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The Novikov conjecture and geometry of Banach spaces

GENNADI KASPAROV

GUOLIANG YU

In this paper, we prove the strong Novikov conjecture for groups coarsely embeddable
into Banach spaces satisfying a geometric condition called Property (H).

19K35, 19K56, 46L80; 57R55

1 Introduction

An important problem in higher dimensional topology is the Novikov conjecture on the
homotopy invariance of higher signature. The Novikov conjecture is a consequence of
the Strong Novikov Conjecture in K–theory of group C �–algebras. The main purpose
of this paper is to prove the Strong Novikov conjecture (with coefficients) for any
group coarsely embeddable into a Banach space satisfying a geometric condition called
Property (H).

Definition 1.1 A real Banach space X is said to have Property (H) if there exists
an increasing sequence of finite dimensional subspaces fVng of X and an increasing
sequence of finite dimensional subspaces fWng of a real Hilbert space such that

(1) V D
S

n Vn is dense in X ;

(2) if W denotes
S

n Wn , and S.V /, S.W / denote respectively the unit spheres of
V , W , then there exists a uniformly continuous map  W S.V /! S.W / such
that the restriction of  to S.Vn/ is a homeomorphism (or more generally a
degree one map) onto S.Wn/ for each n.

As an example, let X be the Banach space lp.N/ for some p � 1. Let Vn and Wn

be respectively the subspaces of lp.N/ and l2.N/ consisting of all sequences whose
coordinates are zero after the nth terms. We define a map  from S.V / to S.W / by

 .c1; : : : ; ck ; : : :/D .c1jc1j
p=2�1; : : : ; ck jck j

p=2�1; : : :/:

This map  is called the Mazur map (see Benyamini and Lindenstrauss [3]). It is not
difficult to verify that  satisfies the conditions in the definition of Property (H). For
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1860 Gennadi Kasparov and Guoliang Yu

each p � 1, we can similarly prove that the Banach space of all Schatten p–class
operators on a Hilbert space has Property (H). We can also check that uniformly convex
Banach spaces with certain unconditional bases have Property (H) (with the help of
results of Benyamini and Lindenstrauss on the uniform homeomorphism classification
of Banach space spheres in [3, Chapter 9]).

We also recall that a metric space � is said to be coarsely embeddable into a Banach
space X (see Gromov [5]) if there exists a map hW � ! X for which there exist
non-decreasing functions �1 and �2 from RC D Œ0;1/ to R such that

(1) �1.d.x;y//� kh.x/� h.y/k � �2.d.x;y// for all x;y 2 � ;

(2) limr!C1 �i.r/DC1 for i D 1; 2.

In the case of a countable group � , we endow � with a proper (left invariant) length
metric. If � is finitely generated, the word length metric is an example of a proper
length metric. The issue of coarse embeddability of a countable group into a Banach
space X is independent of the choice of the proper length metric.

The following theorem is the main result of this paper.

Theorem 1.2 Let � be a countable discrete group and A any � –C �–algebra. If �
admits a coarse embedding into a Banach space with Property (H), then the Strong
Novikov conjecture with coefficients in A holds for � , that is, if E� is the universal
space for proper �–actions and A Ìr � is the reduced crossed product C �–algebra,
then the Baum–Connes assembly map

�W KK�� .E�;A/!K�.A Ìr �/

is injective.

The special case when the Banach space is the Hilbert space is proved by Yu [15] and
Skandalis–Tu–Yu [13].

If we replace the degree one condition by a nonzero degree condition in the definition
of Property (H), we say that X has rational Property (H).

Theorem 1.3 Let � be a countable discrete group and A any � –C �–algebra. If �
admits a coarse embedding into a Banach space with rational Property (H), then the
rational Strong Novikov conjecture with coefficients in A holds for � , that is, if E� is
the universal space for proper � –actions and A Ìr � is the reduced crossed product
C �–algebra, then the Baum–Connes assembly map

�W KK�� .E�;A/˝Q!K�.A Ìr �/˝Q

is injective.
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We remark that the rational Strong Novikov conjecture implies the Novikov conjecture
on homotopy invariance of higher signatures and the Gromov–Lawson–Rosenberg con-
jecture regarding nonexistence of positive scalar curvature metrics on closed aspherical
manifolds.

It is conjectured that any countable subgroup of the diffeomorphism group of a compact
smooth manifold is coarsely embeddable into the Banach space of all Schatten p–class
operators for some p � 1. If p > 2, then lp.N/ is not coarsely embeddable into a
Hilbert space (see Johnson and Randrianarivony [9]). More generally, lp.N/ does not
coarsely embed into lq.N/ if p > q � 2 (see Mendel and Naor [11]). Let C0 be the
Banach space consisting of all sequences of real numbers that are convergent to 0. It is
an open question if C0 has (rational) Property (H). By the above theorems, a positive
answer to this question would imply the Novikov conjecture since every countable
group admits a coarse embedding into C0 (see Brown and Guentner [4]).

This paper is organized as follows. In Section 2, we construct a C �–algebra associated
to a Banach space with (rational) Property (H) and study its K–groups. In Section 3,
we reformulate the Baum–Connes map and discuss its connection with the localization
algebra. In Section 4, we introduce the Bott map for K–groups. In Section 5, we give
a proof of the main theorem.

In this paper, K–groups of a graded C �–algebra are defined to be the K–groups of
the underlying ungraded C �–algebra obtained by forgetting the grading structure. The
same comment applies to KK –groups.

Acknowledgements The authors wish to thank Misha Gromov for inspiring discus-
sions and the referee for very helpful comments. Both authors are partially supported
by NSF.

2 A C �–algebra associated to a Banach space with Property
(H)

In this section, we construct a C �–algebra associated to a Banach space with (rational)
Property (H) and study its K–groups.

Let  be as in the definition of (rational) Property (H). We extend  to a map
�W V !W by

�.v/D kvk 

�
v

kvk

�
for any v 2 V , where �.0/ should be interpreted as 0.
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Let Clifford.Wn/ be the complex Clifford algebras of Wn , satisfying the relation
w2 D kwk2 for all w 2Wn . We define the complex Clifford algebra Clifford.W / to
be the C �–algebra inductive limit of Clifford.Wn/. Let C0.V;Clifford.W // be the
graded C �–algebra of all bounded and uniformly continuous functions on V with
values in the Clifford algebra Clifford.W / which vanish at infinity, where the grading
is given by the natural grading structure on the Clifford algebra. Let S D C0.R/ be
the graded C �–algebra of all complex-valued continuous functions on R vanishing at
infinity (graded by even and odd functions). We define S y̋ C0.V;Clifford.W // to be
the graded C �–algebra tensor product of S and C0.V;Clifford.W //.

For any f 2 C0.R/, we can define an element

f ..s; �.v/// 2 S y̋ C0.V;Clifford.W //

by
f ..s; �.v///D f .s y̋ 1C 1 y̋ �.v//;

where s and �.v/ should be respectively viewed as unbounded degree one multipliers
of S and C0.V;Clifford.W //, .s; �.v// is defined to be s y̋ 1 C 1 y̋ �.v/ as an
unbounded degree one multiplier of S y̋ C0.V;Clifford.W //, and f .s y̋ 1C1 y̋ �.v//

is defined using functional calculus.

More concretely, f ..s; �.v/// can be defined as follows:

(1) If f .t/D g.t2/ for some g 2 C0.R/, then we define a scalar valued function
f ..s; �.v/// of the variable .s; v/ 2R�V by

.s; v/! g.s2
Ck�.v/k2/D g.s2

Ckvk2/

for every .s; v/ 2R�V ;

(2) if f .t/ D tg.t2/ 2 C0.R/ for some g 2 C0.R/, then we define an element
f ..s; �.v/// 2 S y̋ C0.V;Clifford.W // by

f ..s; �.v///D g.s2
Ck�.v/k2/.s y̋ 1C 1 y̋ �.v//

D g.s2
Ckvk2/.s y̋ 1C 1 y̋ �.v//

for every s 2R; v 2 V , here s y̋ 1C 1 y̋ �.v/ should viewed as an unbounded
degree one multiplier of S y̋ C0.V;Clifford.W //;

(3) the general definition of f ..s; �.v/// follows using approximation of f by
linear combinations of special functions of the above two types in C0.R/.

Now we are ready to define a C �–algebra associated to a Banach space with (rational)
Property (H).
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Definition 2.1 Let X be a Banach space with (rational) Property (H). Let � be as
above. We define A.X / to be the graded C �–subalgebra of S y̋ C0.V;Clifford.W //

generated by all f ..s; �.v� v0/// for s 2R, all v0 2 V and f 2 C0.R/.

It is not difficult to compute K�.A.X // when X is an lp –space for some 1� p <1

(see Higson–Kasparov–Trout [8] for p D 2). In general, it is an open question how to
compute K�.A.X //. The following result provides a partial solution.

Proposition 2.2 Let X be a Banach space with Property (H) and let A.X / be the
C �–algebra associated to X . If B is a (graded) C �–algebra, then the homomorphism
from S to A.X /: f .s/! f ..s; �.v//, induces an injection

K�.S y̋ B/!K�.A.X / y̋ B/:

Proof Let A.X;Vn/ be the C �–subalgebra of A.X / generated by all elements
f ..s; �.v � v0/// for f 2 C0.R/ and s 2 R; v0 2 Vn . Note that A.X / y̋ B is the
inductive limit of A.X;Vn/ y̋ B . It suffices to prove that the homomorphism

ˇnW K�.S y̋ B/!K�.A.X;Vn/ y̋ B/

is injective for each n, where ˇn is induced by the homomorphism from S to A.X;Vn/:
f .t/! f ..s; �.v//.

Let C.Vn/ be the graded C �–algebra of all continuous functions on Vn with values
in the Clifford algebra Clifford.Wn/ which vanish at infinity. Define A.Vn/ to be the
graded C �–algebra tensor product S y̋ C.Vn/. Let rn be the restriction homomorphism
from A.X;Vn/ y̋ B to A.Vn/ y̋ B . By the definition of Property (H), such restriction
homomorphism is well defined. By Bott periodicity (see Higson–Kasparov–Trout [8])
and the degree one condition in the definition of Property (H), we observe that the
composition .rn/� ıˇn is an isomorphism. Proposition 2.2 follows from this observa-
tion.

The following result follows from Proposition 2.2 and the Green–Julg theorem.

Corollary 2.3 Let X be a Banach space with Property (H) and let A.X / be the
C �–algebra associated to X . If H is a compact topological group and B is a (graded)
H –C �–algebra, then we have a natural injective homomorphism

KH
� .S y̋ B/!KH

� .A.X / y̋ B/;

where H acts on A.X / trivially.

We can prove the following results using essentially the same argument.
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Proposition 2.4 Let X be a Banach space with rational Property (H) and let A.X /
be the C �–algebra associated to X . If B is a (graded) C �–algebra, then we have a
natural injective homomorphism

K�.S y̋ B/˝Q!K�.A.X / y̋ B/˝Q:

Corollary 2.5 Let X be a Banach space with rational Property (H) and let A.X / be
the C �–algebra associated to X . If H is a compact topological group and B is a
(graded) H –C �–algebra, then we have a natural injection

KH
� .S y̋ B/˝Q!KH

� .A.X / y̋ B/˝Q:

Let B be a graded C �–algebra, and let K be the graded C �–algebra of all compact
operators on a graded separable and infinite dimensional Hilbert space. Let Cc.R/ y̋ alg

.B y̋ K/ be the algebraic graded tensor product of Cc.R/ with B y̋ K , where Cc.R/
is considered as an algebra graded by even and odd functions.

We define S1
b
.B/ to be the graded C �–algebra of all bounded sequences of uniformly

equicontinuous functions ffkg in S y̋B y̋K such that for each �>0, there exists R>0

for which there exists a bounded sequence of uniformly equicontinuous functions fgkg

in Cc.R/ y̋ alg.B y̋K/ satisfying diameter.support.gk//<R and kfk�gkk<� for all
k , where the support of gk is a subset of R. Let S1

0
.B/ be the graded C �–subalgebra

of S1
b
.B/ consisting of all sequence .fk/ in S1

b
.B/ which are convergent to 0 in

the sup norm. Define S1.B/ to be the quotient graded C �–algebra S1
b
.B/=S1

0
.B/.

The proof of the following result is straightforward and is therefore omitted.

Proposition 2.6 If H is a finite group and B is a graded H –C �–algebra, then
KH
�

�
S1.B/

�
is naturally isomorphic to

�Q
KH
�C1

.B/
�ı�L

KH
�C1

.B/
�
.

We remark that by the Green–Julg theorem the equivariant case of the above proposition
follows from the non-equivariant case.

Let C.Vk/ be the graded C �–algebra of all continuous functions on Vk with values
in the Clifford algebra Clifford.Wk/ which vanish at infinity. Define A.Vn/ to be the
graded C �–algebra tensor product S y̋ C.Vn/. Endow R�Vk with the product metric
of the standard metric on R and the Banach norm metric on Vk .

We define A1
b
.X;B/ to be the graded C �–algebra of all bounded sequences .ak/

such that
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(1) ak 2A.Vk/ y̋ B y̋ K and .ak/ is uniformly equicontinuous in f.s; vk/g in the
sense that for any � > 0 there exists a ı > 0 (independent of k ) such that

kak.s; vk/� ak.s
0; v0k/k< �

if d..s; vk/; .s
0; v0

k
// < ı ;

(2) for each � > 0, there exists R > 0 for which there exists a sequence fgkg in
A.Vk/ y̋ B y̋ K satisfying

diameter.support.gk// <R;

kak.s; vk/�gk.s; vk/k< �

for all k and .s; vk/ 2R�Vk , where the support of gk is a subset of R�Vk .

Let A1
0
.X;B/ be the graded C1–subalgebra of A1

b
.X;B/ consisting of all se-

quences which are convergent to 0 in norm. Define A1.X;B/ to be the quotient
graded C �–algebra A1

b
.X;B/=A1

0
.X;B/.

Let ˇk be the homomorphism from S to A.Vk/ defined by

.ˇk.f //.s; vk//D f ..s; �.vk///

for each f 2 S , s 2R and vk 2 Vk .

ˇk induces a homomorphism (still denoted by ˇk ) from S y̋ B y̋ K to A.Vk/ y̋ B y̋ K .
We define a homomorphism

ˇW S1.B/!A1.X;B/

by
ˇ.Œ.f1; : : : ; fk ; : : :/�/D Œ.ˇ1.f1/; : : : ; ˇk.fk/; : : :/�

for all Œ.f1; : : : ; fk ; : : :/� 2 S1.B/.

Theorem 2.7 If X is a Banach space with Property (H), then the homomorphism ˇ

induces an isomorphism

ˇ�W K�.S1.B//!K�.A1.X;B//:

Proof For each k , endow Vk with a Euclidean metric and let Dk be the corresponding
Dirac operator on Vk . Let ˛k be the asymptotic morphism from A.Vk/ to S y̋ K
associated to Dk :

˛k.t/W f y̋ h! f .t�1.s y̋ 1C 1 y̋ Dk//�.h/
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for all f 2 S and h 2 C.Vk/, where C.Vk/ is as in the definition of A.Vk/, Wk (in
the definition of C.Vk/) is identified with Vk as Euclidean vector spaces, and �.h/ is
the multiplication operator associated to h. ˛k induces an asymptotic morphism (still
called ˛k ) from A.Vk/ y̋ B y̋ K to S y̋ B y̋ K . This asymptotic morphism was first
introduced by Higson–Kasparov–Trout [8].

For each t 2 Œ1;1/, we define a map

˛.t/W A1.X;B/! S1.B/

by

.˛.t//.Œ.a1; : : : ; ak ; : : :/�/D Œ..˛1.t//.a1/; : : : ; .˛k.t//.ak/; : : :/�:

After rescaling ˛k.t/ for each k , ˛ is an asymptotic morphism from A1.X;B/
to S1.B/, where the rescaling constant for each k can be chosen as the Lipschitz
constant of the Lipschitz equivalence between the Euclidean norm on Vk and the
Banach norm on Vk . ˛ is called the Dirac morphism. More precisely, let Ck be the
Lipschitz constant of the Lipschitz equivalence between the Euclidean norm k � kE on
Vk and the Banach norm on k � k on Vk , that is, Ck is a positive constant satisfying
C�1

k
kvkE � kvk � CkkvkE for all v 2 Vk . For each k , the scaled asymptotic

morphism is defined to be ˛k.Ck t/ (still denoted by ˛k ).

Let A1.X �X;B/ be defined as A1.X;B/ using the sequence of finite dimensional
subspaces Vn �Vn and Wn �Wn .

We define a homomorphism ˇ0
k

from A.Vk/ to A.Vk �Vk/ by

.ˇ0k.f y̋ g//.s; vk ; v
0
k/D f ..s; �.v

0
k/// y̋ g.vk/;

where f 2S , g 2C0.Vk ;Clifford.Wk//, s 2R; .vk ; v
0
k
/2Vk�Vk , and f ..s; �.v0

k
///

is defined to be f .s y̋ 1C 1 y̋ �.v0
k
//.

The homomorphism ˇ0
k

induces a homomorphism (which we also denote ˇ0
k

) from
A.Vk/ y̋ B y̋ K to A.Vk �Vk/ y̋ B y̋ K . Using fˇ0

k
g we can define a homomorphism

ˇ0 from A1.X;B/ to A1.X �X;B/. Similarly we define the Dirac morphism ˛0

from A1.X �X;B/ to A1.X;B/ using the Dirac operator on the first copy of Vk

in Vk �Vk for each k .

We now apply Atiyah’s rotation trick [1]. For any � 2
�
0; �

2

�
, we define the rotation

R� by

R� .v; w/D .cos �v� sin �w; sin �vC cos �w/:
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This rotation R� induces an automorphism (also denoted R� ) on A1.X �X;B/. In
particular, for any sequence of vectors f.ck ; c

0
k
/g such that .ck ; c

0
k
/2Vk�Vk , we have

R� W
��
fk

��
s;
�
�
�
vk � ck

�
; �
�
v0k � c0k

������
!��

fk

��
s;
�

cos ��
�

cos �vk C sin �v0k � ck

�
� sin ��

�
� sin �vk C cos �v0k � c0k

�
;

sin ��
�

cos �vk C sin �v0k � ck

�
C cos ��

�
� sin �vk C cos �v0k � c0k

������
;

where fk 2 S , ffkg is equicontinuous, and s 2R; .vk ; v
0
k
/ 2 Vk �Vk .

By homotopy invariance, we have

.Id/� D .R0/� D
�
R �

2

�
�
;

where .R� /� is the automorphism on K�.A1.X �X;B// induced by R� .

For any x 2K�.S1.B//, we have

˛�.ˇ�.x//D x:

For any y 2K�.A1.X;B//, we have

ˇ�.˛�.y//D ˛
0
�.ˇ
0
�.y//D ˛

0
�

�
R �

2

�
�
.ˇ0�.y//D zy;

where the map y! zy is induced by the map .vk/! .�vk/.

The above two identities imply that ˇ and ˛ are isomorphisms, inverse to each other,
and y! zy is the identity map.

The following result follows from Theorem 2.7 and the Green–Julg theorem.

Corollary 2.8 Let H be a finite group and let B be a graded H –C �–algebra. If X

is a Banach space with Property (H), then ˇ induces an isomorphism

ˇ�W K
H
� .S1.B//!KH

� .A1.X;B//:

Proposition 2.9 If X is a Banach space with rational Property (H), then the homo-
morphism ˇ induces an isomorphism

ˇ�W K�.S1.B//˝Q!K�.A1.X;B//˝Q:

Corollary 2.10 Let H be a finite group and let B be a graded H –C �–algebra. If X

is a Banach space with rational Property (H), then ˇ induces an isomorphism

ˇ�W K
H
� .S1.B//˝Q!KH

� .A1.X;B//˝Q:
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3 The Baum–Connes map and localization

In this section, we briefly recall the Baum–Connes map and its relation to the localization
algebra. Our reformulation of the Baum–Connes map follows the work of Roe [12]
and uses a localization technique introduced by Yu [14]. This reformulation will be
useful in the next section.

Let � be a countable discrete group. Let � be a locally compact metric space with a
proper and cocompact isometric action of � . Let C0.�/ be the algebra of all complex
valued continuous functions on � which vanish at infinity. Let B be a � –C �–algebra.

The following definition is due to John Roe [12].

Definition 3.1 Let H be a Hilbert module over B and let ' be a �–homomorphism
from C0.�/ to B.H /, the C �–algebra of all bounded (adjointable) operators on H .
Let T be an operator in B.H /.

(1) The support of T is defined to be the complement (in � ��) of the set of
all points .x;y/ 2 ��� for which there exists f 2 C0.�/ and g 2 C0.�/

satisfying '.f /T '.g/D 0 and f .x/¤ 0 and g.y/¤ 0;

(2) The propagation of T is defined to be supfd.x;y/ W .x;y/ 2 Supp.T /g;

(3) T is said to be locally compact if '.f /T and T '.f / are in K.H / for all
f 2 C0.�/, where K.H / is defined to be the operator norm closure of all finite
rank operators on the Hilbert module H .

Let H be a (countably generated) � –Hilbert module over B and let ' be a �–
homomorphism from C0.�/ to B.H / which is covariant in the sense that '.
f /hD
.
 .'.f //
�1/h for all 
 2 � , f 2 C0.�/ and h 2H . Such a triple .C0.�/; �; '/ is
called a covariant system.

Definition 3.2 We define the covariant system .C0.�/; �; '/ to be admissible if

(1) the � –action on � is proper and cocompact;

(2) there exist a �–Hilbert space H� and a separable and infinite dimensional
� –Hilbert space E such that
(a) H is isomorphic to H�˝E˝B as � –Hilbert modules over B ;
(b) ' D '0˝ I for some � –equivariant �–homomorphism '0 from C0.�/ to

B.H�/ such that '0.f / is not in K.H�/ for any nonzero function f 2
C0.�/ and '0 is nondegenerate in the sense that f'0.f /H� W f 2 C0.�/g

is dense in H� ,
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(c) for each x 2 �, E is isomorphic to l2.�x/˝Hx as �x –Hilbert spaces
for some Hilbert space Hx with a trivial �x action, where �x is the finite
isotropy subgroup of � at x .

In the above definition, the �x –action on l2.�x/ is regular, that is, .
 �/.z/D �.
�1z/

for every 
 2 �x , � 2 l2.�x/, and z 2 �x , B is the � –Hilbert module over B with
the inner product ha; bi D a�b , and I is the identity operator on E˝B .

We remark that such an admissible covariant system always exists (for example we
can choose E to be l2.�/ with a regular action � ). We point out that condition (2)
implies that E contains all unitary representations of the finite isotropy groups and
this point is important for Proposition 3.4 of this section.

Definition 3.3 Let .C0.�/; �; '/ be an admissible covariant system. We define
C.�;�;B/ to be the algebra of � –invariant locally compact operators in B.H /

with finite propagation. The C �–algebra C �r .�;�;B/ is the operator norm closure of
C.�;�;B/.

The following result is essentially due to John Roe.

Proposition 3.4 If .C0.�/; �; '/ is an admissible covariant system then C �r .�;�;B/

is �–isomorphic to .B Ìr �/˝K , where B Ìr � is the reduced crossed product C �–
algebra and K is the algebra of all compact operators on a separable and infinite
dimensional Hilbert space.

Proof Proposition 3.4 follows from the definitions of the admissible covariant system,
C �r .�;�;B/, and the reduced crossed product C �–algebra.

Next we will describe the Baum–Connes map.

Let H be a �–Hilbert module over B , let F be an operator in B.H /, let ' be
a �–homomorphism from C0.�/ to B.H / such that F is � –equivariant, that is,

F
�1 D F for all 
 2 � , '.f /F �F'.f /, '.f /.FF�� I/ and '.f /.F�F � I/

are in K.H / for all f 2 C0.�/.

We denote the group KK�0 .C0.�/;B/ by KK�0 .�;B/. .H; ';F / gives a KK –cycle
representing a class in KK�0 .�;B/. It is not difficult to prove that every class in
KK�0 .�;B/ is equivalent to .H; ';F / such that .C0.�/; �; '/ is an admissible co-

variant system. This can be seen as follows. We define a new KK –group zKK
�

� .�;B/

using KK –cycles .H; ';F / such that .C0.�/; �; '/ is an admissible covariant system.
By the proof of [10, Proposition 5.5] by Kasparov and Skandalis, we can show that
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there exists a � –Hilbert space H� satisfying the conditions of Definition 3.2 such that
H˚ .H�˝ l2.�/˝B/ is isomorphic to H�˝ l2.�/˝B as � –Hilbert modules over
B . Using this stabilization result, we can prove that the natural homomorphism fromfKK�� .�;B/ to KK�0 .�;B/ is an isomorphism.

For any � > 0, let fUigi2I be a locally finite and �–equivariant open cover of �
satisfying diameter.Ui/ < � for all i . Let f ig be a � –equivariant partition of unity
subordinate to fUigi2I . We define

F� D
X
i2I

'.
p
 i/F'.

p
 i/;

where the convergence is in the strict topology.

Note that F� has propagation � and .H;';F�/ is equivalent to .H;';F / in KK�0 .�;B/.
Also F� is a multiplier of C �r .�;�;B/, and is invertible modulo C �r .�;�;B/.

Let @ be the boundary map

K1.M.C �r .�;�;B//=C �r .�;�;B//!K0.C
�
r .�;�;B//

in K–theory, where M.C �r .�;�;H // is the multiplier algebra of C �r .�;�;H /. We
can define the Baum–Connes map

�W KK�0 .�;B/!K0.C
�
r .�;�;B//ŠK0.B Ìr �/

by
�.Œ.H; ';F /�/D @.ŒF� �/:

More precisely the Baum–Connes map can be implemented as follows.

Let p� be the idempotent�
F�F

�
� C.I�F�F

�
� /F�F

�
� F�.I�F�� F�/C.I�F�F

�
� /F�.I�F�� F�/

.I�F�� F�/F
�
� .I�F�� F�/

2

�
:

Observe that the propagation of p� is at most 5� .

Let

p0 D

�
I 0

0 0

�
:

We have
�.Œ.H; ';F /�/D Œp� �� Œp0�:

Similarly we can define the Baum–Connes map

�W KK�1 .�;B/!K1.C
�
r .�;�;B//ŠK1.B Ìr �/:
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This induces the Baum–Connes map

�W KK�� .E�;B/!K�.B Ìr �/;

where KK�� .E�;B/ is defined to be the inductive limit of KK�� .�;B/ over all � –
invariant and cocompact subspaces � of E� which are finite dimensional simplicial
polyhedra. Here we choose a model of E� so that E� is equal to the union of � –
invariant and cocompact subspaces � of E� which are finite dimensional simplicial
polyhedra (the existence of such model follows from the construction of E� in the
proof of [2, Proposition 1.7] by Baum, Connes and Higson, which is based on Milnor’s
join construction).

Let � be a locally compact and finite dimensional simplicial polyhedron. We endow
� with the simplicial metric. Let .C0.�/; �; '/ be an admissible covariant system
as before, where ' is a �–homomorphism from C0.�/ to B.H / for some Hilbert
module H over B .

Definition 3.5

(1) The algebraic localization algebra CL.�;�;B/ is defined to be the algebra of
all bounded and uniformly continuous functions f W Œ0;1/!C.�;�;B/ such
that the propagation of f .t/ goes to 0 as t !1, where C.�;�;B/ is as in
Definition 3.3.

(2) The localization algebra C �
L
.�;�;B/ is the norm closure of CL.�;�;B/ with

respect to the norm
kf k D sup

t2Œ0;1/

kf .t/k:

It is not difficult to prove that, up to a �–isomorphism, CL.�;�;B/ and C �
L
.�;�;B/

are independent of the choices made in Definition 3.2. The localization algebra is an
equivariant analogue of the algebra introduced by Yu in [14].

Any class in KK�0 .�;B/ can be represented by .H; ';F / such that the covariant
system .C0.�/; �; '/ is admissible, where H is a � –Hilbert module over B , F is
an operator in B.H /, ' is a �–homomorphism from C0.�/ to B.H / such that F

is � –equivariant, and '.f /F �F'.f /, '.f /.FF�� I/ and '.f /.F�F � I/ are in
K.H / for all f 2 C0.�/.

For each natural number n, we let F 1
n

be defined as above. We define an operator
valued function F.t/ on Œ0;1/ by

F.t/D .t � nC 1/F 1
n
C .t � n/F 1

nC1
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for all t 2 Œn; nC 1�.

F.t/ is a multiplier of C �
L
.�;�;B/ and is invertible modulo C �

L
.�;�;B/. We define

the local Baum–Connes map

�LW KK�0 .�;B/!K0.C
�
L.�;�;B//;

by
�LŒH; ';F /�D @ŒF.t/�;

where
@W K1.M.C �L.�;�;B//=C �L.�;�;B//!K�0 .C

�
L.�;�;B//;

is the boundary map in K–theory and M.C �
L
.�;�;B// is the multiplier algebra of

C �
L
.�;�;B/.

Similarly we can define the local Baum–Connes map

�LW KK�1 .�;B/!K1.C
�
L.�;�;B//:

We remark that the local Baum–Connes map is very much in the spirit of the local
index theory of elliptic differential operators.

Theorem 3.6 Let B be a �–C �–algebra. The local Baum–Connes map �L is
an isomorphism from KK�� .�;B/ to K�.C

�
L
.�;�;B// if � is a finite dimensional

simplicial polyhedron with the � –invariant simplicial metric.

Proof This theorem is a consequence of the Mayer–Vietoris and five lemma argument
(essentially similar to the proof of the non-equivariant analogue of Yu [14]).

Let C �
L
.�; E�;B/ be the C �–algebra inductive limit of C �

L
.�;�;B/, where the limit

is taken over all � –invariant and cocompact subspaces � of E� which are finite
dimensional simplicial polyhedra.

The above local Baum–Connes map induces a map (still called the local Baum–Connes
map)

�LW KK�� .E�;B/!K�.C
�
L.�; E�;B//:

Corollary 3.7 The local Baum–Connes map �L is an isomorphism from KK�� .E�;B/
to K�.C

�
L
.�; E�;B//.

Next we shall discuss the relation between the Baum–Connes map and an evaluation
map. This connection will be useful in the proof of the main theorem in Section 5.
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Let e be the evaluation map

C �L.�;�;B/! C �r .�;�;B/Š .B Ìr �/˝K

defined by
e.f /D f .0/

for all f 2 C �
L
.�;�;B/.

The above evaluation maps induce an evaluation homomorphism (still denoted by e )

C �L.�; E�;B/! .B Ìr �/˝K:

We have
�D e� ı�L:

4 The Bott map

In this section, we introduce a Bott map for K–groups. The Bott map will play an
essential role in the proof of the main result of this paper.

Let X be a Banach space with (rational) Property (H). Let � be a countable group with
a left invariant proper length metric. Let hW �!X be a coarse embedding. Without
loss of generality we can assume that the image of h is contained in V , where V is as
in the definition of the (rational) Property (H).

For each v 2 V; w 2W , and 
 2 � , we define bounded functions �v;
 and �v;w;
 on
� by

�v;
 .x/D k�.vC h.x/� h.x
 //k

D kvC h.x/� h.x
 /k;

�v;w;
 .x/D h�.vC h.x/� h.x
 //; wi

for all x 2 � , where � is defined as in Section 2. The boundedness of �v;
 and �v;w;

follows from the fact that h is a coarse embedding.

Let c0.�/ be the algebra of all functions on � vanishing at infinity. We define the �
action on l1.�/ by .
 .�//.x/D�.x
 / for each �2 l1.�/; 
 2�;x2� . Let Y be the
spectrum of the unital commutative � –invariant C �–subalgebra of l1.�/ generated
by c0.�/, all constant functions on � , all �v;
 and �v;w;
 , and their translations by
group elements of � . Notice that Y is a separable compact space and is a quotient
space of ˇ� , the Stone–Čech compactification of � .
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Let A.X / be the C �–algebra associated to X (as defined in Section 2). If A is a
� –C �–algebra, then � acts on the C �–algebra

C.Y / y̋ A.X / y̋ A� l1.�/ y̋ A.X / y̋ A

by


 .�.x/ y̋ f ..s; �.v�v0/// y̋ a/D �.x
 / y̋ f ..s; �.v�v0Ch.x/�h.x
 /// y̋ 
 .a/

for each 
 2�; �2C.Y /� l1.�/;x 2�; s 2R; f 2C0.R/; v 2V; v0 2V and a2A;

where f ..s; �.v� v0/// is as in the definition of A.X /.

The above � action on C.Y / y̋ A.X / y̋ A has its origin in work by Yu [15] and
Skandalis, Tu and Yu [13]. We can see that the � action on C.Y / y̋ A.X / y̋ A is well
defined as follows. Recall that, for any net fwigi2I in a Hilbert space, if wi converges
to a vector w of the Hilbert space in weak topology and kwik converges to kwk,
then wi converges to w in norm. Using this fact and the definition of Y , we know
that �.v� v0C h.x/� h.x
 // can be extended to a norm continuous function on Y

with values in H . It follows that f ..s; �.v� v0C h.x/� h.x
 /// can be identified
with a norm continuous function on Y with values in A.X / y̋ A. This, together with
the compactness of Y , implies that 
 .�.x/ y̋ f ..s; �.v� v0/// y̋ a/ is an element in
C.Y / y̋ A.X / y̋ A. Let D be the subalgebra of C.Y / y̋ A.X / y̋ A consisting of all
linear combinations of products of elements of the type �.x/ y̋ f ..s; �.v� v0/// y̋ a.
Note that, by the definition of A.X /, D is dense in the C �–algebra C.Y / y̋A.X / y̋ A.
By extending linearly and multiplicatively, for each d 2 D , we can define 
 .d/ as
an element of C.Y / y̋ A.X / y̋ A. By the definition of Y , � is a dense subset of Y .
This, together with the definition of 
 .d/, implies that k
 .d/k D kdk for each d 2D .
Finally the � action extends continuously to C.Y / y̋ A.X / y̋ A.

Let Z be the space of all probability measures on Y with the weak topology. Note
that Z is a convex and compact topological space with the weak� topology. The idea
of using the space of probability measures is due to Nigel Higson [7]. The action of �
on C.Y / y̋ A.X /˝A induces an action of � on C.Z/ y̋ A.X / y̋ A by


 .u.�/ y̋ f ..s; �.v� v0/// y̋ a/D

u.
 .�// y̋ f
��

s; �
�
v� v0C

R
Y .h.y/� h.y
 //d�

���
y̋ 
 .a/

for each 
 2� , u2C.Z/, �2Z , f 2C0.R/, s 2R, v2V , v0 2V and a2A, where
the � action on Z is induced by the � action on Y . The assumption that h is a coarse
embedding implies that C.Z/ y̋ A.X / y̋ A is a � –proper C �–algebra. This can be
seen as follows: let C.X / be the abelian C �–subalgebra of C.Z/ y̋ A.X / generated
by all elements b y̋ g.s2Ckv�v0k

2/, where b 2C.Z/, g 2C0.R/ and v0 2V . C.X /
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is isomorphic to a commutative C �–algebra C0.T / for some locally compact space
T . Notice that T is a proper � –space (as a consequence of the fact that h is a coarse
embedding), C.X / is in the center of the multiplier algebra of C.Z/ y̋ A.X / y̋ A,
and C.X /.C.Z/ y̋ A.X / y̋ A/ is dense in C.Z/ y̋ A.X / y̋ A.

For each f 2 S , let ft 2A.X / be defined by

ft ..s; v//D f .t
�1.s; �.v///

for all s 2R; v 2 V .

We define the Bott map

ˇW K�..C.Z/ y̋ S y̋ A/Ìr �/!K�..C.Z/ y̋ A.X / y̋ A/Ìr �/

to be the homomorphism induced by the asymptotic morphism

ˇt ..u y̋ f y̋ a/
 /D .u y̋ ft y̋ a/


from .C.Z/ y̋ S y̋ A/Ìr � to .C.Z/ y̋A.X / y̋ A/Ìr � , for t 2 Œ1;1/, u 2 C.Z/,
f 2 S , a 2A and 
 2 � .

The fact that ˇt is an asymptotic morphism follows from the identity �.cv/D jcj�.v/
for any scalar c and the assumption that the restriction of � to the sphere of V is
uniformly continuous.

Let � be a locally compact metric space with a proper and cocompact isometric action
of � . We define an asymptotic morphism

ˇt W C
�
L.�;�;C.Z/ y̋ S y̋ A/! C �L.�;�;C.Z/ y̋ A.X / y̋ A/

induced by the homomorphism from S to A.X /: f ! ft , where

ft ..s; v//D f .t
�1.s; �.v///

for all f 2 S and s 2R; v 2 V .

More precisely ˇt is defined as follows. Let .C0.�/; �; '/ be an admissible covariant
system, where ' is a �–homomorphism from C0.�/ to B.H / for some Hilbert module
H over C.Z/ y̋ S y̋ A. By the definition of admissible covariant system, we have

K.H /Š C.Z/ y̋ S y̋ A y̋ K;

where K.H / is the operator norm closure of all finite rank operators on the Hilbert
module H and K is the graded C �–algebra of all compact operators on a graded
separable and infinite dimensional Hilbert space. Let ˇ0t be the asymptotic morphism
from C.Z/ y̋ S y̋ A y̋ K to C.Z/ y̋ A.X / y̋ A y̋ K induced by the homomorphism
from S to A.X /: f ! ft , where ft is defined as in the previous paragraph.
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Let c be a � cut-off function on �, that is, c is a compactly supported non-negative
continuous function on � satisfyingX


2�

c.
�1x/D 1

for all x 2 �. The existence of such cut-off function follows from properness and
cocompactness of the � action on �.

For each T 2CL.�;�;C.Z/ y̋ S y̋ A/, we define

ˇt .T /D
X

2�

ˇ0t .'.
 .c//
T 
�1/

in CL.�;�;C.Z/ y̋ A.X / y̋ A/, where ˇ0t is the asymptotic morphism defined above,
.
 .c//.x/ D c.
�1x/ for all x 2 �, and the sum converges in the strong operator
topology because T has finite propagation.

Note that ˇt .T / is � –invariant and is an element of CL.�;�;C.Z/ y̋ A.X / y̋ A/.
It is not difficult to see that ˇt can be extended to an asymptotic morphism

ˇt W C
�
L.�;�;C.Z/ y̋ S y̋ A/! C �L.�;�;C.Z/ y̋ A.X / y̋ A/:

By Corollary 3.7, the above asymptotic morphism induces a homomorphism

ˇW KK�� .E�;C.Z/ y̋ S y̋ A/! KK�� .E�;C.Z/ y̋ A.X / y̋ A/;

called the Bott map.

Proposition 4.1 The Bott map

ˇW KK�� .E�;C.Z/ y̋ S y̋ A/! KK�� .E�;C.Z/ y̋ A.X / y̋ A/

is injective, where E� is the universal space for proper � –actions.

Proof Let A1.X;A/ be as defined in Section 2. For any fixed v0 2 Vk � V , we
note that the translation

Œ.f1.s; v1/; : : : ; fk�1.s; vk�1/; fk.s; vk/; fkC1.s; vkC1/; : : :/�

! Œ.0; : : : ; 0; fk.s; vk C v0/; fkC1.s; vkC1C v0/; : : :/�;

by v0 on A1.X ;A/, is well defined for all Œ.f1; : : : ; fk�1; fk ; fkC1 : : :/�2A1.X ;A/.

By the uniform equicontinuity condition in the definition of A1.X;A/, this translation
operator is norm-continuous in v0 . Hence a � action on C.Z/ y̋ A1.X;A/ can be
defined exactly in the same way as the � action on C.Z/ y̋ A.X / y̋ A.
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Now we can define the Bott map

ˇ1W KK�� .E�;C.Z/ y̋ S1.A//! KK�� .E�;C.Z/ y̋ A1.X;A//;

in a way similar to the definition of the Bott map

ˇW KK�� .E�;C.Z/ y̋ S y̋ A/! KK�� .E�;C.Z/ y̋ A.X / y̋ A/;

where S1.A/ is defined in Section 2.

The Bott map ˇ1 is induced by the asymptotic homomorphism

Œu y̋ .f1 y̋ b1; : : : ; fk y̋ bk ; : : :/�! Œu y̋ ..f1/t y̋ b1; : : : ; .fk/t y̋ bk ; : : :/�;

from C.Z/ y̋ S1.A/ to C.Z/ y̋ A1.X;A/, where u 2 C.Z/, fk 2 S , bk 2A and
.fk/t .s; vk/D fk.t

�1.s; �.vk/// for all .s; vk/ 2R�Vk .

We claim that the Bott map

ˇ1W KK�� .E�;C.Z/ y̋ S1.A//! KK�� .E�;C.Z/ y̋ A1.X;A//

is an isomorphism.

This claim follows from the standard Mayer–Vietoris and five lemma argument,
Corollary 2.8, and the fact that, for any finite subgroup H of � , Z is H –equivariantly
homotopy equivalent to a point �0 2 Z fixed by H (using the linear homotopy).
The point �0 can be obtained by averaging the H –orbit of a point in Z using the
assumption that H is a finite group and the fact that Z is a convex and compact
topological space. Then

gŒu.�/ y̋ .fk..s; �.vk � v
k
0 /// y̋ ak/�

evaluated at �D �0 is equal to

Œu.�/ y̋ .fk..s; �.vk � v
k
0 /// y̋ g.ak//�

evaluated at �D�0 for all g 2H;u2C.Z/; fk 2 S; vk
0
2 Vk ; s 2R; vk 2 Vk ; ak 2A

and Œ.fk y̋ ak/� 2 S1.A/. The last equation follows from the definition of the �
action on C.Z/ y̋ A1.X;A/.

We now consider the commutative diagram

KK�� .E�;C.Z/ y̋ S1.A// KK�� .E�;C.Z/ y̋ A1.X;A//
ˇ1

//

KK�� .E�;S y̋ A/

KK�� .E�;C.Z/ y̋ S1.A//

�

��

KK�� .E�;S y̋ A/ KK�� .E�;C.Z/ y̋ A.X / y̋ A/
ˇ // KK�� .E�;C.Z/ y̋ A.X / y̋ A/

KK�� .E�;C.Z/ y̋ A1.X;A//

� 0

��
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where � is induced by the homomorphism S y̋A! C.Z/ y̋ S1.A/ mapping each
element f to 1 y̋ Œ.f y̋ p0/� (here 1 is the constant 1 function on Z , Œ.f y̋ p0/� is the
element represented by the constant sequence consisting of f y̋ p0 , and p0 is a rank
one projection of grading degree 0 in K) and � 0 is induced by the homomorphism from
C.Z/ y̋ A.X / y̋ A to C.Z/ y̋ A1.X;A/ which maps each element u y̋ f to the
element represented by the sequence u y̋ .fk y̋ p0/ (here u 2 C.Z/, f 2A.X / y̋ A,
and fk is the restriction of f to Vk ).

We observe that � is injective. This can be seen as follows. Let z� be the homomorphism

KK�� .E�;S y̋ A/! KK�� .E�;S1.C.Z/ y̋ A//

obtained by composing � with the homomorphism from KK�� .E�;C.Z/ y̋ S1.A//
to KK�� .E�;S1.C.Z/ y̋ A// that is induced by the inclusion homomorphism from
C.Z/ y̋ S1.A/ to S1.C.Z/ y̋ A/. It suffices to prove that z� is injective. There
exists a natural homomorphismY

KK�
�C1.E�;C.Z/ y̋ A/! KK�� .E�;S1.C.Z/ y̋ A//;

where
Q

KK�
�C1.E�;C.Z/ y̋ A/ is defined to be the inductive limit of the productQ

KK�
�C1.�;C.Z/

y̋ A/ over all � –cocompact subsets � of E� . This homomor-
phism induces a homomorphism (denoted by � )�Y

KK�
�C1.E�;C.Z/ y̋ A/

�.�M
KK�
�C1.E�;C.Z/ y̋ A/

�
�!

KK�� .E�;S1.C.Z/ y̋ A//:

Proposition 2.6, together with a standard Mayer–Vietoris and five lemma argument,
implies that � is an isomorphism. There is also a suspension isomorphism (denoted by
� ) from KK�� .E�;S y̋ A/ to KK�

�C1.E�;A/. Let & be the homomorphism

KK�
�C1.E�;A/!

�Y
KK�
�C1.E�;C.Z/ y̋ A/

�.�M
KK�
�C1.E�;C.Z/ y̋ A/

�
which is obtained as the composition of the homomorphism from KK�

�C1.E�;A/ to
KK�
�C1.E�;C.Z/ y̋ A/ induced by the inclusion map from A to C.Z/ y̋ A with

the group homomorphism mapping each element z 2 KK�
�C1.E�;C.Z/ y̋ A/ to the

element in
�Q

KK�
�C1.E�;C.Z/ y̋ A//

ı�L
KK�
�C1.E�;C.Z/ y̋ A/

�
represented

by the constant sequence consisting of z . By contractibility of Z , we know that & is
injective. We have

z� D � ı & ı �:

Now the injectivity of z� follows from the injectivity of & and the fact that � and �
are isomorphisms.
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Finally Proposition 4.1 follows from the injectivity of � , the claim that ˇ1 is an
isomorphism, and the commutative diagram in this proof.

5 Proof of the main result

In this section, we give the proof of Theorem 1.2, the main result of this paper. The
proof of Theorem 1.3 is essentially similar.

Proof Let A be any � –C �–algebra. We consider the commutative diagram

KK�� .E�;C.Z/ y̋ A.X / y̋ A/ K�..C.Z/ y̋ A.X / y̋ A/Ìr�/�2

//

KK�� .E�;S y̋ A/

KK�� .E�;C.Z/ y̋ A.X / y̋ A/

ˇ

��

KK�� .E�;S y̋ A/ K�..S y̋ A/Ìr�/
�1 // K�..S y̋ A/Ìr�/

K�..C.Z/ y̋ A.X / y̋ A/Ìr�/

ˇ0

��

where �1 and �2 are the Baum–Connes assembly maps, ˇ and ˇ0 are respectively
the homomorphisms induced by the inclusion C ! C.Z/ composed with the Bott
maps defined in Section 4. The commutativity of the above diagram follows from
the definitions of the Bott maps and the relation between the Baum–Connes map and
the evaluation map (compare with the discussion after Corollary 3.7 at the end of
Section 3).

Notice that the inclusion map C! C.Z/ induces an isomorphism

KK�� .E�;S y̋ A/! KK�� .E�;C.Z/ y̋ S y̋ A/:

This, together with Proposition 4.1, implies that the map ˇ is injective. The fact that
C.Z/ y̋ A.X / y̋ A is a � –proper C �–algebra implies that �2 is an isomorphism (it
can be seen by the Mayer–Vietoris and five lemma argument; see Guentner–Higson–
Trout [6]). The above facts, together with commutativity of the above diagram, imply
that �1 is injective. It follows that the Baum–Connes assembly map � in Theorem 1.2
is injective.
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