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Deriving Deligne–Mumford stacks with
perfect obstruction theories

TIMO SCHÜRG

We show that every n–connective quasi-coherent obstruction theory on a Deligne–
Mumford stack comes from the structure of a connective spectral Deligne–Mumford
stack on the underlying topos. Working over a base ring containing the rationals, we
obtain the corresponding result for derived Deligne–Mumford stacks.

14A20, 18G55; 55P43

1 Introduction

Some moduli spaces playing an important role in enumerative geometry carry an
additional structure. Apart from the cotangent complex, which controls deformations
and obstructions of the objects parametrized by the moduli space, there sometimes exist
another complex doing the same job. If the moduli space in question is very singular,
the cotangent complex will have cohomology in arbitrary many degrees. In many
cases, the replacement complex has much better finiteness properties, being locally
isomorphic to a finite complex of vector bundles. If the replacement complex is perfect
and of Tor–amplitude at most 1 it gives rise to the virtual fundamental class of Li and
Tian [3], and Behrend and Fantechi [1], which is the key to actually producing numbers.

Ever since this phenomenon was observed by Kontsevich [2], it was suspected that the
replacement complex is a shadow of a derived structure on the moduli space. In the
meantime, the foundations of derived algebraic geometry have been firmly laid out by
Toën and Vezzosi [11], and Lurie [4]. Using these theories, in many examples derived
moduli spaces having the ‘correct’ cotangent complex have been found (for examples
see Toën’s overview [9]). These derived enhancements have the same underlying
topological space as their classical counterpart, the derived structure just being a
nilpotent thickening of the structure sheaf. In [9, Section 4.4.3], Toën observed that
such a derived enhancement automatically induces a replacement complex for the
cotangent complex of the classical moduli space. The replacement is simply the
cotangent complex of the derived enhancement, which might well be very different
from the cotangent complex of the classical part and enjoy much better finiteness
properties.
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Using the approach of Toën mentioned above, we can regard the replacement complex
as the cotangent complex of some possible derived enhancement. We thus already know
quite a lot about a possible derived enhancement inducing the replacement complex:
we know its underlying space and cotangent complex. The problem then is to lift this
information on the tangent level to an actual derived structure sheaf on the space.

This formulation makes the problem tractable to using obstruction calculus to find a
possible derived structure on the moduli space in question inducing the replacement
complex. In a certain sense, this defeats the purpose of derived algebraic geometry,
as part of the motivation for derived algebraic geometry was precisely avoiding such
calculations and simply writing down the functor the lifted moduli problem should
represent.1

Behrend and Fantechi in [1] axiomatized the phenomenon of a replacement complex
for the cotangent complex of a moduli space to the notion of an obstruction theory.
The main theorem of this paper is that any obstruction theory of arbitrary length on a
Deligne–Mumford stack comes from the structure of a spectral Deligne–Mumford stack
on the same underlying topos (Theorem 3.6). Over a base ring containing the rationals
the theory of spectral Deligne–Mumford stacks and derived Deligne–Mumford stacks
coincide. Adding this extra assumption, we obtain that any obstruction theory comes
from the structure of a derived Deligne–Mumford stack on the same underlying topos.

Recall that an obstruction theory is called perfect if the replacement complex is in
fact a perfect complex. If we assume the given obstruction theory to be perfect it
follows that any spectral Deligne–Mumford stack inducing the perfect obstruction
theory is locally of finite presentation (Lemma 3.8). Again adding the assumption that
our base ring contains the rationals, the main theorem thus implies that any perfect
obstruction theory of any length on a Deligne–Mumford stack comes from a derived
Deligne–Mumford stack locally of finite presentation with the same underlying topos.
In particular, every 1–perfect obstruction theory comes from a structure of quasi-smooth
Deligne–Mumford stack (Corollary 3.9) on the same underlying topos. The structure
inducing the obstruction theory is by no means expected to be unique.

The method of proof uses obstruction calculus for nilpotent thickenings of derived rings.
The basic observation underlying the whole work is easily described. An obstruction
theory for a commutative ring A is given by a morphism �W E! LA , where E is
a complex of A–modules and LA is the cotangent complex. Such a morphism can
always be completed to a cofiber sequence

E
�
�!LA

�
�!K:

1See the overviews by Toën and Vezzosi [10, Section 6], and Lurie [5, page 9]
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Now the datum of a morphism �W LA!K defines a square-zero extension A�!A.
The cotangent complex of A� is already an excellent approximation of E . There exists
a comparison map E!LA� which is an equivalence in low degrees. The remaining
work then is to find further square-zero extensions of A� that successively correct
the difference in higher degrees. This process will allow us to lift the structure sheaf
of the classical part step by step to a structure sheaf of derived rings which has the
right cotangent complex. The main advantage of this approach is that it is global from
the start, thus avoiding all gluing issues. The practical value of such a result is small
though. Given a moduli problem equipped with a obstruction theory it is far better to
find the appropriate derived formulation of the moduli problem, as the true derived
moduli space contains much more information than just the induced perfect obstruction
theory on the truncation. As a derived extension of a moduli space is highly non-unique,
the construction presented here will seldom give the correct derived moduli space.

Conventions
� Given a stable1–category C equipped with a t –structure in the sense of Lurie’s

treatise on higher algebra Œ8�, an object X of C is said to be n–connective
if X 2 C�n . A morphism f W X ! Y is n–connective it its fiber fib.f / is
n–connective.

� Given a commutative ring A we will denote by ModA the 1–category of A–
module spectra. This category contains the category of ordinary A–modules as
heart of a t –structure. Roughly, objects of ModA consist of possibly unbounded
chain complexes of ordinary A–modules.
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2 The algebraic case

In this section we first treat the problem of finding derived structures inducing an
obstruction theory in an abstract setting. The abstract setting will be given by a stable
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symmetric monoidal 1–category C equipped with a t –structure satisfying some
assumptions (Assumption 2.1). After reviewing some results on the cotangent complex
of a commutative algebra object in such a category, we then define the notion of
an n–connective obstruction theory on a commutative algebra object A 2 CAlg.C/
(Definition 2.4). We then define how a morphism f W B ! A can induce a given
obstruction theory. As main result we prove that for any given commutative algebra
object A with fixed obstruction theory there always exists a morphism f W B ! A

inducing the obstruction theory.

The main example for C we have in mind is the 1–category of k –module spectra
where k is a commutative ring containing Q (Example 2.19). Concrete models for
connective commutative algebra objects in this category are given by simplicial k –
algebras (Example 2.20) or by connective commutative differential graded algebras
over k (Example 2.21). In this example we also show a finiteness result for any
commutative algebra object B inducing an obstruction theory on a finitely presented
discrete commutative k –algebra in case the n–connective obstruction theory is perfect.

2.1 Background

Throughout this paper, the following assumption will be made with regard to the
1–category C in question.

Assumption 2.1 Let C be a symmetric monoidal stable 1–category equipped with a
t –structure satisfying the following assumptions [8, Construction 8.4.3.9]:

(i) The 1–category C is presentable.

(ii) The tensor product ˝W C � C! C preserves small colimits separately in each
variable.

(iii) The full subcategory C�0 � C contains the unit object and is closed under tensor
products.

Denote by CAlg.C/ the category of commutative algebra objects in C . We will make
constant use of several fundamental facts proven in [8]. The first concerns the existence
of a cotangent complex in such a situation. Lurie proves that in this generality for every
commutative algebra object A 2 CAlg.C/ there exists a cotangent complex LA which
is an A–module [8, Theorem 8.3.4.18]. Note that in the case where A is an E1–ring,
the homotopy groups of LA are the topological André–Quillen homology groups of
A, and in characteristic different from zero these do not have to coincide with classical
André–Quillen homology groups. The second concerns the question what the cotangent
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complex classifies. It turns out that maps from the cotangent complex LA of an object
A 2 CAlg.C/ to an A–module M Œ1� correspond to square-zero extensions of A with
fiber M . To make a precise statement we recall the following definitions from [8,
Section 8.4].

The 1–category of derivations in CAlg.C/ consists of pairs .A; �W LA ! M Œ1�/

where LA is the cotangent complex of A and M is an A–module. This category
will be denoted by Der.CAlg.C//. We can now impose connectivity assumptions
on A and the module M . Let Dern�con.CAlg.C// be the full subcategory of n–
connective derivations, defined by the conditions that A2C�0 and M 2C�n . Imposing
even stricter conditions, let Dern�sm.CAlg.C// be the full subcategory of n–small
derivations of Dern�con.CAlg.C// spanned by those objects such that M 2 C�2n .

To each derivation we can associate a square-zero extension. This associates to a
derivation .A; �W LA!M Œ1�/ a morphism A� �! A of objects in CAlg.C/. The
fiber of A� ! A can be identified as an A�–module with M . More generally, we
say that a morphism zA! A is a square-zero extension if there exists a derivation
.A;LA!M Œ1�/ and an equivalence zA'A� . As above, we can impose connectivity
assumptions on square-zero extensions. A morphism f W A! B in CAlg.C/ is an n–
connective extension if A2C�0 and fib.f /2C�n . Again imposing further connectivity
assumptions, we call an extension n–small if fib.f / 2 C�2n and the multiplication
map fib.f /˝A fib.f /! fib.f / is nullhomotopic. Denote by Funn�con.�

1;CAlg.C//
the full subcategory of the category of morphisms Fun.�1;CAlg C / spanned by the
n–connective extensions, and by Funn�sm.�

1;CAlg.C// the full subcategory spanned
by the n–small extensions.

The process described above in fact defines a functor of 1–categories

ˆW Der.CAlg.C// �! Fun.�1;CAlg.C//

given on objects by .A; �W LA!M Œ1�/ 7�! .A�!A/. This functor has a left adjoint

‰W Fun.�1;CAlg.C// �! Der.CAlg.C//

given on objects by . zA!A/ 7�! .A; d W LA!L
A= zA

/.

Lurie proves that this adjunction restricts to subcategories with the appropriate connec-
tivity assumptions and gives an equivalence of categories.

Theorem 2.2 [8, Theorem 8.4.1.26] Let C be as above. Then

ˆn�smW Dern�sm �! Funn�sm.�
1;CAlg.C//

is an equivalence of 1–categories.
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The third fundamental fact we will use concerns the connectivity of the cotangent
complex. In short, the cotangent complex of a highly connected morphism is again
highly connected. The precise statement is the following:

Theorem 2.3 [8, Theorem 8.4.3.11] Let C be an1–category as above. Let f W A!
B be a morphism of objects of CAlg.C/ such that both A and B 2 C�0 . Assume that
cofib.f / 2 C�n . Then there exists a canonical morphism �f W B˝A cofib.f /!LB=A ,
and furthermore fib.�f / 2 C�2n .

In the special case of square-zero extension f W A�!A with cofiber M Œ1�, the map
�f allows us to compare M Œ1� with the relative cotangent complex LA=A� .

2.2 The construction

We begin by giving the definition of an obstruction theory in this abstract setting.

Definition 2.4 Let A 2 C�0 be a commutative algebra object. An n–connective
obstruction theory for A is a morphism

�W E �!LA

of connective A–modules such that cofib.�/ 2 C�nC1 .

Remark 2.5 Let A be a discrete object of CAlg.C/ equipped with a 1–connective
obstruction theory �W E! LA . The condition cofib.�/ 2 C�2 is equivalent to �0�

being an isomorphism and �1� being surjective, thus recovering the definition of [1].

Remark 2.6 The datum of an n–connective obstruction theory for connective A 2

CAlg.C/ is equivalent to giving an n–connective derivation of A. To see this, simply
complete �W E!LA to a cofiber sequence

E
�
!LA

�
!K:

By definition, �W LA!K is an n–connective derivation.

Definition 2.7 Let n � 1 and let .A; �W E! LA/ be an n–connective obstruction
theory, and .A; �W LA!K/ the associated n–connective derivation. We say that a
pair �

f W B!A; zıW K!LA=B

�
induces the obstruction theory if
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(i) ��n�1f W ��n�1B! ��n�1A is an equivalence,

(ii) the diagram

LA

� //

d
��

K

zı||
LA=B

commutes and zı is an equivalence.

Remark 2.8 Let .A; �W E!LA/ be an n–connective obstruction theory, and assume
that .f W B ! A; zıW K ! LA=B/ induces the obstruction theory. This induces an
equivalence

z�W E!A˝B LB:

Example 2.9 Let A 2 CAlg.C/. Then �0A can be equipped with a canonical 1–
connective obstruction theory. The obstruction theory is given by

�W �0A˝A LA �!L�0A:

It immediately follows from Theorem 2.3 that the cofiber of � is in C�2 . This
obstruction theory is trivially induced by .A! �0A; idW L�0A=A!L�0A=A/. More
generally, A induces an nC 1–connective obstruction theory on all truncations A!

��nA.

Starting from the data of an n–connective obstruction theory .A; �W E ! LA/, or
equivalently, an n–connective derivation .A; �W LA!K/, we now want to begin with
explicitly constructing a pair .f W B!A; zıW K!LB=A/ inducing the n–connective
derivation. We will construct B as an increasingly connective tower of square-zero
extensions of A. We begin with a simple result on the connectivity of square-zero
extensions.

Lemma 2.10 Let .A; �W LA ! M Œ1�/ be an n–connective derivation. Then the
square-zero extension A�!A is n–connective.

Proof We have a fiber sequence of A�–modules M !A�!A. Since M 2 C�n by
assumption, the claim follows.

We now introduce the key technical tool. We have seen that given an n–connective
derivation .A; �W LA!M Œ1�/ there exists an associated n–connective square-zero
extension f W A� ! A. We now want to study how the relative cotangent complex
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LA=A� compares to the module M Œ1�. In the following we will construct a morphism
ıf that compares the two. This ıf –map is a slight refinement of the map �f of
Theorem 2.3, and it can also be directly deduced from �f .

Recall that we have an adjunction ˆ�‰ between the categories of extensions and
derivations. Let v be the co-unit of this adjunction. By definition, on a derivation
.A; �W LA!M Œ1�/ with corresponding extension f W A�!A the co-unit v is given
by

.A; �W LA!M Œ1�/ 7�! .A; d W LA!LA=A�/:

In particular, we obtain the following diagram in the category ModA :

(1)

LA

� //

d ##

M Œ1�

ıf
��

LA=A�

Definition 2.11 Let .A; �W LA !M Œ1�/ be a derivation. Let ıf be the morphism
defined by the co-unit v of the adjunction ˆ�‰ as in (1).

Given an object A 2 CAlg.C/ with obstruction theory �W E ! LA and associated
derivation �W LA!K the morphism ıf fits into the fundamental diagram of cofiber
sequences:

E
�0 //

��

A˝A� LA�
�0 //

��

fib.ıf /

��
E

� //

��

LA

d
��

� // K

ıf
��

0 // LA=A�
// LA=A�

We next prove a connectivity estimate for ıf analogous to the connectivity estimate
of Theorem 2.3 for �f . This result again could also be easily deduced from the result
for �f .

Proposition 2.12 Let .A; �W LA ! M Œ1�/ be an n–connective derivation, and let
f W A� ! A be the corresponding square-zero extension. Then fib.ıf / 2 C�2nC2 ,
where ıf W M Œ1�!LA=A� is the canonical morphism.

Proof We have to show that ��2nC1ıf is an equivalence. But ��2nC1ıf is the co-unit
of the adjunction ˆn�sm �‰n�sm , which is an equivalence.
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Corollary 2.13 Let .A; �W LA!M Œ1�/ be an n–connective obstruction theory, and
let f W A�!A be the associated square-zero extension. Then there exists a canonical
2nC 1–connective derivation on A� .

Proof Define � W LA� ! fib.ıf / to be the adjoint map to

A˝A� LA� ! fib.ıf /:

Remark 2.14 In the same vein, assume again that .A; �W LA ! M Œ1�/ is an n–
connective derivation and f W B!A2CAlg.C/ such that there is a 2nC2–connective
map

ıW M Œ1�!LA=B:

Then there is a canonical square-zero extension of B�! B defined by the 2nC 1–
connective derivation

.B; �W LB! fib.ı// :

Starting from an n–connective derivation .A; �W LA!M Œ1�/, using Corollary 2.13
we have a series of square-zero extensions

A� �!A� �!A:

We again want to compare the relative cotangent complex LA=A� to the module M Œ1�

we began with. For later applications we will be studying the slightly more general
situation of Remark 2.14.

Lemma 2.15 Let n� 1, and let .A; �W LA!M Œ1�/ be an n–connective derivation.
Assume further we have an n–connective square-zero extension f W B!A 2 CAlg.C/
and a 2.nC 1/–connective map ıW M Œ1�!LA=B . Let gW B�! B be the associated
square extension as in Remark 2.14. Then there is a canonical 4.nC 1/–connective
map

ıgf W M Œ1�!LA=B� :

Proof We have the cofiber sequences

M Œ1�
ı
!LA=B! cofib.ı/

and, coming from the composition B�
g
! B

f
!A,

LA=B� !LA=B!A˝B LB=B� Œ1�:
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Since f W B ! A is a square-zero extension and fib.ı/ has the structure of an A–
module, the map idA˝BıgW A˝B fib.ı/!A˝B LB=B� factors as

A˝B fib.ı/
˛
! fib.ı/

ı0

!A˝B LB=B�

in ModB , where ˛ is obtained by adjunction. Using n�1 and since ˛ is n�.2nC1/C1–
connective and idA˝Bıg is 4.nC 1/–connective, ı0 is 4.nC 1/–connective. Using
ı0Œ1�, it follows that ıW M Œ1�! LA=B factors over LA=B . Let ıgf be the induced
map. The connectivity statement follows by identifying cofib.ıgf / with fib.ı0Œ1�/.

Finally we need a result allowing us to compute the cotangent complex of an increasingly
connected tower of square-zero extensions.

Lemma 2.16 Let
A0

f1
 �A1

f2
 �A2

f3
 � � � �

be a sequence of square-zero extensions where fn is n–connective. Let B be the
inverse limit limfAng. Then

LB ' limfLAn
g:

Proof Passing to the Postnikov decomposition of B we have a sequence of equiva-
lences:

��0B

'

��

��1B

'

��

oo ��2B

'

��

oo : : :oo

��0A0 ��1A1
oo ��2A2

oo : : :oo

This induces equivalences on the Postnikov decomposition of LB

��0LB

'

��

��1LB

'

��

oo ��2LB

'

��

oo : : :oo

��0LA0
��1LA1

oo ��2LA2
oo : : :oo

and the claim follows.

We now have all tools to prove the main result. We will use the previous results
to give a tower of increasingly connected square-zero extensions AmC1! Am . In
every step we will measure the difference between LA=Am

and K using the maps
defined in Lemma 2.15. Using Remark 2.14 we can construct a square-zero extension
AmC1!Am correcting the defect in some degrees. In every step the degrees in which
a defect still exists will be pushed up by a factor of 2.
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Theorem 2.17 Let C be an 1–category as in Assumption 2.1, and let A 2 CAlg.C/
be a connective commutative algebra object. Assume that .A; �W E ! LA/ is an
n–connective obstruction theory with n� 1, and let cofib.�/DK . Then there exists
a pair �

f W B!A; zıW K!LA=B

�
inducing the obstruction theory.

Proof Let ADA0 , and let �0W LA0
!K be the n–connective derivation associated

to the obstruction theory. We inductively define a tower of increasingly connected
square-zero extensions fmC1;mW AmC1 ! Am , where fmC1;m is 2m.nC 1/ � 1–
connective, along with 2m.nC 1/–connective maps ımW K! LA0=AmC1

. The first
step of the induction is given by setting f1;0W A1!A0 to be the square-zero extension
A�!A. By Lemma 2.10, the connectivity assumption on f1;0 follows. Finally, define
ı1 D ıf1;0

.

Now assume that fm;m�1W Am!Am�1 and ımW K!LA0=Am
have already been con-

structed. Denote by fm the composition f1;0 ı � � �ıfm;m�1 . By applying Remark 2.14
to

fmW Am!A; ımW K!LA0=Am

we obtain a square zero extension fmC1;mW AmC1!Am which is 2 � 2m.nC 1/� 1–
connective. Finally, define ımC1 to be the 2 � 2m.nC 1/–connective map ıfmC1;m;fm

of Lemma 2.15.

Now define B to be the inverse limit limfAmg. Using the maps ın we have a series of
maps

K

ı1

��ı2yyı3ttrr: : : // LA0=A3
// LA0=A2

// LA0=A1

where ım is 2m.nC 1/–connective. Passing to the limit and using Lemma 2.16, we
have an equivalence zıW K! lim LA=An

'LA=B .

We can now apply this result in some examples.

Example 2.18 Let CDSp be the1–category of spectra. An object of CAlg.Sp/ then
is an E1–ring. Discrete objects of CAlg.Sp/ can be identified with ordinary commuta-
tive rings. Applying the above theorem, it follows that every 1–connective obstruction
theory for a commutative ring A is induced by some E1–ring B with �0B DA.
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Example 2.19 Let k be a connective E1–ring and let C denote the category
Modk.Sp/ of k –module spectra. Define CAlgk to be CAlg.Modk.Sp//. A discrete
object of CAlgk is an ordinary commutative algebra over �0k . By the above theorem
every 1–connective obstruction theory for a commutative �0k –algebra A is induced
by an E1–algebra B over k such that �0B DA.2

Example 2.20 In the previous example, let k be an ordinary commutative ring con-
taining the rationals Q viewed as a discrete E1–ring. Then we can identify connective
objects of CAlgk with the nerve of the category of simplicial commutative k –algebras
[8, Proposition 8.1.4.20]. Applying the above theorem, every 1–connective obstruction
theory for a commutative k –algebra is induced by a simplicial commutative k –algebra.

Example 2.21 Taking k as in the previous example, a further explicit model for
the 1–category CAlgk is given by commutative differential graded algebras over
k [8, Proposition 8.1.4.11]. The above theorem thus shows that every 1–connective
obstruction theory on a commutative k –algebra is induced by a connective commutative
differential graded algebra.

Remark 2.22 An important case not covered by Theorem 2.17 is simplicial algebras
over k where k is an ordinary commutative ring not necessarily containing Q. This
case is important since it is a homotopical algebra context in the sense of [11] and
leads to derived algebraic geometry over any base ring. This case is not covered by
Theorem 2.17 since simplicial algebras over k no longer provide a model for E1–
algebras over k if k does not contain Q. Thus it is not directly possible to apply the
formalism developed in [8] to this case.

Nevertheless, it should be possible to extend all results to this case. The main tool we
have used is comparing the target module M Œ1� in a derivation .A; �W LA!M Œ1�/

to the relative cotangent complex LA=A� of the corresponding square-zero extension
f W A� ! A via the map ıf . This map was defined via the adjunction between
derivations and square-zero extensions, and its connectivity properties where deduced
from Theorem 2.2. Proving the analogous results in the context of simplicial algebras
over any base k would provide all necessary tools to carry out the proof. Several
results in this direction can be found in [11]. There the relative cotangent complex
LA=A� is explicitly computed [11, Lemma 1.4.3.7] and is shown to have the same
homotopy groups as M Œ1� up to degree nC 1 for an n–connective module M [11,
Lemma 2.2.2.7]. The main difficulty lies in extending the connectivity estimate to the
estimate of Proposition 2.12.

2The category CAlgk can be identified with the under-category CAlg.Sp/k= . Under this identification
the cotangent complex associated to the category CAlgk can be identified with the relative cotangent
complex LA=k .
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In Example 2.19 one will typically impose some finiteness property on both the �0k –
algebra A and the obstruction theory �W E!LA=k . We recall the relevant definition.

Definition 2.23 Let k be a connective E1–ring, and let A be a finitely presented
discrete commutative �0k –algebra equipped with a 1–connective obstruction theory
�W E!LA . Let m� 0.

(i) The obstruction theory is an m–obstruction theory if E 2 .ModA/�m .

(ii) The obstruction theory is perfect if E is a perfect A–module.

We next want to ensure that if we start with a finitely presented commutative �0k –
algebra equipped with a 1–connective perfect m–obstruction theory, any k –algebra
inducing the obstruction theory satisfies a strong finiteness property. We briefly recall
the relevant finiteness property following [8, Definition 8.2.5.26].

Definition 2.24 Let k be a connective E1–ring, and let CAlgk DCAlg.Modk.Sp//.
A commutative k –algebra B is locally of finite presentation over k if B is a compact
object of CAlgk .

Note that a finitely presented discrete commutative �0k –algebra viewed as an object
in CAlgk will usually not satisfy the above finiteness property. As an example one
can take any finitely presented discrete commutative �0k –algebra with non-perfect
cotangent complex, as in light of [8, Theorem 8.4.3.17] perfectness of the cotangent
complex is necessary for being locally of finite presentation in CAlgk . Nevertheless,
we will later see that given a finitely presented discrete commutative �0k –algebra
A equipped with an n–connective perfect m–obstruction theory, any commutative
k –algebra B inducing the obstruction theory does satisfy the above finiteness property,
although A itself will usually not.

Remark 2.25 Note that in [11, Definition 1.2.3.1] slightly different terminology is
used. There a compact object of CAlgk is called finitely presented, whereas Lurie
reserves finitely presented for algebras which lie in the smallest full subcategory which
contains finitely generated free algebras and is stable under retracts and finite colimits.

Before we begin we need a series of lemmas. These lemmas will allow us to deduce
properties of an A–module M from the respective properties of the �0A–module
�0A˝A M . Recall the following definitions for a connective E1–ring A and an
A–module M :
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(i) M is of Tor–amplitude at most n if for any discrete A–module N we have

�i.N ˝A M /D 0 for i > n:

(ii) M is perfect to order n if ��nM is a compact object of .ModA/�n .

(iii) M is almost perfect if it is perfect to order n for all integers n.

Lemma 2.26 Let A be a connective E1–ring and M a connective A–module. If
�0A˝A M has Tor–amplitude at most n as �0A–module, then M has Tor–amplitude
at most n as A–module.

Proof Let N be a discrete A–module. In particular, N is a �0A–module. The claim
then follows from

�i.N ˝A M /D �i.N ˝�0A �0A˝A M /D Tor�0A
i .N; �0A˝A M /:

Lemma 2.27 Let A be a connective E1–ring, M a connective A–module, and n�0.
If �0A˝A M is perfect to order n as �0A–module, then M is perfect to order n as
A–module.

Proof We prove the claim by induction over n. For the case of nD 0 recall that M

is perfect to order 0 as A–module if and only if �0M is finitely generated as a module
over �0A. The claim then follows from

�0M D �0A˝�0A �0M D �0.�0A˝A M /:

Now let n> 0. Recall that given a map of A–modules �W Ak !M which induces a
surjection �0Ak! �0M , then M is perfect to order n if and only if fib.�/ is perfect
to order n � 1 [6, Proposition 2.6.12]. The argument now follows [6, Proposition
2.6.13]. As �0M is finitely generated, we can choose a fiber sequence of connective
A–modules

M 0
�!Ak

�!M:

Tensoring with �0A, we obtain a fiber sequence of �0A–modules

�0A˝A M 0
�! �0Ak

�! �0A˝A M:

By assumption, �0A˝A M is perfect to order n as �0A–module, so �0A˝A M 0 is
perfect to order n� 1 as �0A–module. By the inductive hypothesis M 0 is perfect to
order n� 1 as A–module, and thus M is perfect to order n as A–module.

Corollary 2.28 Let A be a connective E1–ring and M a connective A–module. If
�0A˝A M is almost perfect and of finite Tor–amplitude as �0A–module, then M is
perfect as A–module.
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Proof By Lemma 2.26, M is of finite Tor–amplitude. By Lemma 2.27, M is perfect
to order n for all n and thus almost perfect. Now M being almost perfect and of finite
Tor–amplitude imply that M is perfect.

We can now prove the finiteness result alluded to above.

Proposition 2.29 Let k be a connective E1–ring, and let CAlgkDCAlg.Modk.Sp//.
Let A be a discrete object of CAlgk such that A is finitely presented as �0k –algebra.
Assume that A is equipped with an n–connective perfect m–obstruction theory �W E!
LA=k . Then in any pair .f W B!A; zıW LA=B!K/ inducing the obstruction theory,
the object B of CAlgk is locally of finite presentation and LB=k is of Tor–amplitude
at most m.

Proof Using the equivalence z�W E!A˝B LB=k D �0B˝B LB=k obtained from
zı (see Remark 2.8) it follows that �0B˝B LB=k is perfect and of Tor–amplitude at
most m. In particular, �0B˝B LB=k is almost perfect and of finite Tor–amplitude at
most m. By the previous corollary, LA=k is perfect and of Tor–amplitude at most m.
Now �0B being of finite presentation over �0k and LB=k being perfect imply that B

is locally of finite presentation over k [8, Theorem 8.4.3.17].

3 The geometric case

In this section we want to apply the above results in the setting of spectral Deligne–
Mumford stacks. We first recall some of the definitions we will use.

3.1 Background

In [7] Lurie defines a 1–category Sch.GSp
Ket / of connective spectral Deligne–Mumford

stacks. An object X of this category is a pair .X ;OX / consisting of an 1–topos X
and a sheaf of E1–rings satisfying further conditions. There also is a relative version
Sch.GSp

Ket .k// of connective spectral Deligne–Mumford stacks over a connective E1–
ring k . Here the structure sheaf takes its values in the category CAlgk of E1–rings
over k . This category can in fact be identified with the category of GSp

Ket –schemes
equipped with a morphism to Spec.k/.3

A key property of this category is that ordinary Deligne–Mumford stacks over the
discrete commutative ring �0k sit inside Sch.GSp

Ket .k// as the full subcategory spanned

by the 0–truncated and 1–localic GSp
Ket .k/–schemes.

3In Lurie’s notation, Spec.k/ would be SpecKet.k/ . As we will only encounter this Spec-functor
omitting the superscript hopefully does not lead to confusion.
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The theory of spectral connective Deligne–Mumford stacks over k is compatible
with n–truncations in the sense that for every such stack X its n–truncation ��nXD

.X ; ��nOX / is again a spectral connective Deligne–Mumford stack over k . In partic-
ular, given a 1–localic connective spectral Deligne–Mumford stack, its 0–truncation
��0XD .X ; �0OX / is an ordinary Deligne–Mumford stack over �0k with the same
underlying 1–topos as X. Furthermore, we have a canonical morphism ��0X! X.

Finally, recall that given a connective spectral Deligne–Mumford stack X over Spec k

we say that X is locally of finite presentation over Spec k if it is possible to choose a
covering by affine schemes Spec.A˛/ such that each A˛ is locally of finite presentation
over k , ie, a compact object of CAlgk . If a connective spectral Deligne–Mumford stack
X is locally of finite presentation over k and has a cotangent complex of Tor–amplitude
at most 1 we say that X is quasi-smooth.

In the following we will make use of the following identification. Let X be an
1–topos, and take C to be the 1–category of sheaves of spectra ShvSp.X / on X .
This is a symmetric monoidal 1–category equipped with a t –structure satisfying
Assumption 2.1. Using the equivalence

(2) ShvCAlg.X /' CAlg.ShvSp.X //

we can identify the structure sheaf OX of a connective spectral Deligne–Mumford
stack with a commutative algebra object in ShvSp.X /.

3.2 The construction

We first give the definition of an n–connective obstruction theory in the geometric
setting. The only difference to the algebraic case is that we want to assume the module
defining the obstruction theory to be quasi-coherent.

Definition 3.1 Let XD .X ;OX / be connective spectral Deligne–Mumford stack, and
let n� 1. An n–connective quasi-coherent obstruction theory for X is a morphism

�W E �!LOX

of connective quasi-coherent OX –modules such that cofib.�/ 2 QCoh.X/�nC1 .

We also have the analogous definition in the relative setting over Spec.k/ using the
relative cotangent complex.

Definition 3.2 Let k be a connective E1–ring, and let X be a connective spectral
Deligne–Mumford stack over Spec.k/. Let n� 1.
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(i) An n–connective quasi-coherent obstruction theory for X over Spec.k/ is a
morphism

�W E �!LOX =k

of quasi-coherent OX –modules such that cofib.�/ 2 QCoh.X/�nC1 .

(ii) Let X be locally of finite presentation over Spec.k/, and let �W E ! LOX =k

be an n–connective obstruction theory. We say that the obstruction theory is
perfect if E is perfect. The obstruction theory is an m–obstruction theory if
E 2 QCoh.X/�0\QCoh.X/�m .

In complete analogy to Definition 2.7 we have the notion of an object inducing the
obstruction theory.

Definition 3.3 Let X0 D .X ;OX0
/ be a spectral connective Deligne–Mumford stack

equipped with an n–connective quasi-coherent obstruction theory �W E!LOX0
with

n � 1. Let cofib.�/ D K , and let ıW K! LOX0
be the induced morphism. We say

that the pair �
i W X0! X; zıW K!LX0=X

�
induces the obstruction theory if

(i) XD .X ;OX / is a connective spectral Deligne–Mumford stack with the same
underlying 1–topos as X0 ,

(ii) ��nXD ��nX0 ,

(iii) zıW K!LX0=X is an equivalence of quasi-coherent OX0
–modules such that

LOX0

ı //

d
��

K

zı{{
LOX0

=OX

commutes in QCoh.X0/.

We can now begin to prove geometric versions of our main theorem. Since we want the
objects inducing the obstruction theories to be of geometric nature, we have to make
sure that in every step of the construction we obtain geometric objects. The key to this
is verifying that a square-zero extension of a connective spectral Deligne–Mumford
stack by a quasi-coherent sheaf is again a spectral connective Deligne–Mumford stack.
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Lemma 3.4 Let n � 1, and let X D .X ;OX / be a connective spectral Deligne–
Mumford stack. Furthermore, let �W LOX !MŒ1� be an n–connective derivation with
M a quasi-coherent OX –module. Let O�X ! OX be the corresponding extension
under Theorem 2.2. Then X0 D .X ;O�X / is a connective spectral Deligne–Mumford
stack.

Proof This is immediate by verifying the conditions of [7, Theorem 8.42]. To verify
the first condition, note that by the assumption n� 1 the 0–truncations of X0 and X

are equivalent.

Remark 3.5 Note that due to the connectivity assumption on M in the above lemma
we have never changed the underlying 1–topos, but only have altered the structure
sheaf.

Using the algebraic construction theorem proven above, we can now prove a geometric
version.

Theorem 3.6 Let X0 D .X ;OX0
/ be a spectral connective Deligne–Mumford stack

equipped with an n–connective quasi-coherent obstruction theory �W E !LOX0
with

n� 1. Let KD cofib.�/. Then there exists a pair�
i W X0! X; zıW K!LOX0

=OX

�
inducing the obstruction theory.

Proof Let C D ShvSp.X /, and using (2) identify OX0
with an object of CAlg.C/.

Applying Theorem 2.17, we obtain an morphism OX ! OX0
in CAlg.C/ and an

equivalence zıW K!LOX0
=OX in ModOX0

. As every step of the construction given in
the proof of Theorem 2.17 is a square-zero extension, the pair .X ;OX / is indeed a
spectral connective Deligne–Mumford stack by Lemma 3.4. In particular, LOX0

=OX is
quasi-coherent. As QCoh.X0/ is a full subcategory of ModOX0

, the claim follows.

We now proceed to prove a relative version of Theorem 3.6 over Spec.k/. So
let pW X0 D .X ;OX0

/ ! Spec.k/ be a morphism of spectral connective Deligne–
Mumford stacks. Pulling back the structure sheaf of Spec.k/, we obtain a morphism
p�OSpec.k/!OX0

of connective commutative algebra objects in ShvSp.X /. In par-
ticular we can view OX0

as a connective object of CAlg.Modp�OSpec.k//.
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Proposition 3.7 Let k be a connective E1–ring, and let X0D .X ;OX0
/ be a spectral

connective Deligne–Mumford stack over Spec.k/ equipped with an n–connective
quasi-coherent obstruction theory �W E!LOX0

=k with n� 1. Then there exists a pair�
i W X0! X; zıW K!LOX0

=OX

�
inducing the obstruction theory, where X is a spectral connective Deligne–Mumford
stack over Spec.k/.

Proof By applying Theorem 2.17 to the category CAlg.Modp�OSpec.k// we obtain a
morphism of commutative algebra objects OX !OX0

in CAlg.Modp�OSpec.k// and an
equivalence zıW K!LOX0

=OX of OX0
–modules. Define XD .X ;OX /. The remainder

of the proof is analogous to the proof of Theorem 3.6.

As in Proposition 2.29 we want to ensure certain finiteness properties if we start with
an ordinary Deligne–Mumford stack locally of finite presentation over �0k equipped
with an n–connective perfect m–obstruction theory.

Lemma 3.8 Let X0 be an ordinary Deligne–Mumford stack locally of finite presen-
tation over Spec.�0k/ equipped with an n–connective perfect m–obstruction theory
�W E!LOX0

=k with n�1. Then in any pair .i W X0!X; zıW K!LOX0
=OX / inducing

the obstruction theory, the connective spectral Deligne–Mumford stack XD .X ;OX /

is locally of finite presentation over Spec.k/ and the cotangent complex LOX =k is of
Tor–amplitude at most m.

Proof As both assertions are local this follows from Proposition 2.29.

Corollary 3.9 If X0 is locally of finite presentation over Spec.�0k/ equipped with
an n–connective perfect 1–obstruction theory for n� 1, there exists a pair .i W X0!

X; zıW K!LOX0
=OX / inducing the obstruction theory where X is quasi-smooth.

Remark 3.10 Assume that we are working over a discrete commutative ring k con-
taining the rationals Q. Using the equivalence of spectral algebraic geometry and
derived algebraic geometry over k [7, Corollary 9.28] the results of Proposition 3.7
and Corollary 3.9 hold in derived algebraic geometry over k .
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