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Combinatorial group theory and
the homotopy groups of finite complexes

ROMAN MIKHAILOV
JIE WU

For n > k > 3, we construct a finitely generated group with explicit generators and
relations obtained from braid groups, whose center is exactly 7, (S¥). Our methods
can be extended to obtain combinatorial descriptions of homotopy groups of finite
complexes. As an example, we also give a combinatorial description of the homotopy
groups of Moore spaces.

55040, 55Q52; 18G30, 20E06, 20F36, 55U10, 57TM07

1 Introduction

Homotopy groups of spheres play a central role in the algebraic topology. The tra-
ditional approaches to understanding homotopy groups of spheres include Adams
spectral sequence, EHP—sequences, Toda secondary operations, J—homomorphisms,
connections between homotopy theory and cobordisms etc.

A description of homotopy groups of the 2—dimensional sphere in terms of combinatorial
group theory was discovered by the second author in 1994 and given in his thesis [22]],
with a published version in [24]]. In this article we give a combinatorial description
of the homotopy groups of k—dimensional spheres with k > 3. The description is
given by identifying the homotopy groups as the center of a quotient group of the self
free products with amalgamation of pure braid groups by certain canonical subgroups
(Theorem 2.2} see[Section 2|for the explicit construction). Our methods can be extended
to obtain combinatorial descriptions of homotopy groups of finite complexes. As an
example, we also give a combinatorial description of the homotopy groups of Moore
spaces.

We follow earlier approaches in the use of simplicial groups to study these questions.
The notions of simplicial sets and simplicial groups have been widely studied since
they were introduced in the early of 1950s when D Kan established the foundational
work for simplicial homotopy theory [[13} 14]]. Various important results have been
achieved by studying simplicial groups. For instance, a special case of the Adams
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spectral sequence can be obtained from the lower central series of Kan’s construction
[4] for computing homotopy groups. The results of the paper [24] produced surprising
connections between group theory, group ring theory, homotopy and low-dimensional
topology. For example, the authors and Passi applied homotopy groups of spheres
to describe the subgroups determined by ideals in group rings in [[18]]. The results
from [24] play a central role in connecting the homotopy groups of S? with Brunnian
braids on the disk and sphere in the paper [3|] by Berrick, Cohen, Wong and Wu. The
main result in [24]] was generalized by Ellis and Mikhailov in [11] by studying a van
Kampen-type theorem for higher homotopy groups. Serious study of Brunnian braids
by the authors along with Bardakov and Vershinin [1]], and Li and Wu [[16]] introduced
the notion of symmetric commutator subgroups in determining the group of Brunnian
braids on surfaces S for S # S? or RP?. By using this notion together with the
embedding theorem due to Cohen and Wu in [[7, Theorem 1.2] as well as the Whitehead
Theorem on free products with amalgamation of simplicial groups (Kan and Thurston
[[15] Proposition 4.3]), we are able to control the Moore boundaries of our simplicial
group models for the loop spaces of spheres and Moore spaces using a different cone
derived from the pure braid complex, which leads to our results.

In this paper we exhibit new connections between homotopy theory and group theory.
The braids enter this context in the following three important ways:

(1) The contractible property of the simplicial group APy introduced by Cohen and
Wau in [7; 8] with n—simplices given by the (n + 1)—strand pure braid group
plays an essential role for determining the homotopy type of simplicial groups
given by the free product with amalgamations of copies of AP.

(2) The Moore chains and the Moore boundaries of free products with amalgama-
tions of copies of AP, can be determined, where the simplicial group G was
technically introduced in as a free simplicial group deformation of
AP, (forgetting defining relations) for the determination of the Moore chains
and Moore boundaries.

(3) The homotopy groups of higher dimensional spheres can be described in terms
of free product with amalgamations of AP.

The article is organized as follows. In we recall the description of the
homotopy groups of the 2—dimensional sphere from [24] and formulate the main results
of this paper. In particular, the complete description of groups such that their centers
are homotopy groups is given. In|[Section 3} we study free products with amalgamation
of simplicial groups. In some cases, these products present simplicial models for loop
spaces of homotopy push-out spaces. In for k > 3, we construct simplicial
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groups such that their geometrical realization is homotopy equivalent to the loops on the
k —dimensional sphere. There is a natural way to describe Moore boundaries of these
simplicial groups and this description is a key point in the proof of which
we give in [Section 4] In[Section 5| we consider triple free products with amalgamation
of simplicial braid groups and construct simplicial models for loop spaces for Moore
spaces. For k > 3, we give a description of a finitely generated group such that its center
is the '™ homotopy group of the k—dimensional Z/q—Moore space (Theorem 5.4)).
is about 3—dimensional Moore spaces. In this case, the simplicial models for
loop spaces of Moore spaces can be simplified. We prove [Theorem 2.3|in [Section 6]

2 Preliminaries and formulations of main results

Recall briefly the combinatorial description of 7, (S?) from [22} 24]. Let

Fp=(x0,X1,...,Xn | X0X1 -+ Xn)
be the one-relator group generated by Xy, ..., X, with the defining relation xg - - x, =
1. (Note that Fj, is a free group of rank »n with a basis given by {x{,...,x,}.) Let

R; = (x;) " be the normal closure of x; in F,, for 0 <i <n. We can form a symmetric
commutator subgroup

[Ro.Ri.....Rils = ] [ -[Re) Ro):--- Rogm):
UEE,H_l

where the symmetric group ¥, acts on {0, 1,...,n}. The symmetric group %,
permutes the indices of the subgroups R;. There is an action of the braid group B, 4+ on
F,={x0,X1,...,Xn|X0X1 -+ Xp) by the Artin representation, which induces an action
of B,4+1 on the quotient group F,/[Rg, Ry, ..., Ruls. By Wu [25] Theorem 1.2], the
center of F,/[Ro, Ry, ..., Ry]s is exactly given by the fixed set of the pure braid group
P, action on Fy,/[Rg, R1,..., Ry]s for n > 3. This gives an explicit subgroup of
F,, with a set of generators that can be understood by taking a collection of iterated
commutators. By [24, Theorem 1.4], we have the following combinatorial description
of m4(S?).

Theorem 2.1 For n > 1, there is an isomorphism

RoN---NR
Tnt1(S?) &=
[RO, ey Rn]S
This quotient group is isomorphic to the center of the group Fy/[Rg, R1,..., Ry]s. O
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The groups Fy/[Rg, R1, ..., Ryls can be defined using explicit generators and rela-
tions. This situation is very interesting from the group-theoretical point of view: we
do not know how to describe the homotopy groups m«(S?) in terms of generators
and relations, but we can describe a bigger group whose center is exactly m4(S?).
Philosophically speaking, the center is the most elementary natural, characteristic
Abelian subgroup of a group. There is a lot of work on centers of groups. For example,
people have studied the question of how to realize a given Abelian group as the center
of a finitely generated or finitely presented group; see Baumslag [2]] and Houcine [12].
For a group H, we denote it center by Z(H). Centers of groups appear in different
places of low-dimensional homotopy theory. For example, let G be a group with trivial
center. Then there is a natural isomorphism

73(2K(G, 1)) = Z(G® G),

where G ® G is the non-Abelian tensor square in the sense of Brown and Loday [5].
Let K be a 2—dimensional cell complex, K 1 jts 1-skeleton; then there is a natural
isomorphism

12(K) = Z(m,(K, KY)).

It has been the concern of many people whether one can give a combinatorial description
of the homotopy groups of higher dimensional spheres, ever since [lheorem 2.1| was
announced in 1994. Technically the proof of this theorem was obtained by determining
the Moore boundaries of Milnor’s F[K]—construction [[19] on the simplicial 1-sphere
S, which is a simplicial group model for 2.S52. A canonical approach is to study
Milnor’s construction F[SK]~ QS**1 for k > 1. Although there have been some
attempts by Zhao and Wang [26] to study this question using F[S k ], technical difficul-
ties arise in handling Moore boundaries of F[S*] in a good way, and combinatorial
descriptions of the homotopy groups of higher dimensional spheres using the simplicial
group model F[S*] would be very messy.

In this article, we give a combinatorial description of 4 (S k) for any k > 3 by using
the free product with amalgamation of pure braid groups. Our construction is as follows.
Given k > 3, n > 2, let P, be the n—strand Artin pure braid group with the standard
generators A; ; for 1 <i < j <n. We construct a (free) subgroup Q, x of P, from
cabling as follows. Our cabling process starts from P, = Z generated by the 2—strand
pure braid A4 >.

Step 1 Consider the 2—strand pure braid 4 ». Let & be (k—1)—strand braid obtained
by inserting i parallel strands into the tubular neighborhood of the first strand
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of Ay and k —i — 1 parallel strands into the tubular neighborhood of the
second strand of A, for 1 <i <k — 2

Step2 Letag =]... [[Sl_l,gléz_l],&é;l], - »5k—35;:_127§k—2] be a fixed choice of
(k — 1)—strand braid, which is a nontrivial (kK — 1)—strand Brunnian braid

Step 3 By applying the cabling process as in to the element oy, we insert
parallel strands into the tubular neighborhood of the strands of o in any
possible way to obtain n—strand braids. As the order in which the strands
are inserted is arbitrary, there are (}_}) ways of doing this.lLabel the (}~5)
n—strand braids obtained in this way by y; for 1 < j < (Z:Z).

Let Q, 4 be the subgroup of P, generated by y; for 1 < j < (}}). Now consider

the free product with amalgamation

P” >X<Qn.k P” .

Namely this amalgamation is obtained by identifying the elements y; in two copies
of P,. Let A; ; be the generators for the first copy of P, and let A j denote the
generators A; ; for the second copy of P,. Let

7\ Pux* P,
Ri,j = (Ai,j’Ai,j> n*0y 4in
be the normal closure of 4; ;, A;. j in Pyxg, , Pn. Let

[Ri’j|1§i<j§n]s= 1—[ ["‘[Ril,jl’RiZajZ]’“"Rit,jt]
{1,2,...,”}:{i1,j1,...,i,,j[}

be the product of all commutator subgroups such that each integer 1 < j < n appears
as one of indices at least once. Our main theorem is as follows:

Theorem 2.2 Let k > 3. The homotopy group 7, (S k ) is isomorphic to the center of
the group
(Pu*Q,, Pn)/[Rij|1<i<j=<n]s

forany n if k > 3 and any n # 3 if k = 3.

Note The only exceptional case is k = 3 and n = 3. In this case, 73(S3) = Z while
the center of the group is bigger than Z.

I'The braids & were introduced in [7; 8] with notation of x;. A formula for &; in terms of the A j

Artin’s generators was given in [[7, Formula 1 in the proof of Lemma 2.2].
2For a group G and g,h € G, we use the notation [g, h]:= g~ 1A~ gh.
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The center of the group (P, xg,, , Pn)/[Ri,j | 1 =i < j < n]s is in fact given by
Brunnian words in the following sense: Let c7k: P, — P,_1 be the operation of
removing the k™ strand for 1 < k <n. A Brunnian braid means an n—braid 8 such
that di 8 = 1 forany 1 <k <n. Namely, B becomes a trivial braid after removing any
one of its strands. This notion can be canonically extended to free products of braid
groups. In other words, we have a canonical operation c?k: Py Py — Py_q % Py_q
given by removing the k™ strand. A Brunnian word in P, * P, means a word w
such that dyw = 1 for any 1 <k < n. It can be seen from our techniques that the
Brunnian words in P, * P, are exactly given by the symmetric commutator subgroup
[Ri,j |1 =i < j =n]s. However the question on determining Brunnian words in free
products of braid groups with amalgamations becomes very tricky. The question here is
about the self free product of P, with the amalgamation given by the subgroup Q, k.
It is straightforward to check that the strand-removing operation dy maps Q,  into
On—1, and so the removing operation c?k: Puxg, . Pn—> Py—1%0,_,, Pn-11s2a
well-defined group homomorphism. From our construction of simplicial groups given
by free products with amalgamation, the Brunnian words in Py xg, , Py are exactly
the Moore cycles in our simplicial group model for QS k" and, from Theorem 2.2|, the
center

Z((Pn*g, , Po)/[Rij|1<i<j=<nls)=m (S

is exactly given by the Brunnian words in P, *g, . P, modulo the subgroup
[Ri,j | 1 =i < j = n]s. One important point concerning Brunnian words of the
self free product with amalgamation of P, is that the homotopy groups (S k) can
be given as quotient groups of Brunnian subgroups for any k& > 3.

Mark Mahowald asked in 1995 whether one can give a combinatorial description of the
homotopy groups of the suspensions of real projective spaces. In this article, we also
give a combinatorial description of the homotopy groups of Moore spaces as the first
step for attacking Mahowald’s question. Let M (Z/q, k) be the (k 4+ 1)—dimensional
Moore space. Namely M (Z/q, k) = S* Ug ek +1 is the homotopy cofibre of the degree
g map S¥ — Sk _If k > 3, we give a combinatorial description of 74 (M (Z/q.k))
given as the centers of quotient groups of threefold self free product with amalgamation
of pure braid groups, which is similar to the description given in [Theorem 2.2] (The
detailed description will be given in ) This description is less explicit then
the one given in|[Theorem 2.2] but it leads to combinatorial descriptions of homotopy
groups of finite complexes from iterated self free products with amalgamations of pure
braid groups.

For the homotopy groups of 3—dimensional Moore spaces, there is an explicit combi-
natorial description that deserves to be described here as it arises in certain divisibility
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questions concerning braids. Let &q,...,&,_; be n—strand braid obtained by cabling
Aj > as described in of the construction for the group Q, . It was proved
in [[7] that the subgroup of P, generated by &q,...,&,— is a free group of rank
n — 1 with a basis given by &q,...,&,—1. Let F—; = (&1,...,&,—1) < P, be the
subgroup generated by &1, ...,&,—;. Given an integer ¢, since F,—1 = (&1,...,&1—1)
is free, there is a group homomorphism ¢4: F,,—; — F,_; such that ¢4(§;) = 5;1
for 1 < j <n—1. Now we form a free product with amalgamation by the push-out
diagram
Fproy &———— Py

Pq

Fy—1 —— Pun*g, Fn—1

namely the group Py %4, Fn—1, which is the free product given by identifying the
subgroup F,_; with the subgroup of F,_; generated by £7, ..., ;11_1
way. Let y; denote the generator &; for F,_; as the second factor in the free product

Py xg, Fp—y for 1 = j =n—1. Let

in a canonical

Ry = (po) et Ry = (jeayy Yot Ry = () e 0

be the normal closure of yl,yj_lyj_l,yn_l in Py g, Fy—y, respectively, for 2 < j <
n—1. Let
Rs,t = (As,t)Pn*d)q Fni

be the normal closure of Az in Py *g F,_{ for 1 <s <t < n. Define the index
set Index(Rj) ={j} for I < j <n and Index(Ry,) = {s,¢} for 1 <s <t <n. Now
define the symmetric commutator subgroup

[Ri.Rss|1<i<n1<s<t<n]lg= ] [...[C1.Ca),....Cyl.

¢
{1,2,...,n}= | Index(Cj)
ji=1

where each C;j = R; or Ry, for some i or (s,7).

Theorem 2.3 The homotopy group 7, (M(Z/q,?2)) is isomorphic to the center of the

group
(Pn*¢q Fu1)/[Ri, Rsp |1 =i =n, 1 <5<t =<n|g

for n # 3.
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Note For the exceptional case n = 3, w3(M(Z/q,2)) is contained in the center but
the equality fails.

3 Free products with amalgamation on simplicial groups

Let ¢: G — G’ and ¥: G — G” be group monomorphisms. Then we have the free
product with amalgamation G’ xg G”. More precisely G’ xg G is the quotient group
of the free product G’ * G” by the normal closure of the elements ¢ (g)y(g)~" for
g € G. The group G’ *g G” has the universal property that the following diagram

¢

G—"—~+ G

14

G// G/ *G G//

is a pushout diagram in the category of groups. Let G' = (X' | R’) and G”" = (X" | R")
be presentations of the groups G’ and G”, respectively. Let X be a set of generators
for the group G. Then the group G’ *g G” has a presentation

G'%gG" = (X", X"|R, R, p(x)¥(x)"! for x € X).

In particular, if X/, X"/, R’, R” and X are finite sets, then G’ xg G” is a finitely
presented group with a presentation given as above. The notion of free product with
amalgamation can be canonically extended to the category of simplicial groups.

Recall that a simplicial group G consists in a sequence of groups G = {G, },>0 with
face homomorphisms d;: G, — G,—; and degeneracy homomorphisms s;: G, —
G, 41 for 0 <i <n such that the following simplicial identities hold:

(1) A-identity: d;dj =djd;y, fori > j
(2) Degeneracy Identity: s;5; = sj415; fori < j
(3) Mixing Relation:
sjd; ifi<j
disj = qid ifi=j,j+1
sidi—y ifi>j+1

A simplicial homomorphism f: G — G’ consists in a sequence of group homomor-
phisms f = {f,} with f,: G, — G, such that diG/f;l = j},_ldl.G and sl.G/fn = fn+1siG
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for 0 <i <n. A simplicial monomorphism f: G — G’ means a simplicial homomor-
phism f ={f,} such that each f: G, — G, is a monomorphism. Similarly we have
the notion of simplicial epimorphism.

For a simplicial group G, recall that the Moore chain complex N.G is defined by
n
N, G = m Ker(d;: G, — Gp—1)

i=1

with the differential given by the restriction of the first face dy|: NyG — N,—1G. The
Moore chain complex functor has the following important properties. For a simplicial
set X, let | X| denote its geometric realization.

Proposition 3.1 The following statements hold:

(1) Let G be any simplicial group. Then there is a natural isomorphism

Hn(N*G; d0|) = nn(lGD
forall n.

(2) Let f: G— G’ be a simplicial homomorphism. Then f is a simplicial monomor-
phism (epimorphism) if and only if

N(f): NgG — N,G’
is a monomorphism (epimorphism) for all q .
(3) A sequence of simplicial groups
1-G -G—->G" -1
is short exact if and only if the corresponding sequence of Moore chain complexes
1 > NiG' — NiG — NG" — 1

is short exact.

Proof Assertion (1) is the classical theorem of John Moore; see the survey paper by
Curtis [10]]. Assertion (2) is given in Quillen’s book [20, Lemma 5, 3.8].

(3) By [3} Proposition 4.1.4], the Moore chain functor is an exact functor. We show
that the inverse statement is also true. Namely if 1 — NxG' — NG — N.G" — 1 is
short exact, then 1 - G’ — G — G” — 1 is short exact. By assertion (2), G’ — G isa
simplicial monomorphism and G — G” is a simplicial epimorphism. From Conduché’s
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decomposition theorem of simplicial groups [9]], the composite G’ — G — G" s trivial
and so G’ is mapped into Ker(G — G"). Since

N« (G') = NyKer(G — G") = Ker(N+G — N+G"),

G’ — Ker(G — G") is an isomorphism by assertion (2) and the result follows. O

Let Z,G = ﬂ?:o Ker(d;: G, — Gp—1) < N, G be the Moore cycles and let B,,G =
do(Np+1G) < Z,G be the Moore boundaries. By assertion (1), the homotopy group
7w (|G)) is given by Z,G/B,G.

The construction of free product with amalgamation on simplicial groups is given
in the same way. Let ¢: G — G’ and ¥: G — G” be simplicial monomorphisms.
Then G’ xg G” is a simplicial group where each (G’ xg G”), is the free product
with amalgamation of G, g, G, for the group homomorphisms ¢,: G, — G, and
VYn: G — G)). The face homomorphisms are (uniquely) determined by the pushout

property:
®n

/
Gn < > Gn
< d;Ci
G " el "
dl Gn Gn *Gn Gn
|
Y Y
¢n—1 ! !
Gn—y < -G,y :
|
% G” ' G xg G
N d; d
|
Y \
1" / "
G,y > Gy %G,y Gy

Similarly the degeneracy homomorphisms are (uniquely) determined by the pushout
property. The uniqueness of the induced face and degeneracy homomorphisms forces
the simplicial identities to hold for dl.G/*GG” and st/*GG” and so G’ *g G” becomes
a simplicial group. If we write the elements w in

(G' %6 G = G, %, G,/

4 7
in terms of words as a product of elements from G, or G, , then dl.G *6G (w) is given
by applying dl.G/ or dl.G” to the factors of w. Similarly we can compute degeneracy

G/*GG/

’
homomorphism s; on (G’ g G"), in the same manner.
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There is a classifying space functor from the category of simplicial groups to the category
of simplicial sets, denoted by W, with the property that the geometric realization of
W (G) is a classifying space of the geometric realization of the simplicial group G.
We refer to Curtis’s paper [[10] for the detailed construction of the functor W .

An important property of free product with amalgamation on simplicial groups is that
the classifying space of G’ g G” can be controlled. This property is a simplicial
consequence of the classical asphericity result of J HC Whitehead [21, Theorem 5]
in 1939 and the formal statement of the following theorem was given in Kan and
Thurston’s paper [15] Proposition 4.3].

Theorem 3.2 (Whitehead Theorem) Let ¢: G — G’ and y: G — G" be simplicial
monomorphisms. Then the classifying space W (G’ g G") is the homotopy push-out
of the diagram:

e — " e
Wiﬂ push
WG —— W(G' %g G") o

4 Description of homotopy groups of spheres and proof of

[Theorem 2.2

In this section, we are going to construct a simplicial group model 7(S¥) for Sk,
k > 3, by using pure braid groups. From this, we are able to give a combinatorial
description of the homotopy group 74 (S k) for general ¢.

4.1 Milnor’s F[K ]-construction on spheres

Let K be a simplicial set with a fixed choice of base-point s(’)’xo € K;,. Milnor [19]]
constructed a simplicial group F[K] where F[K,] is the free group generated by K,
subject to the single relation that sjxo = 1. The face and degeneracy homomorphisms
on F[K] are induced by the face and degeneracy functions on K. An important
property of Milnor’s construction is that the geometric realization |K| of F[K] is
homotopy equivalent to Q23| K|. (Note that in Milnor’s paper [[19], K is required to
be a reduced simplicial set. This result actually holds for any pointed simplicial set by
a more general result [23, Theorem 4.9].)
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We are interested in specific simplicial group models for Q2.5 k+1 and so we start by
considering the simplicial k—sphere SX. Recall that the simplicial k —simplex A[k]
can be defined explicitly as follows:

Alkln ={Go.i1,....in) [0<ig =iy =+ =in <k} with di: Alk]y — Alklp—y
given by removing the (i + 1) coordinate and s;: Alkl, — Alk]y+1 given by
doubling the (i + 1)% coordinate for 0 <i <n.

Let oy, =(0,1,...,k) € Alk]; and let dA[k] be the simplicial subset of A[k] generated
by the faces dyoy, ..., droy. Namely dA[k] is the smallest simplicial subset of A[k]
containing djoy for 0 <i <k. Let S¥ = A[k]/dA[k]. Then the geometric realization
|S*| is homeomorphic to the standard k —sphere S¥. As a simplicial set, S,’,‘ = {x}
for n < k and

Sk = (%, (ig.i1,....in) | 0<ig<iy<---<ip<k
(4-1) with {0, 1,....k} = {ig.i1,....in}}
:{*’Sjn—/csjn—k—l ...Sjlak | 05]1 <j2 <"'<jn—k Sn_l}

for n > k. In the first description above, it is required that each 0 < j < k appears at
least once in the sequence (ig,...,i,). In this description, we can describe the faces
and degeneracies by removing-doubling coordinates where we identify the sequence
(ig, - .. ,1n) to be the base-point if any one of 0 < j <k does not appear in (iy, ..., iy).
In the second description, we can use the simplicial identities to describe the faces and
degeneracies on S k.

By applying Milnor’s construction to S¥, we obtain the simplicial group F[S¥] ~
QSk+1 with F[S¥], a free group of rank (}). The generators for F[S*], are given
in formula [(4-T)| with % = 1.

4.2 The simplicial group AP,

There is a canonical simplicial group arising from pure braid groups systematically
investigated in [3]. We are only interested in classical Artin pure braids and so we
follow the discussion in [7]. Let AP, = P,4+; with the face homomorphism

de APn = I'p+1 —)APn_l = Pn

given by removing the (i +1)* strand of (7 + 1)—strand pure braids and the degeneracy
homomorphism
si: AP, = Pn+1 — APn+1 = Pn+2

given by doubling the (i + 1)* strand of (n + 1)—strand pure braids for 0 <i < n.
Then AP, forms a simplicial group. Let 4; ;, 1 <i < j <n+ 1, be the standard
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generators for AP, = P, 1. Then the face operations in the simplicial group AP, are
defined as follows:

Ai—l,j—l ifr +1<i,

1 ifr4+1=i,
4-2) di(Ai,j) = Aj i ifi<t+1<j,
1 ifr+1=j,
Ai,j iftr+1> J.
And the degeneracy operations are defined as follows:
Aig1,j+1 ifr+1<i,
Aij+1-Aigr,j+1 1 +1=1,
(4-3) st(Aij) = Aij+1 ifi<t+1<yj,
Ai,j'Ai,j—H ift+1=j,
Ai,j ifr+1>j.

Observe that APy = P, = Z is generated by A, with doA;, =d; A1, =1. The
representing simplicial map
fa, . St — AP,

with f5, = A extends uniquely to a simplicial homomorphism
O: F[S'] — AP,.

The following embedding theorem plays an important role for our constructions of
simplicial group models for the loop spaces of spheres and Moore spaces.

Theorem 4.1 [7, Theorem 1.2] The simplicial homomorphism

0: F[S']— AP,
is a simplicial monomorphism. |
4.3 Simplicial group models for 2.S* with k > 3

Assume that k > 3. Let « € F[S!];_, such that

(1) a#1 and
(2) dja=1forall 0 <j <k—2,thatis, o is a Moore cycle.

(Note: We do not assume that « induces a nontrivial element in 7j_,(F[S!]) =
7x—1(S?). There are many choices for such an . We will give a particular choice of
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o with braided instructions later. For a moment « is given by any nontrivial Moore
cycle.) The representing simplicial map

Ju: SK72 — F[SY]
extends uniquely to a simplicial homomorphism
Ja: FIS*¥72]— F[S]

by the universal property of Milnor’s construction.

Lemmad4.2 Letk >3 andlet o # 1 € F[S'];_, be a Moore cycle. Then the map
fu: FIS*¥72] — F[S]

is a simplicial monomorphism.

Proof Let G = f;(F [S%~2]) be the image of j;;,. Then G is a simplicial subgroup

of F[S!]. Since F[S!'], is a free group, G, is free group for each ¢. The statement
will follow if we can prove that the simplicial epimorphism

fa: FIS*1— G

is a simplicial monomorphism. Observe that since each F[S k—2]q is a free group,
which is residually nilpotent, it suffices to show that the morphism of the associated
Lie algebras induced from the lower central series

L(fo): L(FIS*) — L(G)

is a simplicial isomorphism. For each ¢, since both F[S k—2]q and G, are free groups,
their associated Lie algebras are the free Lie algebras generated by their Abelianizations.
Thus it suffices to show that

fab. piSk=2pb = K(Z,k —2) — G
is a simplicial isomorphism.
Note that the Moore chain complex of K(Z,k —2) is given by

0 ifg#k—2,

NgK(Z.k=2) = {Z ifg=rk—2

Since f;‘;‘b: K(Z,k —2) — G™ is a simplicial epimorphism,

N(f2): NyK(Z,k —2) — NyG®
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is an epimorphism for any ¢ by |Proposition 3.1 It follows that N, G® =0 for g #k—2.

For ¢ = k —2, we have Nj_,G® = G_, = (a) = Z with
N(f2): N2 K(Z.k —2) = 7 —> Nj_,G® =7
an isomorphism from the definition of fy. Thus
N(f&®): NF[S¥=2* — NG™

is an isomorphism. By [Proposition 3.1 f: F[SKk=2jb = K(Z, k —2) — G* is a

simplicial isomorphism. This finishes the proof. |

Now, by [Theorem 4.1|and [Lemma 4.2} the composite

do: F[S¥2] L2 F[s'] -2+ AP,

is a simplicial monomorphism. Define the simplicial group 7(S*; «) to be the free
product with amalgamation defined by the diagram

Pa

F[S*7?] ~ AP,

ba
AP, —— T(S¥:a) = APy  ppgr—2) AP

Theorem 4.3 Let k > 3 and let « # 1 € F[S!],_, be a Moore cycle. Then the
geometric realization of the simplicial group T (S*; «) is homotopy equivalent to QS .

Proof By|[Theorem 3.2| the classifying space W T (S¥; «) is the homotopy push-out of
W F[Sk2] ~ sk=1 . WAP,

W AP, WT(Sk: o)
By [[7, Theorem 1.1] (the complete proof is given in [8]]), APy is a contractible simplicial
group and so W AP, is contractible. It follows that

WT(S* a) ~ Sk

and hence the result. O

Geometry € Topology, Volume 17 (2013)



250 Roman Mikhailov and Jie Wu

4.4 Some technical lemmas

Recall (see Magnus, Karrass and Solitar [17, p. 288-289]) that a bracket arrangement
of weight n in a group G is a map B": G" — G, which is defined inductively as
follows:

Bl =idg, B*(ar,az) =lai.as)

for any a1, a, € G. Suppose that the bracket arrangements of weight & are defined for
1 <k <nwithn>3. Amap B": G" — G is called a bracket arrangement of weight
n if 8" is the composite

k n—k 2
G =Gkxgnk PP oo PG

for some bracket arrangements g% and "k of weight k and n — k, respectively,
with 1 <k < n. For instance, if n = 3, there are two bracket arrangements given by

[[a1,az]. a3] and [a;,[a2, as]].
Let R; be a sequence of subgroups of G for 1 < j <n. The fat commutator sub-

group [[Ry1, Ry, ..., Ry]] is defined to be the subgroup of G generated by all of the
commutators

B (giy.- - &)
where
1) 1<ig=<n,
2) {it,...,iry}={1,...,n}, thatis each integer in {1,2,--- ,n} appears as at least
one of the integers iy,
(3) gj €Rj,

(4) B’ runs over all of the bracket arrangements of weight 7 (with ¢ > n).

For convenience, let [[R;]] = R;.

The symmetric commutator subgroup [R1, R, ..., Ry]s defined by
[Ri.Ra..... Rals = [] [--[Roty- Ro@): - - - Romy):
oex,

where [...[Rs(1), Ro(2)]:- - -+ Ro(m)] is the subgroup generated by the left iterated
commutators

[---[[gl’g2]’g3]’---,gn]

with g; € Rg(;). For convenience, let [R{]s = R;. From the definition, the symmetric
commutator subgroup is a subgroup of the fat commutator subgroup. In fact they are
the same subgroup by the following theorem, provided that each R; is normal.
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Lemma 4.4 [16, Theorem 1.1] Let R; be any normal subgroup of a group G with
1 <j<n.Then

[[Rl,Rz,...,Rn]]=[R1,R2,...,Rn]s. O

One can determine the Moore chains and boundaries for the self free products of APy
with a help of the Kurosh theorem on the structure of subgroups of free products.
However, in order to get this description, we will use another method. We construct
a simplicial free group G as follows: For each n > 0, the group G, is the free group
generated by x; ; for 1 <i < j <n+ 1. The face and degeneracy operations are given

by formulae |(4-2)| and |(4-3), where we replace A4; ;j by x; ;. It is straightforward to
check that the simplicial identities hold. Thus we have a simplicial group G.

Now we are going to determine the Moore chains and Moore cycles of the free products
of G. Let J be an index set and let G*/ = *qegG(a), where each G(«) is a copy of
G indexed by an element « € J . For each group G(a), = Gy, let x; j(a) denote the
generator x; ; for 1 <i < j <n+ 1. From the definition, g,’;«’ = %qegG(at), is a
free group with a basis given by {x; j(a) |1 <i <j=<n+1, a € J}.

A basic word in the group g;;f means one of the elements x; ; (a)*! for some o € J
andso 1 <i <j<n+1.Let

+1 +1 +1
w = Br(xiy,j, (o) Xiy, jy(2) ™o, X, g, () ™)

be a r—fold iterated commutator on basic words, where the bracket B;(---) is any
bracket arrangement. Define

Index(w) = {il,jl,iz,jz,...,it,jt} - {1,2,...,l’l+ 1}

(Note: In our definition, Index(w) is only well-defined for commutators with entries
from basic words.)

Foreachpair 1 <i < j<n-+1,let
*J
R} = (xij(@)|ae])d

be the normal closure of the elements x; j(«), @ € J, in the group G*/ . For a subset
T C{1,2,...,n+ 1}, define

R[T]= l—[ [---[Ril,jl’Riz,jz]v“"Rit,jt]

Tg{ll sjl 7i2aj23"-ail 5jt}

to be the product of the iterated commutator subgroup of R; j such that each number
in T occurs at least once in the indices of R; j. (Here if 7 =1, then we let commutator
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subgroup [R;, j,] = R;,,j, by convention.) In the case that 7" ={1,2,...,n 41}, we
denote

[Rijl1=i<j=n+l]s

by R[1,2,....n+1].

Lemma 4.5 Let G*/ be the self free product of G over a set J . Then:
(1) The Moore chains are N,G*/ = R[2,3,...,n+1].
(2) The Moore cycles are Z,G* = R[1,2,3, ... M+1]=[R;j|1=<i<j=<n+l]s.
(3) The Moore boundaries are

B.G* = 2,6* =R[1,2,3,....n+1]=[Rij |1 <i<j<n+l]s.

Proof For assertions (1) and (2), the direction
R[2.3,....n+1]<N,G* and R[1,2,3,...,.n+ 1] < Z,6*/

can be easily checked as follows. From equation |(4-2), we have dyx; j(x) =1 for
aeJifk+1=ior j. Thus

Ri,j <Ker(dy: 63/ —G3l)
if k+1=1i or j. Thus
n
[...[Riyj1s Ris,jnl)s s Riy,jr ] < N,,g*" = ﬂ Ker(dy: Q:J — g;:il)

k=1

if {2,3,...,n+ 1} S {iy, j1,12, j2,-..,1t, j¢} since each di, 1 <k <n, sends one
of entries R;, j, in this (iterated) commutator subgroup to the trivial group. It follows
that R[2,3,...,n+ 1] < N,G*/ . Similarly R[1,2,...,n4 1] < Z,.1G*/ . Thus the
main point is to prove that

(4-4) N.G* <R[2,3,....n+1] and Z,G*) <R[1,2,....n+1].

If n =1, then R[2]= R[1,2]= g;‘J because g;*f is generated by x; »(cr) for @ € J.
In this case, the identity that N;G*/ = Z,G*/ = R[2] = R[1,2] = g;*f holds. Thus
we may assume that n > 2.

We first consider the last face operation

dn: G — G .
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Let K, = Ker(d,: Q;J — g;;{l). From equation |(4-2),

1 ifl<i<j=n+1,
xij(a) ifl1<i<j=<n.

(i (@) = {

Observe that the basis of G, 7 is given by the disjoint union of the basis of Gr J , with
the set {x; ,4+1(x) | 1 <i <n+1, a € J}. By [24, Proposition 3.3], a basis for the
free group K is given by the subset X} of g;;f consisting of all of the following
iterated commutators on basic words

(4-5) w =[x (@) XE @)L X2 (@)oo xE ) (@),

where

(1) t>=0 (Hereif t =0, then w = [x; »n(xo)] = Xin(xp).)
2) es==xl1forl<s=t,

B) I<ig<js<nforl=<s<t,

4) aseJ for0<s =<t and

(5) the word xl i (ozl)xl2 i (tp) - (ay) is an irreducible word in the group

xJ *J
G <G

lt Jt

Next we consider the face operation dj restricted to K, for 0 < k < n. From the
A—identity did, = dy—1d; for 1 <k <n—1, we have the commutative diagram of
short exact sequence of groups

d

Kp=F(Xy) —— G}7 — g3,

(4-6) di |k, di di
dy_

Kp-1 = F(Xy—y) — G "= g¥/,

for 1 <k <n—1. Consider dyw for w € X,,. From equation [(4-2), dix;,(c) is
given by the following table:

X1,n () - Xk—1,n (@) Xk,n (@) Xk+1,n (a) --- Xn—1,n ()
di \J \J \J \ \:
X1,n—1 (cr) - Xk—1,n (@) 1 Xk,n—1 (cr) -+ Xpn—2,n—1 (@)

We now start to prove statement [(4-4)] Let

Xn(k) ={we X, | k+ 1 € Index(w)}
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for 0 <k <n-—1.If we X,(k), then dw = 1 as dj sends one of the entries in
the commutator w to 1. Let w € X, ~ X, (k) be written as in[(4-5)] Then i # k + 1
and kK +1 & {iy, ji.....is, j¢}. From the above table, dyx;n(co) = X;n—1(c) for
i <k+1and x;— 4—1(ctg) for i > k + 1. For other entries xii‘",js (ats), we have

zs—ljs_1(0‘s) if k+1<is,
(@) = ls,]r—l(as) if ig <k +1< jg,
Xi g, (@s) ifk+1> jg.

dk(xe‘

is,Js

Observe that
dip: {xij(@)|aed, 1<i<j<nand k+1#i, j}=>{x;j(@)|aeJ, 1<i<j=<n—1}
is a bijection. The restriction of dj in the subgroup

di|: F(xjj()|aeJ, 1<i<j<nandk+1 ;éi,j)—)g,’lkfz
is an isomorphism. Since the word
xfll,jl(al)xfzz,jz(az)-- il @) €F(xjj(e)]aeld, 1<i<j<nandk+1#i,j)
is irreducible, the word

di(x;). j, (@) 1, (@2) - X (@)

= (dicXiy, ) (@) (dre Xy, j) (02) -+ (diexiy, j, ) ()

is irreducible in Q:iz < g;;{l. It follows that dyw € X,_; for each w € X, ~ X, (k)
and the function

di: Xn~ Xn(k) — Xp—1
is a bijection. This allows us to apply the algorithm in [24, Section 3] to
drl: Kn = F(Xy) — Ky—1 = F(Xy—1)

for 0 <k <n—1 in diagram [(4-6)| and so, by [24, Theorem 3.4], the Moore chains

n—1

NaG* = (") Ker(di|: Kn — Kp—1)
k=1

are generated by certain iterated commutators

4-7) w = Br(xiy gy () E xiy i (@)L X, (@)D
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with {2,3,...,n+ 1} € Index(w) and the Moore cycles

n—1
2,6 = () Ker(dy|: Kn — Kp_1)
k=0

are generated by certain iterated commutators
(4-8) w = Bo (i @) xiy o (@) iy g @) )

with {1,2,...,n+ 1} € Index(w). (Note: The commutator w in|(4-7)|or |(4-8)| may
not be in the standard form from left to right.) Since each entry x;, j, (as)®! belongs
to R;,,j,, the commutator w in or [(4-8)| lies in the fat commutator subgroup

[[Ril,h’ Risjps--s Ritajt]] and so, by ,

we [Tl [Rigayiony Risayoal - Rivwriow) < Rls.s+ 1.0+ 1],

where s = 2 in the case of and s = 1 in the case of [4-8)] This finishes the proof
of statement [(4-4)| and hence assertions (1) and (2).

(3) By assertion (2),
J
Z,G* = [1 [---[Riyjy» Riy,jo) - Rig gl
{1,2,0,n+13C{i1, j1,02,)25 50t 51 }

From equation |(4-2), we have dox;41,j4+1(a) = x;j(a) for 1 <i < j <n+1 and
o € J. Thus
do(Ri+1,j+1) = Ri

for 1 <i < j <n-+1.Givena factor [...[R;, j,, Ris.j»),---» Ri,.j,] in Z2,G*J with
{1,2,...,I’l+ 1} - {il,jl,i2,j2,...,it,jt}, we have

do([- .. [Riy +1,j,+1- Riyt1,jo+ 1) -+ Riyy1,j,41)
= [. .o [Ril;jl ) Riz,jz]? et Ritﬁjt]'

Since {2,3,...,n+2}S{i1+1, j1+1,ir+1, jo+1,...,i;+1, j:+ 1}, the subgroup

xJ
1_[ [ [Riy+1,1+1> Rig+1,jo+1) -+ s Rig+1,j,+1]1 = Nu1G
(1,2,...n+1)C
{11502, J2505it 501t}
with
_ *xJ
do( 1_[ [---[Ri1+1,j]+1,Ri2+1,j2+1]7---7Ri,+1,j,+1])—an :

(1,2,..n+1}C
{il 7jl 7i23j27'"7itsjl}
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It follows that Z,G*/ < B,G*/ . Assertion (3) follows and this finishes the proof. O

The following lemma states that R[1,2,...,n + 1] can be given by the product of a
finite collection of commutator subgroups.

Lemma 4.6 The subgroup R[1,2,...,n+ 1] of G¥/ is the product of the following
commutator subgroups

["'[Rilsjl’Ri29j2]"“’Rit:jt]’
where
(1) {i17j17i29j29---9it’jt}={1,2,-..,n+1} and
) i1, Ji 12, jos-oosdes Jey~tip, Jpy #41,2,...,n+ 1} forany 1 < p <t.

Proof Let H be the product of the commutator subgroups given in the statement.
Clearly H < R[1,2,...,n+ 1]. Now consider the factor

[...[Riy,jys Riz,jols - - Rig ]

with {1,2,....,n+ 1} ={i1, j1,i2, jo,..., 0z, je} in R[1,2,...,n+ 1]. If there exists
1 < p <t such that

U, Jsias Joweoosies Jed S ip, jpy =1{1,2, 00 n+ 1,
since [...[Riy,j;» Ris,jo)s -+ Ri,_y,j,_,] is normal, we have
[ [Riyjys Riz ol oo Rip gy b Riy iyl S [ [Riy s Rig,jo) oo Riy iy |-
(If p =1, then we use [R;, j,, Ri,,j»] < Ri,, j,.) It follows that
[ [Rivjis Rzl Rigj ] =L [Rinjis Rigjo)s oo Ri s -0 R

with {71, j1,i2, j2. .. . iz, ey ~{ip, jp} = {1,2,...,n 4+ 1}. Consider the factor

[. .o [Rilsjl’ Ri2,j2]’ ceey Rip,jp’ .o
moving surplus entries, we have

., Ri, j,]. By repeating the above process for re-

[...[Riy,jrs Riz,jols oo  Riyj ] = H

and hence the result. O

The following simple result is well-known and follows from the structure of normal
forms of free products with amalgamation (for the proof see, for example, [[12]):

Lemmad4.7 Let G = G*4G, be a free product with amalgamation such that G| # A
and Gy # A. Then Z(G) < Z(A).
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4.5 Proof of

We use our simplicial group model 7 (S¥, @) for 2S*. Consider the construction of
the subgroup Q, x of P,. By the definition of the simplicial group APy, the iterated
degeneracy operations on AP; = P, are given by the cabling and so the elements
X1,...,Xk—p in[Step I|are the canonical basis for the subgroup

O(F[S'Jk—2) < APg_p = Py_;.
Since dijx; = dix;41 for 1 <i <k —3 and dox1 =dy_rx;_» =1, we have d;joy =1

for 0 <i <k —2. It follows that o is a Moore cycle in F[S!]x_, with a5 # 1. The

elements y;, 1 < j < (}_4), are standard basis for the subgroup

Gai (FIS*?]m1) < APy = Py
since they are obtained by cabling on «y, . It follows that
Py *On.k Py = (AP* *FLSk—2] AP*) 1= T(Sk;(xk)n_l.

n—

is a special case of the following slightly more general statement.

Theorem 4.8 Let k > 3 and let « # 1 € F[S!];_, be a Moore cycle. Then the
simplicial group T (S¥; o) ~ QS* has the following properties:

(1) In the group T(Sk; ®)n—1 = Pn *p[gk-21, | Pn, the Moore boundaries
By T(S*:0) =[Rij | 1<i < j <nls.

(2) The homotopy group 7, (S¥) = 7,1 (QS*) = 7, (T(S*: «)) is isomorphic
to the center of the group

T(S*;@)n-1/Ba—1 T(S*;0) = (P s prsn—2),_, Pu)/IRij |1 =i < j <nls
forany n if k > 3 and any n # 3 if k = 3.
Proof (1) By definition, the simplicial group 7 (S¥;«) is given by the free product
with amalgamation APy * pgk—2) APx. Thus T(S k. ) is a simplicial quotient group

of the free product AP4 * AP4. Let G be the simplicial group given in
Then AP, is a simplicial quotient group of G. It follows that there is a simplicial

epimorphism

g:G*xG —> T(Sk;a).

By [Proposition 3.1
N(g) = g|: Nu(GG) —> Nu(T(S*: )
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is an epimorphism and so:

Buo1 (T(S¥:00)) = do(Nau(T(S*: 2)))
= do(g(Na(G % G)))
= g(do(Na(G % G)))
= g(Bu-1(G % Q)

Assertion (1) follows from

(2) Casel k>3 Since T(Sk: a)g = Pyii * prsk—2, Pg+1 is a free product with
amalgamation, the center

Z(T(S*;a)) < Z(F[S*2)) = {1}

forqg >k —1 by For ¢ =k —2, then Z(T(S*;0)5_y) < F[SK2|1_, =
(a) = Z by Since « is Moore cycle, « is a Brunnian braid in Pj_ ;.
Recall that the center of Pj;_; is given by the full-twist braid A? (Chow [6]) with the

property that, by removing any one of the strands of AZ, it becomes a generator for

the center of Py_; and d; A? # 1 for k > 3. Since « is a Brunnian braid, any power
a™ & Z(Py_1) for m # 0. Tt follows that

o & Z(Px—1 *prsk—2y,_, Pr—1)

for m # 0. Thus Z(T(S*:a)p_p) = {1}. For ¢ <k -2, ’T(Sk,oz)q is a free product
and so Z(T (S, a)q) = {1}, where for the low cases, T(Sk:a); = P, % P, is a free
group of rank 2 and 7(S¥; )¢ = {1}. Thus the center Z(T(Sk;oz)q = {1} for all
q = 0. It follows from [24, Proposition 2.14] that

mg(T(S¥:0)) = Z(T(S*:00)q/ By (T(S%; )
for ¢ > 1. This isomorphism also holds for ¢ = 0 because T (S¥;a)o = {1}.

Case Il k =3 By the same arguments as above, we have Z(7(S3;a),) = {1} for
q > 2. By [24] Proposition 2.14], we have

(4-9) mg(T(S%;0)) = Z(T(S?;0)q/Bg(T(S?; )

for ¢ > 3. We only need to check that this isomorphism also holds for the cases ¢ =0, 1.
(The case that ¢ = 2 is the exceptional case, which is excluded in the statement.) When
q = 0, both sides are trivial groups. Consider the case ¢ = 1. Note that AP} = P, = Z
is generated by A1,. Since « is not trivial, it is given by a nontrivial power of A;,.
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Let o = AT, for some m # 0. Then T (S 3;a)1 is given by the pushout diagram:

P=7-"p =7

Py,=7 — T(S3;Ol)1

Since Ry = (41,2, A/1’2>T(S3;a)1 =T(S3,a); because T(S3;a); is generated by

Ay,p and A ,, we have

Bi(T(S* ) = T(S* ),
and so
Z(T(S%:0)1/Bi(T(S*0) = T(S% a)1/Bi(T (S ) = {1},

On the other hand,

w1 (T(S% @) = 11(QS?) = m12(S?) = {1}.
Thus the isomorphism [(4-9)| holds for ¢ = 1. This finishes the proof. a
Example 4.9 In this example, we discuss the exceptional case by determining the
center of the group

G = (P3xps1), P3)/[Rij |1 =i <j=3]s,

where o = A’l"’2 with some m # 0. By definition, the subgroup F[S'], < P; is
generated by x; =513 = (41,342,3)™ and x; = so03 = (A1,241,3)". Thus the free
product with amalgamation P3 *g[g1}, P3 is given as the quotient group of P3 % Ps3
by the new relations:

(4-10) (A13423)" = (4] 345 3)™ and  (A;2413)" = (4] ,47 )™
Consider the subgroup [R;,j | 1 =i < j < 3]s of P3 *p[g1], P3. Observe that
[A1,2, A13).[A1,2, A23]. [A1,3, A2 3] €[Rij | 1 =i < j = 3]s,

and the subgroup (Aj 2,413, A2,3) is Abelian in G. Similarly the subgroup

<A/1,2’ A/1’3,A’2,3) is Abelian in G . Thus (A/I,ZA/1,3)m = (A’lyz)m(A/l",;)m in G and

from equation [(4-10)]

(4] )™ = (A412)"(41,3)" (4] )7
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It follows that A , commutes with A4 ; since A, commutes with (A41,2)"™, (41,3)™
and (A’ ;)™ . From this, we conclude that (4] ,)" € Z(G) because A’ , commutes
with all of the generators for G. Similarly

(A1,2)™, (A1,3)™, (A2,3)™, (4] )™, (4, )™ € Z(G).
Thus the subgroup
@11)  H = (412" (A1), (423", (4] )" (4} )" (45 )™ < Z(G).
Let
G' = (Z(A15)/m* LA} 5)/m) x (Z(Ay3)/m * Z(A} 3)/m)
X(Z(A2,3)/m * T(Al ;)/m)

and let ¢: P3 * P3 — G’ be the canonical quotient homomorphism defined by sending
generators to generators. Then

P(x1) =¢(x2) = 1.
Moreover ¢([R;,j | 1 =i < j < 3]g) =1 with ¢(H) =1 and so ¢ induces an
epimorphism ¢ in the following diagram:

P3 x P3 2, G =(Z/mx*Z]m)x(Z/mx*Z]m)x(Z]m* 7] m)
q ¢
A\
G/H.
On the other hand, the group homomorphism
Z(Al,z) % Z(All’z) —_—> G/H

factors through the quotient Z (A )/m * Z(A| ,)/m. Similarly there are canonical
group homomorphisms from Z(A; 3)/m * Z(A/I:3)/m and Z(Aj 2)/m * Z(A/Lz)/m
to G/H. Since the subgroups (41,5, 4) ,), (41,3, 4] ;) and (43 3, 4 ;) commute
with each other in the group G, there is a group epimorphism

v: G — G/H

such that q? oy =idg- since all of generators of G/H lie in the image of v . It follows
that

G/H=G =Z/mx*xZ]m)x(Z]/mx*Z]m)x (Z/mx7Z]m).
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Since Z(G') = {1}, Z(G/H) = {1} and so
Z(G)<H.
Together with equation [(4-11), we have Z(G) = H = 7Z.%*. m|

5 Description of homotopy groups of the Moore spaces
M(Z/[q,k) with k > 3

In this section, we give an explicit combinatorial description of the homotopy groups of
the Moore spaces M(Z/q, k) with k > 3. This description highlights our methodology
for giving combinatorial descriptions of homotopy groups using free products of braid
groups.

5.1 An embedding of F[S*~!] into 7 (S*;a) for Moore boundaries o

Let & € Nj_q F[S'] with do&@ # 1. We are going to construct a simplicial monomor-
phism F[S*~1] — T(S*: dy&), which is also a homotopy equivalence.

Let
fa: Ak —1] — F[S']

be the representing map of the element & with f3z(o;) = &, where o, = (0, 1,...,
k —1) € Alk —1]. Let A°[k — 1] be the simplicial subset of A[k — 1] generated by
djoy—y for j >0 and let

Alk —1] = Alk — 1]/ Ak —1].

Since djo =1 for j > 0, the simplicial map fg factors through the simplicial quotient
Alk —1]. Let

(5-1) fa: Ak —1]— F[S]

be the resulting simplicial map with f_éz(ffk—l) = «. By the universal property of
Milnor’s construction, there exists a unique simplicial homomorphism

(5-2) 0gz: F[A[k —1]] — F[S"]
Lemma 5.1 The simplicial group F[A[k — 1] is contractible and the map
0. F[A[k —1]] — F[S"]

is a simplicial monomorphism.
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Proof Recall [10] that the geometric realization |A[k — 1]] is the standard (kK —1)—
simplex AK~1 and |A°[k]| is the union of all faces of A¥~! except the first face. Thus
both |A[k —1]| and |A°[k]| are contractible and so is |A[k —1]| = |A[k —1]/A°[k —1]|.
It follows that

| F[A[k —1]]| ~ QE|A[k —1]|

is contractible.

The proof of the statement regarding 0z is similar to that of The image
05 (F[A[k — 1])) is a simplicial free group because it is a simplicial subgroup of the
simplicial free group F[S!]. Following the lines in the proof of , for
checking that 6z F[A[k — 1]] — 65(F[A[k — 1])) is a simplicial monomorphism, it
suffices to show that

NO2: Ny F[Ak — 1]* — N0z (F[A[k — 1]))
is an isomorphism. This follows directly from the computations that

Z(0x—1) ifg=k—1,
Ny F[Alk —1]* = 3 Z(dyor—y) ifq=k -2,

0 otherwise,
Z(a) ifg=k—1,
NyOz(F[Alk — 1) = { Z(doa =) ifqg=k—2,
0 otherwise,
and Oz(0x—1) =Q. -

Now from the above lemma, the simplicial monomorphism
bo: F[S*72]— AP,
is given by the composite:
FIS*2] v FAk —1]] <2, F[S1] <2 AP,
It follows that ® o 85: F[A[k — 1]] = AP, induces a simplicial monomorphism
(5-3) F[A[k — 111 # prsi—2) FIA[k — 1]] = APy * prgi—2) AP«

which is a homotopy equivalence by [Theorem 3.2 Let a,/c_l denote the element oy
in second copy of F[A[k — 1]] in the free product with amalgamation

F[A[k — 111 % ppsr—21 FIA[k = 1]].
Let

Zkmt = 0p—1 (04 )" € (FIAIK — 1% psi—2) FIAIK —1])) _, -
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Then z;_; is a Moore cycle because

dizk—1 = djog_1(djo,_) ' =1
for j >0 in F[A[k — 1]] % pgk—21 F[A[k — 1]] and

doz—1 = doog—1(dooy_;) " =1
since dooj_1 = doal’(_l lies in the amalgamated subgroup F[S¥~2]. Let

Soo: ST — FIAlk = 1]] % pgi—2) FIA[k —1]]
be the representing map of z;_; and let
Freert FIS*™'1— F[A[k — 1] % prgr—2) FIA[k — 1]]

be the simplicial homomorphism induced by f, _,.

Lemma 5.2 Let ﬁ,{_ , be defined as above. Then:

) ]721{—1 is a simplicial monomorphism.

2) f;kf , Is a homotopy equivalence.

Proof (1) Observe that
F[A[k —1]) % ppgr—2) F[Ak —1]] = F[A[k —1]U A[k —1]]

is a simplicial free group, where A[k — 1] U A[k — 1] is the simplicial union by
identification dyoy_; with dool’c_l . Assertion (1) follows from the lines of the proof
of

(2) Since
Syt FIS* = QS* — FIAJk = 1] % ppse—2) FIAk — 1] ~ QS*

is a simplicial homomorphism, it is a loop map. Thus it suffices to show that f;k_l
induces an isomorphism

Feerw: Ty (FIS¥™) = 2 — mp_ (F[Alk — 1) % prsi—2) FIAk — 1])) = Z.
Note that:

k-1 (FALk = 1]l % prgr—2) FIATk — 1)) = mg—y (F[A[k — 11U Alk — 1]]**)
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Now the Moore chain complex of F[A[k —1]U A[k — 1]J*° is given by

Z(ok—1) ® Z(o}_,) ifg =k —1,
Ny FIAlk — 11U Alk = 1] = { Z(dooy—1 = doo,_,) ifg =k -2,
0 otherwise.

Thus 75— (F[A[k —1]U A[k —1]]*P) is generated by oj_; — 0;(_1 , which is the image
of zx_, in the Abelianization F[A[k — 1]U A[k — 1]]?°. It follows that

f;k—l*: nk—l(F[Sk_l]) - nk—l(F[Z[k - 1]] *F[Sk—z] F[Z[k — 1]])

is an isomorphism and hence the result. O

5.2 Description for w,(M(Z/q, k)) with k >3

With the preparation in the previous subsection, we can now construct a simplicial
group model for QM (Z/q, k) with k > 3. Let a € Z;_; F[S '] be a Moore cycle with

o # 1 and let &@ € Ny_, F[S'] be a Moore chain such that do@ # 1. From
together with isomorphism [(5-3)] there is a simplicial monomorphism

8g: FISK='1— T(S*; do@),
which is a homotopy equivalence. Let
Flq]: FIS*']— F[s*1
be the simplicial homomorphism such that
Flg](x) = x1

for x € S¥~1 C F[Sk~1]. Clearly FJ[q] is a simplicial monomorphism. Now define
the simplicial group 7 (M (Z/q, k); ) to be the free product with amalgamation:

F[S¥ 1] < b 0 Flg] - T(S*: do@)
P
AP, T(M(Z/q.k); &, o) = T(S*: do@) * prgi-1] AP

The construction of 8z o F[q] is explicitly given as follows:

Regard @ as in k—strand braid through the embedding ®: F[S']— APy. Let &’
be a copy of A for the second copy of APy in the free product with amalgamation.:

T(S¥: do) = APy * ppg—2 APy
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Let 0y, be the non-degenerate element in S ,i‘:ll Then
850 Flg]: FISK™'1 = T(Sk; do@)

is the unique simplicial homomorphism such that §(oj_,) = (@ (@)~ 1H)4. In
the language of braids, 85 o Flq)(F[S*~1]) is the subgroup of T(S¥; dy&@) =
APy * prgi—2) APy generated by the cablings of @@)™"Y1 in the self free
product with amalgamation of braid groups.

One interesting point in the simplicial group
T(M(Z/q, k), &, Ol) = (AP* *F[Sk—Z] AP*) *F[Sk—l] AP*
is that we identify the ¢™ power (@(a’)~!)? € AP, * psk—2] AP« with o € APx. So
the cablings of a have ¢ roots in T(M(Z/q,k);&, ).
Theorem 5.3 Let o € Z;_; F[S'] be a Moore cycle with « # 1 and let @ €
Ni_1 F[S'] be a Moore chain such that doa& # 1. Then the simplicial group
T(M(Z/q.k):a,a)

is homotopy equivalent to the loop space QM (Z/q, k) of the Moore space. Moreover
the canonical inclusion

T(8%:do@) — T(M(Z/q.k):@. )
is homotopic to the looping of the inclusion S* < M(Z/q. k).
Proof By [Theorem 3.2} the classifying space W (T (M (Z/q.k):&,)) is given by
the homotopy push-out

W (85 © Flq))

Sk -~ Sk ~ W (SK; do@)

W(T(M(Z/q,k):@&,a)).

Since
W (85 0 Flgls): mx(S*) 2 s (FIS¥T1)) — 7 (S%) = 71 (T(S*; do@))

is of degree ¢, W(T(M(Z/q.k);@, o)) ~ M(Z/q, k). Observe that the right column
of the above diagram is homotopic to the inclusion of the bottom cell S kes Mz /q,k).
The assertions follow. m
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Let A; j. A} ; and A} ; be copies of A;,; for generators for Py in the free product
with amalgamation

T(M(Z/q,k);a,a)p—1 = (Pn *FLSk—2],_, Py) *FLSk—11,_, Py
and let R; ; be the normal closure of Ai,j,A;.’j and A;.:j in T(M(Z/q,k); &, o)p—1.
Theorem 54 Let k > 3. Let a € Z;_, F[S!'] be a Moore cycle with o # 1 and

let & € Nj_1 F[S'] be a Moore chain such that dy&@ # 1. Then n,(M(Z/q.k)) is
isomorphic to the center of the group

((Py * FLSk—2],_, P,) *ELSk—11,_, Py)/[Rij|1<i<j=<n]s
for any n.
Proof Since T(M(Z/q,k);a@,a) is a simplicial quotient group of G * G x G, the
Moore boundaries

By 1 T(M(Z/q.k):& ) =[Rij | 1 =i <) =n]s

by Observe that the group (Pm * prsk—2y,, , Pn) * prsx—1y,,_, Pm has
trivial center by The assertion follows from [24, Proposition 2.14]. O

Remark 5.5 An explicit choice of o and & can be given. For instance, we can choose

appr =L 6T 6881686 E2E L ]
in [Theorem 2.2] as a k—strand Brunnian braid and choose
A =1 (65 EE b Ermi]
as a k—strand quasi-Brunnian braid in the sense of [7], ie, a braid which becomes trivial
after deleting any strand except possibly for the first strand. Here the &; are elements

of Py described in the introduction (see page 2). Then we obtain an explicit
simplicial group model 7T (M(Z/q, k); &k, ar41) for QM (Z/q, k). |
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6 Description of the homotopy groups of Moore spaces
M(Z/q,2) and proof of [Theorem 2.3

Let T(M(Z/q,2)) be the free product with amalgamation by the following diagram:

Flq]

F[S!]< -~ F[S1]
0

APy —— T(M(Z/q.2)) = APx * pis11 FIS']
By there is a homotopy push-out

S2 ~WF[S'] Llal=la] S2 ~WF[S"]
0]

W AP, ~ WT(M(Z/q.2))

and so WT(M(Z/q.2) ~ M(Z/q,2). Namely T(M(Z/q,2)) is a simplicial group
model for QM (Z/q,2).

For each n, the homomorphism
F[q]: F[Sl]n—l =Fyp1 — F[Sl]n—l = Fy—

is the homomorphism ¢, described in [Theorem 2.3\ Thus as a group
T(M(Z/q,2))n—1 = Pn*g, Fn-1.

We give an more explicit description of the group 7 (M(Z/q, 2)),—1 using degeneracy
operations. Let {x;};j—1,..n—1 be the set of generators for F,,_; = F[S'],_; as the
second factor in the free product Py, *y Fy—; for 1 < j <n—1. (Note: In the

introduction to Theorem 2.3} we write y; for x;.) As an element in F[S -1,
Xj =8p—2""Sj4+15j8j—-28j—-3°°°515001

for 1 <j <n—1. The group T(M(Z/q,2)),—1 is the quotient group of Py * F,_4
by the relation
Sj4+18j8j—28j—-3 " -S1S()A1’2 = qu
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for 1 < j <n-—1, where s;15jsj_25j_3---5150A1,2 is the cabling of A > as in the
picture in the introduction.

Let zy = X1, zZp = Xp—1 and z; = X;x;_ 1,forz =2,....,n—1. Now let R; =

(z;)Pr*eaFn=1 be the normal closure of z; in P, oy Fn 1 for 1 <i <n and let
Ry = (As; )P"*‘/’QF" ! be the normal closure of Ay,; in Py*y, Fy—y for 1 <s<t=n.
Define the index set Index(R;) = {j} for 1 < j <n and Index(Rs,) = {s,t} for
1 <5 <t < n. Now define the symmetric commutator subgroup

[Ri.Rs;|1<i<n1<s<t<nlg= I1 [...[C1.Cal,....CY]

{1,2,....n}= Lt_J Index(Cj)

j=1

where each C; = R; or R, for some i or (s,7).

Theorem 6.1 (Theorem 2.3) The homotopy group w,(M(Z/q,2)) is isomorphic to
the center of the group

(Pn*¢an—1)/[RiaRs,t|15i§n,1§s<t§n]5

forany n > 3.

Proof The proof is similar to that of It is easy to see that the group
T(M(Z/q,2))m = Pm+1 *¢, Fm has the trivial center for m > 2. From [24, Proposi-
tion 2.14], 7 (T (M(Z/q,2))) = my+1(M(Z/q,2)) is isomorphic to the center of
T(M(Z) 2)) m/BmT (M(Z/q,?2)) for m > 3. Thus the key point is to show the Moore
boundaries

By—1T(M(Z/q.2)) =[Ri,Rss |1 <i<n,1=<s5<t=n]s.

We construct a simplicial group F by Fn_l generated by the letters zq, ..., z,; with
face operation
Zk itk <j+1,
dek= 1 ifk=j+1,
Zp— ifk>j+1,

and degeneracy operations

Zk ifk<j+1,

SjZk = Y Zj+1Zj+2 ifk=j+1,

Zk+1 lfk > ] =+ 1
for 0 < j <n-—1. Then Fisa snnphclal group with a simplicial eplmorphlsm
f: F — F[S] by sending the letter z; of F,_1 to the element zj € F[S',—1. Let

Geometry & Topology, Volume 17 (2013)



Combinatorial group theory and the homotopy groups of finite complexes 269

g: G — AP be the canonical simplicial epimorphism. Then we have the simplicial
epimorphism:
G# F —» APy x F[S'] — T(M(Z/q,2))

Observe that Ker(d,: (G * F In — (G * F )n—1) is the normal closure of the elements
Xin+1,Zn+1. By repeating the arguments in the proof of we have
Buoi(G# F)=[Ri. Ryy | 1Si<n, 1 =s<t=nls

and hence the result. O

Example Consider the case n = 3. The group
G = (P3*¢, F2)/[Ri, Ry |1 =i =3,1 <5<t =3]s

is given by generators x1, X»,d12,d13,d>3 and the following relations:
X(II =d12a13, xZ = da13dz3,
x5, X532 x ] =[x{' 252l x2] =1, g1.82€G
[afz’ (113] = [a§25a23] = [afg,’ (123] =1, ge€ G
[x8.az3] =[(x1x3 )% a3l =[x5.apn] =1, g€G
Presenting a3, as3 via generators x1, X, d12, we get the following 3—generator pre-
sentation of G:

[[xigl’xgz]’xl]:[[xigl’xgz]’XZ]: 1’ gl’gZGG
—1 - —1 -
[af,. a7, xT] =[a5,. x Tanx]] = [(a; xD)E . x[Taixd]=1, g €G

¥ x Tanpxd] =[(xix3 )8 ap x{] = [x5 .ann] =1, g €G

Straightforward computations show that G is a 3—generator nilpotent group of class 2,
given by generators x1, X3, a1, and relations:

[a12. x2]=la12. X =[x xI|=[x1,apox]=[x1x5 L ay xT]=1, [[G.G].G]=1

It follows that the order of the element [xi,x,] is (2¢,¢%) in G. The center of
G is bigger than the subgroup generated by [x1, x;], since a?z lies in the center.
Denote Z; = (alz,xl)G, Zy = (alz,xlxz_l)G, Z3 = (xz)G. The homotopy group
w3M(Z /q,2) is given now as the intersection

ZiNZyNZy=7/(2q.9%).
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