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Lagrangian topology and enumerative geometry

PAUL BIRAN

OCTAV CORNEA

We analyze the properties of Lagrangian quantum homology (in the form constructed
in our previous work, based on the pearl complex) to associate certain enumera-
tive invariants to monotone Lagrangian submanifolds. The most interesting such
invariant is given as the discriminant of a certain quadratic form. For 2–dimensional
Lagrangians it corresponds geometrically to counting certain types of configurations
involving pseudoholomorphic disks that are associated to triangles on the respective
surface. We analyze various properties of these invariants and compute them and the
related structures for a wide class of toric fibers. An appendix contains an explicit
description of the orientation conventions and verifications required to establish
quantum homology and the related structures over the integers.

53D12, 53D40

1 Introduction

The main motivation for this paper is the search for enumerative invariants for La-
grangian submanifolds. One of the simplest fundamental questions in this topic can
be formulated as follows. Fix a closed, connected Lagrangian submanifold Ln inside
some symplectic manifold .M 2n; !/. Fix an almost complex structure J on M that
is compatible with ! and let P;Q;R 2L be three distinct points.

Problem Estimate the number nPQR.L;J / of disks uW .D2; @D2/! .M;L/ that
are J –holomorphic (in the sense that x@J .u/D 0; see McDuff and Salamon [39]) and
that go through P;Q;R in this order.

It is easily seen that for this question to make sense one should restrict to generic almost
complex structures J and, to ensure that the number in question is finite, we have to
consider only those disks u belonging to homotopy classes � 2 �2.M;L/ so that the
Maslov index �.�/ of � equals 2n. The count providing the number nPQR.L;J /2Z
takes into account appropriate orientations. Ideally, one would like to obtain more
refined estimates by evaluating the numbers nPQR.L;J I�/ of disks u as above that
belong to each specific class �.
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1.1 An enumerative invariant

We work in this paper under the restriction that L �M is a monotone Lagrangian,
oriented and endowed with a fixed spin structure.

It is easy to see that the numbers nPQR.L;J / above are in general not invariant, as
they depend on the choice of the points P;Q;R as well as on J . Thus, it is natural to
investigate whether this lack of invariance can possibly be compensated by some more
complicated enumerative “counts”.

The origin of the present paper lies precisely in such a formula (closely related to
expressions first detected in our paper [12]).

Assume that L is the 2–torus T2 . Fix a triangle PQR on the torus. By this we
mean three distinct points P;Q;R 2 L together with a smooth oriented path

��!
PQ

starting from P and ending at Q as well as similar paths connecting Q to R and
R to P . Fix also a generic almost complex structure J . Let nP be the number of
J –holomorphic disks of Maslov index 2 that go through P and cross transversely
the edge

��!
QR (this number takes into account orientations – it is defined with more

precision in Section 6.2). Define similarly the numbers nQ and nR .

We will see that if the Floer homology HF.L;L/ 6D 0, then the expression

(1) �D 4nPQRC n2
P C n2

QC n2
R � 2nP nQ� 2nQnR � 2nRnP

is independent of the triangle P;Q;R as well as of J .

1.2 Formula (1): its meaning and generalizations

In the paper we investigate the invariant � and the meaning of formula (1), besides,
of course, proving this formula. We also provide a more general and conceptual
perspective on other enumerative expressions in arbitrary dimensions. To summarize,
we will see that:

� � coincides with the discriminant of a certain quadratic form that can be read
off from the quantum homology product of L.

� � is actually the unique (symmetric) polynomial, enumerative invariant that
can be extracted from the quantum product. Interestingly, this uniqueness is a
consequence of the classification of polynomial invariants associated to quadratic
forms as in Hilbert [34].

� � and/or other invariants like it, as well as formulae like (1), exist for more
general Lagrangians and in arbitrarily high dimensions.
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� There are refinements of these formulae that take into account the specific
homotopy classes � 2 �2.M;L/. They allow for these invariants to be written
as expressions with coefficients in the ring of regular functions R of certain
algebraic subvarieties of the variety of representations �2.M;L/!C� .

� In the case of toric fibres the ring of representation point of view is particularly
useful as it relates � to the quantum Euler class of the ambient manifold.

In a number of examples, we also compute the relevant invariants explicitly over R.
Some remarkable numerical identities follow.

1.3 Structure of the paper

We now describe more thoroughly our approach and the structure of the paper.

Section 2 summarizes the main properties of Lagrangian quantum homology QH.L/
of L as described in our paper [14] together with a number of its algebraic properties. In
particular, we recall that QH.L/ is a ring – we will denote the respective multiplication
by �. We also fix a few basic orientation conventions. To avoid disrupting the natural
flow of the paper, a complete and more technical discussion of orientations is postponed
to Appendix A.

In Section 3 we consider the representation variety

Rep.L/D f�W �2.M;L/!C�g:

We show that for a certain algebraic subset W �Rep.L/ the regular functions on W ,
O.W/, can be used as coefficient ring for quantum homology with the effect that the
resulting object QCH.LIW/ is isomorphic as a vector space to the singular homology
of L taken with the appropriate coefficients. The C in QCH reflects the fact that
quantum homology as constructed in [14] has some strong positivity features due
to the fact that the various quantum structures are defined by using unperturbed J –
holomorphic objects. A key consequence of positivity is that the algebra QCH.LIW/

is a deformation of singular homology – viewed as algebra with the intersection product.

In Section 4 we make use of this setting to define a quadratic form associated to the
quantum product with coefficients in O.W/ and its associated discriminant �. In the
case of the 2–torus this will later be seen to be precisely the term on left hand side
of (1).

Section 5 is based on the remark that the isomorphism between QCH.LIW/ and
singular homology that was mentioned above is not canonical. In particular, if a specific
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isomorphism between quantum homology and singular homology is used to expand
the quantum product with respect to a singular basis, aD .a1; : : : ; ai ; : : :/, as

(2) ai � aj D

X
s

ki;j
s ast�

0.i;j ;s/;

then the resulting structural constants k
i;j
s are not invariants – they depend on J as

well as on the other data used to define the various structures involved (here �0.i; j ; s/
are appropriate integers – see Section 5.2; t is a formal deformation variable used in the
definition of the quantum homology QCH.L/). Notice that this lack of invariance of
the k

i;j
s ’s is in marked contrast with the closed case where the same type of expansion

of the classical quantum product produces structural constants that are identified with
triple Gromov–Witten invariants.

On the other hand, the deformation equivalence class of QCH.LIW2/ (as deformation
of the singular intersection algebra) is invariant. Thus, in searching for invariant
enumerative expressions, it is natural to look for polynomial invariants in the k

i;j
s ’s

that only depend on this equivalence class. This type of invariants is introduced in
Section 5 and most of the section is spent discussing them from a variety of points of
view. It is also noticed that � as defined in Section 4, is a particular such invariant.
Conceptually, one way to view this is by the prism of Hochschild cohomology. Indeed,
this cohomology classifies algebra deformations and we notice that there is a natural
map that associates to specific Hochschild cohomology classes (of the correct degrees)
equivalence classes of quadratic forms. As we will see, � is simply the associated
discriminant for these forms.

In Section 6 we start by revisiting formula (1) from a related but slightly different
perspective. It turns out that �, as defined in Section 4 only depends on counts of
J –holomorphic disks of Maslov class 2. Thus formula (1) can be viewed as a splitting
formula expressing counts of Maslov 4 disks in terms of counts of configurations
involving only Maslov 2 disks. The first part of Section 6 contains a general definition
of such splitting formulae and a proof that they exist for monotone Lagrangians of
arbitrary dimensions (under very mild assumptions). We also notice that, as illustrated
by formula (1), there is a close relationship between the invariant polynomials described
in Section 5 and these splitting formulae. The second part of Section 6 contains the
proof of (a more general version) of (1).

As mentioned before, the role of the discriminant � is central in our study especially for
Lagrangian tori. In view of this, in Section 7 we focus on a variety of further properties
for Lagrangian tori that appear as fibres of the moment map in toric manifolds. An
extensive study of Floer theory of such tori has been carried out by several authors, eg
Cho [15; 16], Cho and Oh [18], Fukaya, Oh, Ohta and Ono [27; 25] and Auroux [6; 7; 8].
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We build on these works and exemplify our theory on the case of toric fibres. In
particular, we describe a relation between our machinery and the Frobenius structure
on the quantum homology of the ambient toric manifold and see that the quantum
Euler class viewed in the appropriate context can be identified with our discriminant �.
Finally, Section 8 contains a series of explicit computations mostly for toric fibers.

Acknowledgments We would like to thank Sasha Givental for explaining to us his
perspective on the Frobenius structure of the quantum homology of toric manifolds
and the reference to his paper [31]. We would also like to thank Denis Auroux for
useful discussions related to the examples in Section 8. Thanks to Andrew Granville
for useful discussions and for explaining us an elementary and beautiful approach to
verify the arithmetic identities in Section 7. We would also like to thank Jean-Yves
Welschinger for interesting and insightful discussions related to enumerative invariants.
Finally, we thank the referee for a very careful reading of the paper, for pointing out
numerous inaccuracies and for making many comments that helped to improve the
quality of the exposition.

The second author was supported by an NSERC Discovery grant and a FQRNT Group
Research grant.

2 Setting

All our symplectic manifolds will be implicitly assumed to be connected and tame
(see Audin, Lalonde and Polterovich [5]). The main examples of such manifolds are
closed symplectic manifolds, manifolds which are symplectically convex at infinity as
well as products of such. We denote by J the space of !–compatible almost complex
structures on M for which .M;g!;J / is geometrically bounded, where g!;J is the
associated Riemannian metric.

Lagrangian submanifolds L � .M; !/ will be assumed to be connected and closed.
Write H D

2
D H D

2
.M;L/ D image .�2.M;L/ �! H2.M;L// for the image of the

Hurewicz homomorphism. Denote by �W H D
2
�! Z the Maslov index and by NL D

minf�.A/ j �.A/ > 0g the minimal Maslov number, so that �.H D
2
/DNLZ. Since

Maslov numbers come in multiples of NL we put x� WD .1=NL/�.

Denote by !W H D
2
�!R the homomorphism induced by integration of ! . We will

mostly assume that our Lagrangians are monotone, that is there exists a constant � > 0

such that

(3) !.A/D ��.A/ 8A 2H D
2 .M;L/;

and moreover that NL � 2.
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2.1 Coefficient rings

Our ground ring will be denoted by K . We will mostly take K D C , Q, or Z and
sometimes Z2 . In case K ¤ Z2 we implicitly assume that our Lagrangian L is
orientable and spin and fix an orientation and a spin structure on L.

The following rings will be used frequently in the sequel: ƒDKŒt�1; t �, ƒC DKŒt �.
We grade these rings by setting jt jD�NL . Next consider the group ring KŒH D

2
� whose

elements we write as “polynomials” in the variable T , ie P .T / D
P

A2H D
2

aAT A ,
with aA 2K . We grade this ring by setting jT Aj D ��.A/.

The most important ring for our considerations will be zƒC which is defined as

zƒC D

�
P .T / 2KŒH D

2 �

ˇ̌̌̌
P .T /D a0C

X
A;�.A/>0

aAT A

�
:

Note that the degree 0 component of zƒC is just K (ie constants) while that of KŒH D
2
�

is the whole of KŒker��. We denote by zƒ>0 the elements P .T /2 zƒC with �.A/ > 0

for every A (ie linear combinations of elements whose degree is negative).

In what follows we will work with zƒC–algebras. By this we mean commutative,
graded rings R which are also graded algebras over zƒC . This structure is typically
specified by a graded morphism of rings zƒC �!R.

2.2 Lagrangian quantum homology and quantum structures

The pearl complex, Lagrangian quantum homology and its associated quantum struc-
tures have been described in detail in our works [13; 14; 12]. We refer the reader to
these papers for the detailed constructions. Here we just set up the notation and recall
the main properties of this homology. In addition, we explain how to carry out the
construction over general ground rings K , other that Z2 . This requires orienting the
moduli spaces of pearly trajectories and is explained in detail in Appendix A.

Let R be an zƒC–algebra. Fix a triple D D .f; . � ; � /;J / where f W L �! R is a
Morse function . � ; � / is a Riemannian metric on L and J an !–compatible almost
complex structure on M . Denote by

C.D/DKhCritf i˝R; d W C�.D/ �! C��1.D/;

the pearl complex with coefficients in R. This complex is defined for generic D, its
homology does not depend on D and is denoted by QH.LIR/.

Geometry & Topology, Volume 16 (2012)
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2.2.1 Product Recall that QH.LIR/ has the structure of an associative (but not
necessarily commutative) ring with unity:

(4) QHi.LIR/˝R QHj .LIR/ �! QHiCj�n.LIR/; ˛˝ˇ 7�! ˛ �ˇ;

where nD dim L. The unity lies in QHn.LIR/ and is denoted by ŒL� (in analogy to
the fundamental class in singular homology).

2.2.2 Module structure Denote by QH.M IR/ the quantum homology of the (am-
bient) symplectic manifold .M; !/ endowed with the quantum product �. The ex-
tension of the coefficients to R is induced by the composition of the natural maps
�2.M /�!�2.M;L/�!H D

2
.M;L/; see [14] for details. Then QH.LIR/ becomes

an algebra over QH.M IR/ in the sense that there exists a canonical map

(5) QHi.M IR/˝R QHj .LIR/ �! QHiCj�2n.LIR/; a˝˛ 7�! a�˛;

which turns QH.LIR/ into an algebra over the ring QH.M IR/.

2.2.3 Inclusion We also have a quantum version of the map induced in homology
by the inclusion L �!M . This is a map

(6) iLW QH�.LIR/ �! QH�.M IR/

which extends the classical inclusion on the chain level. The map iL is a QH.M IR/–
module morphism.

2.2.4 Minimal models It is important throughout the paper that all the structures
above are defined over zƒC and that, at the chain level, they are deformations of the
respective Morse-theoretic structures. The Morse theoretic structures (on the chain
level) are obtained from the ones defined above by specializing to T D 0. For an
algebraic structure defined over V ˝ƒC where V is some K–vector space we will
refer to the algebraic object obtained by specializing to T D 0 as the “Morse level” or
“classical” associated structure.

A very useful consequence of positivity is the existence of minimal models whose
definition and properties we now recall.

If f is a perfect Morse function, in the sense that the differential of its Morse complex
is trivial, then the pearl complex is quite efficient for computations. However, not all
manifolds admit perfect Morse functions. The existence of the minimal models allows
to reduce algebraically the pearl complex to such a minimal form whenever the base
ring K is a field. We recall the relevant result from [14].
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Proposition 2.2.1 [14] Let K be a field. For any monotone Lagrangian L there
exists a complex Cmin.L/D .H�.LIK/˝ zƒ

C; ı/, with

ıW H�.LIK/˝ zƒ
C
!H�.LIK/˝ zƒ

>0

so that, for any triple DD .f; . � ; � /;J / such that C.D/ is defined, there are chain mor-
phisms �W C.D/! Cmin.L/ and  W Cmin.L/! C.D/ that both induce isomorphisms in
quantum homology as well as in Morse homology and verify � ı D id . The complex
Cmin.L/ with these properties is unique up to (a generally noncanonical) isomorphism
and is called the minimal pearl complex of L. The maps  , � are called structural
maps associated to D.

All the algebraic structures described before (product, module structure etc.) can be
transported and computed on the minimal complex. For instance, the product is the
composition

(7) Cmin.L/˝ Cmin.L/
 1˝ 2
�! C.D1/˝ C.D2/

�
�! C.D3/

�3
�! Cmin.L/;

where �i ;  i are structural maps associated to the data set Di .

Remark 2.2.2 If the Lagrangian L admits perfect Morse functions, then any pearl
complex associated to such a function is a minimal pearl complex over any ring K

(not only when K is a field). Moreover, any two such minimal models are related by
canonical comparison maps. This means for instance that for tori we may choose to
work over Z.

2.3 Additional conventions

2.3.1 Orientations of the pearly moduli spaces In order to define the pearl complex
over a general ground ring we need to orient the moduli space of pearl trajectories.
These are a combination of moduli spaces of gradient trajectories arising from Morse
theory together with moduli spaces of J –holomorphic disks. The precise orientation
conventions are described in detail in Appendix A, we only mention here some of the
very basic choices used later in the paper.

Throughout the paper, by a Lagrangian L� .M; !/ we mean an oriented Lagrangian
submanifold together with a fixed spin structure.

Denote by D�C the closed unit disk. We orient its boundary @D by the counterclock-
wise orientation. Denote by G D Aut.D/ the group of biholomorphisms of the disk,
and by H � G the subgroup of elements that preserve the two points �1;C1 2 @D .
We orient both G and H as described in Section A.1.10.
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Fix a generic almost complex structure J 2J . Let B 2H D
2

. Denote by �M.B;J / the
space of (parametrized) J –holomorphic disks uW .D;@D/�!.M;L/with u�.ŒD�/DB .
It is well known by the work of Fukaya, Oh, Ohta and Ono [26] that a spin structure
on L induces orientations on the moduli spaces �M.B;J /. The groups G and H act
on �M.B;J / by � � u D u ı ��1 , and similarly on �M.B;J /� @D by � ı .u; z/ D
.u ı ��1; �.z//. The following spaces will play an important role in the sequel:

M2.B;J /D �M.B;J /=H; . �M.B;J /� @D/=G:

Both spaces come with an orientation induced from those of �M.B;J / and of G and H

as described in Section A.1.3 and Section A.1.10. There are natural evaluation maps
that will be used frequently in the sequel:

(8)

e�1WM2.B;J / �!L; Œu� 7�! u.�1/;

eC1WM2.B;J / �!L; Œu� 7�! u.C1/;

evW . �M.B;J /� @D/=G �!L; .u; z/ 7�! u.z/:

See Section A.1.11 for more details concerning the orientations of these spaces.

2.3.2 The intersection product In the sequel we will use a version of the classical
intersection product on singular homology which we denote by

Hi.L/˝Hj .L/ �!HiCj�n.L/; a˝ b 7�! a � b:

We remark here that our convention for this operation is somewhat nonstandard concern-
ing signs and orientations. Our intersection product is characterized by the following
property: if aD ŒA�, b D ŒB�, where A;B �L are two transverse oriented subman-
ifolds, then a � b D ŒB \A�, (not A\B !), where \ stands for oriented intersection
(see Section A.1.7). When a and b have complementary dimensions we will also use
their intersection number which we denote #.a\ b/D #.A\B/. (Thus in this case
a � b D #.B \A/Œpt� D .�1/.n�i/.n�j/#.A\B/Œpt�, where n D dim L, i D dim A,
j D dim B .) Also by abuse of notation, when i C j D n we will sometimes view
.� ��/ as a Z–valued pairing and write a � b 2 Z, instead of a � b 2H0.L/D ZŒpt�.

In favorable situations the product mentioned in Section 2.2.1 can be considered as a
deformation of the above version of the classical intersection product on the singular
homology. (See Section A.2.2.) The signs defining this product were so chosen in
order to make duality more natural (see Section A.2.6).

Analogous remarks apply also to the module structure from Sections 2.2.2 and A.2.3
(both the classical and the quantum operations).
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2.4 Twisted coefficients

The most relevant ground ring here will be KDC , though one could work with KDQ
or K D Z too.

Let �W H D
2
�!C� be a homomorphism. This induces a structure of a zƒC–algebra

on the ring ƒC DKŒt � induced by the morphism zƒC �!ƒC defined by

(9) zƒC 3 T A
7�! �.A/t x�.A/ 2ƒ 8A 2H D

2 :

In order to emphasize the dependence on � in this algebra structure we will sometimes
write .ƒ�/C rather than ƒC . Similarly, we denote ƒ� the zƒC–algebra structure
induced on KŒt�1; t � by (9). With these conventions we now have the Lagrangian
quantum homology QH.LI .ƒ�/C/ together with the quantum operations as described
in the previous section as well as the corresponding structures over ƒ� . The differential
of the pearl complex with coefficients in .ƒ�/C is denoted by d� and we adopt a
similar notation for all further structures over these twisted coefficients.

A particular important case comes from representations of H1.LIZ/. More specifically,
let �0W H1.LIZ/ �! C� be a homomorphism. Then we can take in the preceding
construction �D �0 ı @W H D

2
�!C� , where @W H D

2
�!H1.LIZ/ is the connectant

map.

From now on we will use the following notation. We abbreviate H1 D H1.LIZ/.
For an abelian group H we write Hom0.H;C

�/ for the group of homomorphisms
�W H �! C� that are trivial (ie equal 1) on all torsion elements in H . We denote
by Hfree DH=Torsion.H / the free part of H . Clearly there exists a (noncanonical)
isomorphism Hom0.H;C

�/Š .C�/�r , where r D rank.Hfree/.

Remark 2.4.1 While we will not use noncommutative representations in this paper,
much of the discussion described below can be adapted to coefficients twisted by
representations of �2.M;L/ with values in some not necessarily commutative Lie
group.

2.4.1 Relation to Floer homology Twisting the coefficients using representations �
has a counterpart in Floer homology. Recall from [14] that for the ring R D ƒ, or
more generally for R’s that are KŒH D

2
�–algebras, there is a canonical isomorphism

QH.LIR/ Š HF.L;LIR/. Note that if we take here R D ƒ� then HF.L;LIƒ�/
can be naturally identified with HF..L;E�/; .L;E�// which is a version of Floer
homology in which the coefficients are twisted in a flat complex line bundle E� �!L.
The relation of E� to � is that �W H1 �! C� determines the holonomies of the
corresponding flat connection along loops in L. Incorporating flat bundles into Floer
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homology was first introduced by Kontsevich [36] (see also Fukaya [23]) in the context
of homological mirror symmetry. Due to considerations coming from physics only
unitary bundles were considered (ie �W H1 �! S1 ). More recently it was discovered
by Cho [17] that working with nonunitary bundles makes sense and is actually very
useful. This point of view was further developed and generalized by Fukaya, Oh, Ohta
and Ono [27].

2.5 Elementary enumerative invariants

As discussed in Section 1 the purpose of the paper is to discuss enumerative invariants
that can be extracted from the algebraic structures before. While later in the paper we
will mainly concentrate on the quantum product we now make explicit some simpler
such invariants.

2.5.1 Disks of Maslov 2 Consider the number of disks of Maslov class 2, through
a generic point of L and in a given homotopy class B 2 �2.M;L/. Thus, with
the notation of Section 2.3, we are talking about the degree of the evaluation map
evW . �M.B;J /� @D/=G!L, .u; z/! u.z/ under the assumption �.B/D 2. This
degree is well-defined and independent of J precisely because we work under the
assumption NL � 2 which avoids any bubbling for disks of Maslov index 2. This
point of view is formalized in the “superpotentials” of Section 3.3.

2.5.2 Invariants related to the quantum inclusion Assume L satisfies QH.L/ 6D0

and that 2nD 4. Fix two points P 2M nL and Q2L. The number of J –holomorphic
disks uW .D; @D/! .M;L/ with �.u/D4 and u.�1/DQ, u.0/DP (for a generic J )
is independent of J and P and Q. By contrast with the remark in Section 2.5.1 an
argument is necessary here. One way to see this is by using the quantum inclusion
of Section 2.2.3. We will assume for this argument the definition of the quantum
inclusion in terms of the pearl complex (the relevant moduli spaces are recalled in
Section A.2.3). We first remark that for dim.L/D 2 we have that QH.L/ 6D 0 implies
that QH.L/ŠH.L/˝ƒ. We now consider a Morse function f W L!R with a single
minimum x0 D Q together with a Riemannian metric . � ; � / and a generic almost
complex structure J . To define the quantum inclusion we also need a metric on M and
a Morse function hW M !R. We assume that h has a single maximum y4DP . With
these assumptions, the quantum homology class Œx0� is defined. However, in general,
this class is not independent of the choice of DD .f; . � ; � /;J /. For a second choice
of data D0 D .f 0; . � ; � /;J 0/ where f 0 is a Morse function with a single minimum x0

0
,

the relation between the two classes is Œx0�D Œx
0
0
�C qŒL� t for some q 2K . Here ŒL�

represents the fundamental class of L (this class is well defined and independent of the
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choices of data D). It is easy to see that iL.ŒL�/ coincides with the classical singular
inclusion i�.ŒL�/2H2.M IK/. This implies that iL.Œx0�/D iL.Œx

0
0
�/Cqi�.ŒL�/t . Now

write

iL.Œx0�/D Œpt�C k1at C k2ŒM � t2; iL.Œx
0
0�/D Œpt�C k 01a0t C k 02ŒM � t2;

where ki ; k
0
i 2K , a; a0 2H.M / and ŒM � represents the fundamental class of M . It

easily follows that k2 D k 0
2

, thus k2 is an invariant of L (ie independent of D and
of h). On the other hand, using the chain level definition of iL for the data D, we see
that k2 equals the number of J –holomorphic disks with �D 4 through x0 and y4 .

The argument above does not work anymore in higher dimensions: both the equality
k2 D k 0

2
and the interpretation of k2 are not necessarily valid anymore. However, in

Proposition 7.3.3 we will see that – by a different and much more subtle argument –
the quantum inclusion of the point Œx0� is independent of D for monotone toric fibers.
Moreover, it follows from Section 7.3 that for monotone toric fibres in dimension
2nD 4, the invariant k2 can be computed via the Batyrev–Givental isomorphism (see
formula (66) after Proposition 7.3.3).

3 Wide varieties

Let L�M be a Lagrangian submanifold and R a zƒC–algebra. Following [14; 13] we
say that L is R–wide if there exists an isomorphism QH.LIR/ŠH.LIR/ between
the quantum homology and the singular homology of L, taken with coefficients in R.
(Note that we do not require existence of a canonical isomorphism here.) At the other
extreme we have R–narrow Lagrangians. By this we mean Lagrangians L with
QH.LIR/D 0.

We now consider the moduli of all representations � which make a given Lagrangian
wide. More precisely define

(10) W2 D f� 2 Hom0.H
D
2 ;C

�/ jL is ƒ�–wideg:

Similarly, put

(11) W1 D f�
0
2 Hom0.H1;C

�/ j �0 ı @ 2W2g:

We call W2 and W1 the wide varieties associated to L. The connectant @W H D
2
�!H1

induces a map @W W W1 �!W2 .

Note that both Hom0.H
D
2
;C�/Š .C�/�r and Hom0.H1;C

�/Š .C�/�l are complex
algebraic varieties (in fact algebraic groups isomorphic to complex tori), where r D

rank.H D
2
/free , l D rank.H1/free .
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3.1 The wide varieties are algebraic

Proposition 3.1.1 For any monotone Lagrangian and with the notation above the
sets W2 and W1 are algebraic subvarieties of Hom0.H

D
2
;C�/ and Hom0.H1;C

�/

respectively. Moreover, the map @W W W1 �!W2 is a morphism of algebraic varieties.

Proof We first treat the case when L admits a perfect Morse function. Let f W L�!R
be a perfect Morse function. Add to it a Riemannian metric . � ; � / and an almost complex
structure J 2 J so that the triple DD .f; . � ; � /;J / is regular. Since f is perfect we
have an isomorphism of graded vector spaces C.DI zƒC/ Š .H.LIC/˝ zƒC/� and
C�.DIƒ/Š .H.LIC/˝ƒ/� . For dimension reasons it follows that L is ƒ�–wide if
and only if the twisted pearly differential vanishes: d�.x/D 0 for every x 2 Crit.f /.
Notice that the differential d of the complex C.DI zƒC/ applied on x 2 Crit.f / is of
the form

dx D
X
A;y

mxy.A/yT A ; mxy.A/ 2 Z;

so that mxy.A/ vanishes whenever jxj � jyjC�.A/ 6D 1. The twisted differential d�

is then written
d�x D

X
A;y

mxy.A/�.A/yt x�.A/;

in other words d� D d ˝� KŒt �.

Pick a basis A1; � � � ;Ar for .H D
2
/free . This yields an identification Hom0.H

D
2
;C�/Š

.C�/�r . Use this identification to write � as a tuple .z1; : : : ; zr / 2 .C�/�r so that if
A2H D

2
is given by AD

P
aiAi , then �.A/D

Q
z

ai

i . Thus the condition d�.x/D 0

translates into a polynomial equation in z1; : : : ; zr . As there are finitely many critical
points x we get a system with finite number of algebraic equations for W2 . The proof
for W1 is similar.

We now turn to the general case – when perfect Morse functions might not exist. We
will make use of Proposition 2.2.1 by replacing in the argument above the complex
C.DI zƒC/ with a minimal pearl complex Cmin.L/D .H.LIK/˝ zƒ

C; ı/. Similarly, we
replace the twisted pearl complex associated to � and D with the complex C�min.L/D

Cmin.L/˝ƒ
� . The differential of this complex, d

�
min , verifies d

�
min D ı˝ƒ

� . Again
for degree reasons, L is ƒ� wide if and only if the differential d

�
min in the complex

C�min.L/ vanishes. We can then apply the argument above by using any fixed basis of
H�.LIC/ in the place of the set of critical points of f .

Versions of the moduli spaces W2 have already been considered by Cho [17]. An
analogue of W1 (but with Novikov ring valued representations) has played a central
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role in the work of Fukaya, Oh, Ohta and Ono [27]. Our approach below is somewhat
different than these works. We will not use the varieties W in order to study Lagrangian
intersections, but rather in order to construct new invariants of Lagrangians.

3.2 Regular functions and wide rings of coefficients

From now on we will implicitly assume that Wi (for either i D 1 or 2) is not an empty
set.

Denote by O.W1/ and O.W2/ the rings of global algebraic functions on W1 and W2

respectively. We do not grade these rings. Given A 2H D
2

, denote by fA 2 O.W2/

the function defined by fA.�/ WD �.A/. Consider now the map

(12) qW zƒC �!O.W2/˝ƒ; q.T A/ WD fAt x�.A/:

It is easy to check that q is graded homomorphism of rings hence O.W2/˝ƒ becomes
a zƒC–algebra. In a similar way we can define such a structure on O.W1/˝ƒ.

With this setup we can define QH.LIO.Wi/˝ƒ
C/, i D 1; 2 (and similarly for ƒ).

It easily follows from the definitions that

(13) QH.LIO.Wi/˝ƒ
C/ŠH.LIO.Wi/˝ƒ

C/

and similarly for ƒ. Note that these isomorphisms are not canonical.

Next, we have all the quantum operations with coefficients in RCi DO.Wi/˝ƒ
C as

described in (4), (5) and (6) and similarly for Ri DO.Wi/˝ƒ.

To shorten notation we will write from now on

(14) QCH.LIWi/ WDQH.LIO.Wi/˝ƒ
C/; QH.LIWi/ WDQH.LIO.Wi/˝ƒ/:

3.3 The superpotential

Here we assume that Ln �M 2n is a monotone Lagrangian with NL D 2.

Pick a generic almost complex structure J 2 J . Using the same notation as in
Section 2.3 (see also Section A.1) let B 2H D

2
with �.B/D 2 and denote by �M.B;J /

the space of J –holomorphic disks uW .D; @D/�! .M;L/ with u�.ŒD�/DB , and by
G D Aut.D/Š PSL.2;R/ the group of biholomorphisms of the disk. Consider now
the space of disks with one marked point on the boundary, ie . �M.B;J /� @D/=G ,
where G acts as follows � �.u; z/D .uı��1; �.z//, for � 2G . By standard arguments
(see eg [14]) it follows that . �M.B;J /�@D/=G is a smooth compact manifold without
boundary and of (real) dimension n. Moreover by our assumptions on L (ie L is
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oriented, spin and with a prescribed choice of spin structure) the latter moduli space is
also oriented. Consider the evaluation map

evW . �M.B;J /� @D/=G �!L; ev.u; z/D u.z/:

We denote by �.B/ 2 Z the degree of this map. Standard arguments then show that
�.B/ does not depend on J but only on B . Moreover, there can be at most a finite
number of classes B 2H D

2
with �.B/¤ 0. Put

E2 D fB 2H D
2 j �.B/¤ 0g:

Define now the function

(15) PW Hom0.H1;C
�/ �!C; P.�/D

X
B2E2

�.B/�.@B/:

This function (and other analogous versions of it) is called the Landau–Ginzburg super-
potential. It plays an important role in the theory of mirror symmetry for toric varieties.
Its relation to Lagrangian Floer theory was first noticed by Hori and Vafa [35; 44] and
further explored by Cho and Oh [18] and by Fukaya, Oh, Ohta and Ono [26; 27].

3.3.1 Explicit formulae for W1 We will now write P in coordinates. Fix a basis

eD fe1; : : : ; elg

for H1.LIZ/free . For a 2H1.LIZ/free , denote by .a/D ..a/1; : : : ; .a/l/ 2 Z�l the
vector of coordinates of a with respect to the basis e so that aD .a/1e1C� � �C .a/lel .
Using the basis e we can identify Hom0.H1;C

�/Š .C�/�l . With these choices fixed,
we write an element � 2 Hom0.H1;C

�/ as .z1; : : : ; zl/ 2 .C
�/�l , where zj D �.ej /.

In these coordinates (15) becomes

(16) P.z1; : : : ; zl/D
X

B2E2

�.B/z
.@B/1
1

� � � z
.@B/l
l

:

The relevance of P in our context is that we can describe the wide variety W1 by
means of the derivatives of P. To see this fix a basis CDfC1; : : : ;Clg for Hn�1.LIZ/
which is dual to e in the sense that Ci � ej D ıi;j , where � is the intersection pairing
(see Section 2.3.2). Now let Cmin.L/DH�.LIC/˝ƒC be a minimal pearl complex
as provided by Proposition 2.2.1. Let C�min.L/D Cmin.L/˝ƒ

� and denote by d
�
min

the differential of this last complex. Of course, in case L admits a perfect Morse f
function we can simply take instead of Cmin.L/ the pearl complex of f and d

�
min

coincides in this case with the differential d� of the pearl complex of f twisted by
the representation � . We can write the (twisted) pearl differential

d
�
minW .H.LIC/˝ƒ/� �! .H.LIC/˝ƒ/��1:
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Proposition 3.3.1 For �D .z1; : : : ; zl/ we have:

(1) d
�
min.Cj /D zj

@P
@zj

ŒL� t .

(2) If QH.LIƒ�/¤ 0 then � is a critical point of P.

In particular, W1 � Crit.P/. Moreover, if the cohomology ring H�.LIR/ (with the
classical cup product) is generated by H 1.LIR/ then W1 D Crit.P/.

Proof In case L admits a perfect Morse function, the proof of (1) follows immediately
from the definition of the pearl complex together with our orientation conventions.
Concerning the orientations the main point to verify here is the following. Given
B 2H D

2
, denote

QDM2.B;J / eC1
�i fmg:

Here we use the fiber product and its orientation as defined in Section A.1.8, and
i W fmg ! L stands for the inclusion of a point. Consider now the evaluation map
e�1W Q �!L. Then we have in homology

(17) .e�1/�.Œ xQ�/D .�1/n�.B/@B;

where @W H2.M;LIZ/ ! H1.LIZ/ is the connectant. This can be checked by a
straightforward computation based on the conventions described in Appendix A.

If L does not admit a perfect Morse function we use a minimal pearl complex together
with its structural maps � and  as in Proposition 2.2.1:

C.D/
�
�! Cmin.L/

 
�! C.D/;

where D is a generic set of data required to define the pearl complex. By using the fact
that both these maps induce an isomorphism in Morse homology the result is again
immediate.

To prove (2), recall that ŒL� 2 Cmin.L/ is a cycle whose homology class is the unity of
the ring QH.LIƒ�/. Thus QH.LIƒ�/¤ 0 if and only if ŒL� is not a boundary. In
view of (1), if QH.LIƒ�/¤ 0 we must have

@P

@zj
.�/D 0

for every j .

The last statement follows immediately from the following fact: If H�.L/ is generated
by H 1.L/ then L is either ƒ�–narrow or ƒ�–wide. Moreover, the second case occurs
if and only if d� D 0 on Hn�1.L/. The proof of this can be essentially found in [14]
where it is proved for the ground ring K D Z2 and without any representations � , but
the same proof with obvious changes extends to our setting.
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Remark 3.3.2 Both varieties W1 and W2 are arithmetic in the sense that in some
coordinate system they are cut by a system of equations with integral coefficients.

Remark 3.3.3 Given that QH.LIWi/ is isomorphic to Floer homology with coeffi-
cients in O.Wi/˝CŒt; t�1� (as discussed in Section 2.4.1) and in view of equation (13)
it follows that for a Lagrangian with W ¤∅ any L0 transverse to L and Hamiltonian
isotopic to it, intersects L0 in at least

P
i dim.Hi.LIC// intersection points. Note that

when L is a torus, checking that W ¤∅ can be done by verifying that Crit.P/¤∅,
according to Proposition 3.3.1.

We now turn to the relation between the quantum product and the superpotential.
Recall that when L is R–wide, QH.LIR/ is not in general canonically isomorphic to
H.LIC/˝R. However, there exist canonical embeddings Hi.LIK/ ,�!QHi.LIR/
for every n �NL C 1 � i � n. (See [14, Section 4.5 and Proposition 4.5.1].) As
NL � 2, we view Hn�1.LIK/ as a subspace of QHn�1.LIR/ and Hn.LIK/ as a
subspace of QHn.LIR/. The following proposition gives information on the quantum
product of elements in this special subspace in terms of the superpotential.

Proposition 3.3.4 Consider Hn�1.LIC/ as a subset of QHn�1.LIW1/. Then

(18) Ci �Cj CCj �Ci D .�1/nzizj
@2P

@zi@zj
ŒL� t;

where ŒL� 2 Hn.LIC/ � QHn.LIW1/ is the unity. In other words, for every � D
.z1; : : : ; zl/ 2 W1 we have the identity (18), where Ci ;Cj ; ŒL� are all viewed as
elements of QH.LIƒ�/.

Proof In case L admits perfect Morse functions this follows from the definition of
the quantum product together with our orientation conventions. Indeed, in this case,
assume that f , f 0 , f 00 are three perfect Morse functions and that a, b are critical
points of f and f 0 of index n� 1, and let w be the maximum of f 00 . The critical
points a, b are canonically identified with singular homology classes in Hn�1.LIC/
and obviously w is canonically identified with the fundamental class ŒL�. The product
in question (defined over zƒC ) is given by

a� b D a � bC
X
�2E2

kab.�/ŒL�T
�;

where a � b is the singular intersection product and kab.�/ 2 Z is the number of
J –holomorphic disks u in the class � that pass through w and intersect the unstable
manifolds of a and of b is such a way that along the boundary of the disk the order of
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the intersection points is w;W u
f 0
.b/\ u.@D/;W u

f
.a/\ u.@D/. Obviously, the order

requirement shows that this intersection condition is not purely homological: a different
choice of functions f and f 0 might change the coefficient kab.�/ here. However, the
sum a � bC b � a is invariant as the order is now irrelevant. From this description
the formula claimed is obvious for i 6D j – it simply claims that if for � 2H D

2
with

�.�/D 2 we have algebraically �.�/ disks in the class � passing through w then the
contribution of these disks to Ci �Cj CCj �Ci is ��.�/.@�/i.@�/j , where .@�/i are
the coefficients of @� in the basis e, ie @�D

P
i.@�/iei , and � D˙1 is a sign that

depends on the orientations conventions. In other words,

Ci �Cj CCj �Ci D �
X
�2H D

2

�.�/D2

�.�/.@�/i.@�/j z
.@�/1
1

� � � z
.@�/j
l

ŒL� t:

When i D j , we note that contribution of the disks in the class � to 2Ci � Ci is
��.�/.@�/2i . We now use that fact that � 2W1 hence @P=@zk D 0 for every k , and
so
P

k �.�/.@�/k D 0 by the point (1) in Proposition 3.3.1.

This implies the claimed formula up to showing that � D .�1/n . In turn, this is a simple
consequence of the orientation conventions for the quantum product (see Section A.2.2)
and Equation (17) (with � instead of B ).

In case L does not admit perfect Morse functions the proof uses minimal pearl com-
plexes in a rather straightforward way.

Remark 3.3.5 It might seem slightly surprising that the coefficient kab.�/ above is
not necessarily invariant but still the quantum product

QH.LI zƒC/˝QH.LI zƒC/ �! QH.LI zƒC/

is well defined. The explanation is that while Hn�1.LIK/ is canonically embedded
in QH.LI zƒC/ this is no longer true for Hn�2.LIK/. Clearly a � b belongs precisely
to Hn�2.LIK/ and so, even if a � b is well defined and independent of choices,
the class a � b is not canonically identified with a quantum class. This is why the
coefficient kab.�/ is also, in general, not independent of the choices of f; f 0; f 00 . On
the other hand, the independence of kab.�/C kba.�/ of all choices can also be seen
as an immediate consequence of the fact that a � bC b � aD 0.

3.3.2 Relation to previous works The relation of the superpotential to the nonvan-
ishing of Floer homology was first pointed out in the physics literature in Hori and
Vafa [44]. Versions of Propositions 3.3.1 and 3.3.4 were later proved by Cho [16] and
Cho and Oh [18] for the case of Lagrangian torus fibres in toric manifolds and in the
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setting of Floer homology. The toric case has been further studied by Fukaya, Oh, Ohta
and Ono [27; 25].

3.3.3 Different versions of the superpotential Different authors use different ver-
sions of the superpotential functions, as well as different coordinate systems on
Hom0.H

D
2
;C�/. For example, Fukaya, Oh, Ohta and Ono use in [27] coordinates

x1; : : : ;xl whose relation to ours is that xi D log zi (so that the x coordinates are
defined only modulo some periods). The superpotential is then written as

P0.x1; : : : ;xl/D
X

�;�.�/D2

�.�/ex1.@�/1C���Cxl .@�/l :

The formula at point (1) of Proposition 3.3.1 then becomes

d
�
min.Cj /D

@P0

@xj
ŒL� t:

Similarly, formula (18) becomes now

Ci �Cj CCj �Ci D .�1/n
@2P0

@xi@xj
ŒL� t:

Other authors, such as Auroux [6; 7; 8], work only with unitary representations, ie
Hom0.H1;S

1/ but allow the Lagrangian L to move in a family of special Lagrangian
submanifolds. The superpotential is in this case a function of two sets of real variables:
the representation and the parameter of the Lagrangian. However, these two sets of
variables can be put together to form a complex system of coordinates in which the
superpotential becomes holomorphic. The relation between this superpotential and
ours is rather straightforward.

There is a more general but also less transparent definition of a superpotential that also
expresses W2 in a way similar to the one described above. Moreover, this description
also works for NL > 2. We indicate it here.

Let C1; : : : ;Ck be a basis of Hn�NLC1.LIK/, and f1; : : : ; fs a basis for .H D
2
/free .

Fix a point P in L. Define a function PW .C�/�k � .C�/�s by

(19) P.z1; : : : ; zk ; w1; : : : ; ws/D
X

˛2.H D
2
/freeI

�.˛/DNL

z
r1.˛/
1

� � � z
rk.˛/

k
w
.˛/1
1
� � �w.˛/ss :

The exponents ri ; .˛/j 2 Z are related to ˛ as follows: ˛ D
P

j .˛/jfj and ri.˛/ is
the intersection number of the homology class Ci with the class D˛ 2HNL�1.LIK/

which is defined as follows. Put QDM2.˛;J /eC1
�ifPg, where i W fPg !L is the

inclusion (see Section A.1.8 for the definitions of the orientation on the fiber product).
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The closure of Q is an oriented compact manifold xQ without boundary. Moreover,
the second evaluation map e�1 extends to xQ. We define D˛ D .e�1/�Œ xQ �.

This potential is independent of P as well as of (the generic choice of) J . For
convenience we put zD .z1; : : : ; zk/.

Similarly to the case NLD 2 previously discussed we have that if the real cohomology
of L is generated as an algebra by H<NL.LIR/, then

W2.L/D f� 2 Hom0.H
D
2 ;C

�/ j dzP.1; : : : ; 1I �.f1/; : : : ; �.fs//D 0g:

4 Quadratic forms

Let Ln �M 2n be a monotone Lagrangian. We continue to assume that L is oriented
and spin and fix once and for all a spin structure. We will introduce now a quadratic
form associated to L from which we can derive new invariants. The construction works
best when NL D 2, so we first describe it in this case and then do the general case.

4.1 The case NL D 2

Let R be a zƒC–algebra for which L is R–wide. Assume that Rk D 0 for every
k > 0 and for simplicity assume also that R�1 D 0 (the assumption on R�1 is not
really necessary; see Remark 4.2.1). Assume in addition that R0 is a free K–module.
(eg RDR˝K ƒC , where R is an ungraded free K–module and also a K–algebra.)

We have a canonical isomorphism

(20) QHn�1.LIR/ŠHn�1.LIK/˝K R0;

as well as a canonical exact sequence

(21) 0 �! ŒL�R�2
i
�! QHn�2.LIR/

�
�!Hn�2.LIK/˝K R0 �! 0:

See [14, Section 4.5] for the details. From now on we will make the identification (20)
and also view ŒL�R�2 as a subspace of QHn�2.LIR/ via i . A simple computation
shows that

�.a� b/D a � b 8 a; b 2Hn�1.LIK/;

where � is the classical intersection product (see Section 2.3.2). In particular we have
�.a� a/D 0 for every a 2Hn�1.LIK/, and so we can define a map

(22) z'W Hn�1.LIK/ �!R�2 by a� aD z'.a/ŒL�:

Obviously z' is a quadratic form, ie it is homogeneous of degree 2 over K .
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We now restrict to the case RDR˝ƒC with R some K–algebra which as module
over K is free. In this case R�2 D tR and z' induces an R–valued quadratic form '

by putting ' D t�1 z' .

A particular case of interest will be K D C , R D O.W/ where from now on we
denote by W any of the wide varieties W1 or W2 . In this case we denote the resulting
quadratic form by

'W W Hn�1.LIC/ �!O.W/:

We can also specialize to a particular � 2W , ie compose with the evaluation morphism
e�W O.W/ �!C , e�.f /D f .�/. We write '� D e� ı'W .

There is an important integral structure in this picture. Consider the inclusion of
Hn�1.LIZ/ in Hn�1.LIC/. The restriction of the quadratic form 'W to Hn�1.LIZ/,
which will still be denoted by 'W will play an important role in the sequel.

Remark 4.1.1 Whenever the trivial representation �0 � 1 is in W the quadratic
form '�0

is integral. By this we mean that its restriction to Hn�1.LIZ/ gives values
in Z.

It often happens that the variety W1 is 0–dimensional (eg when the superpotential P

has isolated critical points. See Proposition 3.3.1.) It follows from Remark 3.3.2 that
in such cases for every � 2W1 the image �.H1.LIZ// lies inside a number field
F �C . It easily follows that for every � 2W1 the restriction of the quadratic form '�
to Hn�1.LIZ/ gives values in the same field F .

4.2 The case of NL > 2

The definition in this case is based on viewing z' as a secondary operation in the sense
that it is defined precisely when the square of the intersection product vanishes. Now
assume that NL > 2. We continue to assume that L is R–wide, that Rk D 0 for all
k > 0 and that R0 is a free K–module. In addition assume that R�l D 0 for every
1� l � 2s� 1 (see Remark 4.2.1).

Recall that NL is even because L is orientable and write NL D 2s . Notice that we
still have a canonical isomorphism Hn�s.LIK/˝K R0 Š QHn�s.LIR/. Denote by
H
p

0

n�s.LIK/ the cone consisting of those elements x 2 Hn�s.LIK/ with x � x D 0

where � is the intersection product. We now define

z's
W H

p
0

n�s.LIK/!R�2s

by the relation
x �x D z's.x/ŒL� 8x 2H

p
0

n�s.LIK/:
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Note that H
p

0

n�s.LIK/ is in general only a cone (over K ) and might fail to be a
K–module. Still, in some cases (eg when s D odd), H

p
0

n�s.LIK/ is a K–module. In
the general case z's restricts to a quadratic form on any subset of H

p
0

n�s.LIK/ which
is a K–submodule.

As in the case NL D 2 for K D C , R D O.W/˝ƒC we obtain a quadratic form
'W D t�1 z's with values in O.W/. We can also restrict 'W to H

p
0

n�s.LIZ/.

Remark 4.2.1 (1) The operation defined above seems to be the first step in a sequence
of higher order operations, each defined whenever the previous ones vanish. While
these higher order operations are of interest we will not further discuss them here.

(2) The quadratic forms discussed here first appeared in Cho [16] for NL D 2, L a
toric fibre and the trivial representation.

(3) The assumptions that R�1 D 0 when NL D 2, or more generally that R�l D 0

for 1 � l � 2s � 1 when NL D 2s , are not really necessary in order to define the
quadratic form ' . (And similarly for the assumption that R0 is a free K–module.)
The point is that we still have an inclusion Hn�s.LIK/˝K R0 �! .H.LIR//n�s Š

QHn�s.LIR/ (where the inclusion and the last isomorphism are canonical). Moreover,
by inspecting the definition of the quantum product on the chain level it follows that
for x 2 H

p
0

n�s.LIK/ we still have that x � x is a multiple of ŒL�, hence we can
write x � x D z's.x/ŒL�, with z's.x/ 2 R. For degree reasons it now follows that
z's.x/ 2R�2s .

Nevertheless, we keep these assumptions for the simplicity of the exposition and also
because the rings we are interested in satisfy these assumptions anyway.

4.3 The discriminant

Let F be a finitely generated free abelian group and A a commutative ring. Let
'W F �! A be a quadratic form. Recall that ' has a well defined invariant � 2 A
called the discriminant which is defined as follows. Pick a basis for F and represent '
by a symmetric matrix A in that basis. Then the discriminant of ' ,

�' D� det.A/;

does not depend on the choice of the basis because any automorphism of F has
detD˙1.

Now let L be a Lagrangian with NL D 2 as in Section 4.1. (A similar computation is
possible for NL > 2). The discriminant � of the quadratic form 'W is an element
of O.W/. We denote its value at � by �.�/ 2C .
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To compute � explicitly fix a basis C D fC1; : : : ;Clg for Hn�1.LIZ/. Define
functions aij 2O.W/ by the relations

Ci �Cj CCj �Ci D aij ŒL� t:

Then we clearly have

(23) 'W.X1C1C � � �CXlCl/D
1

2

X
i;j

aij XiXj ; �D� det.aij /:

The minus sign in front of the determinant appears here in order to make our discriminant
compatible with conventions common in number theory. In the same spirit, we take
in the determinant the constants aij (instead of 1

2
aij ) so that whenever the trivial

representation �0 � 1 is in W1 the discriminant �.�0/ will be an integer.

When W DW1 we can express � in terms of the super potential as follows. We now
use the notation from Section 3.3.1. Fix a basis eD fe1; : : : ; elg for H1.LIZ/free and
a basis CDfC1; : : : ;Clg for Hn�1.LIZ/ which is dual to e as in Section 3.3.1. Write
�D .z1; : : : ; zl/ with respect to e. Then in view of formulas (18) and (23) we have

(24) �.z1; : : : ; zl/D .�1/lnC1z2
1 � � � z

2
l det

�
@2P

@zi@zj

�
:

5 The deformation viewpoint

Let L be a monotone Lagrangian which is R–wide, where R is of the following kind:
R D R˝K ƒC D RŒt � for some K–algebra R. For simplicity we assume that R

is free as a K–module. We grade t as usual, jt j D �NL , but do not grade R. Of
course, R is also assumed to be endowed with a zƒC–algebra structure, but we do
not make any special assumptions on it. For example we can take RDKŒt � with the
zƒC–algebra structure given by (9) for some � 2W2 (we often denote this ring also by
.ƒ�/C to emphasize its zƒC–algebra structure coming from �). Another example is
RDO.W/Œt � with the zƒC–algebra structure given by (12).

As L is wide there exists an isomorphism QH.LIR/ Š H.LIK/ ˝ R and, as
mentioned before, usually there is no canonical one. On the other hand, there is
a distinguished class of isomorphisms QH.LIR/ �!H.LIK/˝R which we now
describe.

For simplicity we will assume from now on that L admits a perfect Morse function.
If this is not the case, the use of minimal models allows essentially the same results
to be formulated in full generality (we remark however that the actual construction of
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the maps  and � from Proposition 2.2.1 is required, this construction appears in [14,
pages 2929–2933]).

5.1 The quantum product as deformation of the intersection product

Let D D .f; . � ; � /;J / be a regular triple consisting of a perfect Morse function
f W L �! R, a Riemannian metric . � ; � / on L and an almost complex structure
J 2 J . Denote by CM.F/ the Morse complex (with coefficients in K ) associated to
the pair F D .f; . � ; � //. Denote by C.DIR/ the pearl complex. Note that the Morse
differential on CM.F/ vanishes (since f is perfect). The differential of the pearl
complex vanishes too because L is wide. It follows that the obvious map

zhDW C.DIR/ �! CM.F/˝K R induced by zhD.x/D x 8x 2 Crit.f /

is a chain map (in fact a chain isomorphism). Let hDW QH.LIR/ �!H.LIK/˝R
denote the induced map in homology. The isomorphism hD is of course not canonical; it
depends on D. Denote by K the set of all isomorphisms QH.LIR/�!H.LIK/˝R
obtained in this way from all possible triples D.

Proposition 5.1.1 Elements of K have the following properties:

(1) Every hD 2K sends the unity of QH.LIR/ to the unity ŒL� of H.LIK/.

(2) For every two elements hD; hD0 2K we have

hD0 ı hD
�1
D idC�1t C�2t2

C � � � ;

where �k W H�.LIK/˝R �! H�CkNL
.LIK/˝R, k � 1. In other words,

hD0 ı h�1
D is a deformation of the identity.

Proof Let D0 D .f 0; . � ; � /0;J 0/ be another triple with f 0 a perfect Morse function
and put F 0 D .f 0; . � ; � /0/. Denote by F0W CM.F/ �! CM.F 0/ the comparison map
between the Morse complexes and by F W C.D/�! C.D0/ the comparison between the
pearl complexes. We have

F.x/D F0.x/CF1.x/t CF2.x/t
2
C � � � 8x 2 Crit.f /;

for some maps Fk W CM�.F/˝R �! CM�CkNL
.F 0/˝R. See [13; 14] for more

details. Notice that the comparison chain morphism F is defined by using appropriate
homotopies relating the data D and D0 and is unique, in general, only up to chain
homotopy. In this case however, the differentials of the two involved complexes vanish
so that F itself is canonical.
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For further use denote

GL D fhD0 ı hD
�1
j D;D0 generic triplesg � Aut.H.LIK/˝R/:

This is a subgroup of the group of automorphisms of the R–module H.LIK/˝R.
It corresponds to the subgroup generated by all morphisms associated to changes in
choices of data D.

5.1.1 General deformation theory The previous considerations fit into the general
framework of classical deformation theory of algebras (see for example Gersten-
haber [29]). Algebras in this section are assumed to be associative, unital, but not
necessarily commutative.

Let .A; � / be an algebra over the commutative ring R (which is also a K–algebra).
We denote by � �� the product of A. A deformation of A is a structure of an algebra
over RŒt � on the module A˝R RŒt �

.A˝R RŒt �/˝RŒt � .A˝R RŒt �/ �! .A˝R RŒt �/; x˝y 7�! x �y;

which satisfies the following conditions:

(1) A˝R RŒt � endowed with � is an (associative unital) algebra over RŒt �.

(2) 1 2A continues to be the unit for �.

(3) � reduces to product � for t D 0.

Sometimes instead of denoting the product on A by x �y and a deformation of it by
x �y we will write m0.x;y/ and m.x;y/ respectively.

We will also need a graded version of the story. Our algebra AD
L

k�0 Ak will be
cohomologically graded and the ring R should be regarded as having degree 0 with
respect to A, ie R is mapped by a morphism of rings to the center of A in degree
0, R �! Z.A0/ � A0 . Let d 2 Z. We will consider deformations � of A where
the formal parameter t has degree jt j D d . We denote the set of such deformations
by eDefd .A/. Denote by Isod .A/ the group consisting of all RŒt �–linear, degree
preserving, module isomorphisms �W A˝R RŒt � �!A˝R RŒt � that have the form

�.x/D xC�1.x/t C�2.x/t
2
C � � � 8x 2A; where �k W A

�
�!A��dk :

Two deformations m0;m00 2 eDefd .A/ are said to be equivalent if they are related
by an element of Isod .A/, ie there exists � 2 Isod .A/ such that �.m00.x;y// D
m0.�.x/; �.y// for every x;y 2A˝R RŒt �. Denote by Defd .A/DeDefd .A/=Isod .A/

the set of equivalence classes of deformations of A. Similarly, when grading is not
relevant we have eDef.A/, Iso.A/ and Def.A/DeDef.A/=Iso.A/.
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We will also use a slight modification of this construction. Assume G � Isod .A/ is a
subgroup. We then denote by

DefG
d .A/D

eDefd .A/=G

the equivalence classes of deformations of A with respect to conjugation by elements
of G .

5.1.2 The main example Let L be a monotone Lagrangian and R D RŒt � as ex-
plained at the beginning of Section 5 so that L is R–wide. Let A be the singular
homology algebra of L (tensored with R), ADH.LIK/˝K R, endowed with the
intersection product �. We grade A cohomologically, ie we put AiDHn�i.LIK/˝K R

and here the degree of t is NL (note that the unity 1 2A0 corresponds in the homo-
logical notation to ŒL�).

Next consider the quantum homology QH.LIR/. For convenience, we grade it here
cohomologically too, namely QHi.LIR/ WD QHn�i.LIR/ and whenever working
with QH� we change the degree of t to be NL rather then �NL .

Recall the set of isomorphisms K introduced at the beginning of Section 5. Pick
h2K . By transferring the quantum product �, via h, from QH.LIR/ to A˝R RŒt �D

H.LIK/˝K RŒt � we obtain a deformation �h 2
eDefNL

.A/ of the intersection prod-
uct ���. This is so because of point (1) of Proposition 5.1.1 and because the quantum
product � operation is obviously a deformation of the intersection product � � �
operation on the chain level.

It follows from point (2) of Proposition 5.1.1 that GL � IsoNL
.A/ and so we have

quotient maps

eDefNL
.A/

‰1
�! DefGL

NL
.A/

‰2
�! DefNL

.A/:

We denote
�

G
L D‰1.�h/ and �L D‰2.�

G
L/:

By the preceding discussion neither �G
L

nor �L depend on the choice of h 2 K . In
other words, .QH.LIR/;�/ provides us with a well defined class of deformations of
the classical ring .H.L/˝R; � /.

Notice that �L belongs to a purely algebraic object: indeed DefNL
.A/ only depends

on the algebra structure of A D H.LIR/ and not on any properties of the specific
Lagrangian embedding L�M . By contrast, DefGL

NL
.A/ depends on this embedding

because GL is strongly depended on it – for instance, if L is exact, then GL reduces
to the identity element.
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5.2 Invariant polynomials in the structural constants of the quantum
product

We pursue the discussion in Section 5.1.2. In particular, we continue to write the
various structures with cohomological grading. We use the same assumptions on K ,
R and RŒt � as at the beginning of Section 5. The main examples we have in mind are
when K is a field, or when K D Z. Moreover, for simplicity we will also assume that
H.LIK/ is a free K–module. (If this is not the case we can always replace H.LIK/

by its free part over K , H.LIK/free , and the discussion below continues to hold with
minor modifications.) As for the K–algebra R we will assume for simplicity that K

is embedded in R.

To shorten notation we set zA D A˝R RŒt � D H.LIK/˝K RŒt �. Note that zA D
H.LIK/ ˚ .H.LIK/ ˝K tRŒt �/. Denote by prqW

zA �! H.LIK/ ˝K tRŒt � the
projection on the second factor. Put

HD hom0
K .H.LIK/˝H.LIK/; zA/;

Hq D hom0
K .H.LIK/˝H.LIK/;H.LIK/˝K tRŒt �/;

where hom0
K stands for degree preserving K–linear homomorphisms. For degree

reasons both H and Hq are free R–modules of finite rank. The projection prq induces
a map qW H �! Hq . As explained above an element h 2 K induces an associative
product �hW

zA˝ zA! zA. In particular we also get an element which we still denote
�h 2H . We denote its image in Hq by q.�h/.

Let U be a finite rank free K–module and V DU ˝K R. By a polynomial on V with
coefficients in K we mean a function P W V �! R for which there is a basis of U ,
u1; : : : ;ul such that P can be written as a polynomial with coefficients in K in the
R–basis u1˝ 1; : : : ;ul ˝ 1 of V . Clearly this notion does not depend on the choice
of the basis for U . We denote these polynomials by KŒV �.

Consider now polynomials P 2KŒH� (where H is written as U ˝K R in an obvious
way). The purpose of this section is to discuss polynomials P which have the property
that

P .�h/D P .�h0/ for every h; h0 2K:
Such polynomials will be called invariant polynomials. Next let � 2 Aut0K H.LIK/

be a degree preserving automorphism. Clearly each such automorphism � induces
an automorphism �H 2 AutK .H/. We say that a polynomial P is a symmetric
polynomial invariant if P is an invariant polynomial and moreover P remains invariant
under composition with �H for every � 2 Aut0K H.LIK/. We will be particularly
interested in invariant polynomials (symmetric or not) that capture information on the

Geometry & Topology, Volume 16 (2012)



990 Paul Biran and Octav Cornea

quantum part of the product, namely polynomials P that factor through qW H!Hq ,
ie there exists a polynomial Q 2 KŒHq � such that P .�h/ D Q.q.�h//. We will
call them Lagrangian quantum polynomials. Finally, we will be interested also in
universal invariant polynomials for L, namely those that do not depend on the particular
Lagrangian embedding of L.

We will now describe these notions in detail by using coordinates. While the notation
in coordinates might appear heavy, it is more useful for applications and computations.

Fix a basis a D .ai/i2I for H�.LIK/ and put �.i; j ; s/ D jai j C jaj j � jasj. We
will assume further that the basis a is ordered in such a way that the first element is
a0 D 1 2H 0.LIK/, the next elements form an ordered basis of H 1.LIK/ the ones
after that form a basis for H 2.LIK/ etc. Obviously, any graded change of basis leaves
the �.i; j ; s/ invariant.

Any associative product �2eDefNL
.A/ is characterized by constants k

i;j
s 2R given by

(25) ai � aj D

X
f s jNL divides �.i;j ;s/; �.i;j ;s/�0g

ki;j
s ast�.i;j ;s/=NL :

The fact that the group GL is in general nontrivial implies that for a product �h

associated to an element h 2 K , the constants k
i;j
s depend on h (and thus on D D

.f; . � ; � /;J /) and not only on �G
L

. At the same time in the case of quantum homology
of the ambient manifold M the structural constants of the quantum product are in fact
triple Gromov–Witten invariants (see eg McDuff and Salamon [39]). This suggests
that even if these structural constants are not themselves invariant in our Lagrangian
setting, it might very well happen that – as a “next best case” – there exist invariants
that are polynomial expressions in these constants.

Define

(26) IL D f.i; j ; s/ 2 I � I � I j �.i; j ; s/� 0 ; NL divides �.i; j ; s/g:

Notice that the number of elements of IL only depends on H.LIK/ and NL (and not
on the actual basis a). We let KŒzr I r 2 IL� be the polynomial ring with coefficients
in K and variables zr ; r D .i; j ; s/2IL . Given any polynomial P 2KŒzr I r 2IL� and
any product � 2eDefNL

.A/ we can evaluate P on the structural constants associated
to this product in the basis a: we assign to z.i;j ;s/ the value k

i;j
s 2R. We denote the

value of P computed in this way by P .�I a/ 2R and we call it the value of P on the
product � in the basis a.

Definition 5.2.1 Fix a smooth closed and oriented manifold L0 endowed with a spin
structure. Let N � 2 be an integer. Let i W L0 ,�! M be an R–wide monotone
Lagrangian embedding with minimal Maslov number N . Put LD i.L0/.
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(i) A Lagrangian polynomial invariant for L is a polynomial P 2KŒzr I r 2 IL�

so that for every h 2K , the value P .�hI a/ is independent of h for any basis a
(in other words P .�hI a/ only depends on P , �G

L
and a).

(ii) A universal Lagrangian polynomial invariant of L0 is a polynomial P as in
point i which has the property that it is a polynomial invariant for every wide
Lagrangian embedding i W L0 ,�!M (in any M ) as above.

Polynomials as above are called symmetric if the value P .�hI a/ is independent of the
basis a. They are called quantum if they depend only on z.i;j ;s/ with �.i; j ; s/ > 0.

Example 5.2.2 We start with the trivial example. Notice that the structural constants
k

i;j
s for �.i; j ; s/D 0 are simply the structural constants of the algebra A and thus

do not depend on D. Thus, any polynomial P 2KŒzr W r 2 IL; �.r/D 0� is invariant
(and even universal). From now on we will refer to this example as being trivial and
we will eliminate it from any further discussion by focusing on quantum polynomial
invariants.

Example 5.2.3 For this example it is relevant to work with K D Z. Furthermore,
we assume NL D 2 and put l D rank H 1.LIZ/. This means that for a basis a as
before, the first element is a0 D 1 and the next elements, a1; : : : ; al , form a basis
of H 1.LIZ/. We consider the elements of .i; j ; 0/ 2 IL with 1 � i; j � l (hence
�.i; j ; 0/D 2) and for each such element we define polynomials

Pij D z.i;j ;0/; xPij D Pij CPji ; P� D� det. xPij /:

The point of this example is to discuss the invariance of these polynomials.

Let h 2K with associated product �h . Then we have:

(i) Pij .�hI a/D cij 2R where ai �h aj D ai � aj C cij t (recall that we are using
cohomological notation).

(ii) xPij .�hI a/ D aij 2 R where ai �h aj C aj �h ai D aij t (compare with (23)
from Section 4).

(iii) P�.�hI a/D� with � the discriminant from Section 4.

This shows that the polynomials xPij are universal quantum invariants because by
evaluation they provide the coefficients of the quadratic form discussed in Section 4,
and this quadratic form is invariant with respect to D. However, the xPij are not
symmetric polynomials since the coefficients of the quadratic form depend on the
basis in which it is written. On the other hand, for obvious reasons, P� is a universal,
symmetric, Lagrangian quantum invariant.
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Note that in contrast to xPij , the polynomials Pij are not quantum invariants in general,
as the example of the 2–dimensional Clifford torus in CP2 shows.

Here are the details. We can choose in this case a basis a1; a22H 1.LIZ/ with a1 �a2D

PDŒpt�. For a specific choice of auxiliary data we then have a1 �h a2 D PDŒpt�C t ,
a2 �h a1 D�PDŒpt�, a1 �h a1 D a2 �h a2 D t ; see in [14, Theorem 2.3.2]. From this
it immediately follows that P1;1 and P2;2 are quantum (nonsymmetric) invariants. On
the other hand P1;2 and P2;1 are not invariants since there exists h0 2 K such that
h0ıh�1.PDŒpt�/DPD.Œpt�/C�t with �¤ 0. A fast way to see that is the following. We
can present the Clifford torus as a quotient of a rectangle .Œ0; 1�� Œ0; 1�/=� with pairs
of parallel sides identified and in such a way that for the standard complex structure
J0 of CP2 the boundaries of the three J0 –holomorphic disks through the point .0; 0/
are given (up to orientation) by the two edges Œ0; 1�� 0, 0� Œ0; 1� and the diagonal
of the rectangle. Now choose two perfect Morse functions f;gW L!R with critical
points Crit.f / D fx0;x

0
1
;x00

1
;x2g, Crit.g/ D fy0;y

0
1
;y00

1
;y2g (where the subscripts

stand for the Morse indices). Choose x2;y2 to be close enough one to the other and
similarly for the pairs x0

1
;y0

1
and x00

1
, y00

1
, but choose x0 and y0 to lie in different

connected components of Int .Œ0; 1�� Œ0; 1�/ n diagonal. Put D D .f; . � ; � /;J0/ and
DD .f 0; . � ; � /;J0/. It is easy to see that the comparison map ‰D0;DW C.D/! C.D0/
satisfies ‰D0;D.x2/D y2 , ‰D0;D.x

0
1
/D y0

1
, ‰D0;D.x

00
1
/D y00

1
. On the other hand from

the formulae in Section 6.2.3 we get that ‰D0;D.x0/D y0˙y2t (see formula (53) and
Figure 4). It follows that hD0 ıh�1

D .PDŒpt�/D PD.Œpt�/˙ t . In particular P1;2.�hD0
/¤

P1;2.�hD
/ and similarly for P2;1 .

Remark 5.2.4 The argument above also shows that for the Clifford torus L�CP2

we have GL D Iso2.A/, where ADH.LIK/˝K R. Indeed, for degree reasons

Iso2.A/D
˚
� j�.ŒL�/D ŒL�; �.a/Da; 8 a2H1.LIK/; �.Œpt�/D Œpt�Cr ŒL� t; r 2Z

	
:

This group is generated by the automorphism �0 corresponding to r D 1, namely
�0.Œpt�/D Œpt�C ŒL� t . At the same time we have seen above that for the Clifford torus
�0 2 GL , which implies that Iso2.A/� GL .

Remark 5.2.5 For KDZ, the polynomial P� is (up to composition with a polynomial
of one variable) the only universal symmetric quantum invariant that depends only on
the z.i;j ;0/ ’s with �.i; j ; 0/D 2. Indeed, any polynomial quantum invariant depending
on the variables z.i;j ;0/ ’s with �.i; j ; 0/ D 2 is a polynomial in the xPij ’s. In other
words, it is a polynomial in the coefficients of the quadratic form ' defined in (22)
of Section 4. By definition, the values of this polynomial in the coefficients of ' should
be independent of the basis in which ' is expressed. On the other hand it is known
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since the work of Hilbert [34] that the ring of polynomial invariants of a quadratic form
is generated by a single element which can be taken to be the discriminant.

5.2.1 The variety of algebras We describe here a more conceptual point of view
on the invariant polynomials introduced in the previous section. We continue to use
the notation from Section 5.1.2 and Section 5.2 and, in particular, continue to use
cohomological notation. A survey of deformation theory from this perspective can be
found in Makhlouf [37] for instance.

We begin by noticing that the set eDefNL
.A/ of deformations of the intersection product

on ADH.LIR/ has the structure of an algebraic set. Indeed, fix a basis aD .ai/i2I for
H.LIK/. The structural constants k

i;j
s 2R associated to any element � 2eDefNL

.A/

by writing the product structure in the basis a as in (25) verify a series of algebraic
equations. First, we have linear equations reflecting the fact that the product is graded:

(27) ki;j
s D 0 if �.i; j ; s/� 0 or NL does not divide �.i; j ; s/:

Next, the existence of a unit translates to

(28) k
0;i
j D k

i;0
j D ıi;j 8 i; j 2 I:

The fact that the operation is a deformation of the intersection product in A gives

(29) ki;j
s D v

i;j
s if �.i; j ; s/D 0;

where vi;j
s are the structural constants of the intersection product in A. Finally we

have some quadratic equations that reflect the associativity of the product:

(30)
X

s

ki;j
s ks;l

m D

X
r

kj ;l
r ki;r

m 8 i; j ; l;m 2 I:

Consider variables z
i;j
s 2R with i; j ; s 2 I and define the algebraic set VNL

.A/ by
demanding that the z

i;j
s ’s verify (27), (28) and (30). Clearly this set is independent of

the basis a. Denote by VNL
.AI a/ the algebraic set obtained by demanding that the

z
i;j
s ’s verify additionally (29). We have an identification

‰aW eDefNL
.A/! VNL

.AI a/� VNL
.A/:

The group GL acts on VNL
.A/ and this action restricts to an action on VNL

.AI a/ for
each basis a.

Given that R is a K–algebra, there is a canonical embedding KŒzr I r 2 IL� !

RŒzr I r 2 IL� so that to any polynomial in KŒzr I r 2 IL� we can associate one in
RŒzr I r 2 IL�. In this language, a Lagrangian polynomial invariant is a polynomial
in KŒzr I r 2 IL� whose associated regular function on VNL

.A/ is constant on the
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GL –orbit of �h 2 VNL
.AI a/ for all h 2K and such that this holds for each basis a. It

is symmetric if the value of the respective constant is independent of the basis a.

Remark 5.2.6 An important point which is an immediate consequence of the discus-
sion in this section is that two Lagrangian invariant polynomials P1;P2 2KŒzr W r 2IL�

as defined in Definition 5.2.1 can be equal, P1 D P2 , as regular functions on VNL
.A/

without being the same polynomials: the polynomial expressions of P1 and P2 can
be different but, due to the relations among the variables k

i;j
s , the respective regular

functions may agree. Notice also that if we have an equality P1DP2 over VNL
.A/ for

two polynomials in KŒzr I r � and we know that just one of the polynomials is invariant,
then the second one is necessarily also invariant.

5.3 Hochschild cohomology

The classical algebraic approach to deformation theory is via Hochschild cohomology.
We recall it here. We use the standard Hochschild cohomology theory for associative
algebras [29]. We start with a brief description of this classical construction.

Let A be a graded algebra over a commutative ring R. As before we view R as having
degree 0 with respect to A, ie R is mapped by a morphism of rings to the center of A

in degree 0, R �!Z.A0/�A0 .

The Hochschild complex of A (with coefficients in A) is defined by

C k.AIA/D HomR.A
˝k ;A/

endowed with the differential d W C k.AIA/ �! C kC1.AIA/:

(31) df .a1˝ � � �˝ akC1/D a1f .a2˝ � � �˝ akC1/

C

kX
iD1

.�1/if .a1˝ � � �˝ .aiaiC1/˝ � � �˝ akC1/

C .�1/kC1f .a1˝ � � �˝ ak/akC1:

The homology of this cochain complex is called the Hochschild cohomology of A

(with coefficients in A) and is denoted by HH�.AIA/. The second A here should
be regarded as the “coefficients module”. It can be replaced by any A–module M

yielding HH�.AIM /, but we will not need this in the sequel.

We incorporate the grading into this construction (without modifying the formula for
the differential). Simply consider for every k; l 2 Z the submodule

C k;l.AIA/D Homl
R.A

˝k ;A/� C k.AIA/;
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where Homl
R stands for R–linear homomorphisms that shift degree by l . Here, this

means that f 2 C k;l.AIA/ if f is R–linear and for every k homogeneous elements
a1; : : : ; ak 2A we have

jf .a1˝ � � �˝ ak/j D ja1˝ � � �˝ ak jC l D

kX
iD1

jai jC l:

Clearly d.C k;l/� C kC1;l . Put

HHk;l.AIA/D
ker.d jC k;l /

d.C k�1;l /
:

Classical deformation theory provides a map

(32) T 1
W Defd .A/ �! HH2;�d .AIA/:

The definition of T 1 is straightforward. Given a deformation � 2eDefd .A/, we can
write

x �y D x �yCm1.x;y/t C � � � 8x;y 2A:

A simple computation shows that m1 2Hom�d
R .A˝A;A/ is a Hochschild cycle (this

is due to the associativity of �), hence we have an element Œm1� 2 HH2;�d .AIA/.
Moreover, equivalent deformation �0 � � give rise to cohomologous cycles: Œm0

1
�D

Œm1� 2 HH2;�d .AIA/. Thus setting T 1.Œ��/D Œm1� provides a well defined map.

5.3.1 Quadratic forms and Hochschild cohomology Let A be an R–algebra and
S � A an R–submodule. Denote by Q2.S;R/ the space of R–valued quadratic
forms 'W S �! R. Put Sp0 D fs 2 S j s � s D 0g � S , and consider the restriction
map restW Q2.S;R/�! Func.Sp0 ;R/ to the space of R–valued functions on the set
Sp0 . Denote by Q2

0
.S;R/ the image of this map.

Assume from now on that our graded R–algebra A is nontrivial only in degrees
between 0 and n. Moreover assume that A0 DR. Then we have a map

(33) ‚W HH2;�d .AIA/ �!Q2
0.A

d=2;R/;

defined as follows. Let ˛2HH2;�d .AIA/. Choose a cocycle f˛ 2C 2;�d .AIA/ so that
Œf˛ �D˛ and view f˛ as a map f˛W A˝A�!A of degree �d . Consider the quadratic
form yf˛W A

d=2 �! R, defined by yf˛.a/ WD f .a˝ a/ 2 A0 D R. Finally, define
‚.˛/D rest. yf˛/, where rest is the restriction map Q2.Ad=2;R/ �!Q2

0
.Ad=2;R/.

We claim that the map ‚ is well defined. To see this it is enough to show that if
f D dg , where g 2C 1;�d .AIA/ then f .a˝a/D 0 for every a2Ad=2 with a �aD 0.
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Indeed, let a 2 .Ad=2/p0 . By the definition of the Hochschild differential we have

f .a˝ a/D dg.a˝ a/D a �g.a/�g.a � a/Cg.a/ � a:

But gW A �! A has degree �� d hence g.a/ 2 A�d=2 D 0 and by assumption we
also have a � aD 0. It follows that f .a˝ a/D 0. This proves that ‚ is well defined.

Consider now the composition

(34) �W Defd .A/ �!Q2
0.A

d=2;R/; � D‚ ıT 1:

In case .Ad=2/p0 DAd=2 , � assigns to every graded deformation equivalence class
of A a quadratic form on Ad=2 .

Example 5.3.1 Let Ln � M 2n be a monotone Lagrangian with NL D 2s and a
nonempty wide variety W . Take

RDO.W/ and A� DHn��.LIC/˝O.W/:

As explained in Section 5.1.2, QCH.LIW/ D QH.LIRŒt �/ gives rise to a class of
deformations �L 2 Defd .A/. Applying the map T 1 we obtain an invariant T 1.�L/ 2

HH2;�d .AIA/.

Next, applying the map � to �L we obtain a quadratic form �.�L/ 2Q2
0
.As;R/ on

Asp
0
Š .Hn�s.LIC/˝O.W//

p
0 with values in O.W/. A straightforward computation

shows that this �.�L/, when restricted to H
p

0

n�s.LIC/, coincides with the quadratic
form 's

W
W H

p
0

n�s.LIC/ �!O.W/ constructed in Section 4.2.

Example 5.3.2 We have a particular interest in the free graded exterior algebra ƒn.R/

which is generated as algebra by n generators a1; : : : ; an 2 ƒ
1
n.R/ which we will

think of as the singular cohomology of the n–torus (with coefficients in R). We put
ADƒn.R/, d D 2 and consider the resulting map

�W Def2.A/!Q2.A1;R/:

Lemma 5.3.3 Let K be a field of characteristic 0 or Z. For ADƒn.R/, n� 2, the
map � is an isomorphism.

Proof Let � 2 eDef2 .A/. The quadratic form �.�/ can be described as follows. Pick
a basis a1; : : : an 2A1 and notice that as ƒn.R/ is an exterior algebra we have

(35) ai � aj C aj � ai D ˛ij t for some ˛ij 2R 8 1� i; j � n:
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The quadratic form in question is

�.�/.X1a1C : : :Xnan/D
1

2

X
i;j

˛ij XiXj :

The argument is based on a simple remark concerning Clifford algebras. First, recall
the definition of the Clifford algebra. Let QD .qij / be a symmetric n�n matrix with
coefficients in R. The Clifford algebra associated to Q is by definition

Cliff.Q/D
�
Fn.R/˝R RŒt �

�ı
I;

where jt j D 2, Fn.R/ is the free, noncommutative algebra generated by a1; a2; : : : ; an

over R (all of degree 1) and I is the ideal generated by the relations

aiaj C aj ai D 2qij t:

For degree reasons this algebra is a deformation of ƒn.R/ endowed with the standard
exterior product structure.

Coming back to our situation we see that .AŒt �;�/ can be described as the Clifford
algebra associated to the quadratic form �.�/. (This has been previously remarked by
Cho in [16].) More precisely, if we take Q to be the matrix corresponding to �.�/
in the basis a1; : : : ; an (ie take qij D

1
2
˛ij ; if K D Z we use here the “twos out”

convention for integral quadratic forms so that Q can contain half-integers) then the
morphism of algebras

cQ;�W Cliff.Q/ �! .AŒt �;�/ given by setting cQ;�.ai/D ai :

is in fact an isomorphism, as can be verified by dimension counting, degree by degree.

We now use this remark to show both the surjectivity and injectivity of the map � . The
surjectivity is clear by the construction of Cliff.Q/: it is a deformation of the exterior
algebra and it is sent by � to the quadratic form associated to Q.

To show that � is also injective assume that �.�/D �.�0/ for some �;�0 2 Def2.A/.
Let Q be the n� n matrix corresponding to �.�/D �.�0/ 2Q2.A1;R/ in the basis
a1; : : : ; an . We have an isomorphism of algebras

� D cQ;�0 ı c�1
Q;�W .AŒt �;�/ �! .AŒt �;�0/:

This composition is the identity on A�1 . Together with the fact that � is an isomorphism
of algebras this implies immediately that � is an equivalence of deformations and
finishes the proof.
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An interesting consequence of this Lemma is obtained if we assume that for some wide
n–dimensional Lagrangian torus L �M the group of geometric equivalences GL

coincides with the group of algebraic equivalences Iso2.A/, for A D H.T nIR/ D

ƒn.R/. In this case we have two identifications

DefGL

NL
.A/! DefNL

.A/!Q2.A1;R/:

This implies that any symmetric quantum polynomial invariant of L has to agree as
regular function over V2.A/ with an expression that can be read off from the coefficients
of the quadratic form �.�L/. Moreover, by Remark 5.2.5 it verifies P D F.P�/ for
some polynomial of a single variable F , where the equality here is over V2.A/. Now
such Lagrangian tori do exist. For example, by Remark 5.2.4 for the 2–dimensional
Clifford torus L�CP2 we do indeed have GL D Iso2.A/. Another way to formalize
this is the following.

Corollary 5.3.4 For the torus T2 any universal Lagrangian symmetric quantum poly-
nomial invariant P agrees (as a regular function, in the sense of Remark 5.2.6) with a
polynomial belonging to the subring generated by the discriminant.

We expect this corollary to remain true also for higher dimensional tori.

Remark 5.3.5 The information contained in the superpotential from Section 3.3 can be
encoded in a representation of the moduli spaces �M.�;J / with values in the free loop
space ƒ.L/DLS1

. By taking the sum of the cycles represented by all these moduli
spaces one gets a homology class ˛ 2H�.ƒ.L/IK/. There exists a well known isomor-
phism � constructed by Jones (see eg Cohen and Jones [19]) between H�.ƒ.L/;K/

and the Hochschild cohomology HH�.C �.L/IC �.L// where C �.�/ is the singular
cochain complex. (Note however that one has to adjust the grading and the sign conven-
tions here; for example see Felix, Thomas and Vigué-Poirrier [22].) In favorable cases
we also have an isomorphism qW HH�.C �.L/IC �.L//� HH�.H �.LIK/;H �.LIK//.
We point out here that, for instance, for Lagrangian tori if we project the class q ı�.˛/

onto HH2;�2 we obtain precisely the Hochschild cohomology class T 1.�L/ that is
associated to the quantum product when viewed as deformation of the intersection
product.

6 The discriminant and enumerative geometry

The purpose of this section is to use the machinery introduced before to address the
problem described at the beginning of Section 1. Thus we consider one of the simplest,
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nontrivial, enumerative problem in Lagrangian topology: counting J –holomorphic
disks uW .D; @D/! .M;L/ passing through 3 distinct points in L. As before, we
will assume the closed Lagrangian Ln � .M 2n; !/ to be monotone with NL � 2.

Ideally, one would like to be able to estimate the number of disks in question by
separating them according to their homotopy class – this is where the wide varieties
will be of help.

6.1 Holomorphic disks through three points

As in the introduction, let P;Q;R 2L be three distinct points. We are interested in
the number of disks u of Maslov index 2n passing, in order, through P , Q and R.
We will count these disks with coefficients in O.W/ where W is one of our two wide
varieties for L. This will lead to more refined formulae than working only over ƒC .

To be more precise, given a class � 2H D
2

with �.�/D 2n consider the map

(36) eW �M.�;J / �!L�L�L; e.u/D
�
u.e�4�i=3/;u.e�2�i=3/;u.1/

�
;

where �M.�;J / is the moduli space of parametrized J –disks in the homotopy class �.
Note that both the source and target of this map are 3n dimensional. Standard arguments
show that once we fix the points P;Q;R then for generic J the tuple .P;Q;R/ is
a regular value of this map and moreover the set e�1.P;Q;R/ is finite (although
the space �M.�;J / is not compact). We associate to each u 2 e�1.P;Q;R/ a sign
".uIP;Q;R/D˙1 by comparing orientations via e. For � 2Hom0.H

D
2
;C�/ define

now

(37) nPQR.�/D
X

f� j�.�/D2ng

X
u2e�1.P;Q;R/

".uIP;Q;R/�.�/:

The numbers nPQR.�/ are neither invariant with respect to P;Q;R nor to J .

6.1.1 Splitting polynomials The approach to estimating nPQR that we will discuss
here is based on the following simple idea: instead of showing that n�;�;� is a numerical
invariant (which it is not) show that there exists a polynomial S 2KŒ�1; : : : ; �q � and a
subvariety W � Hom0.H

D
2
;C�/ both independent of J;P;Q;R so that

(38) nPQR.�/D S.�1; : : : �q/ ; �j D #�.Mj / 8� 2W :

Here Mj is a 0–dimensional moduli space of pearl-like trajectories involving only
disks of Maslov index at most 2n� 2. Of course, the number #�.Mj / depends on
the various data involved (eg Morse functions, metric and almost complex structure),
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however the equations defining Mj are fixed. By definition, the counting giving the �j
is given by

#�.Mj /D
X
�

#.Mj .�//�.�/;

where Mj .�/ are the configurations in Mj whose total homology class is �.

A polynomial S as above is called a splitting polynomial over W . Equation (38) can
be interpreted as an equality in O.W/.

As we will see next such splitting polynomials often exist. As in Section 5 we will as-
sume here that L admits a perfect Morse functions but if this is not the case the minimal
model technique from Section 2.2.4 may be used instead with minor modifications.

Theorem 6.1.1 Monotone Lagrangians L with NL� 2 that are not rational homology
spheres admit splitting polynomials S over their wide varieties Wi.L/, i D 1; 2.
Moreover, there are such splitting polynomials that are universal in the sense that they
are independent of the particular Lagrangian embedding of L.

As we will see in the proof, this is a rather immediate reflection of three facts: Poincaré
duality in singular homology, the fact that QCH.LIWi/ – as defined in Section 3.2 –
is a deformation of the singular homology algebra as discussed in Section 5, and finally
the fact that the quantum product is an associative operation. Splitting polynomials
are closely related to the invariant polynomials in Section 5.2. We prefer to avoid
making explicit use of invariant polynomials in the proof of the theorem but we refer
to Remark 6.1.3(i). for further discussion of this relationship.

6.1.2 Proof of Theorem 6.1.1 For simplicity we assume that NLD 2 (the arguments
for NL > 2 are similar). We will use in this proof homological notation.

Recall that we have assumed that L admits a perfect Morse function, hence H�.LIZ/
is free. Fix a basis aD .a0; a1; : : : ; am/ for H�.LIZ/, consisting of elements of pure
degree and so that a0 D Œpt�, jai j � jaj j for every i < j and am D ŒL�.

Pick two generic perfect Morse functions f;g on L a Riemannian metric . � ; � /
and an almost complex structure J on M so that the pearl complexes associated to
Df D .f; . � ; � /;J / and to DgD .g; . � ; � /;J / are well defined as well as the chain level
quantum product. We also require that the minimum of f is x0 DQ, the maximum
of f is xm DR and the minimum of g is y0 D P .

Denote by W be the wide variety of L (either W1 or W2 ). The data Df and Dg give
us two identifications

hf ; hgW Q
CH.LIW/ �!H.LIC/˝O.W/˝CŒt �:
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For c 2H.LIC/ we write cf D h�1
f
.c/; cg D h�1

g .c/ 2QCH.LIW/. The relation
between afi and ag

i is given by

(39) afi D ag
i C

X
j>i

� i
j ag

j tr i
j ; with � i

j 2O.W/; r i
j � 1:

Moreover, r i
j � n=2 for every i; j and the coefficients � i

j are all determined by
counting pearly moduli spaces involving only configurations of disks with total Maslov
index � n. This follows from the comparison maps described in Section A.2.5 below.
Recall also that am D ŒL� is transformed canonically to the unit of QCH.LIW/ and
we have afm D ag

m . We therefore denote the latter by am too.

Next, given ˛; ˇ 2 H.LIZ/, denote by x˛ 2 ZhCrit.f /i the linear combination of
critical points representing in Morse homology the class ˛ . Similarly, denote by
yˇ 2 ZhCrit.g/i the Morse cycle representing ˇ .

Recall the chain level product C.Df IO.W/Œt �/˝C.DgIO.W/Œt �/�!C.Df IO.W/Œt �/.
We will denote it here by x ˝ y 7�! x z� y , for x 2 Crit.f /, y 2 Crit.g/, in order
to distinguish it from the induced product on homology which is denoted by �. The
relation between � and z� is given by ˛f � ˇg D Œx˛ z� yˇ �. Of course, in order to
calculate ˛f �ˇf (rather than ˛f �ˇg ) one needs now to appeal to formula (39).

The following lemma follows immediately from the discussion above.

Lemma 6.1.2 Let ˛; ˇ 2 a. Write

(40) ˛f �ˇf D

mX
iD0

sia
f
i t�i ; si 2O.W/; si ¤ 0:

Then the following holds:

(1) �i � n for every i . Moreover, if �i D n for some i , then i Dm and ˛D ˇD a0 .

(2) The coefficients si for i < m are all determined by counting pearly moduli
spaces that involve configurations of disks with total Maslov index strictly smaller
than 2n. This continues to hold also for sm if ˛ ¤ a0 or ˇ ¤ a0 .

For a class c 2 QCH.LIW/ denote by hc; amtkif the coefficient of amtk when
writing c in the basis af

0
; : : : ; afm .

Consider now the product af
0
� ag

0
. By the definition of the product we have

haf0 � ag
0 ; amtn

if D �
0nPQRC �

00�PQR

for some �0; �00 2 f�1; 1g and where �PQR counts pearly configurations as in Section
A.2.2 in which more than a single J –holomorphic disk is present (by contrast, nPQR
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counts the configurations given by a single disk through the three points). The total
Maslov number of the configurations counted by � is 2n and as there are more than two
disks present, each such disk is of Maslov at most 2n� 2. Thus in order to prove our
theorem, it is enough to show that haf

0
�ag

0
; amtnif can be determined as a polynomial

expression in variables that count pearly configurations with total Maslov index < 2n.

For this purpose write af
0
D ag

0
C
P

j�1 �
0
j ag

j tr0
j with 1� r0

j � n=2, as in (39). We
have

haf0 � af0 ; amtn
if D ha

f
0 � ag

0 ; amtn
if C

X
j�1

�0
j ha

f
0 � ag

j ; amtn�r0
j if :

All the elements in the second summand are determined by configurations with total
Maslov � 2n� 2 (note that r0

j � 1). Thus it is enough to prove the same assertion for
the left hand side haf

0
� af

0
; amtnif .

We now use the assumption that L is not a rational homology sphere. Under this
assumption it is possible to choose the basis a so that there exist a; b 2 a with
0< jaj; jbj<m and a � b D a0 . We now have

af � bf D af0 CE.t/t;

where E.t/ is a polynomial in t with coefficients are linear combinations of a
f
1
; : : : ; a

f
m ,

but E.t/ has no term containing af
0

. Note also that the second summand here is E.t/t ,
hence it has no term of degree 0 with respect to t . It follows now that

h.af � bf /� .af � bf /; amtn
if

D haf0 � af0 ; amtn
if Cha

f
0 �E1.t/CE1.t/� af0 ; amtn�1

if

ChE.t/�E.t/; amtn�2
if :

The last two summands on the right-hand side are clearly determined by configurations
with total Maslov � 2n� 2 hence we are reduced to showing that the same holds for
the left-hand side.

We now use the fact that the quantum product is associative. This implies that

(41) .af �bf /� .af �bf /D ..af �bf /�af /�bf D .af0 �af CE.t/t �af /�bf :

By Lemma 6.1.2 af
0
� af has no term with tn and the same holds also for E.t/� af .

Moreover when writing af
0
�af and E.t/�af in the basis af all the coefficients are

determined by configurations with Maslov � 2n� 2. By Lemma 6.1.2 again, the same
holds also for .af

0
� af CE.t/t � af /� bf . It follows that all the coefficients (and in

particular that of amtn in .af � bf /� .af � bf / depend on configurations of Maslov
� 2n� 2. This concludes the proof.
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Remark 6.1.3 (i) Splitting polynomials of the type constructed above have a close
relationship with the invariant polynomials discussed in Section 5.2. Indeed, in the
language of that section, suppose that the homology basis .ai/ is so that a0 D Œpt �,
as D ŒL�. Any invariant polynomial of the form F D k

0;0
s CF 0 with F 0 depending on

variables different from k
0;0
s produces a splitting polynomial S . To see this we first

express the coefficients k
i;j

l
in terms of the coefficients wi;j

l
of the “geometric” prod-

uct z�. We then express F 0 in the wi;j

l
’s (there are also other variables appearing here

as in (39)) thus obtaining a new polynomial S 0 . We then define S D�S 0� ��CF.�/

for a suitable � D ˙1 and with � D �PQR C � � � . Here � � � stands for other terms
resulting from the expression of k

0;0
s in terms of the w ’s and F.�/ is the value of the

invariant polynomial on the product �. The construction in the proof of the theorem is
precisely of this type with F a particular polynomial deduced from the associativity
relation as it appears in (41).

(ii) It would be interesting to know what is the “simplest” (in some sense yet to be
defined) splitting polynomial S that one can produce by these methods.

6.2 Lagrangian 2–tori

In case of the 2–torus all the discussion above becomes much simpler and more elegant.
Moreover, we will deduce a splitting formula in terms of some configurations that have
some nice geometric meaning.

Consider three distinct points P;Q;R 2 L. Choose a smooth oriented path
��!
PQ

starting from P and ending at Q. Similarly connect Q to R and R to P by such
paths, denoted

��!
QR and

��!
RP respectively. We will refer to this triple of points connected

by these curves as a “triangle” on the tours.

We will use now the notation from Section 3.3, in particular the set of classes E2 and
the evaluation map ev W . �M.B;J / � @D/=G �! L. By taking J generic we may
assume that all three points P , Q, R are regular values of ev and moreover that ev is
transverse to the curve

��!
QR. Given .u; z/ 2 ev�1.P / set ".u; zIP /D˙1 according

to whether ev preserves or reverses orientations at .u; z/. Let � 2W . Define now the
following (complex) number

(42) nP .�/D
X

B2E2

X
.u;z/2ev�1.P/

�.B/".u; zIP / #
�
u.@D/\

��!
QR

�
;

where #
�
u.@D/\

��!
QR

�
stands for the intersection number between the oriented curves

u.@D/ and
��!
QR. The number nP .�/ can be thought of as the number of J –holomorphic

disks of Maslov index 2 whose boundaries pass through P and the “edge” QR of the
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triangle PQR, only that the count of the disks is weighted by the representation � .
We also have the numbers nQ.�/ and nR.�/ analogously defined.

Remark 6.2.1 The number nP .�/ does not depend on the choice of the path
��!
QR

connecting Q to R, but only on the points Q and R. The reason for this is that the
1–dimensional cycle X

B2E2

X
.u;z/2ev�1.P/

�.B/".u; zIP /u.@D/

is null homologous in H1.LIC/. Indeed, it has been shown in [14, Section 4.2] that
if this cycle is not null-homologous, then the associated quantum homology vanishes
(the proof was in fact only done for � the identity representation but it is immediate to
see that the argument also applies to any other representation). In our case we are only
considering this cycle for � 2W so that this forces the respective 1–cycle to vanish in
homology.

Thus the intersection number of this cycle with the path
��!
QR depends only on its end

points Q and R. Nevertheless, nP .�/ is far from being an invariant in any sense since
it depends on the choice of the almost complex structure J as well as on the points
P;Q;R.

As in the previous section we are interested to evaluate the number nPQR of Maslov
2nD 4 disks through P;Q;R. Similarly to nP , the number nPQR is not an invariant
either.

6.2.1 Triangles on the torus and the discriminant To simplify notation we omit
the �’s from the notation, ie abbreviate nPQRD nPQR.�/, nP D nP .�/, nQD nQ.�/,
nR D nR.�/.

Theorem 6.2.2 Let PQR be a triangle on L. Then for every � 2W we have

(43) �.�/D 4nPQRC n2
P C n2

QC n2
R � 2nP nQ� 2nQnR � 2nRnP :

The proof of this result is contained in the next couple of sections. The first expresses
the discriminant as a polynomial in certain coefficients appearing in the expansion of
the Lagrangian quantum product. The second section continues with the combinatorial
work needed to relate these coefficients to the enumerative expressions (43).
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6.2.2 The discriminant and higher quantum products We continue here with the
assumption that L�M is a 2–dimensional Lagrangian torus with NL D 2. We also
assume that the wide variety W2 is not empty.

Let W be any of the wide varieties, W1 or W2 . Working with the ring R D
O.W/˝ƒC we obtain from (21)

(44) 0 �!O.W/ŒL� t
i
�!QCH0.LIW/

�
�!H0.LIC/˝O.W/ �! 0:

Choose zp 2 QCH0.LIW/ with �. zp/ D Œpt� 2 H0.LIC/. Then f zp; ŒL� tg forms a
basis for QCH0.LIW/, so we can write

(45) zp � zp D � zpt C �ŒL� t2;

where �; � 2O.W/. The coefficients �; � depend on zp as follows. If we replace zp by
zp 0 D zpC r ŒL� t , for some r 2O.W/ then the corresponding coefficients � 0 and � 0

change as follows:

(46) � 0 D � C 2r; � 0 D � � � r � r2:

This can be verified by a direct computation from (45). Thus neither � nor � are
invariants. However it is easy to see that

�2
C 4�

is invariant in the sense that it does not depend on zp – this is precisely an example of
a universal, symmetric polynomial Lagrangian invariant. In view of Corollary 5.3.4 we
expect it to be related to the discriminant. Indeed:

Proposition 6.2.3 We have the following identity in O.W/: �D �2C 4� .

Proof Choose a basis fC1;C2g for H1.LIZ/ such that C1 �C2 D Œpt�. Write

(47)
C1 �C1 D

1
2
a11ŒL� t; C2 �C2 D

1
2
a22ŒL� t;

C1 �C2 D zpC a0ŒL� t; C2 �C1 D�zpC a00ŒL� t; a12 D a0C a00;

with a11; a22; a
0; a00 2 O.W/. Then zp D C1 � C2 � a0ŒL� t D �C2 � C1 C a00ŒL� t ,

hence

zp � zp D�C1 �C2 �C2 �C1C a00C1 �C2t C a0C2 �C1t � a0a00ŒL� t2

D .a00� a0/ zpt C
�
�

1
4
a11a22C a0a00

�
ŒL� t2:

Thus � D a00� a0 and � D a0a00� 1
4
a11a22 . It immediately follows that

�2
C 4� D a2

12� a11a22 D� det.aij /D�:
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6.2.3 Enumerative expressions for � and � and proof of Theorem 6.2.2 We will
relate the two coefficients � and � above to the enumerative expressions nP ; nQ;

nR; nPQR . Theorem 6.2.2 will then follow immediately from Proposition 6.2.3.

We will use here a method described in [12; 13]. This consists in picking two perfect
Morse function f;gW L!R with pairwise distinct critical points, a Riemannian metric
. � ; � / on L as well as an almost complex structure J which is sufficiently generic
so that all pearl complexes, products etc are defined. These functions are required to
satisfy a number of additional properties as described below.

Let x0 be the minimum of f , let x2 be the maximum of f , let y0 be the minimum
of g and similarly let y2 be the maximum of g . We may assume that y2 is as close
as we want to x2 in L. We also assume that the choices of f;g as well as that of the
Riemannian metric . � ; � / are such that y0 D P , x0 DQ, x2 DR and the edge

��!
RP

is the unique flow line of �rf going from x2 to y0 , and (after slightly rounding
the corner at P ) the edge

��!
PQ is the unique flow line of �rf going from y0 to x0 .

Moreover, the edge
��!
QR contains the point y2 and it consists of two pieces: one is

the unique flow line of �rg going from y2 to x0 – the orientation of this flow line
is opposite that of

��!
QR; the second consists of a very short flow line, 
 , of �rg

joining y2 to x2 – the orientation of this flow line coincides with that of
��!
QR. The

points y2 and x2 are taken close enough so that no J –holomorphic disk of Maslov
index 2 passing through y0 intersects 
 (as the number of these disks is finite this is
not restrictive). Put DD .f; . � ; � /;J / and D0 D .g; . � ; � /;J / and consider the chain

RD x2 y2
�rg

QD x0

�rf

P D y0

�rf

Figure 1. The triangle PQR as drawn by negative flow lines of f and g

level quantum product

C.D/˝ C.D0/ �! C.D/; x˝y 7�! x �y:

By abuse of notation we denote by the same � also the induced product in homology. We
work here with coefficients in O.W/˝CŒt �, where W is one of the wide varieties W1
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or W2 . Recall that we also have the comparison map ‰D0;DW C.D/ �! C.D0/ whose
definition is described in Section A.2.5.

Put zp D Œx0� 2QCH0.LIW/, and write zp � zp D � zpt C �ŒL� t2 as in (45). Consider
now the chain level product x0 �y0 , and write

x0 �y0 D ˛x0t Cˇx2t2 for some ˛; ˇ 2O.W/

The relation between x0 and y0 is given by ‰D0;D , namely

‰D0;D.x0/D y0C �y2t for some � 2O.W/:

It follows that

zp � zp D Œx0�� Œx0�D Œx0�� .Œy0�C �ŒL� t/D .˛C �/ zpt CˇŒL� t2;

hence we have

(48) � D ˛C �; � D ˇ:

We will now compute ˛; � and ˇ explicitly. We begin with ˇ . By the definition
of the chain level product (see Section A.2.2) we have ˇ D ˇI C ˇII , where ˇI

counts configurations as in the left part of Figure 2 with �.�/D 4 and ˇII counts the
configurations drawn in the right-hand side of that figure with �.�1/D �.�2/D 2.

y0 D P

x2 DR

x0 DQ

�

x0 DQ

�1

�rf

y0 D P x2 DR�2

Figure 2. Configurations contributing to ˇI and ˇII

To compute the precise values of ˇI and ˇII we use the definition of the quantum
product from Section A.2.2. We have

ˇI D

X
�;�.�/D4

#
�
fx0g �L

�
fy0g �L

�M.�/�L fx2g
��
�.�/(49)

D

X
�;�.�/D4

#
� �M.�/�L�L�L f.P;Q;R/g

�
�.�/D #e�1.P;Q;R/D nPQR:

(Recall that e and nPQR were defined in (36) and (37).) In the middle two equalities
we have used identities (83), (81), (82) from Section A.1.8. The fact that no new signs
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appear follows from these identities and the fact that all spaces involved in the above
fiber products are even dimensional.

We now compute ˇII . For �1; �2 with �.�1/D �.�2/D 2 put

ˇ0II;�1
D #

�
fx0g �L

�
M2.�1/�RC

�
�L fy0g

�
;

ˇ00II;�2
D #

�
.fy0g �RC/�L M2.�2/�L fx2g

�
:

It follows easily from the definition of the quantum product that

(50) ˇII D

X
�1;�2

ˇ0II;�1
ˇ00II;�2

�.�1/�.�2/D

�X
�1

ˇ0II;�1
�.�1/

��X
�2

ˇ00II;�2
�.�2/

�
;

where the sums are over all �1; �2 with �.�1/ D �.�2/ D 2. A straightforward
computation shows that

ˇ0II;�1
D�

X
.u;z/2ev�1.Q/

�.u; zIQ/#.u.@D/\
��!
RP /;

where we use here the notation from the beginning of Section 6.2. It follows from (42)
that

P
�1
ˇ0

II;�1
�.�1/D�nQ . A similar computation gives

P
�2
ˇ00

II;�2
�.�2/D nR .

Substituting all this into (50) gives ˇII D�nQnR , hence

(51) ˇ.�/D nPQR � nQnR:

We now turn to computing ˛ . For a class A with �.A/D 2 put

˛I;A D fx0g �L

�
M2.A/�RC

�
�L

�
fy0g �L L�L W s

f .x0/
�
;

˛II;A D fx0g �L L�L

�
fy0g �L .M2.A/�RC/�L W s

f .x0/
�
:

Then by the definition of the quantum product we have (see Figure 3)

˛ D
X
A

˛I;A�.A/C
X
A

˛II;A�.A/:

A straightforward computation shows that

˛I;AD fx0g�L

�
M2.A/�RC

�
�L fy0g D�

X
.u;z/2ev�1.Q/

�.u; zIQ/#.u.@D/\
��!
RP /:

Summing over the A’s and weighting by � we obtain that
P

A ˛I;A�.A/D�nQ . A
similar computation gives

P
A ˛II;A�.A/D nP . It follows that

(52) ˛ D nP � nQ:
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x0 DQ

y0 D P

x2 DR

�D 2
�rf

�rf

y0 D P

x0 DQ

y2 �R

�D 2

�rg

Figure 3. Configurations contributing to ˛I and ˛II

It remains to compute � . A priori there are two types of configurations that might
contribute to � , both depicted in Figure 4. However, due to our choices of f , g , the
configuration on the right part of Figure 4 cannot exist. To see this, first note that since
g is generic we may assume that y2 lies on the unstable submanifold of x2 (with
respect to �rf ). Next, since y2 was chosen to be very close to x2 we conclude
that x2 must lie somewhere on the part of the .�rf / trajectory that connects the
holomorphic disk through y0 and y2 . But this is impossible since x2 is a maximum
hence there are no .�rf / trajectories entering x2 .

We are thus left only with the configuration on the left part of Figure 4. According
to Section A.2.5 these are computed by

(53) � D
X
A

#
�
fx0g �L .L�RC/�L M2.A/�L fy2g

�
�.A/:

As y2 was chosen close enough to R, a straightforward computation gives � D�nR .

x0 DQ y0 D P

y2 �R

�D 2

�rg

x0 DQ x2

y2

�D 2

�rf

Figure 4. Configurations a priori contributing to � . The one on the right is impossible.

Substituting this together with (52) and (51) into (48) we get

(54) � D nP � nQ� nR; � D nPQR � nQnR:
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By Proposition 6.2.3 we obtain

�D �2
C 4� D 4nPQRC n2

P C n2
QC n2

R � 2nP nQ� 2nQnR � 2nRnP :

The proof of Theorem 6.2.2 is complete.

Remark 6.2.4 Knowing the precise signs (˙) appearing in the expressions for � and
� is not really necessary in order to prove Theorem 6.2.2. Here is the shortcut. It is
enough to prove that there exist �i 2 f�1; 1g, i 2 f0; 1; 2; 3g so that

� D nPQRC �0nQnR; � D �1nP C �2nQC �3nR:

Then by Proposition 6.2.3 we get

�D 4nPQRC 4�0nQnRC .�1nP C �2nQC �3nR/
2:

We already know that � is an invariant and, in particular, it is left invariant by circular
permutations of P;Q;R. This immediately implies that �1 , �2 , �3 can not all have
the same sign and so we may assume that just one of them is negative and the other two
positive. If either one of �2; �3 is negative this circular symmetry can not be satisfied.
So �1 D�1. Again for symmetry reasons this implies �0 D�1 and proves the claim.

6.3 Modulo–2 invariants

More can be said about the discriminant as well as the enumerative counts introduced
in Section 6.2 after reduction modulo 2 (and modulo 4). In the following theorem
we focus for simplicity on the trivial representation. We denote by � D �.1/ 2 Z
the discriminant computed at the trivial representation � � 1. Similarly, we denote
by nP ; nQ; nR; nPQR 2 Z the numbers defined in Section 6.2, and by �; � 2 Z be the
structural constants defined at (45), all computed at �� 1.

Theorem 6.3.1 Let L2 �M 4 be a wide Lagrangian torus with NL D 2, where by
“wide” we mean here that the trivial representation �� 1 belong to W2 . Then:

(1) �� � � nP C nQC nR .mod 2/.

(2) � .mod 4/ admits only the values 0 or 1.

Moreover, if �� 1 .mod 2/ then:
(i) The value of � .mod 2/ is invariant in the sense that it does not depend on the

choice of the element zp in (45).

(ii) nP nQ � nQnR � nRnP .mod 2/.

(iii) The value of nPQR C nP nQ .mod 2/ is invariant, ie does not depend neither
on P;Q;R nor on the almost complex structure. This number is congruent to
� .mod 2/.
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Proof Recall from Proposition 6.2.3 that �D �2C 4� . Hence �� � .mod 2/. The
fact that ��nPCnQCnR .mod 2/ follows from (54). Next note that ���2 .mod 4/,
hence the latter can obtain only the values 0 and 1 .mod 4/. This proves the first two
statements in the theorem.

To prove the other statements, assume now that � � 1 .mod 2/, or equivalently
that � � 1 .mod 2/. The fact that � .mod 2/ is invariant follows immediately from
formulae (46). This proves (i).

To prove the identity (ii) note that if � � 1 .mod 2/ then either the three numbers
nP ; nQ; nR .mod 2/ are all 1, or exactly two of them are 0 and one of them is 1. In
both cases the identity in (ii) holds.

Finally, point (iii) follows from the arguments of Section 6.2.3. See (54) as well as [13,
Theorem 7.2.2].

Remarks 6.3.2 (1) Some of the statements in Theorem 6.3.1 (eg point (iii)) do not
seem to follow by just reducing .mod 2/ the identity (43), but rather reveal more
geometric information on the structure of the “constants” nP ; nQ; nR and nPQR .

(2) It seems that one could get more general congruences by allowing every represen-
tation � 2W1 (not just the trivial one). The point is that all the calculations involving
an element � 2W1 can be done in a number field (ie a finite extension of Q) and the
values of �.�/ and the constants nP .�/; nQ.�/; nR.�/; nPQR.�/ belong to the ring
of integers of this field. One expects some congruence relations (with respect to some
ideal in this ring) to hold between these numbers.

7 Toric fibers

Here we work out in detail the theory discussed in the previous sections for the special
case of Lagrangian tori that arise as fibres of the moment map in a toric manifold.
Below we will use in an essential way previous results of Cho [15], Cho and Oh [18]
and Fukaya, Oh, Ohta and Ono [16; 27; 25] on Floer theory of torus fibres in toric
manifolds. The reader is referred to these papers for more details. For the foundations
of symplectic toric manifolds see Audin [3], and for an algebro-geometric account see
Fulton [28].

7.1 Setting

Let .M 2n; !/ be a closed monotone toric manifold. Denote by

mW M �! Lie.Tn/� DRn
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the moment map and by PD image .m/ the moment polytope. The symplectic manifold
.M; !/ admits a canonical !–compatible (integrable) complex structure J0 which
turns .M;J0/ into a complex algebraic manifold. We will refer to J0 as the standard
complex structure.

Denote by F1; : : : ;Fr the codimension–1 facets of P and by �!v1; : : : ;
�!vr 2Zn the nor-

mal integral primitive vectors to the facets F1; : : : ;Fr respectively, pointing inwards P .
Note that the number of codimension–1 facets is r D nCb2.M /. The fibres m�1.p/,
p 2 P , are Lagrangian tori. There is a (unique) special point p� 2 P for which the
Lagrangian torus LDm�1.p�/ is monotone (see eg [18; 17; 27]). Furthermore, we
have NL D 2. Note also that H D

2
Š �2.M;L/, and that r D rank H D

2
. We denote by

†i Dm�1.Fi/�M . These turn out to be smooth J0 –complex hypersurfaces in M

and their sum Œ†1�C� � �C Œ†r � represents the Poincaré dual of the first Chern class c1

of M (which is by assumption a positive multiple of Œ!�).

Since L is an orbit of the Tn –action we have a canonical identification H1.LIZ/D
H1.T

nIZ/ and we denote by e D fe1; : : : ; eng the standard basis corresponding to
this identification.

7.1.1 Holomorphic disks Due to the Tn –action the Lagrangian torus L comes with
a preferred orientation as well as a spin structure. Fixing these two, one can endow the
space of holomorphic disks with boundary on L with a canonical orientation (see [26;
16] for more details).

We start with a description, due to Cho and Oh [18], of the subset E2 �H D
2

of classes
that can be represented by J –holomorphic disks with Maslov index 2 for generic J

(as well as for J0 ). We use here the notation from Section 3.3.

Proposition 7.1.1 (Cho–Oh [18]) The set E2 consists of exactly r D rank H D
2

classes E2 D fB1; : : : ;Br g with the following properties:

(1) #.Bi �†j /D ıi;j for every i; j .

(2) The set E2 is a Z–basis for H D
2

.

(3) Denote by @W H D
2
�!H1.LIZ/ the boundary operator. Then writing @Bi in

the basis e we have .@Bi/D
�!vi for every 1� i � r .

(4) For every i , �.Bi/D 1.

Furthermore, the standard complex structure J0 is regular for all classes B 2 H D
2

with �.B/ D 2. Moreover given a generic point x 2 L there exist precisely r J0 –
holomorphic disks ui W .D; @D/ �! .M;L/, i D 1; : : : ; r , up to parametrization, with
�.Œui �/D 2 and u.1/D x . These disks satisfy ui.ŒD�/DBi , i D 1; : : : ; r . The image
of m ıui is a straight segment going from p� to a point on the facet Fi .

Geometry & Topology, Volume 16 (2012)



Lagrangian topology and enumerative geometry 1013

7.1.2 The superpotential, the wide variety and the discriminant The following is
an immediate corollary of Proposition 7.1.1:

Corollary 7.1.2 (Cho–Oh [18]) The superpotential P has the following form in the
coordinates induced by the basis e (see Section 3.3.1):

(55) P.z1; : : : ; zn/D

rX
iD1

z
�!
vi ;

where for a vector �!v D .v1; : : : ; vn/ 2 Zn , z
�!
v stands for the monomial z

�!
v D

zv
1

1
� � � zv

n

n .

Since H 1.LIR/ generates H�.LIR/ (with respect to the cup product) we obtain from
Proposition 3.3.1:

Corollary 7.1.3 (Cho–Oh [18]; see also Fukaya–Oh–Ohta–Ono [27]) We have

W1 D Crit.P/;

where W1 � Hom.H1;C
�/ is the wide variety as defined in Section 3.

Choose a basis CDfC1; : : : ;Cng for Hn�1.LIZ/ which is dual to e as in Section 3.3.1.
We view Hn�1.LIC/ as a subset of QHn�1.LIW1/ as explained in Section 3.3.1 just
before the statement of Proposition 3.3.4. The following corollary immediately follows
from Proposition 3.3.4.

Corollary 7.1.4 (Cho [16])

Ci �Cj CCj �Ci D .�1/n
� rX

kD1

vi
kv

j

k
z
�!
vk

�
ŒL� t 8z 2W1:

We now turn to the quadratic form defined in Section 4 and its discriminant. Substitut-
ing (55) in (24) we get

(56) �.z1; : : : ; zn/D .�1/nC1 det
� rX

kD1

vi
kv

j

k
z
�!
vk

�
i;j

8z 2W1:

However, there is a nicer formula for the discriminant which we now present. For a
subset of indices I � f1; : : : ; rg with #I D n, say I D fi1; : : : ; ing, define an .n�n/–
matrix AI whose rows consists of the vectors �!vi1

; : : : ;�!vin
, and a vector �!vI which is
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the sum of the �!vik
’s, ie

(57) AI D

0BBBBB@
———– �!vi1

———–
:::

———– �!vik
———–

:::

———– �!vin
———–

1CCCCCA ; �!vI D

X
i2I

�!vi :

Note that det.AI /
2 does not depend on the ordering of the indices ij in the set I .

Proposition 7.1.5 The discriminant verifies the following formula:

(58) �.z1; : : : ; zn/D .�1/nC1
X

I�f1;:::;rg
#IDn

z
�!
vI det.AI /

2
8z 2W1:

The proof follows by direct computation by expanding the determinant in (56).

7.2 Formulae for W2

Recall from Proposition 7.1.1 that set E2 D fB1; : : : ;Br g forms a Z–basis for H D
2

.
Using this basis we can identify Hom.H D

2
;C�/ Š .C�/�r . An element of the lat-

ter space � D .�1; : : : ; �r / will be identified with the representation � that satisfies
�.Bk/D �k , k D 1; : : : ; r .

We continue to work with the basis eD fe1; : : : ; eng for H1 introduced in Section 7.1
and the dual basis CD fC1; : : : ;Cn�1g for Hn�1.LIZ/.

With this notation the following is a straightforward calculation which results from
Proposition 7.1.1.

Proposition 7.2.1 (1) The wide variety W2 is cut by the following system of n

linear equation (with r unknowns):

W2 D

� rX
kD1

v
j

k
�k D 0

ˇ̌̌̌
j D 1; : : : ; n

�
:

Here, vj

k
is the j –th component of the vector �!vk , ie �!vk D .v

1
k
; : : : ; vn

k
/.

(2) The natural map @W W W1�!W2 induced by the boundary map @W H D
2
�!H1

is given by
@W.z1; : : : ; zn/D .z

�!
v1 ; : : : ; z

�!
vr /:
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(3) The product of elements of C satisfies

Ci �Cj CCj �Ci D .�1/n
� rX

k

vi
kv

j

k
�k

�
ŒL� t:

(4) The discriminant is given by

�.�1; : : : ; �k/D .�1/nC1 det
� rX

k

vi
kv

j

k
�k

�
i;j

:

7.3 Wide varieties and quantum homology of the ambient manifold

Here we further study the other quantum structures, such as the quantum algebra and
quantum inclusion, and their relations to the wide varieties on toric manifolds.

Let L D m�1.p�/ �M be the monotone torus fibre in a monotone toric manifold.
Assume that the wide variety W1 is not empty. By Corollary 7.1.3 the wide variety
W1 coincides with the variety of critical points of the superpotential function P,
W1 D Crit.P/, hence the ring or global algebraic functions O.W1/ can be written as

(59) O.W1/D
CŒz˙1

1
; : : : ; z˙1

n �

h@z1
P; : : : ; @zn

Pi
;

where the denominator stands for the ideal generated by the partial derivatives of P.
This ring, or rather localizations of it, plays an important role in singularity theory and
is sometime called the Jacobian ring of P.

Interestingly, this ring appears in the symplectic picture also from a different an-
gle. Denote by QH.M Iƒ/ the quantum homology of the ambient manifold with
coefficients in ƒ D CŒt; t�1�, where for compatibility with the Lagrangian picture
we put jt j D �NL D �2. It is well known that the classes Œ†i � D m�1.Fi/ 2

QH2n�2.M Iƒ/, i D 1; : : : ; r , generate QH.M Iƒ/ with respect to the quantum
product �; see Batyrev [10] and McDuff and Salamon [39]. It turns out that QH.M Iƒ/
is isomorphic as a ring to O.W1/˝ƒ. More precisely:

Theorem 7.3.1 (Batyrev; Givental; Fukaya–Oh–Ohta–Ono) There exists an isomor-
phism of rings

(60) I W QH.M Iƒ/ �!O.W1/˝ƒ

which satisfies I.Œ†i �/ D z
�!
vi t . This isomorphism shifts degrees by �2n. Here, the

grading on the right-hand side comes from the ƒ–factor only (ie O.W1/ is not graded).
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This theorem was first suggested by Givental [30] and by Batyrev [10] and has been
verified since then at different levels of rigor. A rather rigorous and conceptual proof
has been recently carried out by Fukaya, Oh, Ohta and Ono [27]. See also Ostrover
and Tyomkin [40] for a more algebraically oriented proof. It is important to note that
the isomorphism (60) does not send QH.M IƒC/ onto O.W1/˝ƒ

C but rather into
a subring of the latter.

We now consider the quantum module structure on QH.L/. Recall from Section 2.2
that for a zƒC–algebra R, QH.LIR/ is a module (in fact an algebra) over QH.M IR/.
We will use here RDO.W1/˝ƒ, but a similar discussion holds for O.W1/˝ƒ

C

too. For a 2 QHj .M IO.W1/˝ƒ/ and ˛ 2 QHk.LIW1/ (see the notation in (14))
we denote by a � ˛ 2 QHjCk�2n.LIW1/ the quantum module action. Using the
embedding ƒ D 1˝ƒ � O.W1/˝ƒ, we have a natural inclusion QH.M Iƒ/ �
QH.M IO.W1/˝ƒ/. We will now take a closer look at the induced module operation

(61) QH.M Iƒ/˝ƒ QH.LIW1/ �! QH.LIW1/; a˝˛ 7�! a�˛:

Note that QH.LIW1/ is also a module over O.W1/˝ƒ in an obvious way. For
c 2O.W1/˝ƒ, ˛ 2QH.LIW1/ we denote this module operation as c˛ . It turns out
that this module structure and the preceding ones are in fact compatible:

Proposition 7.3.2 For every a 2 QH.M Iƒ/ and ˛ 2 QH.LIW1/ we have

(62) a�˛ D I.a/˛:

The same continues to hold if we replace ƒ by ƒC and QH.LIW1/ by QCH.LIW1/.

Proof Since QH.M Iƒ/ is generated by the classes Œ†i �D m�1.Fi/, i D 1; : : : ; r ,
it is enough to check (62) for aD Œ†i �. Since � is an algebra action, it is also enough
to restrict to the case ˛ D ŒL� which is the unity of QH.LIW1/.

Next note that Œ†i � � ŒL� lies in the image of the natural map QCH.LIW1/ �!

QH.LIW1/ hence it is enough to show that (62) holds in QCH.LIW1/.

Recall from (21) that we have the following exact sequence:

(63) 0 �!O.W1/ŒL� t
i
�!QCHn�2.LIW1/

�
�!Hn�2.LIC/˝O.W1/ �! 0:

Moreover, by the definition of the quantum module action, �.Œ†i �� ŒL�/D Œ†i � � ŒL�,
where Œ†i � � ŒL� stand for the classical intersection product in singular homology. But
L is disjoint from †i , hence �.Œ†i �� ŒL�/D Œ†i � � ŒL�D 0. It follows from (63) that
Œ†i �� ŒL�D cŒL� t for some function c 2O.W1/.
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To determine c note that if we work with coefficients in zƒC we have

(64) Œ†i �� ŒL�D
X

B2E2

#.B �†i/�.B/T
B ŒL�:

Substituting the information from Proposition 7.1.1 into (64) we immediately obtain

Œ†i �� ŒL�D z
�!
vi ŒL� t:

Since z
�!
vi t D I.Œ†i �/ this concludes the proof.

Next we consider the quantum inclusion map. Let f W L �! R be a perfect Morse
function having exactly one minimum, x0 2 L. Let . � ; � / be a Riemannian metric
on L and J an !–compatible almost complex structure on M . Put DD .f; . � ; � /;J /

and assume the elements of this triple have been chosen to be generic so that the
pearl complex C.DIO.W1/˝ ƒ/ is well defined. Under these assumptions x0 2

C.DIO.W1/˝ƒ/ is a cycle and we denote by Œx0� 2QH.LIW1/ its homology class.
Note that in general Œx0� strongly depends on the choice of D. (See [14, Section 4.5].)
Nevertheless, it turns out that its image under the quantum inclusion (6) is well defined.

Proposition 7.3.3 Let a1; : : : ; am 2 H�.M IC/ be elements of pure degree which
consist of a basis for the total homology H�.M IC/. Denote by a#

1
; : : : ; a#

m the dual
basis with respect to intersection product. Then

(65) iL.Œx0�/D

mX
iD1

I.a#
i /ai 2 QH.M IO.W1/˝ƒ/:

Note that we can always take a1 D Œpt� 2 H0.M IC/ to be the class of a point and
am D ŒM � 2 H2n.M IC/ to be the fundamental class. We will then have a#

1
D ŒM �

and a#
m D Œpt� and formula (65) becomes

(66) iL.Œx0�/D Œpt�C
m�1X
iD2

I.a#
i /ai C I.Œpt�/ŒM �:

To prove Proposition 7.3.3 we will use the augmentation map �LW QH.LIR/ �!R,
defined for every zƒC–algebra R. The precise definition and properties of this map
can be found in [14] (see eg Theorem A in that paper). The augmentation map �L is
induced by a map e�L W C.f; �;J IR/ �!R which is defined as follows. Assume that
f has a unique minimum x0 , then e�L .x0/D 1 and for every x 2 Crit.f /, x ¤ x0 ,e�L .x/D 0. It satisfies the identity

(67) hPD.b/; iL.ˇ/iD �L.b�ˇ/ 8 b 2H�.M IC/�QH.M IR/; ˇ 2QH.LIR/;

where PD stand for Poincaré duality and h � ; � i for the obvious R–linear extension of
the Kronecker pairing.
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We are now ready to prove Proposition 7.3.3.

Proof of Proposition 7.3.3 Write iL.Œx0�/ D
Pm

iD1 'iai , with 'i 2 O.W1/˝ƒ.
Apply now formula (67) with b D a#

j , ˇ D Œx0�. We obtain

'j D hPD.a#
j /; iL.Œx0�/i D �L.a

#
j � Œx0�/D �L.I.a

#
j /Œx0�/D I.a#

j /;

where the second to last equality follows from Proposition 7.3.2.

Remark 7.3.4 In a similar way one can prove that

(68) I.a/D hPD.a/; iL.Œx0�/i 8 a 2H�.M IC/:

7.4 The Frobenius structure and the quantum Euler class

The quantum homology QH.M Iƒ/ has the structure of a Frobenius algebra. In this
section we explain how to translate this structure via the isomorphism I to the Jacobian
ring O.W1/˝ƒ. We remark that this translation has been recently established by
Fukaya, Oh, Ohta and Ono [24]. Below we explain our point of view on the subject
and how it is related to our theory.

7.4.1 Generalities on Frobenius algebras We first recall some basic notions about
Frobenius algebras. The reader is referred to Abrams [2] and the references therein for
the general theory of Frobenius algebras.

Let A be an algebra over a ring R and assume that A is a free finite-rank module
over R. A Frobenius structure on A is an R–linear map F W A �!R such that the
associated bilinear pairing

A˝RA �!R; a˝ b 7�! F.ab/;

is nonsingular in the sense that the induced map A�!HomR.A;R/, a 7�! F.a � �/,
is invertible (or put in different terms, the associated matrix of the pairing is invertible
in some basis of A over R). Of course, the associated bilinear pairing of a Frobenius
structures can be viewed as a generalization of the notion of Poincaré duality. Note
that when the ring R is not a field some authors (eg Abrams [2]) use the notion of
Frobenius extension rather than Frobenius structure.

To a Frobenius structure one can associate an invariant called the Euler class, introduced
by Abrams [2]. This is defined as follows. Pick a basis a1; : : : ; am of A over R.
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Let a_
1
; : : : ; a_m be the dual basis with respect to the Frobenius pairing. The Euler class

E.A;F / is defined as

(69) E.A;F /D
mX

iD1

aia
_
i :

It is straightforward to check that E.A;F / does not depend on the choice of the basis.
The importance of the Euler class comes form the following theorem.

Theorem 7.4.1 (Abrams [2; 1]) Let A be a finite dimensional algebra over a field R
of characteristic 0. Then:

(1) For every two Frobenius structures F 0 and F 00 on A there exists an invertible ele-
ment u2A such that F 00D uF 0 . Moreover we have E.A;F 00/D u�1E.A;F 00/.
Thus the Euler class does not depend on the Frobenius structure up to multiplica-
tion by an invertible element. In particular, whether or not the Euler class is a
zero divisor, or whether or not it is invertible, does not depend on the particular
choice of the Frobenius structure.

(2) Suppose that the Euler class of some (hence for every) Frobenius structure on A
is not a zero divisor. Then the Euler classes determine the Frobenius structures
on A in the sense that there exists a unique Frobenius structure F on A with a
given Euler class.

(3) The algebra A is semisimple if and only if the Euler class E.A;F / is invertible
for some Frobenius structures F on A.

We also have the following result that will be relevant for our purposes.

Theorem 7.4.2 (Scheja–Storch [42]) Let .A;F / be a Frobenius algebra over a
field R of characteristic 0. Suppose that A can be written as ADRŒx1; : : : ;xr �=I
for some ideal I which is generated by r elements f1; : : : ; fr 2RŒx1; : : : ;xr �. Put

J D det
�
@fi

@xj

�
i;j

2A:

If J ¤ 0 then J D uE.A;F / for some invertible element u 2A.

7.4.2 The main examples Here are two examples that are relevant in our context.
The first one is classical. Let M be a closed manifold and R any ring. Assume for
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simplicity that Hi.M IR/D 0 for every odd i . Let ADH�.M IR/ endowed with
the intersection product �. Write

H�.M IR/DRŒpt�
M dim M=2M

jD1

H2j .M IR/;

where Œpt� is the class of a point. The Frobenius structure F is defined by the projection
onto the RŒpt� factor. In other words, F.a/ is defined to be the coefficient of a

at Œpt�. The associated bilinear pairing is precisely the intersection pairing. A simple
computation shows that the Euler class ED E.A;F / in this case is exactly �.M /Œpt�.

The second example, which is the one we will focus on, is the quantum cohomology of
a symplectic manifold M . We assume that .M; !/ is a closed monotone symplectic
manifold and that Hi.M IC/ D 0 for every odd i . Put A D QH.M Iƒ/ endowed
with the quantum product � and let RD ƒ. The Frobenius structure is taken as in
the preceding example, ie for a 2 QH.M Iƒ/ we set F.a/ 2ƒ to be the coefficient
of a at Œpt�. We denote it from now on by FQ to emphasize the relation to quantum
homology. The fact that this is indeed a Frobenius structure is not immediate. It is
proved eg in [2].

We now turn to the Euler class of the Frobenius structure FQ on the quantum homology.
We denote it for simplicity by EQ and call it the quantum Euler class. Under the
assumptions that .M; !/ is monotone and Hodd.M IC/D 0 we have the following:

Lemma 7.4.3 Let aD fa1; : : : ; amg be a basis for H�.M IC/ consisting of elements
of pure degree and a# D fa#

1
; : : : ; a#

mg 2 H�.M IC/ be the dual basis with respect
to the classical intersection product. Then a# is also a dual basis with respect to the
quantum product �. In particular we have

(70) EQ D

mX
iD1

ai � a#
i :

This class belongs to QH0.M Iƒ/ and is a deformation of the classical Euler class, ie
EQ D �.M /Œpt�C ho.t/, where ho.t/ stands for higher order terms in t .

The proof can be found in [12, Proposition 6.5.7 and the proof of Proposition 6.5.8].

Note that ƒ is not a field hence Theorems 7.4.1 and 7.4.2 do not apply for QH.M Iƒ/.
To go around this difficulty we can work with the completion yƒDCŒt�1; t �� consisting
of formal Laurent series in t with finitely many terms having negative powers of t . Note
that yƒ is a field. We can define in a straightforward way QH.M I yƒ/, endowed with
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the quantum product and we have an inclusion of rings QH.M Iƒ/�QH.M I yƒ/. Ob-
viously the preceding Frobenius structure FQ extends to QH.M I yƒ/ and the quantum
Euler class remains exactly the same.

7.4.3 Back to toric manifolds We now return to the case of toric manifolds.

Suppose that the superpotential PW .C�/�n �!C is a Morse function (in the holomor-
phic sense), ie it has only isolated critical points and at each such point the holomorphic
Hessian is nondegenerate. In this case W1 is a scheme consisting of a finite number of
points each coming with multiplicity 1. Therefore O.W1/D

L
z2W1

C , hence by the
isomorphism (60) from Theorem 7.3.1 the quantum cohomology QH.M Iƒ/ splits as

QH.M Iƒ/Š
M

z2W1

ƒ;

and similarly for QH.M I yƒ/. It follows that QH.M I yƒ/ is semisimple. It turns out
that the converse direction is also true, hence QH.M I yƒ/ is semisimple if and only
if P is Morse (see [40] for the proof and for more on semisimplicity of QH for toric
manifolds).

We now address the question of how does the isomorphism I from Theorem 7.3.1 trans-
late the quantum Frobenius structure from QH.M I yƒ/ to O.W1/˝ yƒ. Theorem 7.4.2
provides a partial answer. Write

O.W1/˝ yƒD yƒŒz1;u1; : : : ; zn;un�=I;

where I is the ideal generated by

@z1
P; : : : ; @zn

P; z1u1� 1; : : : ; znun� 1:

Applying Theorem 7.4.2 we obtain that there exists an invertible element u2QH.M I yƒ/
such that

I.EQ/D uz1 � � � zn det
�
@2P

@zi@zj

�
i;j

:

Since z1 � � � zn is invertible we obtain from (24) that there exists an invertible element
v 2 QH.M I yƒ/ such that

I.EQ/D v�;

where � is the discriminant introduced in Section 4.3. Since I.EQ/ has degree �2n so
must have v . Since v has pure degree it follows that both v as well as its inverse v�1

in fact lie in QH.M Iƒ/ (ie we do not need the larger field of coefficients yƒ). These
considerations are still far from determining the precise value of v . The following
theorem provides this additional information.

Geometry & Topology, Volume 16 (2012)



1022 Paul Biran and Octav Cornea

Theorem 7.4.4 Suppose that P is Morse. Then:

(1) I.EQ/D .�1/nC1�tn , where �2O.W1/ is the discriminant introduced in (24)
of Section 4.3.

(2) Via the isomorphism I , the quantum Frobenius structure on O.W1/˝ƒ has
the form

(71) FQ.I
�1.�//D

.�1/nC1

tn

X
z2W1

�.z/

�.z/
8 � 2O.W1/˝ƒ:

Theorem 7.4.4 (stated in a slightly different form) has been recently proved by Fukaya,
Oh, Ohta and Ono [24] by methods of Floer theory. It seems to be known for a long
time to specialists in quantum homology theory. In fact, Givental has pointed out to
us [32] that this theorem follows from his work [31, Proposition 1.1]. It is not difficult
to verify Theorem 7.4.4 by direct computation on all toric monotone 4–manifolds
(see [11] for all these calculations; a few examples are in Section 8). We sketch in
Section 7.4.4 a more conceptual proof of this Theorem.

Denote by F1; : : : ;Fr the codimension–1 facets of the moment polytope PD image.m/
and by �!v1; : : : ;

�!v r the inwards pointing normal integral primitive vectors to these
facets as in Section 7.1. For a subset of indices I �f1; : : : ; rg write �!vI D

P
i2I
�!vi . The

following identities, which seem to bear some arithmetic nature, follow immediately
from Theorem 7.4.4.

Corollary 7.4.5 Assume that P is Morse. Let I � f1; : : : ; rg be a subset of indices.
If #I < n then

(72)
X

z2W1

z
�!
vI

�.z/
D 0:

If #I D n then

(73)
X

z2W1

z
�!
vI

�.z/
D

�
0 if

T
i2I Fi D∅;

.�1/nC1 if
T

i2I Fi ¤∅:

Proof Write †i Dm�1.Fi/. The †i ’s are codimension–2 symplectic submanifolds
of M . Recall that by the isomorphism I of Theorem 7.3.1 we have I.Œ†i �/D z

�!
vi t ,

hence
I.�i2I Œ†i �/D z

�!
vI t#I :

By formula (71), the value of the sum

(74)
X

z2W1

z
�!
vI

�.z/
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is determined by the value of FQ.�i2I Œ†i �/, ie by whether or not �i2I Œ†i � contains Œpt�.
But by degree reasons the coefficient of Œpt� in �i2I Œ†i � is the same as the coefficient
of Œpt� in � i2I Œ†i � where � is the classical intersection product. The rest of the proof
now follows from basic intersection properties of the †i ’s.

Finally, putting together Theorem 7.4.4 with formulae (56), (58) we obtain the following:

Corollary 7.4.6 Suppose that P is Morse. Then the quantum Euler class admits the
following expressions:

(75) EQ D

X
I�f1;:::;rg

#IDn

.�i2I Œ†i �/ det.AI /
2;

where AI is defined in (57) and � stands for the quantum product.

(76) EQ D det
� rX

kD1

vi
kv

j

k
Œ†k �

�
i;j

;

where the determinant here should be evaluated in the quantum homology ring.

7.4.4 Further remarks on Theorem 7.4.4 and its proof Note that by Theorem 7.4.1
the Frobenius structure FQ is determined by its associated Euler class EQ . Therefore
point (2) of Theorem 7.4.4 follows immediately from point (1). The next Proposition
shows that EQ is indeed very much related to the “Lagrangian picture”.

Consider the morphism

jLW QH�.M IO.W1/˝ƒ/ �! QH��n.LIW1/; a 7�! a� ŒL�:

Consider Œx0� 2 QH�.LIW1/ as in the discussion before Proposition 7.3.3. We have:

Proposition 7.4.7 jL ı iL.Œx0�/D I.EQ/ŒL�.

Proof This follows at once from Propositions 7.3.3 and 7.3.2.

Thus, the proof of Theorem 7.4.4 reduces to showing that

(77) jL ı iL.Œx0�/D .�1/nC1�tnŒL�:

We sketch here our argument for this identity in dimension 2nD 4. Recall from [13,
Section 8.3] that given two Lagrangians L and L0 there is a particular formula allowing
to express jL0 ı iL . In our case, we ultimately want to study LDL0 so it is sufficient
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to assume that L is Hamiltonian isotopic to L0 (and L is transverse to L0 ) so that the
formula has the form

(78) jL0 ı iL��L;L0 DˆL;L0 ı d C d 0 ıˆL;L0 :

We now explain the formula (78). We will then notice that from this formula we can
easily deduce a closely related one that directly computes jL ı iL in terms of some
pearly like configurations. Identity (77) follows from further identities involving these
configurations.

The notation in (78) is as follows: .C.LIf /; d/ and .C.L0If 0/; d 0/ are pearl complexes
for L and L0 (we assume appropriate Riemannian metrics fixed on L and L0 ), ˆL;L0

is a certain chain homotopy and �L;L0 is a chain map that we will describe in more
detail below. In our case we may assume that f and f 0 are perfect Morse functions
so that d D 0D d 0 because L and L0 are wide tori. Thus we deduce jL0 ı iL.Œx0�/D

�L;L0.Œx0�/. The map �L;L0 is described in [13, Section 8.3]. Explicitly, it is defined
as follows. For x 2 Critf ,

�L;L0.x/D
X
p;y

#.N .p;pIx;y//ytky ;

where y2Crit.f 0/, p2L\L0 , jyj�2kyDjxj�4 and the moduli spaces N .p;pIx;y/
are formed by configurations .u; v; v0/ where: u is a Floer strip joining the intersection
point p to itself and with u.R� f0g/ � L, u.R� f1g/ � L0 ; v is a chain of pearls
on L joining x to the point u.0; 0/; v0 is a chain of pearls on L0 joining x to the
point u.0; 1/. Because �L;L0 is a chain map it is easily seen that we may apply the
PSS construction to return from L0 back to L. This gives rise to another map x�L;L

with two properties:

� It verifies a formula similar to (78) except that only involving L:

(79) jL ı iL D x�L;L:

� The definition of x�L;L is similar to that of �L;L0 with the following modifica-
tions: v is a string of pearls associated to the function f W L!R, v0 is a string
of pearls associated to the function f 0W L!R, u is now also a string of pearls
associated to a third function f 00 and joining a critical point p 2 Crit.f 00/ to
the same p . The incidence conditions among these three strings of pearls are
that there is a disk in u (possibly trivial) so that v ends at u.�i/ and v0 ends
at u.i/.

In our case, we are interested in the case when x=x0Dmin.f /. For degree reasons we
see that the only term that matters corresponds to y D z2 Dmax.f 0/. Moreover, there
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is a single disk involved which is of Maslov class 4. In short, jL ı iL.Œx0�/ is estimated
by the number of elements in the moduli space W .f 00;x0; z2;J / of configurations
formed by a single J –holomorphic disk u of Maslov class 4 and so that u.�i/D x0 ,
u.Ci/D z2 and there is a critical point p 2 Crit.f 00/ with the property that a negative
gradient trajectory of f 00 exiting p reaches u.�1/ and there is a negative gradient
trajectory of f 00 that carries u.C1/ to p again (any one of these trajectories can
also be degenerate). The next step is to include W .f 00;x0; z2;J / as boundary in a
1–dimensional moduli space whose other end had �� elements. The first step is rather
easy – the 1–dimensional moduli space in question, W 0.f 00;x0; z2;J /, corresponds
to gluing at the point p – so that the configurations contained in this moduli space are
like the ones in W .f 00;x0; z2;J / except that the two flow lines there are replaced by
a single one that joins u.C1/ to u.�1/ without breaking at p . Finally, it is essentially
a delicate combinatorial verification – that we will not include here – to see that the
number of the other boundary components of W 0.f 00;x0; z2;J / gives precisely ��.

8 Examples

Here we work out examples of the various objects and invariants constructed in the
previous sections, mainly in the case of toric manifolds. We use here the notation
introduced in Section 7 and in particular for W1 we use the coordinates .z1; : : : ; zr /

introduced in Section 3.3.1 and for W2 we use the coordinates .�1; : : : ; �r / introduced
in Section 7.2.

8.1 The complex projective space

Consider CPn endowed with its standard Fubini–Study Kähler structure !FS nor-
malized so that

R
CP1!FS D 1. Consider the Hamiltonian torus action .�1; : : : ; �n/ �

Œz0 W � � � W zn�D Œz0 W e
�2�i�1 W � � � W e�2�i�nzn�. The moment polytope is the standard

simplex

P D

�
.x1; : : : ;xn/ 2Rn

ˇ̌̌̌
0� xk 8k;

nX
iD1

xi � 1

�
:

It has nC 1 codimension–1 facets with normal vectors �!vi D .0; : : : ; 1; : : : ; 0/ (where
the 1 is in the i –th coordinate), iD1; : : : ; n and ���!vnC1D .�1; : : : ;�1/. (See eg [3; 38]).
The monotone torus

LDm�1

�
1

nC 1
; : : : ;

1

nC 1

�
D
˚
Œz0 W : : : W zn�

ˇ̌
jz0j D : : :D jznj

	
Geometry & Topology, Volume 16 (2012)



1026 Paul Biran and Octav Cornea

is the Clifford torus. The wide variety W2 is given in this case by

W2 D f.�; : : : ; �/ j � 2C�g ŠC�:

The superpotential is

P.z1; : : : ; zn/D

nX
iD1

zi C
1

z1 � � � zn
:

A simple computation shows that P is Morse. The wide variety W1 consists of the
following nC 1 points:

W1 D f.z; : : : ; z/ j z
nC1
D 1g;

and each of them comes with multiplicity 1. The quadratic form (see (23)) 'W is given
in the basis fC1; : : : ;Cng by

'W .X1; : : : ;Xn/D �

� nX
iD1

X 2
i C

X
i<j

XiXj

�
; 8� 2W2:

A simple computation shows that the discriminant of the quadratic form (on W2

and W1 respectively) is

�.�/D .�1/nC1.nC 1/�n
8� 2W2; �.z/D .�1/nC1.nC 1/zn

8z 2W1:

Denote by H D ŒCPn�1� 2 QH2n�2.CPnIƒ/ the class of a linear hyperplane and
by ŒCP l � 2 QH2l.M Iƒ/ the class of a linear projective l –dimensional plane. The
quantum homology of CPn is given by

H�k D

�
ŒCPn�k � if 0� k � n;

ŒCPn� tnC1 if k D nC 1:

A simple computation shows that the quantum Euler class equals the topological one:

EQ D Etop D .nC 1/Œpt�:

The ring O.W1/ is
O.W1/ŠCŒz˙1�=hznC1

D 1i;

and the isomorphism I from (60) satisfies I.ŒCP l �/D zn�l tn�l . One can easily verify
that I.EQ/D�tn�.z/.

The identities of Corollary 7.4.5 now read

1

nC 1

X
fz j znC1D1g

zk
D

�
0 if 1� k � n;

1 if k D nC 1:
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Finally, the quantum inclusion of Œx0� is given by

iL.Œx0�/D Œpt�C
nX

kD1

zk ŒCPk � tk
8z 2W1:

Next we will exemplify our theory on S2 � S2 and on the blow up of CP2 at one
point. The other (nonlinear) toric surfaces (ie the blow up of CP2 at two and at three
points) are treated in detail in the expanded version of this paper [11].

8.2 S 2 �S 2

Consider M D S2�S2 with the balanced symplectic form ! D !S2˚!S2 and with
the obvious Hamiltonian torus action coming from circle actions on both factors. The
moment polytope is

P D f.x1;x2/ 2R2
j 0� x1 � 1; 0� x2 � 1g:

The monotone torus is LDm�1.1
2
; 1

2
/ which is the product of two equators coming

from each S2 –factor. The integral normal vectors to the four facets are �!v1 D .1; 0/,
�!v2 D .0; 1/,

�!v3 D .�1; 0/, �!v4 D .0;�1/. The wide variety W2 is given by

W2 D f.�1; �2; �1; �2/ j �1; �2 2C�g ŠC� �C�:

The superpotential is

P.z1; z2/D z1C z2C
1

z1

C
1

z2

:

This function is Morse and its critical points are

W1 D f.1; 1/; .1;�1/; .�1; 1/; .�1;�1/g:

The quadratic form is

'W .X1;X2/D �1X 2
1 C �2X 2

2 ; 8.�1; �2/ 2C� �C�:

The discriminant on W2 and W1 , respectively, is

�.�1; �2/D�4�1�2; �.z1; z2/D�4z1z2:

To describe the quantum homology QH.M Iƒ/ of M , put AD ŒS2�pt�;BD Œpt�S2�2

QH2.M Iƒ/. Then we have

A�B D pt; A�AD B �B D ŒM � t2:

The isomorphism I satisfies

I.A/D z2t; I.B/D z1t; I.Œpt�/D z1z2t2:
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The quantum Euler class equals in this case to the topological one: EQ D 4Œpt�. The
quantum inclusion satisfies

iL.Œx0�/D Œpt�C z1At C z2Bt C z1z2ŒM � t2:

The arithmetic identities of Corollary 7.4.5 can be verified by a straightforward direct
substitution.

8.3 Blow ups of CP 2

Consider the standard Hamiltonian torus action on CP2 and let p be a fixed point
of the action. This action has exactly three fixed points p1;p2;p3 . By blowing up
p1; : : : ;pk , 1 � k � 3, we obtain a manifold Mk which can be endowed with a
monotone symplectic form ! in such a way that the torus action on CP2 lifts to a
Hamiltonian torus action on Mk (see [3; 38] for details). Denote by Ei 2H2.Mk IZ/
the exceptional divisor over pi and by L 2 H2.Mk IZ/ the homology class of a
projective line not passing through the exceptional divisors. We denote by ŒMk � 2

H4.Mk IZ/ the fundamental class. The Poincaré dual of the cohomology class of !
satisfies PDŒ!� D L� 1

3

Pk
iD1 Ei . We will now work out in detail the case k D 1.

The cases k D 2; 3 are treated in detail in the expanded version of this paper [11].

8.4 The blow-up of CP 2 at one point

Denote by M1 D Blp1
.CP2/ the blow-up of CP2 at p1 . The moment polytope and

the normal vectors to the facets are depicted in Figure 5. Note that

Œm�1.F1/�DE; Œm�1.F2/�DL�E; Œm�1.F3/�DL; Œm�1.F4/�DL�E:

Ev1 D .1; 1/

Ev2 D .0; 1/

Ev3 D .�1;�1/
Ev4 D .1; 0/

Figure 5. The moment polytope of the blow-up of CP 2 at one point
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The wide variety W2 is

W2 D f.�1; �2; �1C �2; �2/ j �1; �2 2C�; �1 ¤��2g:

Note that the trivial representation .1; 1; 1; 1/ does not belong to W2 , so L is narrow
with respect to this representation. The superpotential is

P.z1; z2/D z1C z2C z1z2C
1

z1z2

:

The wide variety W1 consists of 4 points, all with multiplicity 1, and is given by

W1 D f.z; z/ j z
4
C z3

� 1D 0g:

The ring of functions over W1 is therefore

O.W1/ŠCŒz; z�1�=hz4
C z3

� 1D 0i:

The quadratic form is

'W .X1;X2/D .�1C �2/X
2
1 C .2�1C �2/X1X2C .�1C �2/X

2
2 ; 8.�1; �2/ 2C��C�:

The discriminant on W2 and W1 respectively is

�.�1; �2/D�.4�1�2C 3�2
2 /; �.z/D�z2.4zC 3/:

The quantum product is given by (see Crauder and Miranda [20])

E �E D�Œpt�CEt C ŒM1� t
2; E �LD ŒM1� t

2; L�LD Œpt�C ŒM1� t
2:

The quantum Euler class is

EQ D 4Œpt��Et:

The isomorphism I is given by

I.L/D
1

z2
t; I.E/D z2t; I.Œpt�/D

�
1

z4
� 1

�
t2:

The fact that I.EQ/ D ��t2 on W1 can be verified here by a direct (though long)
computation.

The quantum inclusion satisfies

iL.Œx0�/D Œpt�C
1

z2
Lt � z2Et C

�
1

z4
� 1

�
ŒM1� t

2:
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We now turn to the arithmetic identities of Corollary 7.4.5. In the following identity
a.z/ stands for the function zk , where �2� k � 3. We have

(80)
X

fzWz4Cz3�1D0g

a.z/

4z3C 3z2
D

(
0 if a.z/ is one of 1; z; z2; 1=z2;

1 if a.z/ is one of z3; 1=z:

These identities seem nontrivial to obtain by a direct computation, though they can
be verified using a numerical mathematical program such as Matlab, Mathematica or
Octave. An alternative elementary (albeit nondirect) verification of these identities via
computations of residues of rational functions, has been recently pointed out to us by
Granville [33].

Appendix A Orientations

A.1 Orientations – general conventions

In order to define the pearl complex over a general ground ring we now describe how
to orient the moduli space of pearl trajectories.

Remark A.1.1 A couple of statements in our earlier paper [14], Corollary 7.02 and
Remark 6.3.3, were stated and proved there over Z under the explicit assumption –
not verified in [14] – that the pearl machinery is compatible with orientations. This is
precisely the compatibility verified in this Appendix.

Below we denote orientations on vector spaces or manifolds V by oV . We often denote
dimensions of manifolds V by jV j.

A.1.1 Exact sequences Let

0 �! F
i
�!E

p
�! B �! 0

be a short exact sequence of finite dimensional vector spaces. Orientations on any
two of these spaces induces an orientation on the third as follows. Pick a right inverse
sW B �! E of p , so that E D s.B/C i.F /. We require that oE D s.oB/C i.oF /.
Clearly the definition is independent of the choice of s . Thus we orient exact sequence
by reading them from “right to left” rather than vice-versa. We remark that this is
consistent with the standard orientation on products, ie o.B�F / D oBC oF .
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A.1.2 Fibrations Orienting exact sequence implies a convention for the orientation
of fibrations. Namely, let � W E �! B be a (locally trivial smooth) fibration with
fiber F . Given orientations on two of F;E;B we orient the third according to the
exact sequence

0 �! TF
Di
�! TE

Dp
�! TB �! 0;

where i is the inclusion of the fiber in E .

A.1.3 Group actions and quotients A special important case of orientations on
fibrations is the following. Let X be an oriented manifold and K an oriented Lie group
acting freely on X. We orient the quotient space X=K by viewing X �! X=K as
a fibration. Equivalently, we use the exact sequence 0 �! Tx.K � x/ �! TxX �!

TŒx�.X=K/ �! 0.

A.1.4 Orienting boundaries of manifolds Let W be an oriented manifold with
boundary, then the orientation of @W is such that �!n C o@W D oW , where �!n is an
exterior pointing vector to @W .

A.1.5 Normal bundles Let W be an oriented manifold and V � W an oriented
submanifold. We orient the normal bundle �V DT W =T V of V by the exact sequence
0 �! T V �! T W �! �V �! 0, or by abuse of notation o.�V /C oV D oW .

A.1.6 Preimages Let U and W be oriented manifolds and V � W an oriented
submanifold. Let f W U �! W be a map transverse to V . We orient f �1.V / as
follows. We first orient the normal bundle of f �1.V / in U , by pulling back the
orientation of �V via the isomorphism Df W �f �1.V / �! �V . The orientation on
�f �1.V / induces an orientation on f �1.V /.

A.1.7 Intersections If U;V are two transverse oriented submanifolds of an oriented
manifold W . We orient U \V via the exact sequence 0�! T .U \V /�! T W �!
�U ˚ �V �! 0. In other words we have �U ˚ �V ˚T .U \V /D T W as oriented
vector spaces.

A.1.8 Fiber products Here we use a convention taken from [26], though our pre-
sentation is somewhat different. Let ei W Vi!X , i D 1; 2, be two transverse smooth
maps, where V1;V2;X are oriented manifolds. Denote by ��X �X the diagonal.
We denote by V1 �X V2 the submanifold .e1; e2/

�1.�/ � V1 � V2 endowed with
the following orientation – which is, in general, different from the standard preimage
orientation. At the level of tangent spaces there exists an exact sequence

0 �!K �! T V1˚TX ˚T V2
h
�! TX ˚TX �! 0;
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where h.v1;x; v2/ D .De1.v1/� x;x �De2.v2//, and K is the kernel of h. Note
that K is canonically identified with the tangent space of .e1; e2/

�1.�/ under the map
.v1;x; v2/! .v1; v2/. Following our conventions above, the kernel K above inherits
an orientation from those of V1;V2;X . The fiber product orientation of V1 �X V2 is
induced by that of K . We will sometimes denote this fiber product also by V1 e1

�e2
V2

in case we need to make explicit the maps e1; e2 .

It is easy to see that our fiber product convention coincides with that in [26]. In case V1

and V2 are oriented submanifolds of X and the two evaluations are just the respective
inclusions one can check that, as oriented submanifolds, V1 �X V2 D V2\V1 .

The motivation for introducing the fiber product orientation is that it verifies an important
associativity property. If e1W U ! X , e2W V ! X , f1W V ! Y , f2W W ! Y are
smooth maps with the appropriate transversality conditions, then we have an oriented
equality

.U �X V /�Y W D U �X .V �Y W /:

This is easily seen by noticing that both orientations can be viewed as induced by the
kernel orientation in the short exact sequence

0 �!K �! T U ˚TX ˚T V ˚T Y ˚T W
h0

�! TX ˚TX ˚T Y ˚T Y �! 0

with h0.u;x; v;y; w/D .De1.u/�x;x�De2.v/;Df1.v/�y;y�Df2.w//. Obviously,
a similar formula remains valid for longer iterated fiber products.

Let us mention a few other useful identities, which can be derived by straightforward
computations. The first one deals with switching the factors in the fiber product:

(81) U �X V D .�1/.jU j�jX j/.jV j�jX j/V �X U:

Let f W U !X be a smooth map which is transverse to a submanifold V �X . Then

(82) f �1.V /D .�1/.jU j�jX j/.jV j�jX j/U �X V D V �X U;

where f �1.V / is oriented as in Section A.1.6.

Next, let eU W U !X1�X2 , eV W V !X1 , eW W W !X2 be smooth maps (satisfying
appropriate transversality conditions). Then

(83) U �X1�X2
.V �W /D .�1/jX2j.jX1jCjV j/.U �X1

V /�X2
W:

See [26, Chapter 8] for a proof. Here the first fiber product on the right-hand side
involves the map prX1

ı eU W U ! X1 and the second fiber product on the right uses
the map induced from prX2

ı eU W U !X2 .
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Another important feature of the fiber product is its behavior with respect to taking
boundaries (see [26]). Let U , V be oriented manifolds possibly with boundary and
X an oriented manifold without boundary. Let eW U �! X , f W V �! X be two
transverse maps. Then we have the following “Leibniz” formula for fiber products:

(84) @.U �X V /D .@U /�X V
a

.�1/jX j�jU j U �X @V:

A.1.9 Lagrangian submanifolds Throughout the paper, by a Lagrangian L �

.M; !/ we mean an oriented Lagrangian submanifold together with a fixed spin
structure.

A.1.10 The group of biholomorphisms of the disk Aut.D/ Denote by D �C the
closed unit disk. We orient its boundary @D by the counterclockwise orientation.

Denote by G D Aut.D/ the group of biholomorphisms of the disk. We orient G as
follows. Every element in G can be written uniquely as

��;˛.z/D ei� zC˛

1C x̨z
; with � 2 Œ0; 2�/; ˛ 2 Int D:

This gives an identification between G and Œ0; 2�/� Int D by which we orient G .

Denote by H � G the subgroup of elements that preserve the two points �1;C1 2

@D . This 1–dimensional subgroup consists of the elements �0;˛ with ˛ 2 .�1; 1/.
We orient H by the orientation of the interval .�1; 1/. With this choice we have
�0;˛.0/ �!C1 (respectively �1) when ˛ �!C1 (respectively �1). Note that our
conventions here are somewhat different from those of [26]. Namely, our orientations
of G and H agree with those of [26], but in [26] these groups act on D from the right
(by z �g WD g�1.z/), whereas we use the obvious action from the left.

A.1.11 Moduli spaces of holomorphic disks Fix a generic almost complex structure
J 2J . Let B 2H D

2
. Denote by �M.B;J / the space of (parametrized) J –holomorphic

disks uW .D; @D/ �! .M;L/ with u�.ŒD�/D B . It is well-known by the work [26]
that a spin structure on L induces orientations on the moduli spaces �M.B;J /. Given
� 2 D (resp. @D ) we denote by e� W �M.B;J / �!M (resp. L) the evaluation map
given by e�.u/D u.�/.

Let p; q � 0 and consider the space of (parametrized) J –holomorphic disks with
p–marked points on the boundary and q marked points in the interior: �Mp;q.B;J /D�Mp;q.B;J /�Tp;q , where Tp;q � .@D/

�p � .Int .D//�q is the open set consisting of
all tuples of points .z; �/ D .z1; : : : ; zp; �1; : : : ; �q/ with the properties that the zi ’s
are all distinct, the �j are all distinct and in addition if p � 3 the points z1; : : : ; zq are
required to be in cyclic order along @D with respect to the standard (counterclockwise)
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orientation. As Tp;q is an open subset of .@D/�p�.Int .D//�q it inherits an orientation
from the latter. Apart from that we will require that B ¤ 0 when p � 2 and q D 0 or
when p D 0 and q D 1.

We let G D Aut.D/ (as well as subgroups of it) act on �Mp;q.B;J / as follows. If
� 2G and .u; z1; : : : ; zp; �1; : : : ; �q/ 2 �Mp;q.B;J / define

� � .u; z1; : : : ; zp; �1; : : : ; �q/D .u ı �
�1; �.z1/; : : : ; �.zp/; �.�1/; : : : ; �.�q//:

We denote the space of disks with marked points by Mp;q.B;J /D �Mp;q.B;J /=G ,
with the orientation induced from the preceding conventions. This space comes with
evaluation maps Ei;�WMp;q.B;J /�!L and E�;j WMp;q.B;J /�!M defined by
Ei;�Œu; z; ��D u.zi/ and E�;j Œu; z; ��D u.�j /.

In what follows it will be often useful to deal with quotients by the group H �G of
those elements that fix the points �1; 1 2D , namely with �M.B;J /=H . Recall that
we have oriented H in Section A.1.10 above. The space �M.B;J /=H comes with
two evaluation maps e�1; eC1W

�M.B;J /=H �! L, defined by e�1Œu�D u.�1/ and
eC1Œu�D u.C1/.

With these conventions it is not hard to verify that the following maps are orientation
preserving diffeomorphisms:

(85)

�M.B;J /=H �!M2;0.B;J /; Œu� 7�! Œu; 1;�1�;�M.B;J / �!M1;1.B;J /; u 7�! Œu; 1; 0�;�M.B;J / �!M3;0.B;J /; u 7�! Œu; 1; e2�i=3; e4�i=3�:

In view of the first map above we will identify M2;0.B;J / with �M.B;J /=H and
view e�1; eC1 as maps defined on M2;0.B;J /.

To simplify the notation, when q D 0, we will sometimes write Mp.B;J / instead of
Mp;0.B;J /. We will especially use M2.B;J /.

A.1.12 Bubbling and gluing Let B;B0;B00 2 H D
2

with B D B0CB00 . Consider
the fiber product

M2.B
0;J /eC1

�e�1
M2.B

00;J /;

where e˙1 are the evaluation maps at ˙1 2 @D . By compactness, gluing, as well as
further regularity assumptions, this spaces can be embedded into the main stratum of
the boundary of the compactification of the space M2.B;J /:

(86) M2.B
0;J /eC1

�e�1
M2.B

00;J / ,�! @M2.B;J /:
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This embedding is so that the pair of marked points �1 2 dom.u0/ and C1 2 dom.u00/
with .u0;u00/2M2.B

0;J /�M2.B
00;J / corresponds after gluing to the pair of marked

points �1;C12 @D in the domain of the glued disk u0#�u00 2M2.B;J / for all gluing
parameters � .

The embedding (86) is in general not orientation preserving. In fact the orientations
on the left and right hand sides differ by .�1/n�1 . This can be proved by a direct
computation based on [26]. We write this fact as

(87) @bubble M2.B;J / D
a

B0CB00DB

.�1/n�1M2.B
0;J /eC1

�e�1
M2.B

00;J /:

There is a slight abuse of notation here, since the right hand side is just part of the
boundary of M2.B;J /. However for the purpose of the pearl complex the other
boundary components are not relevant. We will also write @.B

0;B00/

bubble M2.B;J / for the
boundary component in (87) that corresponds to bubbling of the type .B0;B00/.

Remark A.1.2 There is a subtle difference between our conventions for gluing and
those in [26]. In our case for the first moduli space in the fiber product we evaluate at
the point C1 and for the second at the point �1 while [26] use the opposite convention.
Furthermore, our conventions for the orientation on H are opposite to theirs. These
different sign conventions turn out to cancel each other in this case, hence our sign
.�1/n�1 coincides with the one that appears in [26].

A.1.13 Orientations in Morse theory There are several different orientation conven-
tions regarding Morse theory (see eg Audin and Damian [4], Banyaga and Hurtubise [9],
Salamon [41] and Schwarz [43]). Since none of the conventions we could find in the
literature is completely compatible with ours we will now describe our approach in
some detail.

Let V be an oriented manifold, f W V �!R a Morse function and . � ; � / a Riemannian
metric. Stable and unstable submanifolds are always taken with respect to the negative
gradient flow of f which we denote by ˆt W V �! V . For every x 2 Crit.f / fix an
orientation on the unstable submanifold W u.x/. This induces an orientation on the
stable submanifolds W s.x/ by requiring that oW s.x/C oW u.x/ D oV .

Assume now that the pair .f; . � ; � // is Morse–Smale. Given x;y 2 Crit.f / we have
the following spaces of gradient trajectories connecting x to y :

zm.x;y/DW s.y/\W u.x/; m.x;y/D zm.x;y/=R;

where R acts on zm.x;y/ by t � p D ˆt .p/. All spaces here are oriented by the
conventions we have described so far. The Morse complex (with coefficients in Z) is
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now defined by CM D ZhCrit.f /i, @W CM� �! CM��1 , where

@.x/D
X

jyjDjxj�1

# m.x;y/y 8x 2 Crit.f /:

A.1.14 Some useful identities for boundaries We start with two useful formulae
for the boundary of the stable and unstable submanifolds of critical points. Recall
that these manifold admit a natural compactification in terms of stable and unstable
submanifolds of lower indices. Here are the signs that appear in these boundaries.
Let .f; . � ; � // be a Morse–Smale pair as in Section A.1.13. Let x 2 Crit.f / and
x0 2 Crit.f /. Then the part of the boundary of W u.x/ that involves the critical point
x0 satisfies

(88) @W u.x/D .�1/jxj�jx
0j�1m.x;x0/�W u.x0/:

In particular, when jx0j D jxj � 1 we have

(89) @W u.x/Dm.x;x0/�W u.x0/:

Similarly, if y;y0 2Crit.f / with jy0jD jyjC1 then the part of the boundary of W s.y/

that involves y0 satisfies

(90) @W s.y/D .�1/jV j�jyjm.y0;y/�W s.y0/:

Of course, in the identities (88), (89), (90) the boundaries @W u.x/, @W s.y/ should not
be regarded as subsets of V but rather as boundaries of cells that come with appropriate
attaching maps to a cell decomposition of V .

For completeness, here is a proof of these identities. To derive identity (88) write
@W u.x/ D "m.x;x0/ �W u.x0/ for some " 2 f�1; 1g. Denote by Tf 2 Tx0V the
direction in which a �rf trajectory 
 2m.x;x0/ arrives from x to x0 . We view Tf
as a vector pointing to the exterior of @W u.x/.

By definition we have Tf C "om.x;x0/C oW u.x0/ D oW u.x/ , hence

(91) o.�W u.x//CTf C "om.x;x0/C oW u.x0/ D oV :

From the definition of m.x;x0/ we have

(92) o.�W s.x0//C o.�W u.x//C om.x;x0/CTf D oV :

Since �W s.x0/D .�1/jx
0j.jV j�jx0j/W u.x0/ we obtain from (92) that

(93) .�1/jx
0j.jV j�jx0j/oW u.x0/C o.�W u.x//C om.x;x0/CTf D oV :
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Comparing (91) with (93) we arrive to "D .�1/jxj�jx
0j�1 . Identity (90) can be derived

in a similar way.

Next we derive some general formulas for boundaries of moduli spaces of gradient
trajectories “connecting” two manifolds. Consider two oriented manifolds X and Y

with maps eX W X �!L and eY W Y �!L. Let ˆt be the negative gradient flow of f
and consider the map e0

X
W X �RC �! L, given by .x; t/ 7�! ˆt ı eX.x/. Finally,

consider the fiber product Z D .X �RC/�L Y , where the first factor is mapped to L

by e0
X

and the second one by eY . One might think of Z as the space of gradient
trajectories connecting X to Y . Ignoring orientations for a moment, we note that part
of the boundary of Z is formed by broken trajectories, ie by elements of the space
.X �L W s.z//� .W u.z/�L Y /, where z 2Crit.f /. Here the (un)stable submanifolds
are mapped to L by inclusion and X , Y , by the maps eX , eY respectively. We denote
this component of the boundary by @z..X �RC/�L Y /. Taking now orientations into
account we have the following identity:

(94) @z

�
.X �RC/�L Y

�
D .�1/jX j

�
X �L W s.z/

�
�
�
W u.z/�L Y

�
:

The proof can be done by a straightforward computation analogous to the one used to
prove identity (88).

Another boundary component of .X �RC/�L Y arises when the gradient trajectory
between X and Y shrinks to zero length. Ignoring orientations, the corresponding part
of the boundary can be written as X �L Y , where X , Y are mapped to L by eX , eY

respectively. We denote it by @shrink

�
.X �RC/�L Y

�
. Taking orientations into account,

one obtains the following identity:

(95) @shrink
�
.X �RC/�L Y

�
D .�1/jX jC1.X �L Y /:

A.2 Orientation conventions for the pearl complex

Our purpose now is to describe the orientation conventions for the various pearly
moduli spaces needed. With the conventions that we will describe, the various alge-
braic structures described in Section 2.2 verify the usual identities in noncommutative
differential graded homological algebra. We will only justify here some of these
facts, they are relatively straightforward but tedious exercises. We remark that for
the constructions below to work with our orientation conventions it is important that
the algebraic structures discussed here are only defined by counting elements of 0–
dimensional moduli spaces. In our case, the main equations of interest concern the
product from (4) that verifies at the chain level the equation

(96) d.x �y/D d.x/�yC .�1/n�jxjx � d.y/
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and the module action from Section 2.2.2 that verifies a similar identity. Besides this we
claim that the other identities: d2 D 0, associativity of the product etc are all verified
with signs as well.

A.2.1 Orienting the space of pearly trajectories We first recall that a string of
pearls associated to the data DD .f; . � ; � /;J / and joining two points x;y2Crit.f / can
be viewed as a sequence .a;u1; t1;u2; t2; : : : ;uk ; b/ where a 2W u.x/, b 2W s.y/,
ui 2M2.Bi ;J /, Bi ¤ 0, ti 2 RC , subject to the following incidence conditions
ˆti

.ui.C1//D uiC1.�1/ for 1 � i < k , u1.�1/D a, uk.C1/D b . Here ˆt is the
negative gradient flow of f . Appropriate genericity conditions are required to insure
the transversality of the relevant evaluation maps. The resulting pearl moduli space
is denoted P.x;yIDI .B1; : : : ;Bk//. When k D 1 we also allow B1 D 0 and put
P.x;yID; 0/ D m.x;y/ ie the space of gradient trajectories going from x to y as
in Section A.1.13 above.

All orientation conventions described below are established by assuming that we restrict
attention only to the moduli spaces involving absolutely distinct sequences of simple
disks in the sense of [14; 12].

The moduli space P.x;yIDI .B1; : : : ;Bk// is thus a subset of

W u.x/� .M2.B1;J /�RC/� � � � �M2.Bk ;J /�W s.y/

obtained from a multidiagonal in L�L�2k �L by taking the preimage by a suitable
evaluation map. However, this procedure will not be used in order to orient these spaces.
For the purpose of orientations we describe P as an iterated fiber product.

Let B1; : : : ;Bk , k � 1, be a sequence of classes in H D
2

with Bj ¤ 0 for all j .
Consider the fiber product

(97)

P.x;yIDI .B1; : : : ;Bk//DW u.x/�L .M2.B1;J /�RC/�L

� � � �L .M2.Bi ;J /�RC/�L

� � � �L M2.Bk ;J /�L W s.y/;

where the first and last factor here are mapped into L by inclusion. The i –th moduli
space (i < k ) is mapped to the term L on its left by .ui ; t/ 7! e�1.ui/ D ui.�1/,
and to the term L on its right by .ui ; t/ 7!ˆt ı eC1.ui/Dˆt .ui.C1//. The second
to last factor M2.Bk ;J / is mapped to the L on its left by e�1 and to the L on
its right by eC1 . When B D 0 we simply put P.x;yIDI 0/ D m.x;y/ without
any orientation adjustment. Next, for a fixed 0 ¤ B 2 H D

2
, the disjoint union of

all the moduli spaces P.x;yIDI .B1; : : : ;Bk// such that B D
P

Bi is denoted by
P.x;yID;B/. Sometimes we will omit D from the notation. We also put ı.x;yIB/D
jxj � jyj � 1C�.B/ which is the virtual dimension of P.x;yIDIB/.
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Fix a zƒC–algebra R with its structural morphism qW zƒC!R. The differential on the
pearl complex C.D/ (mentioned at the beginning of Section 2.2) is defined as follows.
For x 2 Crit.f /,

(98) dx D
X

yI jyjDjxj�1

#P.x;yIDI 0/y C
X

y;B¤0I
ı.x;yIB/D0

.�1/jyj #P.x;yIDIB/y q.T B/:

Notice that the first summand coincides with the Morse differential. Note also the
.�1/jyj sign standing in front of the elements in the second summand. This sign is
needed in order to make d be a differential (ie d2 D 0) and is implied by our sign
conventions for the moduli spaces. See Remark A.2.1 for more on that.

Showing that d2 D 0 reduces to the verifications in the Z2 case as described in [14]
together with two points having to do with the orientation conventions. The first
concerns the coherence of the orientation conventions with respect to bubbling and,
respectively, with respect to the contraction of a flow line joining two consecutive
disks. The claim in this case is that a configuration that appears with a certain sign by
bubbling, also appears by the contraction of a flow line but with a reversed sign. The
second has to do with the signs that appear at the breaking of a 1–dimensional pearl
moduli space at a critical point of f : we need to make sure that these signs are the
correct ones so that d2 D 0. We now intend to explain why our conventions take care
of these two points.

For the first point, let us analyze the boundary points of a 1–dimensional moduli space
of pearly trajectories P.x;yIDI .B1; : : : ;Bk// that appear when a gradient trajectory
between the i –th disk and the .iC1/–st disk (1 � i � k � 1) shrinks to zero length.
The relevant part of the fiber product in (97) is the space

Pi D .M2.Bi ;J /�RC/�L M2.BiC1;J /:

Applying formula (95) we get

@shr ink Pi D .�1/n M2.Bi ;J /�L M2.BiC1;J /:

Note that dimM2.Bi ;J /C1D nC�.Bi/� n .mod 2/, since �.Bi/ is even because
L is orientable. Next, by formula (87) we have that the component of the boundary of
M2.Bi CBiC1;J / that corresponds to bubbling into two disks of classes Bi , BiC1 is

@
.Bi ;BiC1/

bubble M2.Bi CBiC1;J /D .�1/n�1M2.Bi ;J /�L M2.BiC1;J /:

Applying the Leibniz formula for fibre products (84) it follows that bubbling and
shrinking of a gradient trajectory between two disks come with opposite signs in
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boundaries of 1–dimensional spaces of pearly trajectories. Now fix B ¤ 0. Summing
this up over all k � 1 and .B1; : : : ;Bk/ with

P
Bi D B we obtain that

(99) #@bubbleP.x;yIDIB/ C #@shrinkP.x;yIDIB/D 0:

Of course other bubbles might a priori occur (such as side bubbling, or sphere bubbles)
but they actually do not appear when L is monotone (see [14; 13]). This concludes the
first point in the proof that d2 D 0.

We now come to the second point in the proof. By the results of [14; 12] when the
virtual dimension is ı.x;yIB/D 1, the spaces P.x;yIDIB/ admit a compactifica-
tion into a 1–dimensional manifold with boundary. Moreover, the boundary of this
compactification consists of precisely the following three types of spaces:

(100) @P.x;yIDIB/

D @bubbleP.x;yIDIB/
a

@shrinkP.x;yIDIB/
a

@breakP.x;yIDIB/;

where @break stands for breaking of a pearly trajectory at a critical point which we now
elaborate more about. Let BD .B1; : : : ;Bk/ be such that

P
Bj DB , and consider the

space P D P.x;yIDIB/. We assume that its dimension is 1, namely ı.x;yIB/D 1.
There are three types of places where the gradient trajectory might break at. The first
is at a critical point x0 between x and the first disks B1 . The second possibility is at a
critical point z between two consecutive disks Bi and BiC1 . The last possibility is that
this occurs at a critical point y0 between the last disk Bk and the point y . Applying
the Leibniz formula (84) together with formulae (89), (94), (90) we obtain

(101)

@x0P Dm.x;x0/�P.x0;yIDIB/;

@zP D .�1/jxjC1P.x; zIDI .B1; : : : ;Bi//�P.z;yIDI .BiC1; : : : ;Bk//;

@y0P D�P.x;y0IDIB/�m.y0;y/:

Recall also by our conventions m.x;x0/D P.x;x0IDI 0/ and similarly for m.y0;y/.
The union of the spaces in (101) over all relevant x0 , z , y0 , i , k and .B1; : : : ;Bk/

with
P

Bj D B form the space @breakP.x;yIDIB/.

We are now ready to show that d2.x/D 0 for every x 2 Crit.f /. We will work here
with the ring zƒC , which implies that the same statement holds for every zƒC–algebra.
Fix y 2 Crit.f / and B 2 H D

2
so that ı.x;yIB/ D 1. We have to show that the

coefficient of yT B in d ı d.x/, which we denote by hd2.x/;yT Bi is 0. Clearly, if
B D 0 this amounts to showing that the Morse differential squares to 0 which is well
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known, thus we assume that B ¤ 0. A simple computation now shows that

(102) hd2.x/;yT B
i D

X
jx0jDjxj�1

.�1/jyj#P.x;x0I 0/#P.x0;yIB/

C

X
z;AI

ı.x;zIA/D0
A¤B

.�1/jzjCjyj#P.x; zIA/#P.z;yIB �A/

C

X
y0Iı.x;y0IB/D0

.�1/jy
0j#P.x;y0IB/#P.y0;yI 0/:

Applying (101) we now arrive to

(103) hd2.x/;yT B
i D

X
jx0jDjxj�1

.�1/jyj#@x0P.x;yIB/

C

X
z;AI

ı.x;zIA/D0
A¤B

.�1/jzjCjyjCjxjC1#@zP.x;yIB/

C

X
y0Iı.x;y0IB/D0

.�1/jy
0jC1#@y0P.x;yIB/:

Note that for the z ’s that appear in the second summand we have jzj C jxj C 1 �

0 .mod 2/, hence .�1/jzjCjyjCjxjC1 D .�1/jyj . Similarly, for the third summand we
have .�1/jy

0jC1 D .�1/jyj . Thus we obtain

hd2.x/;yT B
i D .�1/jyj #@breakP.x;yIB/D .�1/jyj #@P.x;yIB/D 0;

where the second to last equality follows from (99) and (100). This concludes the
verification that d2 D 0.

Remark A.2.1 Here we explain in a more conceptual way the role of the sign
.�1/jyj in (98). This sign naturally appears from slightly different moduli spaces
than P.x;yIDIB/. For every x 2 Crit.f / denote by Su.x/ the unstable sphere
corresponding to x . This can be thought of as small radius (or infinitesimal) sphere
inside W u.x/ oriented as the boundary of small disk around the critical point which
lies inside W u.x/ (recall that W u.x/ is oriented). Similarly we have the stable
sphere S s.y/ for every y 2 Crit.f /. Consider now the moduli space

(104) Psph.x;yIDI .B1; : : : ;Bk//

D .Su.x/�RC/�L .M2.B1;J /�RC/�L � � � �L .M2.Bi ;J /�RC/�L

� � � �L .M2.Bk ;J /�RC/�L S s.y/ ;
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where the first factor is mapped to L by .p; t/ 7!ˆt .p/, and the last one by inclusion.
The only difference between P and Psph is the first factor in the fiber product as well
as the last two ones. For B ¤ 0, we define Psph.x;yIDIB/ to be the union of all
Psph.x;yIDI .B1; : : : ;Bk// over all .B1; : : : ;Bk/ with

P
Bj DB . When BD 0 we

put Psph.x;yID; 0/ D .S
u.x/�RC/�L S s.y/. The relation between these spaces

and the one we have used so far is given by

(105)
Psph.x;yIDI 0/D .�1/nCjxj�jyj�1 P.x;yIDI 0/D .�1/nCjxj�jyj�1 m.x;y/;

Psph.x;yIDIB/D .�1/nC1Cjxj P.x;yIDIB/ when B ¤ 0:

In particular, when ı.x;yIB/D 0 we have

Psph.x;yIDI 0/D .�1/nm.x;y/;

Psph.x;yIDIB/D .�1/nCjyj P.x;yIDIB/ when B ¤ 0:

Thus our differential (98) can be written also as

d.x/D .�1/n
X
y;BI

ı.x;yIB/D0

#Psph.x;yIDIB/y T B:

Moreover, the spaces Psph behave better with respect to breaking at critical points, at
least as far as orientations go. In fact, if ı.x;yIB/D 1 we have

@break
�
Psph.x;yIDIB/

� a
v2Crit.f /;B0CB00DBI

ı.x;vIB0/D0

.�1/nC1 Psph.x; vIDIB
0/�Psph.v;yIDIB

00/:

This together with (99) immediately implies that d2 D 0.

Although the spaces Psph seem more natural from the point of view of orientations
we have chosen not to explicitly work with them. One reason is that they seem less
convenient for the purpose of the other quantum operations (eg the quantum product).
Another drawback is that one has to redefine these spaces in some situations, eg when
x is a minimum the unstable sphere Su.x/ is, naively speaking, void. Another case is
when the holomorphic disks in M2.B1/ come closer to the point x than Su.x/ (or
even touch that point).

A.2.2 Orientations for the quantum product The various operations described
earlier in this section are modeled on trees with nodes of valence at most four. In other,
words they correspond to strings of pearls that possibly meet a disk with at most three
entries and one exit.

As an example we now focus on the quantum product (see [14; 12] for a complete
definition of the product). Fix three Morse functions f; f 0; f 00 and the pearl data
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D D .f; . � ; � /;J /, D0 D .f 0; . � ; � /0;J /, D00 D .f 00; . � ; � /00;J /. Let v 2 Crit.f /,
w 2 Crit.f 0/, y 2 Crit.f 00/. The coefficient of y in the product v �w is the sum over
all classes B;B0;B00; � 2 H D

2
of the number of configurations in the moduli space

P.v; w;yIB;B0;B00; �/ given as an iterated fiber product that we now make explicit.

Given data D D .f; . � ; � /;J /, x 2 Crit.f / and .B1; : : : ;Bk/ with Bi ¤ 0 we first
define the unstable pearl moduli space Pu.xIDI .B1; : : : ;Bk// to be the following
iterated fiber product (together with its orientation):

W u.x/�L .M2.B1;J /�RC/�L

� � � �L .M2.Bi ;J /�RC/�L � � � �L .M2.Bk ;J /�RC/:

Given B ¤ 0 we denote by Pu.xIDIB/ the union of all Pu.xIDI .B1;B2; : : : ;Bk//

with
P

Bi DB . In case B D 0 we just put Pu.xIDI 0/DW u.x/ (again, as oriented
manifolds). This is similar to (97) with the exception that the last fiber product is
missing here and is replaced by the term RC . The space Pu.xIDIB/ comes with an
evaluation map

eu
BW P

u.xIDIB/!L

whose restriction to Pu.xIDI .B1;B2; : : : ;Bk// is induced from the evaluation on the
last factor

M2.Bk ;J /�RC �!L; .u; t/ 7�!ˆt .u.C1//:

For B D 0 we take this evaluation map to be the inclusion W u.x/ �!L.

Similarly, we define the moduli space Ps.xIDIB/ whose components are defined
when B ¤ 0 by the fiber product

.L�RC/�L .M2.B1;J /�RC/�L

� � � �L .M2.Bi ;J /�RC/�L � � � �L .M2.Bk ;J /�L W s.x//;

and Ps.xID; 0/ D W s.x/ when B D 0. In addition, there is an evaluation map
es

B
W Ps.xIDIB/! L whose restriction to the component written above is induced

from the identity L!L defined on the leftmost term in the product.

Next, consider the parametrized moduli space �M.�;J / together with the following
three evaluation maps e�j W

�M.�;J /�!L where �j D e�2j�i=3 , j D 1; 2; 3. Finally,
we define the space P.v; w;yIB;B0;B00; �/ by the fiber product

(106) Pu.vIDIB/eu
B
�e0

�1

�
Pu.wID0IB0/eu

B0
�e�2

�M.�;J /e�3
�es

B00
Ps.yID00IB00/

�
;

where in this formula the map e0
�1

is induced on the fiber product in the brackets
by the evaluation e�1

originally defined on �M.�;J /. Note that the dimension of
P.v; w;yIB;B0;B00; �/ is jvjC jwj � jyj � nC�.B/C�.B0/C�.B00/C�.�/.
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For y 2 Crit.f /, C 2H D
2

such that jyj ��.C /D jvj C jwj � n. The coefficient of
yT C in the product v �w is given byX

BCB0CB00C�DC

#P.v; w;yIB;B0;B00; �/:

By using similar arguments as those used above in the verification showing d2 D 0

(see Section A.2.1), it is easy to see that the product defined by these moduli spaces
verifies the Leibniz formula (96) and, moreover, that the classical term in this definition
coincides with the Morse intersection product (on the chain level). Furthermore similar
arguments show that the induced product on homology makes QH.LIR/ a unital
associative ring.

A.2.3 Orientations for the quantum module structure Similar conventions are
used to define the orientations required for the module structure from Section 2.2.2.
Explicitly, let hW M ! R be a Morse function and fix a metric . � ; � /M on M so
that the pair .h; . � ; � /M / is Morse–Smale. Fix a pearl data on L, DD .f; . � ; � /;J /.
Let a 2 Crit.h/ and x 2 Crit.f /. Let y 2 Crit.f / and C 2H D

2
with jyj ��.C /D

jaj C jxj � 2n. The coefficient of yT C in the product a � x is given by counting
elements in moduli spaces of the form

(107) W u.a/i�e0
0

�
Pu.xID0IB0/eu

B0
�e�1

�M.�;J /eC1
�es

B00
Ps.yID00IB00/

�
;

for all B0;B00; � with B0CB00C�DC . Here i WW u.a/�!M is the inclusion, e0
0

is
the map induced from e0W

�M.�;J /�!M , e0.u/D u.0/, and e˙1W
�M.�;J /�!L

are the evaluation maps e˙1.u/D u.˙1/.

Proving this operation induces on QH.LIR/ a structure of a module over QH.M IR/
is based on arguments similar to the ones in Section A.2.1.

A.2.4 Orientations for the quantum inclusion Here we fix our conventions for the
quantum inclusion iLW QH.LIR/! QH.M IR/ recalled in Section 2.2.3. The basic
data is similar here as in the case of the module multiplication: besides D we also fix
the Morse–Smale pair .h; . � ; � /M / on M . We fix x 2 Crit.f /. Let a 2 Crit.h/ and
B 2H D

2
with jaj ��.B/D jxj. The coefficient of aT B in the expression of iL.x/

is given by counting elements in moduli spaces of the form

(108) Pu.xIDIB0/eu
B0
�e�1

�M.�;J /e0
�iW

s.a/;

where i W W s.a/!M is the inclusion. It is not difficult to see that with our conventions
this defines a chain morphism whose classical part coincides with the usual Morse (or
singular homology) inclusion.
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A.2.5 Invariance of the structures We now shortly discus the proof of the invariance
of all these structures with respect to changes in the data D. This is based on constructing
comparison chain maps associated to any two pairs of data. In turn, to construct such
comparison maps there are two distinct methods each perfectly similar to those described
over Z2 as in [14, Section 3.2-e] and, respectively, in the proof of Proposition 4.4.1 in
the same paper. The first method is based on a cone construction naturally appearing
in a pearly version of Morse cobordisms. It provides a quasi-isomorphism (canonical
up to chain homotopy) ‰D0;DW C.LIDIR/ �! C.LID0IR/ for any two tuples of data
D, D0 . In view of the previous subsections, the right convention to orient the relevant
moduli spaces in this case is rather straightforward and we omit the details.

The second method is less general in the sense that it allows to compare the pearl
complexes associated only to two tuples D, D0 having the same almost complex
structure J and moreover the two Morse functions should be mutually in general
position. The resulting chain map �D0;D coincides in homology with the one provided
by the general method ‰D0;D . As we use explicitly in the paper only the second
construction we indicate briefly the orientation conventions in that case. Let D D

.f; . � ; � /;J / and D0 D .f 0; . � ; � /;J / with f and f 0 in general position. The map
�D0;DW C.LID/! C.LID0/ is defined by counting elements in the moduli spaces of
the form

ˆ.x;yID;BID0;B0/D Pu.xIDIB/�L Ps.yID0IB0/:

The evaluation maps here are the obvious ones. The chain map �D0;D is now defined by

�D0;D.x/D
X

y;B;B0I
jyjDjxjC�.BCB0/

#ˆ.x;yID;BID0;B0/yT BCB0 :

By the same type of arguments as above, it is easy to see that this definition provides a
chain map that induces an isomorphism in homology and that this definition provides
the usual Morse comparison map in the classical case.

A.2.6 Orientation conventions for duality This is a topic that has been discussed
in [14, Section 4.4] but only over Z2 hence in the absence of orientations. We fix a
ground ring K (it will be here a field or Z). We now recall some notation from [14]
and adapt it to the present setting.

Assume that R is a commutative zƒC–algebra and suppose that .C; @/ is a free R–
chain complex (see [14, Section 2.2.1] for the precise definition). Thus C DR˝G

for some graded free K–module G . To the chain complex .C; @/ we associate the
following two closely related complexes:
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(a) .Cˇ; @�/; Cˇ D homR.C;R/ with the following grading. For g 2 Cˇ define
jgj D k if g.Ci/�RiCk . The differential @� is given by

(109) h@�g;xi D �.�1/jgjhg; @xi:

Clearly, Cˇ is a chain complex and we have an isomorphism of graded modules
Cˇ ŠR˝ homK .G;K/.

(b) .C�; @�/; Cq D Cˇ�q and the differential @� coincides with the differential of Cˇ
but it has now degree C1 so that C� is a cochain complex. The cohomology of C
is by definition H k.C/ D H k.C�/. Notice that C� D Rinv˝ homK .G;K/

inv

where for a graded vector space A, Ainv is the graded vector space so that for
a 2Ainv , jaj D � degA.a/.

Remark A.2.2 (a) The identification between chain complexes .Ck ; dk/ and cochain
complexes .C k ; dk/, C k D C�k , dk D d�k that appears at point b. is standard in
homological algebra but we have preferred to make it explicit here by means of the
functor .�/inv .

(b) The sign that appears in the definition of @� in formula (109) is the only addition
to the notation in [14, Section 4.4] (where we worked over Z2 ). This sign appears in
other situations in algebraic topology as well. For instance, let .S�X; ı/ be the standard
singular chain complex of a space X . In the definition of the singular cohomology
of X the literature contains essentially two variants for the differential: one is the
adjoint of ı , without the signs in (109), and the other is given by formula (109). Many
authors use the signed formula at least as soon as they deal with products and duality
(see for instance Dold [21]). The advantage of this formula is that the Kronecker pairing
S�.N /˝S�.N /!Z is a chain map. If X is an oriented manifold and once Poincaré
duality is defined by .�/\ ŒX �, the intersection product is the dual of the cup-product,
and both the intersection product and the cup-product verify the respective Leibniz
formulas with the usual signs. These are the conventions concerning classical algebraic
topology that we also use in this paper.

(c) Clearly, in our situation equation (109) insures that the pairing Cˇ˝R C!R is
a chain map (where the differential on R is trivial).

For a complex C we denote by snC its n–fold suspension: this coincides with C but is
graded so that the degree of x in snC is nCdegC.x/, in other words, .snC/k D Ck�n .
The differential on this complex remains the same. In particular, Hk.s

nCˇ/ Š
Hk�n.Cˇ/DH n�k.C�/.
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With the conventions above the results stated in [14, Proposition 4.4.1] remain true.
Namely, there exists a degree preserving morphism of chain complexes

(110) �W C.LID/ �! sn.C.LID/ˇ/

that induces an isomorphism in homology. Thus there is an induced isomorphism

QHk.LIR/Š QHn�k.LIR/:

The proof of this fact is basically the same as that of [14, Proposition 4.4.1]: � is
written as the composition of two morphisms, each of them inducing an isomorphism
in homology. The first is the comparison chain morphism between C.LIf; . � ; � /;J /
and C.LI �f; . � ; � /;J /. The second is the identification

‚W C.LI �f; . � ; � /;J /Š sn.C.LIf; . � ; � /;J /ˇ/;

where ‚ is induced by

Crit.�f / 3 x 7�! .x0/� 2 homK .KhCrit.f /i;K/:

Here we have denoted by x0 the point x2Crit.�f / viewed as critical point of f and by
.x0/� the dual of x0 with respect to the basis fy0gy02Crit.f / of KhCrit.f /i. The orien-
tations of the stable and unstable manifolds of �f are related to those for f as follows.
First we orient the stable submanifolds of �f by requiring that W s

�f
.x/DW u

f
.x/.

Next, in order to orient the unstable submanifolds of �f we apply to �f the standard
orientation conventions. Namely we require that TxW s

�f
.x/˚TxW u

�f
.x/D Tx.L/

at each x 2 Crit.�f /.

With these conventions one obtains the following identities. Let x;y 2 Crit.�f /,
B 2 H D

2
with ı.x;yIB/ D 0. Put D D .�f; . � ; � /;J / and D0 D .f; . � ; � /;J / and

denote the differentials of the complexes C.D/, C.D0/ by d and d 0 respectively. Then

(111)
P.x;yIDI 0/D�.�1/jx

0jP.y0;x0ID0I 0/;

P.x;yIDIB/D .�1/jyjC1P.y0;x0ID0IB/:

This implies the coefficient of y in d.x/ satisfies d.x/jy D�.�1/jx
0jd.y0/jx0 . This

immediately implies that ‚ is a chain map.

Proof of identities (111) The first identity follows easily from the fact that

(112) W u
f .x

0/DW s
�f .x/; W s

f .x
0/D .�1/jxj.n�jxj/W u

�f .x/:

We now turn to the proof of the second identity in (111). We start with a useful identity.
Let X , Y be oriented manifolds and eX W X !L, eY W Y !L be two smooth maps.
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Let ‰W L�R!R the flow of a (time independent) vector field. Define

‰X W X �R!L; ‰X .x; t/D‰.eX .x/; t/;

S‰Y W Y �R!L; S‰Y .y; t/D‰.eY .y/;�t/:

Define z� W .X�RC/�L�Y �!X�L�.Y �RC/ by z�.x; t; l;y/D .x; ‰.l;�t/;y; t/.
A simple computation shows that z� induces an orientation preserving diffeomorphism

(113) � W .X �RC/ ‰X
�eY

Y �! .�1/nCjY jX eX
�S‰Y

.Y �RC/:

We will now apply identity (113) to our purposes. We will take ‰ to be the flow of
the vector field �r.�f / D rf . Consider the fiber product in (97) which defines
P.x;yIDI .B1; : : : ;Bk//. (Note however that D now involves the function �f rather
than f .) For brevity we write

�!
B D .B1; : : : ;Bk/. Applying identity (113) repeatedly

on each of the middle .k�1/ factors, starting with .M2.Bk�1/�RC/�LM2.Bk ;J /

and moving on to the right we get

(114) P.x;yIDI
�!
B /D .�1/k�1 W u.x/�L M2.B1;J /�L .M2.B2;J /�RC/�L

� � � �L .M2.Bi ;J /�RC/�L

� � � �L .M2.Bk ;J /�RC/�L W s.y/:

The next manipulation is to reverse the order in which we take the fiber products of the
M2.Bi/’s to

.M2.Bk ;J /�RC/�L � � � �L .M2.Bi ;J /�RC/�L � � � �L M2.B1;J /:

A simple computation shows that this has no effect on orientations. Next we also switch
the W u.x/ and W s.y/ factors which gives us an additional .�1/jyjnCnC1 sign, hence

(115) P.x;yIDI
�!
B /D .�1/kCnCjyjn W s.y/ i�eC1

.M2.Bk ;J /�RC/ xe0
�1
�eC1

� � � xe0
�1
�eC1

.M2.Bi ;J /�RC/ xe0
�1
�eC1

� � � xe0
�1
�eC1

M2.B1;J / e�1
�i W u.x/:

Here, i stands for the inclusions, xe0
�1
.u; t/D‰.e�1.u/;�t/ and we have denoted (by

abuse of notation) eC1.u; t/D eC1.u/D u.C1/.

The marked points for the maps involved in the product (115) are not in the “standard”
order. Namely, in order to arrive to P.y0;x0IDI .Bk ; : : : ;B1// we need to have i�e�1

and eC1
�i for the first and last products and xe0

C1
�e�1

for the products in the middle,
where xe0

C1
.u; t/ D ‰.eC1.u/;�t/. To rectify this, note that the diffeomorphism

� WM2.A/!M2.A/, defined by �.Œu; z1; z2�/D Œu; z2; z1� satisfies � ı e˙1 D e�1

and that � is orientation reversing. (Here we are using the first identification in (85)
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by which eC1 is identified with E1;� and e�1 with E2;� .) Applying the diffeomor-
phism � on each of the k middle factors transforms the maps and marked points to the
standard order, but adds a .�1/k sign to the product.

Finally, we replace the first and last factors in the product by W u.y0/ and W s.x0/

respectively, which by (112) adds another .�1/jxj.n�jxj/ to the total sign. Putting
everything together we obtain

P.x;yIDI .B1; : : : ;Bk//D .�1/�P.y0;x0ID0I .Bk ; : : : ;B1//;

where � D kC nCjyjnC kCjxj.n� jxj/� jxj mod 2� .jyjC 1/ mod 2.

Finally, with the above conventions it is not difficult to verify in the present context the
following formula:

(116) hPD.h/;xi D �.h�x/; 8h 2H�.M;K/; x 2 QH.L/:

This formula appeared in [14], as “formula (6)” in the point iii of Theorem A in that
paper (which was proved there only over Z2 ). More specifically: Here h ; i is the
Kronecker product, ��� is the module operation discussed in Section 2.2.2 and �
is the augmentation defined in [14]. Recall that for a pearl complex C.LIf; . � ; � /;J /
where f has a unique minimum, the augmentation � is induced by the map that sends
the minimum to 1 2R (and sends all the other critical points to 0).
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