / is clearly equivalent to P . The proposition
will follow from the fact that E preserves equivalences between cofibrant bimodules
(Remark 3.3).

There is a natural map X ! P of graded spaces (the inclusion of generators), and
so a forgetful functor ‰ from pointed P�P –bimodules to the category of graded
spaces under X [X . Let G be left adjoint to ‰ . Applying .�/ �X to the inclusion
@�Œ1�! �Œ1� gives �Œ1� �X the structure of a graded space under X [X . Since
�Œ1� �X is free as a simplicial graded set on a single copy of the graded set X in
dimension 1, there is a map �Œ1� �X !‰H.P/ determined by

X ! H1.P/Š P ıP ıP; x 7! e.Œx�.e; : : : ; e//;

where the number of copies of e on the right equals the level of x . The object J

is G.�Œ1� �X /; adjointness gives a map J ! H.P/. We claim that this map is an
equivalence, that J is cofibrant, and that E.J /� P .

By inspection, in dimension n the object J is isomorphic to P ı .X[n/C ıP , where
.�/C signifies adding a disjoint basepoint at level 1; from this it easily follows that
J is cofibrant as a pointed bimodule of Remark 4.2. Again by inspection, E.J / is
isomorphic to �Œ1� �P (calculated in O) or equivalently to ˆ.�Œ1� �X /; since �Œ1� is
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simplicially contractible to either boundary vertex, E.J / is simplicially contractible
to P .

It remains to show that J ! H.P/ is an equivalence. To do so we prove that the
map J ! P , given by the multiplication map in degree 0, is an equivalence. Since
this map clearly factors through the equivalence H.P/! P , we can then conclude
that J ! H.P/ is an equivalence as well. It is easy to check that �0J , which is the
coequalizer of the two maps d0; d1W P ıXC ıP! P ıP is in fact isomorphic to P
via the operad multiplication P ıP!P , so it is enough to check that for each labeled
tree l 2 P D T .X /, the component C.l/ of J corresponding to l is contractible. We
show this by induction on the branching count of l . The complex C.e/ is isomorphic
to �Œ0�. Suppose that l D ŒxI l1; : : : ; ln�. The k –simplices of C.l/ prescribe ways of
splitting l as a three-fold composition

l D p0.Œx1�.p
1
1 ; : : : ;p

1
j1
/; : : : ; Œxm�.p

m
1 ; : : : ;p

m
jm
// ;

where p0 and the pb
a ’s are elements of P , m is the level of p0 , the xi ’s belong to

.X[k/C , and ji is the level of xi . (The rogue element ŒC�, where C is the disjoint
basepoint, is to be treated in the composition formula as the identity element e D 1P .)
Consider the following two possibilities. If p0 is not e , then this simplex lies in the
image of the monomorphism

C.l1/� � � � �C.ln/! C.l/; .�1; : : : ; �n/ 7! Œx�.�1; : : : ; �n/ ;

where Œx�.�1; : : : ; �n/ involves the left action of P on J . If p0 D e , then the simplex
lies in the image of

�Œ1�! C.l/; �1 7! e ıx ı .l1; : : : ; ln/ ;

where �1 is the generating one-simplex of �Œ1�. These two images are contractible (the
first by induction), they cover C.l/, and they overlap in the zero-simplex
Œx� ı ŒC� ı .l1; : : : ; ln/. It follows that C.l/ is contractible.

6 Distinguished objects and the proof of Theorem 1.9

In this section we prove a key technical result Proposition 6.1 which leads at the end of
the section to a proof of Theorem 1.9. We continue to use the notation of Section 5, with
the convention that P and Q are fixed operads. An object X of Se

P;Q is distinguished
if the natural map Q!X is an equivalence, and an object R of OP;Q is distinguished
if Q!R is an equivalence. Note that both Se

P;Q and OP;Q inherit model structures
from Proposition 4.1. The functor EhW Se

P;Q!OP;Q is the left derived functor from
Remark 3.3 of E (see Proposition 5.1).
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6.1 Proposition The functor Eh preserves distinguished objects.

We will build up to this in stages. It is convenient to denote a pointed P�Q–bimodule X

by writing out the triple T D .P;X;Q/, where the basepoint eı !X is understood.
A morphism of triples consists of three morphisms, two of operads and one of pointed
bimodules, which are compatible in the obvious sense. The morphism is an equivalence
if all of its constituents are equivalences. The functors E and Eh extend to functors
on the category of triples.

6.2 Proposition If f W T ! T 0 is an equivalence of triples, then Eh.f / is an equiva-
lence of operads. In particular, if Eh.T / is distinguished, so is Eh.T 0/.

Proof Write T D .P;X;Q/ and T 0 D .P 0;X 0;Q0/. Let f �W Se
P 0;Q0 ! Se

P;Q
be the restriction functor and f� its left adjoint. According to [22, 8.6], the pair
.f�; f

�/ is a Quillen equivalence. Similarly, let g be the map P tQ! P 0 tQ0 ,
g�W OP 0;Q0 ! OP;Q the restriction map, and g� its left adjoint. The map g is an
equivalence (see Proposition 4.3) and so according to [22, 2.7] it follows from the fact
that O is left proper by Proposition 4.3 that the pair .g�;g�/ is a Quillen equivalence.
It is easy to see that f�.X c/! X 0 is an equivalence (cf [22, Proof of 8.6]), and so,
since f�.X c/ is a cofibrant object equivalent to X 0 , Eh.X 0/�Ef�.X

c/. Uniqueness
of adjoints implies that Ef� Š g�E , and the proposition follows directly.

A triple .P;Q;Q/ is obtained from a homomorphism f W P!Q if the basepoint in Q
is the operad unit, the right action of Q on itself is the usual one, and the left action
of P on Q is obtained by composing the usual left action of Q on itself with the
morphism f . Such a triple is automatically distinguished.

6.3 Proposition If a triple T is obtained from f W P ! Q, then Eh.T / is distin-
guished.

6.4 Lemma A cofibration X ! Y of cofibrant P�Q–bimodules is also a cofibration
of cofibrant right Q modules. The same statement holds for pointed bimodules.

Proof According to Remark 4.2, up to retracts the hypotheses amount to the condition
that there are free degeneracy objects A� B � Y in the category of graded sets such
that A � X , and such that the natural maps P ıA ıQ! X and P ıB ıQ! Y

are isomorphisms of degeneracy objects. (Note that as in [22, Proof of 6.2(2)], it is
automatic that any basis for A extends to a basis for B .) In the pointed case, the
degeneracies of the basepoint are required to lie in A. It is enough to show that P ıA
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and P ıB are free degeneracy objects in the category of graded sets such that some
basis for P ıA can be extended to a basis for P ıB . In light of the nature of the
composition product (1.3) and of the fact that as a degeneracy diagram each simplicial
set Pn is free [22, Section 6], the proof comes down to the remark that if S � T is an
inclusion of free degeneracy diagrams of sets, and R is another such free degeneracy
diagram, then S � R ! T � R is also an inclusion of free degeneracy diagrams.
This is proved by observing that if Di is a free degeneracy diagram on a element of
dimension i then Di is isomorphic to the diagram of simplices in �Œi � which do not
lie on @�Œi �; it follows that Di �Dj is the free degeneracy diagram formed by the
simplices of �Œi ���Œj � which do not lie on the boundary of this product. A basis for
Di �Dj can be described in terms of shuffles [18, 6.5].

Proof of Proposition 6.3 Let f �W Se
P;Q! Se

P;P be the restriction functor and f� its
left adjoint. Similarly, let g�W OP;Q!OP;P be the restriction functor and g� its left
adjoint. As in the proof of Proposition 6.2, we have Ef� Š g�E . The functors f�
and g� preserve cofibrations and equivalences between cofibrant objects (Section 2.9);
moreover, in view of the formula f�.X /Š X ıP Q [22, 4.4, 4.7], f� is effectively
left adjoint to the restriction functor from right Q–modules to right P –modules, and
so preserves equivalences between objects which are cofibrant as right P –modules.

Let Pc be a cofibrant replacement for P as a pointed P�P –bimodule. Since P is cofi-
brant as a right P –module, the observation above implies the map f�.Pc/!f�.P/ŠQ
is an equivalence, so Eh.Q/ � Ef�.Pc/ Š g�E.Pc/. Moreover, E.Pc/ is distin-
guished (see Propositions 5.3 and 5.4). Consider the diagram

P
in2 //

��

P tP
j //

��

E.Pc/

��
Q // P tQ // g�E.Pc/

in which the upper composite is an equivalence. The small squares are cocartesian as
well as homotopy cocartesian [8, (II.8.14)op ff]. The homotopy cocartesian property
for the left-hand square is a consequence of 4.3 and for the right-hand square it is
a consequence of the definition [8, (II.8.14)op ] and the fact that j is a cofibration
of operads (E preserves cofibrant objects). By [8, (II.8.22)op ] the large rectangle is
homotopy cocartesian, and the result follows easily.
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Recall from Section 1.10 that category of right Q–modules is closed under the graded
cartesian product operation ˇ. The endomorphism operad EQ.M / of a right Q–
module M is given by

EQ.M /n DMapQ.M
ˇn;M / :

The subscript n on the left denotes the level of the graded space forming the operad, and
the object on the right is a simplicial set of right Q–module maps. The object EQ.M /

is an operad, and M is naturally an EQ.M /�Q–bimodule.

6.5 Remark In the setting above, the P�Q–bimodule structures on M which extend
the given right Q structure are in bijective correspondence with operad homomorphisms
P! EQ.M /. If Q is treated as a right module over itself in the usual way, then the
left action of Q on itself induces an isomorphism of operads QŠ EQ.Q/. This follows
from the fact that Qˇn Š .�n/ ıQ is the free right Q–module on a single point .�n/

at level n.

If f W M !N is a map of right Q–modules, the endomorphism operad E.f / of f
is constructed by letting E.f /n be the simplicial mapping space of right Q–module
maps f ˇn! f ; this is the space of all commutative diagrams

Mˇn fˇn

//

��

Nˇn

��
M

f // N

in which the vertical maps respect the right Q–actions. There are natural operad maps
E.f /! E.M / and E.f /! E.N /.

6.6 Lemma If f W Q!N is an acyclic cofibration of right Q–modules such that N

is fibrant, then the natural operad maps EQ.f /! EQ.Q/ and EQ.f /! EQ.N / are
equivalences.

Proof For each n� 0 there is a fibre square

EQ.f /n //

��

EQ.N /n ŠMapQ.N
ˇn;N /

��
EQ.Q/n ŠQn

// MapQ.Qˇn;N /ŠNn:

For the identifications on the bottom row, recall from Remark 6.5 that Qˇn is the
free right Q–module on a generator at level n. The lower map is an equivalence,
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and so it is enough to show that the right vertical map is an acyclic fibration, or even
that Qˇn! Nˇn is an acyclic cofibration of right Q–modules. This latter map is
clearly an equivalence. The required cofibration statement follows from Remark 4.2,
the distributive formula (1.11), and the fact that the product of two free degeneracy
diagrams of sets is again a free degeneracy diagram (proof of Lemma 6.4).

Proof of Proposition 6.1 Suppose that M is a distinguished P�Q–bimodule. By
the homotopy invariance of Eh we can assume that M is fibrant and cofibrant as a
pointed bimodule, so that in particular the map P ıQ!M provided by the basepoint
is a cofibration. Let f W Q! P ıQ!M be the right Q–module map provided by
the basepoint; f is a cofibration of right Q–modules (Lemma 6.4) and the natural
operad maps EQ.f /! EQ.M / and EQ.f /!Q (Remark 6.5) are equivalences by
Lemma 6.6. The left action of P on M gives an operad homomorphism P! EQ.M /

which we factor as the composite of an acyclic cofibration P ! P 0 and a fibration
P 0! EQ.M /. Let P 00 be given by the pullback diagram

P 00 //

��

P 0

��
EQ.f / // EQ.M /:

The upper map here is an equivalence because the lower one is. There are equivalences
of pointed bimodule triples

.P;M;Q/! .P 0;M;Q/ .P 00;M;Q/ .P 00;Q;Q/;

where the action of P 00 on Q arises from the operad map P 00 ! EQ.f / ! Q.
Since Eh.P 00;Q;Q/ is distinguished by Proposition 6.3, Proposition 6.2 implies
Eh.P;M;Q/ is also distinguished.

Proof of Theorem 1.9 We have to check Axioms I–VI from Section 3 in the case
in which C is the category of graded spaces and ˘ is the composition product.
Theorem 3.11 then yields Theorem 1.9; the assumption that O1 is contractible guaran-
tees that MapS.eı;O/�O1 is contractible.

Axiom I is Proposition 4.1; Axioms II and III are Propositions 5.1 and 6.1 respectively.
Axiom IV(2) is Proposition 4.3 and Axiom V(2) follows as in Remark 3.7 from the
fact that eı is cofibrant as a graded space. Axiom VI(1) is trivial, since ec

ı Š eı .
Finally, Axiom VI(2) is a consequence of the fact that if P is an operad, any cofibrant
replacement Pc for P as a P�P –bimodule is also cofibrant as a right P –module
by Lemma 6.4: given an operad map P!Q, the functor .–/ ıP Q is left adjoint to
the forgetful functor from right Q–modules to right P –modules; since the forgetful
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functor preserves equivalences and fibration, .–/ ıP Q preserves equivalences between
cofibrant right Q–modules.

7 Classic monoids and the proof of Theorem 1.12

A classic monoid is a monoid object in .Sp;�;�/, ie, a simplicial semigroup with
identity, or equivalently, an operad concentrated at level 1. This last observation allows
all of the results of the previous sections to be applied to classic monoids. With only
notational changes, the same results (with the same proofs) hold for graded classic
monoids, ie, monoid objects in .S;ˇ; eˇ/.

The variant of Theorem 1.9 in which A is replaced by an arbitrary operad (the variant
actually proved in Section 6) now translates to the following statement. Let M denotes
the category of graded classic monoids.

7.1 Theorem Suppose that ˛W G!H is a map of graded classic monoids, such that
H0 � �. Then there is an equivalence

�Maph
M.G;H /˛ �Maph

G�G.G;H / ;

where on the right H is treated as a G�G –bimodule via ˛ .

7.2 Remark The grading on these objects allows the assumption in 1.9 that the target
operad is contractible at level 1 (which for ungraded classic monoids would translate
into the unfortunate assumption that the target monoid is contractible) to be replaced
by the assumption that the grade 0 constituent of the target graded monoid, in other
words the constituent containing the identity element, is contractible.

A graded classic monoid is simply a left module over the associative operad A, so
specializing Theorem 7.1 to the case G D A gives the following result. For this
statement, A0 refers to the operad A, treated as a left module over itself, ie, as a graded
classic monoid.

7.3 Theorem Suppose that ˛W A0!X is a map of left A–modules, and that X0��.
Then there is an equivalence

�Maph
A.A

0;X /˛ �Maph
A0�A0.A

0;X / :

The mapping space on the right above is a derived mapping space of ˇ–bimodules
over the graded classic monoid A0 , where X is treated as an A0�A0–bimodule via ˛ .
Theorem 7.3 is remarkably similar to Theorem 1.12; the only difference being that, in

Geometry & Topology, Volume 16 (2012)



Long knots and maps between operads 951

Theorem 1.12, A0 and X have additional right A–module structures, and the mapping
spaces respect these additional structures. We will proceed to prove Theorem 1.12 by
showing that introducing right A–module structures does not materially change the
arguments.

Some notation will be useful. As usual, S is the category of graded spaces, and for the
purposes below T will denote the category of right A–modules. We use M to denote
the category of left A–modules and N to denote the category of left A–modules in T
(ie, the category of A�A–bimodules). An object of M is a graded classic monoid,
and an object of N is a graded classic monoid with a right A–action compatible with
the monoid multiplication.

If G and H belong to N, we use the same letters to denote the underlying objects
of M. There are then categories SH , TH , SG;H , TG;H of right H –modules or
G�H –bimodules, as well as pointed variants Se

G;H
and Te

G;H
. Keep in mind that

these latter module structures refer to the graded cartesian product structure ˇ, and
that the basepoint for an object X of Te

G;H
, for instance, is a map eˇ!X , and so

amounts to a point at level zero in the underlying graded space. Disregarding the right
A–module structure gives rise to forgetful functors: T! S, N!M, TH ! SH ,
TG;H ! SG;H , and Te

G;H
! Se

G;H
.

7.4 Lemma All of the above forgetful functors are left adjoints, and so preserve
colimits. All of the functors preserve (and reflect) equivalences, and preserve cofibrant
objects.

Proof We will show that the functors preserve colimits, and the fact that they are
left adjoints will be a consequence of the Adjoint Functor Theorem [16, V.6]. Let
U W A! B be one of these forgetful functors. The functor U preserves colimits if and
only if it preserves coproducts and reflexive coequalizers; U clearly preserves reflexive
coequalizers, because as in Section 4.11 these can be computed in S. Say that an object
of A is free if it is in the image of the left adjoint ˆ to the forgetful functor F W A! S.
Since every object X of A is given a reflexive coequalizer .ˆF /2.X /) ˆF.X /,
in order to prove that U preserves coproducts it is enough to show that U preserves
coproducts of free objects. But in each case this is clear by inspection, eg, for U W T!S
and for free objects X ıA and Y ıA of T,

U.X ıAtT .Y ıA//Š U..X tS Y / ıA/

ŠX ıAtS Y ıA :

To put these isomorphisms in context, it is useful to observe that the functor �ıAW S!S
preserves colimits, and that seen as a functor S ! SA , it creates colimits as well.
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It is clear that a map f in A is an equivalence if and only if U.f / is an equivalence.
The statement about preservation of cofibrant objects follows from Remark 4.2 and an
argument as above depending on the fact that U preserves free objects.

Proof of Theorem 1.12 We have to check Axioms I–VI from Section 3 in the case in
which C is the monoidal category .T;ˇ; eˇ/; as above, we know that the axioms hold
in .S;ˇ; eˇ/. Theorem 3.11 will then yield Theorem 1.12; note that the assumption in
Theorem 1.12 that X0 is contractible guarantees that MapS.eˇ;X / is contractible.

Axiom I follows as in 4.1 from [22, 7.1], since all of the categories involved are
categories of algebras over ZC–sorted theories. The existence of the left adjoint
required in Axiom III is standard. Suppose that G and H belong to N; denote the
coproduct in N of these objects by G tH . By Lemma 7.4, there is no harm in using
the same notation for the coproduct of the images of G and H under the forgetful
functor N!M. There is a diagram of functors

Te
G;H

E1

��

F1 // Se
G;H

E2

��
G tH&N

F2 // G tH&M

in which the horizontal arrows are forgetful functors and the vertical arrows are the
appropriate left adjoints to forgetful functors. Adjointness gives a natural transformation
E2F1! F2E1 . Since all of these functors commute with colimits by Lemma 7.4, to
show that the diagram commutes up to natural isomorphism it is enough to show that
the indicated natural transformation is an isomorphism when applied to a free object
Gˇ .XC ıA/ˇH of Te

G;H
. (See the proof of Lemma 7.4; here X 2 S and XC is

obtained by adding a disjoint basepoint at level 0 to X .) But the compositions F2E1

and E2F1 take this free object to G tD H tD .AıX ıA/, where D is respectively N
or M; by Lemma 7.4, the distinction between the two types of coproduct is irrelevant.
The functor F1 preserves equivalences distinguished objects, and cofibrant objects by
Lemma 7.4, and so Eh

1
preserves distinguished objects because Eh

2
does. This verifies

Axiom III.

The category N is left proper (and coproducts in N preserve equivalences) because
of Lemma 7.4 and the fact that the corresponding statements hold in M. This is
Axiom IV(2). Axiom V(1) is immediate, because eˇ is cofibrant as a graded space.
Axiom VI(1) is trivial, again because eˇ is cofibrant. Finally, Axiom VI(2) can
be derived from combining the fact that the appropriate forgetful functor preserves
coequalizers by Lemma 7.4 with the fact that the corresponding axiom holds in M.
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8 The main theorem

Here we prove Theorem 1.1; we continue to use notation from Section 7. The category T
is the category of right A modules. The roman symbol A denotes A in its role as
a monoid in the monoidal category .T;ˇ; eˇ/, and TA;A is the category of A�A

bimodules in T.

Suppose that O is a reduced operad and that !W A!O is an operad map. Combining
Theorem 1.9 with Theorem 1.12 gives an equivalence

.8:1/ �2 Maph
O.A;O/! �Maph

TA;A
.A;O/ :

We will calculate the mapping space on the right by using the following observation.

8.2 Proposition The category TA;A is equivalent to the category of cosimplicial
spaces.

More explicitly, to give a graded space X DfXng the structure of an A�A bimodule in
the category of right A modules is equivalent to providing a collection of cosimplicial
operators

d i
W Xn!XnC1; n� 0; 0� i � nC 1;

si
W Xn!Xn�1; n� 1; 0� i � n� 1

satisfying the usual cosimplicial identities. Verifying this is a routine exercise: given
the indicated structure on X , the cosimplicial operators are extracted as follows.

d0
W A1 �Xn!XnC1 left A action;

d1�i�n
W Xn �Ai�1

1 �A2 �An�i
1 !XnC1 right A action;

dnC1
W Xn �A1!XnC1 right A action;

si
W Xn �Ai

1 �A0 �An�i�1
1 !Xn�1 right A action:

If X is an operad O with a map A! O , treated as an object of TA;A along the
lines of Theorems 1.9 and 1.12, these operators provide the cosimplicial object O�
constructed in [19, Section 3] by McClure and Smith (cf Section 1.2).

The proof of Theorem 1.1 is immediate. Let CS be the category of cosimplicial spaces.
According to the above remarks, the right hand side of (8.1) can be rewritten as

Maph
TA;A

.A;O/DMaph
CS.�;O

�/ ;

where � denotes the constant cosimplicial space with a point in each cosimplicial
degree. The model category structure on TA;A with respect to which Maph.–; –/ is
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formed represents a simplicial model structure on CS in which the equivalences are
determined levelwise; according to [6], this choice of equivalences is the only aspect
of the model category structure which affects the weak homotopy type of Maph.–; –/.
But Bousfield and Kan define the homotopy limit of a diagram Y of spaces, in terms
of such an object Maph.�;Y /; more specifically, they define holim Y as Map.�c;Y f/,
where �c is a cofibrant replacement for �, Y f is a fibrant replacement for Y , and the
work is done within a simplicial model structure on the diagram category in which
equivalences are determined objectwise [2, XI.8].
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