Volume 16, issue 4 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Rational algebraic $K$–theory of topological $K$–theory

Christian Ausoni and John Rognes

Geometry & Topology 16 (2012) 2037–2065
Bibliography
1 C Ausoni, Topological Hochschild homology of connective complex $K$–theory, Amer. J. Math. 127 (2005) 1261 MR2183525
2 C Ausoni, On the algebraic $K$–theory of the complex $K$–theory spectrum, Invent. Math. 180 (2010) 611 MR2609252
3 C Ausoni, B I Dundas, J Rognes, Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere, Doc. Math. 13 (2008) 795 MR2466184
4 C Ausoni, J Rognes, Algebraic $K$–theory of topological $K$–theory, Acta Math. 188 (2002) 1 MR1947457
5 N A Baas, B I Dundas, B Richter, J Rognes, Stable bundles over rig categories, J. Topol. 4 (2011) 623 MR2832571
6 N A Baas, B I Dundas, J Rognes, Two-vector bundles and forms of elliptic cohomology, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18 MR2079370
7 A J Blumberg, M A Mandell, The localization sequence for the algebraic $K$–theory of topological $K$–theory, Acta Math. 200 (2008) 155 MR2413133
8 M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465 MR1202133
9 A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 MR0387496
10 M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633 MR2366174
11 J L Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics 107, Birkhäuser (1993) MR1197353
12 R L Cohen, J D S Jones, Algebraic $K$–theory of spaces and the Novikov conjecture, Topology 29 (1990) 317 MR1066175
13 B I Dundas, The cyclotomic trace for $S$–algebras, J. London Math. Soc. 70 (2004) 659 MR2096869
14 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997) MR1417719
15 T G Goodwillie, Relative algebraic $K$–theory and cyclic homology, Ann. of Math. 124 (1986) 347 MR855300
16 L Hesselholt, On the $p$–typical curves in Quillen's $K$–theory, Acta Math. 177 (1996) 1 MR1417085
17 L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1 MR1998478
18 M J Hopkins, Algebraic topology and modular forms, from: "Proceedings of the International Congress of Mathematicians, Vol I (Beijing, 2002)", Higher Ed. Press (2002) 291 MR1989190
19 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
20 W C Hsiang, R E Staffeldt, A model for computing rational algebraic $K$–theory of simply connected spaces, Invent. Math. 68 (1982) 227 MR666160
21 I Kříž, J P May, Operads, algebras, modules and motives, Astérisque 233 (1995) MR1361938
22 P S Landweber, D C Ravenel, R E Stong, Periodic cohomology theories defined by elliptic curves, from: "The Čech centennial (Boston, MA, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 317 MR1320998
23 M A Mandell, Topological André–Quillen cohomology and $E_\infty$ André–Quillen cohomology, Adv. Math. 177 (2003) 227 MR1990939
24 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
25 J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) MR0494077
26 J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 MR0174052
27 G Moore, $K$–theory from a physical perspective, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 194 MR2079376
28 J Rognes, Trace maps from the algebraic $K$–theory of the integers (after Marcel Bökstedt), J. Pure Appl. Algebra 125 (1998) 277 MR1600028
29 J Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008) MR2387923
30 C Schlichtkrull, Units of ring spectra and their traces in algebraic $K$–theory, Geom. Topol. 8 (2004) 645 MR2057776
31 S Schwede, Stable homotopical algebra and $\Gamma$–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 329 MR1670249
32 G Segal, Elliptic cohomology (after Landweber–Stong, Ochanine, Witten, and others), from: "Séminaire Bourbaki 1987/88", Astérisque 161–162 (1988) 187 MR992209
33 B Toën, G Vezzosi, Brave new algebraic geometry and global derived moduli spaces of ring spectra, from: "Elliptic cohomology", London Math. Soc. Lecture Note Ser. 342, Cambridge Univ. Press (2007) 325 MR2330521
34 F Waldhausen, Algebraic $K$–theory of topological spaces I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 35 MR520492
35 F Waldhausen, Algebraic $K$–theory of spaces, a manifold approach, from: "Current trends in algebraic topology, Part 1 (London, Ont., 1981)", CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141 MR686115
36 F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318 MR802796
37 F Waldhausen, On the construction of the Kan loop group, Doc. Math. 1 (1996) 121 MR1386050