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Rigidity for odd-dimensional souls

KRISTOPHER TAPP

We prove a new rigidity result for an open manifold M with nonnegative sectional
curvature whose soul †�M is odd-dimensional. Specifically, there exists a geodesic
in † and a parallel vertical plane field along it with constant vertical curvature and
vanishing normal curvature. Under the added assumption that the Sharafutdinov
fibers are rotationally symmetric, this implies that for small r , the distance sphere
Br .†/ D fp 2M j dist.p; †/ D rg contains an immersed flat cylinder, and thus
could not have positive curvature.
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1 Introduction

In this paper, we prove the following rigidity result for odd-dimensional souls:

Theorem 1.1 If M is an open manifold with nonnegative sectional curvature whose
soul † � M is odd-dimensional, then there exists a geodesic 
 .t/ in † and or-
thonormal parallel vertical vector fields V .t/;W .t/ along 
 .t/ (“vertical” means
orthogonal to T
.t/† for each t ) such that hR.V .t/;W .t//W .t/;V .t/i is constant
and R.V .t/;W .t//
 0.t/D 0 for all t , where R denotes the curvature tensor of M .

We will discuss why this rigidity provides infinitesimal evidence of an affirmative
answer to:

Question 1.2 For each small r > 0, must the image Cr of the immersed cylinder

�.t; �/D fexp
.t/ ..r cos �/V .t/C .r sin �/W .t// j t 2R; � 2 S1
g

be “flat” in the sense that the Jacobi field @�=@� along each of the f� D constantg
geodesics out of which Cr is ruled is a parallel Jacobi field in M ?

Notice that Cr is not totally geodesic in M , but might be totally geodesic in the distance
sphere Br .†/Dfp 2M j dist.p; †/D rg. Recall that Br .†/ is a convex hypersurface
in M by Guijarro and Walschap [2] and thus always inherits nonnegative curvature. An
affirmative answer to Question 1.2 means that Br .†/ could not have strictly positive
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curvature when † is odd-dimensional. However, examples are known for which Br .†/

has some points of positive curvature. Specifically, Wilking constructed in [6] a metric
with almost positive curvature on S2 � S3 that can be extended to a nonnegatively
curved metric on S3�R3 (see our paper [5] for an alternative description of his metric
that makes the extendability more obvious).

We provide an affirmative answer to Question 1.2 under the added hypothesis that the
intrinsic metric on each Sharafutdinov fiber is rotationally symmetric (which means
O.k/–invariant, where k is the dimension of the fiber). We do not need to assume that
the fibers all have the same rotationally symmetric metric.

Theorem 1.3 With the assumptions and terminology of Theorem 1.1 and Question 1.2,
if the Sharafutdinov fibers are all rotationally symmetric, then for each r > 0, Cr is
flat; further, the fibers along 
 are mutually isometric.

We are pleased to thank Ilya Bogdanov for the proof of Lemma 3.1. We would also like
to thank Igor Belegradek and Luis Guijarro for helpful discussions about this work.

2 Background

For the remainder of this paper, M will denote an open manifold with nonnegative
curvature. According to Cheeger and Gromoll [1], M is diffeomorphic to the total
space of the normal bundle of its soul, † �M . We will denote this normal bundle
as �.†/, and its fiber at p 2† as �p.†/D fV 2 TpM j V ? Tp†g. Our main tool is
the following “soul inequality” for the curvature tensor R of M , found in the author’s
paper [4]:

Proposition 2.1 [4] For all p 2†, X;Y 2 Tp† and V;W 2 �p.†/, we have

.DX R/.X;Y;W;V /2�
�
jR.W;V;X /j2C 2

3
.DX DX R/.W;V;V;W /

�
�R.X;Y;Y;X /:

Here, we are considering R sometimes as a function from .TpM /3 ! TpM and
sometimes from .TpM /4! R, in the obvious way. This inequality was originally
expressed in [4] in a manner which more explicitly distinguished the three different
types of curvature that it relates:

h.DX Rr/.X;Y /W;V i2 �
�
jRr.W;V /X j2C 2

3
.DX DX kf /.W;V /

�
� k†.X;Y /:

Here, k† and kf denote respectively the unnormalized intrinsic sectional curvature
of † and of the Sharafutinov fiber, exp.�p.†//. Notice that the intrinsic equals the

Geometry & Topology, Volume 16 (2012)



Rigidity for odd-dimensional souls 959

extrinsic curvature because † is totally geodesic, and because each Sharafutinov fiber
is totally geodesic at a point of the soul. To interpret the kf term, just extend W;V to
parallel fields W .t/;V .t/ along the geodesic in † in the direction of X , and notice
that .DX DX kf /.W;V / equals the second derivative at t D 0 of the vertical curvature
function t 7! kf .W .t/;V .t//.

Further, Rr W Tp†� Tp†� �p.†/! �p.†/ denotes the “normal curvature tensor”
which means the curvature tensor of the induced connection r in �.†/, so that
Rr.W;V /X 2Tp† can be defined as the unique vector such that hRr.W;V /X;Y iD

hRr.X;Y /W;V i for all Y 2 Tp†. The fact that Rr is just a restriction of R follows
from the fact that † is totally geodesic.

3 Proof of Theorem 1.1

We will require the following fact about smooth functions:

Lemma 3.1 Suppose f;gW R!R are smooth functions. Assume that f .0/D 0 and
that g.t/ has a global maximum at t D 0. Assume for all t 2R that

f 0.t/2 � f .t/2Cg00.t/:

Then f and g are both constant functions.

The following proof is due to Ilya Bogdanov, communicated via mathoverflow.net.
Notice that the Lemma is very simple to prove for analytic functions.

Proof Assume without loss of generality that g.0/D 0. Using Cauchy–Schwarz, we
have that for all t 2 .0; 1/,Z t

0

�
f .s/2Cg00.s/

�
ds�

Z t

0

f 0.s/2 ds�

�R t
0 f
0.s/ ds

�2R t
0 12 ds

D
f .t/2

t
� f .t/2:

Therefore,

g0.t/� f .t/2�

Z t

0

f .s/2 ds:

Define h.t/D
R t

0 f .s/
2 ds, so the previous equation becomes

g0.t/� h0.t/� h.t/:

Since h is monotonic, integrating the previous equation gives

g.t/� h.t/�

Z t

0

h.s/ ds� h.t/� th.t/� 0:
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Since g.0/D 0 is a global maximum, this implies that g.t/D h.t/D f .t/D 0 for all
t 2 .0; 1/, and thus clearly also for all t 2R.

We are now prepared to prove our first theorem.

Proof of Theorem 1.1 Chose p 2 † and orthogonal unit-length vectors W;V

in �p.†/ such that kf .W;V / is maximal (among all such p;V;W ), which implies
that .DX DX kf /.W;V /D 0 for all X 2 Tp†. Since X 7! Rr.W;V /X is a skew-
symmetric endomorphism of the odd-dimensional vector space Tp†, there exists a
unit-length vector X 2 Tp† such that R.W;V /X D 0. For any Y 2 Tp†, the right
side of the soul inequality vanishes for the vectors fX;Y;W;V g, and therefore the left
side also vanishes.

Let 
 .t/ denote the geodesic in † with 
 .0/D p and 
 0.0/DX . Let X.t/D 
 0.t/,
which is the parallel transport of X along 
 .t/. Let W .t/;V .t/ denote the parallel
transports of W;V along 
 .t/. Define

g.t/D 2
3
� kf .V .t/;W .t// and f .t/D jRr.W .t/;V .t//X.t/j:

Let C denote the maximum sectional curvature of †. For any unit-length Y .t/ 2

T
.t/†, the soul inequality gives�
D

dt
.Rr.W .t/;V .t//X.t//;Y .t/

�2

� .f .t/2Cg00.t// �C:

In particular, choosing Y parallel to D
dt
.Rr.W .t/;V .t//X.t// gives

.f 0.t//2 � .f .t/2Cg00.t// �C:

Lemma 3.1 now implies that f is identically zero and that g is constant.

4 Proof of Theorem 1.3

In this section, we prove our second theorem.

Proof of Theorem 1.3 Let 
 .t/;X.t/;V .t/ and W .t/ be as in the proof of Theorem
1.1. Choose a fixed r > 0. Let exp?W �.†/!M denote the normal exponential map.
Let A and T denote the fundamental tensors of the Sharafutdinov map � W M !†.

Let x
 .t/D exp?.r �W .t//, which is one of the � –horizontal geodesics out of which
the cylinder Cr is ruled. In fact, since fW;V g can be replaced with any orthonormal
basis of their span, we can consider x
 .t/ as an arbitrary one of the geodesics which
rule Cr .
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Let xX .t/D x
 0.t/ and let xV .t/D .exp?� /.V .t//, where .exp?� / denotes the derivative
of exp? at the relevant point, which in this case is r �W .t/. Notice that xV .t/ is a
� –vertical vector field along x
 .t/. In fact, xV .t/ is a vertical Jacobi field along x
 .t/
because it is the variational field of the family of horizontal geodesics by which the
cylinder Cr is ruled. The covariant derivative of xV .t/ along x
 .t/ has horizontal and
vertical components determined respectively by the A and T –tensors of � :

(4-1) xV 0.t/DA xX .t/
xV .t/CT xV .t/

xX .t/:

To prove that Cr is flat (in the sense of Question 1.2) it will suffice to show that
xV 0.t/D 0 for all t . In fact, it will suffice to prove this just for t D 0.

We sometimes write X;V;W; xX and xV for the values of these fields at t D 0. By the
Jacobi Equation, the sectional curvature of the vertizontal plane spanned by xX and xV is

(4-2) k. xX ; xV /D�h xV 00; xV i:

We first claim that A xX
xV D 0. Recall that for any horizontal vectors xZ1; xZ2 at x
 .0/,

Proposition 1.7 of Strake and Walschap [3] implies that the A–tensor can be described as

A xZ1

xZ2 D
1
2
.exp?� /.R

r.�� xZ1; �� xZ2/W /:

For any horizontal vector xY at x
 .0/, let Y D �� xY and notice that

hA xX
xV ; xY i D �hA xX

xY ; xV i D �1
2
h.exp?� /.R

r.X;Y /W /; .exp?� /V i:

This equals zero because

hRr.X;Y /W;V i D hRr.W;V /X;Y i D 0;

and because exp?� preserves orthogonality on the subspace orthogonal to W due to
our assumption that the fibers are rotationally symmetric (and thus that the distance
spheres in these fibers are round).

Since the A–tensor term vanishes, Equation (4-1) becomes xV 0.t/D T xV .t/
xX .t/, and

it remains to prove that this T –tensor term vanishes. Let xU be an arbitrary vertical
vector at x
 .0/ which is perpendicular to xV and to the radial direction. Let xU .t/ denote
the extension of xU .0/ D xU to the “holonomy Jacobi field” along x
 .t/; that is, the
variational vector field of the family of lifts of 
 .t/ to horizontal geodesics beginning
at points along a curve in the Sharafutdinov fiber tangent to xU . Notice that for each
t0 , xV .t0/ and xU .t0/ are the images of xV and xU under the derivative at x
 .0/ of
the “holonomy diffeomorphism” h
 W �

�1.
 .0//! ��1.
 .t0//. Since the fibers are
rotationally symmetric, h
 (restricted to the spheres of radius r ) is simply a rescaling
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map from a round spheres to a round sphere, and thus preserve orthogonality. Therefore,

h xU .t0/; xV .t0/i D hd.h
 /x
.0/. xU /; d.h
 /x
.0/. xV /i D h xU ; xV i D 0:

It follows that

h xV 0.t/; xU .t/i D hT xV .t/
xX .t/; xU .t/i D .1=2/

d

dt
h xV .t/; xU .t/i D 0:

This means that xV 0.t/ is parallel to xV .t/, so we can write xV .t/D s.t/P .t/ for some
positive-valued function s.t/ and some parallel vector field P .t/. Equation (4-2)
implies that s00.t/� 0 for all t . Since s.t/ is nowhere zero, we conclude that s.t/ is
constant. Thus, xV .t/ is a parallel Jacobi field.

It remains to explain why the Sharafutdinov fibers along 
 are mutually isometric.
Since j xV .t/j is constant, the ft D constantg circles in the cylinder Cr must all have the
same length. But these are great circle in the round spheres exp?.�
.t/.†//\Br .†/,
so these round spheres must all have the same diameters. Since this is true for each r ,
the Sharafutdinov fibers along 
 have isometric distance spheres at all distances, so
the fibers are mutually isometric.
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