
msp
Geometry & Topology 17 (2013) 413–467

On knot Floer homology
in double branched covers

LAWRENCE P ROBERTS

We define a link surgery spectral sequence for each knot Floer homology group for a
knot, K , in a three manifold, Y . When K arises as the double cover of an unknot in
S3 , and Y is the double cover of S3 branched over a link, we relate the E2 –page to
a version of Khovanov homology for links in an annulus defined by Asaeda, Przytycki
and Sikora. Finally we examine the specific cases when the branch locus is a braid,
and when it is alternating.

57M27; 57R58

1 Introduction

Let AD fz j 1< jzj< 2g �R2 , and let L be a link in A� Œ0; 1��R2 �R. We will
depict L through its projection into A along the second R–factor. The complement of
L in A� I is identified with the complement of B [L in S3 where B is an unknot
as depicted below, called the axis of L. We will assume throughout that L intersects
the spanning disc of B in an odd number of points. For example:

B
L

Let †.L/ be the double cover of S3 branched over L, and let zB be the pre-image of
B in †.L/. Then zB is a null-homologous knot in †.L/ so we can try to compute its
knot Floer homology groups (Ozsváth and Szabó [11])

1HFK .†.L/; zB; i/D
M

fsjhc1.s/;ŒF �iD2ig

1HFK .†.L/; zB; s/
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where s is a relative Spinc structure for zB and ŒF � is the homology class of a pre-image
of a spanning disc for B . A particularly interesting case occurs when L is a braid in
A� Œ0; 1�Š S1 �D2 . Then, the pre-image of the open book of discs with binding B

is an open book with binding zB .

To state our first theorem, we must adjust L by adding two copies of the center of
A that are split from the remainder of L, and call this new annular link L0 . Then
†.L0/Š†.L/#2 S1�S2 and zB0 is the knot zB #B.0; 0/ where B.0; 0/ is the knot in
#2 S1�S2 defined by a component of the Borromean rings after performing 0–surgery
on the other two components. The connect sums alter the Heegaard Floer homologies
in a defined manner, so we can recover the homologies for .†.L/; zB/ from those of
.†.L0/; zB0/. We can now state:

Theorem 1.1 Let L be a link in A� I � R2 �R as above. Let L0 be the adjusted
version of L. There is a spectral sequence whose E2 –term is isomorphic to the reduced
Khovanov skein homology of the mirror, L

0
, in A� I with coefficients in F2 , and

which converges to:L
i2Z

1HFK .†.L/ #2 .S1 �S2/; zB # B.0; 0/; i;F2/

In [13], P Ozsváth and Z Szabó constructed a spectral sequence that converged to
bHF .Y / for Y a double branched cover of a link in S3 . This spectral sequence featured
the reduced Khovanov homology of the mirror of the link as the E2 –term. The previous
theorem is a generalization of the results in [13].

In the first half of this paper, we review the skein homology, first constructed by Asaeda,
Przytycki and Sikora in [1], and examine its relationship to Khovanov homology. We
then describe a spanning tree approach to computing the skein homology theory. Using
the spanning tree approach, we analyze those L that admit an alternating projection
into A. In Section 9, we prove the second main result of this paper:

Theorem 1.2 Let L be a non-split alternating link in A� I intersecting the spanning
disc for B in an odd number of points. Then for each k there is an isomorphism

1HFK .�†.L/ #2
�
S1
�S2

�
; zB # B.0; 0/; k/Š

M
i;j2Z

H iIj ;2k.L/

where, for each Spinc structure, the elements on the right side all have the same absolute
Z=2Z–grading. Together these isomorphisms induce a filtered quasi-isomorphism
from the E2 –page of the knot Floer homology spectral sequence to that of the skein

Geometry & Topology, Volume 17 (2013)



On knot Floer homology in double branched covers 415

homology spectral sequence. Thus the knot Floer spectral sequence collapses after two
steps. Furthermore, for any s 2 Spinc.†.L// we have that

�. zB; s/D 0

where zB is considered to be in †.L/.

Here �.K/ is an invariant for a knot derived from knot Floer homology, which is a
concordance invariant for K � S3 . In a sequel to this paper [16], we reprove the above
theorem for Z–coefficients and use it to analyze a class of fibered knots in certain three
manifolds.

In the remainder of the paper, we describe the aforementioned spectral sequence
and derive several of its consequences. In particular, we apply it to a question of O
Plamenevskaya. In [15], O Plamenevskaya constructed a special element, z .L/, in
the Khovanov homology of a braid closure and showed that it is an invariant of the
transverse isotopy class of the braid. She suggested that for certain knots, should this
element survive in the spectral sequence from the Khovanov homology to bHF .†.L//,
it would yield the Heegaard Floer contact invariant (Ozsváth and Szabó [12]) of the
contact structure lifted from S3 to the double branched cover branched over the
transverse knot. Plamenevskaya’s element appears naturally as a closed element in
the skein homology, which provides it with a compelling interpretation. From these
considerations we can supply some conditions guaranteeing that the contact invariant
is trivial. This is explained in Section 8.

Acknowledgments The author would like to thank John Baldwin and Olga Plamenev-
skaya for some very useful correspondence. The author was supported in part by NSF
grant DMS-0353717 (RTG) while at Michigan State University. He would also like to
thank the referee for the great deal of patience shown in reviewing this paper.

2 The reduced Khovanov skein homology of [1]

Throughout we will assume all coefficients are in F2 . This section gives a brief
description of a reduced form of the theory in [1] for categorifying the Kauffman
bracket skein module for the I –bundle A� I and its relationship with the reduced
Khovanov homology. We adjust the account in [1] to conform to that of Bar-Natan
[3]. This alters the gradings from [1] to more directly related to Khovanov’s original
definition.

Let DL be a projection of L into A. Pick an ordering 1; : : : ; c.DL/ for the crossings
in DL . Let R be an element of f0; 1gc.DL/ , then associate to R a collection of disjoint,
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simple, unoriented circles in A by resolving the crossings of P according to:

0
�!

1
�!

We denote the resulting diagram by DL.R/. Let I.R/ be

I.R/D
X

mi where RD .m1; : : : ;mc.DL//:

Finally, call an unoriented circle resulting from the resolution trivial if it bounds a disc
in A, and non-trivial if it does not.

An enhanced Kauffman state is a choice, R, of a resolution and a choice of symbol
fC;�g for each of the resulting circles. As usual in Khovanov homology, the enhanced
states will be the generators of the chain groups. We define two bi-graded modules
V Š FvC˚Fv� and W Š FwC˚Fw� where deg.vC/D .1; 1/, deg.wC/D .1; 0/
and deg.v�/ D �deg.vC/, deg.w�/ D �deg.wC/. If DL.R/ has m trivial circles
and l non-trivial circles we associate to R the bi-graded module:

VR.DL/D V ˝l
˝W ˝m

f.I.R/; 0/g

We will refer to the first grading in the ordered pair as the q–grading and the second as
the f –grading.

The r th chain group, Cr , is then
L
fRjI.R/Drg VR.DL/. These will form the compo-

nents of a complex, C , and the Khovanov skein complex will be CŒ�n��f.nC�2n�; 0/g

for some orientation on the link L. The shift in Œ � � occurs in the dimension of the
chain groups, whereas the shift .j ; k/ occurs in the bimodule gradings. This last set
of shifts1 will be called the final shifts. We will often only be interested in relative
gradings, and so will sometimes ignore the final shifts. The complex before the final
shifts will be called unshifted.

We now define the differential in the complex. We specify what happens to the enhanced
Kauffman states when two circles merge when we change the resolution code at some
crossing from 0 to 1 and what happens when a single circle divides in such a resolution.
All symbols on circles unaffected by the change in resolution are likewise unaffected.

1We follow Bar-Natan’s conventions on shifting.
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This suffices to specify the differential as in [3]. The relevant maps for merging are:

wC˝wC! wC vC˝ vC! 0

wC˝w�; w�˝wC! w� vC˝ v�; v�˝ vC! w�

w�˝w�! 0 v�˝ v�! 0

v˙˝w�; w�˝ v˙! 0

wC˝ v˙; v˙˝wC! v˙

The relevant maps for dividing are

w�! w�˝w� vC! vC˝w� v�! v�˝w�

wC! w�˝wCCwC˝w� wC! vC˝ v�C v�˝ vC

where the rule to apply to w˙ is determined by the topological type of the circles in the
result (two trivial or two non-trivial circles). For any case not listed, the map is trivial.
In particular, w�! 0 under division when the result of the division is two non-trivial
circles. We provide a slight variation on the main result of Asaeda, Przytycki and
Sikora in [1], applied to A.

Theorem 2.1 [1] The tri-graded homology, H�I��.L/, of the complex

CŒ�n��f.nC� 2n�; 0/g

with the differential defined above is an invariant of the oriented link L in A� Œ0; 1�.

Proof Let S.DL/ be the set of enhanced states and define for S 2 S.DL/ the
following statistics:

�.S/D #fpositive trivial circlesg� #fnegative trivial circlesg

‰.S/D #fpositive non-trivial circlesg� #fnegative non-trivial circlesg

J.S/D I.S/C �.S/C‰.S/

Let SiIjk.DL/ be the subset of S.DL/ with I.S/ D i , J.S/ D j , and ‰.S/ D k .
Define C iIjk.DL/ to be the free Abelian group generated by SiIjk.DL/. It is shown
in [1] that the maps above preserve the j and k values of an enhanced state, and
increase i by 1. In addition, they define a differential on

L
i2Z C iIjk.DL/ with j

and k fixed (actually, this is proved with J 0.S/D I.S/C2 �.S/, but as the differential
does not change k , the proof applies here as well). The homology in [1] is invariant
under the Reidemeister II and III moves. However, in an annulus and with the shifts
from a choice of orientation on the link, the theory we have outlined is also invariant
under the Reidemeister I move. As with translation from Viro’s notation to Bar-Natan’s,
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the shifts at the end are also necessary to pin down an invariant grading for the second
Reidemeister move, but the relative graded theory is invariant regardless.

Definition 2.2 The grading on C �I�� provided by I.S/ will be called the homological
grading; that induced by J.S/ will be called the quantum grading, and that provided
by ‰.S/ will be called the Alexander grading (this name anticipates later sections).

Let B.A/Š f0; 1; : : : ; g be the set of all link diagrams in A with no crossings or trivial
components, identified with the number of non-trivial components. Using the rules

D C tq L[
 D .qC q�1/L

we can associate an element of ZŒq˙1; t;B.A/� to any diagram of L, denoted ŒL�.
If we map the monoid B.A/ to ZŒq˙1;x˙1� by 1! qx C q�1x�1 we get a map
�W ZŒq˙1; t;B.A/�! ZŒq˙1; t;x˙1�. After orienting L, let

V .t; q;x/D tn�qnC�2n��.L/;

where n˙ denotes the number of positive and negative crossings. V .t; q;x/ equalsP
k2Z qk;Lxk where:

qk;L D
X
i;j

t iqj rkF
�
H iIjk.L/

�
The Euler characteristic for the skein homology is then V .�1; q;x/ and is an isotopy
invariant of L in A� I . On the other hand V .�1; q; 1/ is the Jones polynomial as
described by Khovanov (see also [3]).

There is also a reduced version of this theory. We mark the circle in DL that is closest
to the center, at the point intersecting the spanning disc for B . Every diagram DL.R/

inherits this marking. Note that the marked circle in the resolved diagrams may be
either trivial or non-trivial. The reduced homology is then defined to be the homology
of the sub-complex generated by those enhanced states with a � sign on the marked
circle. In the reduced theory, we will omit the grading contributions from the v� or
w� on the marked circle. The reduced chain groups are denoted by zV .DL/ and the
overall homology by zH iIjk .

Lemma 2.3 For each j , there is a spectral sequence whose E1 –term isM
i;k

H iIjk.L/

and that converges to
L

i Khi;j .L/, where Khi;j .L/ is the usual Khovanov homology
for the embedding L! A� Œ0; 1�! S3 . This statement also applies to the reduced
theory.
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Proof The entire construction has been performed so that by ignoring the distinction
between trivial and non-trivial circles we obtain the Khovanov chain groups, ie, if we
use L!A� Œ0; 1�!R2 � Œ0; 1� as an embedding of L in S3 and ignore the axis. In
this case we neglect the Alexander grading and treat v˙ and w˙ the same. The maps
defining the differential above are almost those for the Khovanov homology, with the
exception of a few terms which have been dropped. These terms are boxed below:

vC! vC˝w�C v�˝wC vC˝ vC! wC

vC˝w�; w�˝ vC! v� w�! v�˝ v�

Each of these terms preserves the quantum grading and increases the homological
grading by 1, but decreases the Alexander grading by 2. Thus, the axis can be
seen as filtering the Khovanov homology with the Alexander grading providing the
filtration index, and with the E1 –term of the corresponding spectral sequence being
the Khovanov skein homology. Since the maps in the spectral sequence also preserve
the sub-complex used for the reduced theory, this conclusion applies to the reduced
homology as well.

Lemma 2.4 Let L be the mirror of L. Then there is an isomorphism

H iIjk.L/ŠH�iI�j ;�k.L/

where HiIjk is the corresponding cohomology group. Over a field F , the last group is
also isomorphic to

H
�iI�j ;�k
F .L/:

Furthermore, the spectral sequence converging to Khovanov homology on H�I��.L/ is
filtered-chain-isomorphic to that induced on the cohomology groups H�I��.L/, and,
over a field, to that on H�I��.L/ through the isomorphisms above.

Proof Each state for a projection of L defines a state for the projection of L found by
reflecting all the crossings. We map a state S for L to the state for L with the same
collection of circles but with the opposite sign assigned to each circle. The 0–resolved
crossings of L used in S are then 1–resolved in for the state for L, and vice-versa for
the 1–resolved crossings in S . Thus, the gradings for S are mapped i ! c.L/� i ,
j ! c.L/� j , and k !�k in the unshifted theories for each link. Examining the
differential between two states shows that the differential for L is the differential for
the cohomology of L. Furthermore, after the final shifts we have

.i; j ; k/! .i � n�; j C nC� 2n�; k/ for L
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and .c� i; c�j ;�k/! .c� i �nC; c�j Cn��2nC;�k/, where n� and nC refer
to L. This last triple equals .�.i � n�/;�.j C nC� 2n�/;�k/. For coefficients in a
field, standard homological algebra implies that:

H F
iIjk.L/ŠH

iIjk
F .L/

A similar examination of the terms giving rise to the spectral sequence shows that these
map to the terms in the spectral sequence on the cohomology.

Since the Alexander grading filters the Khovanov complex, we can define for any
element � 2Khi;j .L/ a number:

TL.�/Dmin
˚
kW � 2 Im

�
H�
�L

l�kC iIjl
�
!Khi;j .L/

�	
If L defines an unknot when embedded in S3 , these numbers satisfy a relation similar
to one satisfied by the � –invariant in knot Floer homology (Ozsváth and Szabó [10]),
and with an almost identical proof.

Lemma 2.5 Assume L, considered in S3 , is an unknot and let L be its mirror image.
Let u˙ be the generators of the Khovanov homology of the unknot in q–gradings ˙1,
respectively. Then:

TL.u˙1/D�TL.u�1/

Proof Let Fj Is D
L

iIk�s C iIjk.L/ and let Cj D
L

i;k C iIjk.L/. Since the differ-
ential preserves the q–grading, j , there is a short exact sequence:

0 �! Fj Is
Is
�! Cj

Ps
�!Qj Is �! 0

where Qj Is is the quotient complex, Cj=Fj Is . Now
L

j H�.Cj /D ZuC˚Zu� , and
TL measures the first s for which the map, Is� , in the corresponding homology long
exact sequence, includes u˙ in its image, relative to the q–grading.

There is a duality isomorphism DW H iIj .U /! H�iI�j .U /, D.u˙/ D u� , on the
Khovanov homologies which is induced by the symmetric pairing

aC˝ a�
m
�! a�

�
�! 1

where �W A!Z is the counit for the Frobenius algebra underlying Khovanov homology.
In particular, aC!haC; �i D a�� . This can be extended to V as well, and corresponds
to changing the markers on each of the circles in an enhanced state. It thus induces a
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map on the skein homology spectral sequences. Checking the effect on the differential
establishes the following commutative square:

0

0

Q�
�1I�s�1

.U / C �
�1
.U /

FC1;s.U / C1.U /

F�
�1;�s�1

.U /

QC1Is.U /

0

0

.................................................. ............

......................................................................... ............

............................................................................................... ............
P�
�s�1

................................................................................................................................ ............
Is

............................................................................................................
.....
.......
.....

D

............................................................................................................
.....
.......
.....

D

.................................................................................................. ............
I�
�s�1

................................................................................................................................ ............
Ps

............................................................................................................
.....
.......
.....

D

......................................................................... ............

..................................................... ............

If uC is in the image of Is;� , then u�� is in the image of P�
�s�1

. In particular,
I�
�s�1

.u��/ D 0. But then there is no element in F�1;�s�1 that maps to u� and so
�s � 1 < TL.u�/. One such choice of s is s D TL.uC/, from which we conclude
that �TL.uC/� TL.u�/. If uC is not in the image of Is;�—ie, s < TL.uC/—then
I�
�s�1

.u��/ ¤ 0. Choose some element on which this image pairs non-trivially and
is uniformly in q–grading �1. This element must then map in homology to u� and
�s�1�TL.u�/ for all such s . In particular, we may take sDTL.uC/�1 and conclude
that �TL.uC/ � TL.u�/. These two inequalities imply that �TL.uC/ D TL.u�/.
The same argument with j D�1 handles the other case.

Let L1 and L2 be two links in A� Œ0; 1�. Let L D L1jL2 be the link in A� Œ0; 1�

where AD fz W 1 � jzj � 3g and L1 lies in A1 D fz W 1 � jzj � 2g � Œ0; 1� while L2

lies in A2 D fz W 2� jzj � 3g � Œ0; 1�. Then we can prove:

Lemma 2.6 With coefficients in a field, F , there is an isomorphism:

H iIjk.L/Š
M

i1Ci2Di
j1Cj2Dj
k1Ck2Dk

H i1Ij1k1.L1/˝H i2Ij2k2.L2/

Furthermore, if �1 2Khi1Ij1.L1/ and �2 2Khi1Ij1.L1/ then:

TL.�1˝ �2/D TL1
.�1/CTL2

.�2/

Proof The states SiIjk.L1jL2/ decompose according to their projections into A1

and A2 . Consequently, the chain group for the projection of L is a tensor product of
chain groups, and the various indices add but are otherwise independent. This applies
also to the differential, where the terms in the differential decompose into a sum of
those induced by resolution changed in A1 and those induced by resolution changes
in A2 . Consequently, the complexes are tensor product complexes whose homology,
over a field, is as described by the Künneth formula above. The last statement follows
by noting that the same conclusions apply to the original Khovanov homology in this
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setting. Thus, to have �1˝ �2 arising in a filtration level for the first time requires that
each factor also arises in some corresponding summand Fs1

.L1/˝Fs2
.L2/.

Finally, if there is a non-trivial component, L1 , split from the rest of L, it can be made
to lie in the diagram without crossing any other strand of L. L1 survives unchanged
in every resolution; thus, marking it induces a marking on a non-trivial circle for every
resolution. When the number of intersections of L with the spanning disc for B is odd,
then the reduced skein homology of this configuration has the form zH .L�L1/˝V .
This choice shifts the complex by f.�1;�1/g, so we will always shift at the end to
compensate. Thus, the final shift will be Œ�n��f.nC� 2n�C 1;C1/g for this marking
convention. For the mirror of L, the isomorphisms above will then map this marking
to a C; however, as the component does not interact with the rest of the diagram we
can change it to a � with the only change being how we perform the final shifts.

3 Spanning tree complex

As with Khovanov homology, the skein homology for links in A� I with connected
projections admits another presentation in terms of the spanning trees for the knot
diagram. We follow S Wehrli’s argument [19] for Khovanov homology in establishing
this result, but see also Champanerkar and Kofman [4] for an alternate approach.

Informally, Wehrli tells us to take a diagram DL and enumerates its crossings CL D

fc1; : : : ; cng. We then proceed to resolve the crossings in order, in both possible ways,
skipping those crossings for which one or other resolution results in a disconnected
diagram, but resolving in both ways those for which both the resolutions are connected.
These are grouped into a tree by the different choices of resolution at each of the
crossings. For an example see [19].

More formally, Wehrli’s algorithm results in a rooted binary tree of diagrams resulting
from resolving a subset of the crossings of L. We now give a precise description of
this tree. To describe a binary, rooted tree we specify the value at the root, r , of the
tree and then two rooted sub-trees: the L–tree and R–tree, whose roots are joined to
r by its two edges. To do this for DL we start with the projection, D , of some link,
sitting in A, equipped with an ordering subset of its crossings, C Dfci1

; : : : ; cim
g with

i1 < i2 < � � � < im . We assume that D is connected as a 4–valent graph. From this
data Wehrli’s algorithm produces a rooted, binary tree, T .D;C /. The root of T .D;C /

is the diagram D . We then find the first crossing cik
2 C for which both resolutions

of D , D0.cik
/ and D1.cik

/, are connected as 4–valent graphs. The L–tree is the
tree T .D0.cik

/; fcikC1
; : : : ; cin

g/, while the R–tree is T .D1.cik
/; fcikC1

; : : : ; cin
g/.
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When there is no cik
for which both resolutions are connected (as 4–valent graphs),

then the tree consists solely of the root D . Take note that we drop from the data all
those crossings where one or other resolution is disconnected. We then recursively
apply this recipe to the new data. Since C is finite, T .D;C / will be a finite tree.

As with any rooted binary tree, the leaves of T .D;C / are well-ordered. Each leaf
corresponds to a sequence of L’s and R’s that describe the path from the root to that
leaf. The leaves are ordered by using the lexicographic ordering on these sequences
induced by asserting L<R.

Definition 3.1 The resolution tree of DL is the tree T .DL;CL/ where CL is all the
crossings in the diagram DL .

Following [19], we can describe some properties of the leaves of T .DL;CL/. They
are diagrams D that arise from resolving some of the crossings of DL and which
satisfy the following:

(1) The diagram D is connected, ie, the underlying 4–valent graph in A is a
connected graph.

(2) For any crossing c in D one of the resolved diagrams D0.c/ or D1.c/ is
disconnected.

It is shown in Appendix B that these diagrams correspond to unknots, and the diagram
can be simplified in R2 to a standard unknot diagram using only the first Reidemeis-
ter move (this is implicit in [19], but we will need the slight generalization that is
proven in the appendix). We will call these twisted unknots. Furthermore, due to
the connectedness properties, for each leaf diagram there is a unique way to smooth
each of the remaining crossings to get an unknot embedded in the plane. In addition,
given a smoothing, S , of all the crossings in DL , which produces a single circle,
there is a unique leaf DS in T .DL;CL/ which smooths to it: namely, start at the root
DL and look at how S smooths the crossing used to form the L and R–trees, then
follow the branch corresponding to the resolution in S . We repeat this process at each
node of the tree until we come to a leaf. Following [19], let K1.DL/ be the set of
those smoothings of all the crossings of DL with only one component, then S $DS

is a one-to-one correspondence between the elements of K1.DL/ and the leaves of
T .DL;CL/. Finally, let r.D;D0/ be the number of 1–resolutions required to smooth
crossings in a diagram D to obtain the diagram D0 . For instance r.DL;S/ is the
number required to smooth all the crossings of DL to obtain S 2K1 and r.DL;DS /

is the number required to smooth to the leaf DS , that is, the number of R–branches
used in the binary tree.
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Note Below the twisted unknot DS will be assumed to have an orientation, chosen
arbitrarily, so that the final shifts for the skein homology are defined.

When considered in A, the diagram DS may not be able to be simplified to a standard
unknot diagram, due to the unavailability of RI–moves which cross outside the annulus
(ie, the twisted unknot’s linking with B prevents some RI–moves). However, we may
use the first Reidemeister move alone to simplify DS to D0

S
, a special twisted unknot,

where all the remaining twisting links with B (see Appendix B). D0
S

is a diagram
easily reducible to one of the special form in Figure 1, where each ni records the
number of half twists in each twisting region, using only RII–moves to remove opposite
crossings in the horizontal twist regions. We can thus reduce to the special twisted
diagrams in Figure 1. The homologies of these knots will form the building blocks of
the spanning tree complex for the Khovanov skein homology. Finally, note that since
we require the number of intersections with the spanning disc to be odd, the diagram
D0

S
must be non-trivial, and thus link B .

˙nk

�nk�1

�n2

n1

Figure 1: The special class of unknots that act as the base cases for the
spanning tree complex

In simplifying from DS to D0
S

, we employ the first Reidemeister move. The unshifted
skein complexes behave in the following way under an RI–move that does not escape A:

C. /Š C. /f.�1; 0/g˚B1 C. /Š C. /Œ1�f.2; 0/g˚B2
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where B1 and B2 are contractible. It does not matter whether the RI–move involves
trivial or non-trivial components in the complete smoothings. The shifts can be com-
puted from the invariance of the theory after the final shifts are performed. For the first
RI–move above, the left side would need to be shifted Œ0�f.1; 0/g further than the right
side, due to the extra positive crossing. Thus the right side should be shifted Œ0�f.�1; 0/g

to correspond to the left side in the unshifted complex. A similar argument applies
to the second RI–move depicted. In addition, if D0 is obtained from D by using an
RII–move to remove two crossings, then

SC �I��.D/Š SC �I��.D0/Œ1�f.1; 0/g

since one positive and one negative crossing have been removed.

With this observation we may proceed analogously to [19] to obtain the following
proposition:

Lemma 3.2 (cf [19]) Let L�A�I have a connected diagram, D , in A. Then there
is a decomposition SC ŠA˚B where SC is the unshifted version of the skein complex,
B is contractible and A is given byM

S2K1.D/

H�I��.DS /Œ�w.DS /�f.�2w.DS /; 0/gŒr.D;S/�f.r.D;S/; 0/g

where w.Ds/ is the writhe of Ds , and r.D;S/ is the number of 1–smoothings neces-
sary in resolving the diagram for L to get the complete resolution S .

Proof (cf [19]) For any crossing c , the unshifted chain complex SC �Ij�.D/ is iso-
morphic to a mapping cone MC.SC �Ij�.D0/! SC

�Ij�.D1/Œ1�f.1; 0/g/. Applying this
to the crossings used to build the resolution tree constructs a filtered complex out of
iterated mapping cones, filtered by the L;R–binary structure: ie, those leaves which
have an L earlier in the resolution process occur higher in the filtration. We will call
this the tree filtration. At this stage, the skein homology complexes have the structure ofM

S2K1.D/

SC �I��.DS /Œr.D;DS /�f.r.D;DS /; 0/g

where DS is one of the leaf diagrams in the resolution tree. Suppose we have to
perform nII RII, nI;C positive RI–moves, and nI;� negative RI–moves to get to one
of the diagrams in Figure 1.

We now use the formulas for RI and RII moves noted above:

SC �I��.DS /

Š SC �I��.D0S /Œn�.DS ;D
0
S /C nII �f..�nCC 2n�/.DS ;D

0
S /C nII ; 0/g˚BS
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where BS is contractible and n˙.DS ;D
0
S
/ is the number of positive/negative crossings

in DS lost in simplifying to D0
S

. The final shifts show that:

SC �I��.D0S /Š C �I��.D0S /Œn�.D
0
S /�f..�nCC 2n�/.D

0
S /; 0/g

Over Z=2Z, the mapping cones will “commute” with direct sums with contractible
complexes (see [19]), so the tree filtered chain complex contracts to a complex with
underlying groupsM

S2K1.D/

C �I��.D0S /Œn�.DS /�f..�nCC 2n�/.DS /; 0/gŒr.D;DS /�f.r.D;DS /; 0/g

where we compose the shifting and use that each negative crossing in DS is either
removed by an RI–move, an RII–move, or is included in the final shifts for D0

S
and

likewise for positive crossings. However, r.D;DS /D r.D;S/� nC.DS /, since in
order to get a connected complete resolution we must resolve through the crossings,
which gives a 1 for the positive twists and a 0–resolution for the negative twists. So
r.D;DS /C n�.DS / D r.D;S/�w.DS / and r.D;DS /� nCC 2n� D r.D;S/�

2w.DS /, which correspond to the shifts in the statement of the lemma. Taking the
E0 –page for the tree filtration yields a chain complex with underlying chain groupsM

S2K1.D/

H�I��.D0S /Œ�w.DS /�f.�2w.DS /; 0/gŒr.D;S/�f.r.D;S/; 0/g

Of course, after the final shifts, the homology H�I��.DS /ŠH�I��.D0
S
/ since these

two represent links in A� I which are isotopic. Note that this also applies if we think
of the k –gradings as a filtration on the reduced Khovanov complex; we then have a
bifiltered complex since the contractions do not change the k –grading.

We can say a little more concerning the unknots in Figure 1. Since these are unknots,
their Khovanov homologies are composed of FuC in homological and q–grading
.0; 1/ and Fu� in .0;�1/. We compute the numbers, TL.u˙1/, for these unknots.

Proposition 3.3 For the special twisted unknots with diagrams DL in Figure 1, let
T˙ be the number of left/right-handed twist regions in Figure 1, and let T .DL/ denote
T��TC . Then:

TL.u˙1/D T .DL/˙ 1

For the alternating unknots in this family, TL.u˙1/D˙1.

Proof These unknots are isotopic to the standard planar unknot using only RI–moves.
M Jacobsson provides rules for mapping closed elements in the Khovanov cube of a
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�
� �

2

C
� C

�

C �

C
C C

2

� C �

Figure 2: Rules for transferring generators when an RI move is applied: The
particular twist is represented on the far right. Note that these maps are chain
maps inducing isomorphisms on the Khovanov homologies [7].

link to those of the link with a single RI–move, which in our notation are as in Figure 2,
which induce isomorphisms on the Khovanov homology. We can use these moves to
try to compute TL.u˙1/. As a first step, we exhibit a specific generator which will
produce u˙1 in homology. The maximal value of k needed to obtain this generator inL

l�k C iIjk will then be an upper bound on TL.u˙1/.

We will proceed by induction. If L has a diagram, DL , in A given by a single
embedded core circle, then the theorem is true, since T˙ D 0. Assume that DL is
a diagram as in Figure 1 and that TL.u˙/ D T .DL/˙ 1 as in the conclusion of
the proposition. We will use the moves in Figure 2 to show that the conclusion of
the theorem is also true if we add a new twisted band in the innermost region of L,
whose final loop goes around the core of the annulus; see Figure 3. Since L has
TL.u˙/D T .L/˙ 1, there are linear combinations of generators for u˙ in filtration
levels � T .L/˙ 1 with some element in filtration level T .L/˙ 1 that are closed and
generate u˙ in the Khovanov homology. Consider the enhanced Kauffman states for
the generators in these linear combinations. The arc which will be twisted to form the
band lies on a circle in one of these states. This circle can be decorated with either a C
or a �, and the twisting can either be right-handed or left-handed. We consider each
of these cases.

Right-handed twisting For right-handed twisted bands we use the lower pair of rules
in Figure 2. Given a (simplified) linear combination of enhanced Kauffman states
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Figure 3: The new twisted band will occur in the direction of the small red
arrow on the left. It will appear as in the right with some twisting. The dashed
line indicates where the unknot defining the annulus would go. We will twist
as if the diagram does not sit in an annulus, and then place the annulus in
after we have finished the twisting.


 in the Khovanov complex for DL , we divide 
 D 
CC 
� into those state with
˙ decorations on the innermost non-trivial circle. Let P be the map given by the
following rules: For each state we add a circle with a C. Thus P .
˙/D 
˙˝ cC

where we have extended linearly. For each twist, we apply P until the last, where
the circle will be non-trivial. Thus we obtain for the image of 
 a linear combination

 ˝ cC

1
˝ � � � ˝ cC

n��1
˝ dC , where d represents a non-trivial circle. Since the last

twist produces a non-trivial circle in A, its decoration alters the Alexander grading by
adding 1. In other words, if the enhanced Kauffman state for DL was in Alexander
grading k , then that obtained from our rules for DL0 will be in Alexander grading
kC1. Applying this to the summands of 
 produces a linear combination representing
u˙ for D0L with highest Alexander grading terms in T .DL/˙ 1C 1. As we have
added a new right-handed twist region, we can conclude that T .L0/D T .L/C 1, and
hence that TL0.u˙/� T .L0/˙ 1. Note that no cancellation occurs in the new linear
combination since the decorations on the circles in 
 are unaltered. If there was no
cancellation in 
 , there will be none in Pk.
 /.

Left-handed twisting For left-handed twisted bands, we look at the two cases where
we are extending a .C/–marker or a .�/–marker. For a .�/–marker, the same argument
applies as in the right handed twisting case, Pk

�.
 /D 
 ˝ c�˝ � � �˝ d� , except the
top diagram shows that each new circle will receive a .�/–marker. Thus, the last
core circle in the new enhanced Kauffman states will receive a .�/–marker and the
new states in our linear combination will occur in Alexander grading decreased by 1.
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However, for a .C/–marker the story is more complicated:

Pk
C.xC/D x�˝Pk�1

C .cC/Cx˝Pk�1
� .c�/D x�˝Pk�1

C .cC/CxC˝c�1 ˝� � �˝d�

where we use x˙ to represent the state with decoration ˙ on the innermost non-trivial
circle. Expanding the PC operator requires a linear combination, but we will obtain:

Pk
C.xC/D x�˝c�1 ˝ � � �˝c�i ˝ � � �˝dC

C

k�1X
iD1

x�˝c�1 ˝ � � �˝cCi ˝ � � �˝d�C xC˝c�1 ˝ � � �˝d�

If xC is in Alexander grading k , then the first and last term are in grading k � 1,
whereas the middle sum consists of terms in grading k � 2. When we apply this to

 D 
� , we shift every term from Alexander grading k to Alexander grading k � 1.
Since there is some term with grading T .DL/˙ 1 we obtain some term in Pk.
 /

with grading T .DL/˙ 1� 1D T .DL0/˙ 1. If 
C ¤ 0, then there is the possibility
of some cancellation: however, the first terms of Pk applied to each summand in

C has a C on d and thus can’t cancel with any other term in the sums above or
from 
� . If the term in 
 in Alexander grading T .DL/˙ 1 occurs only in 
� then
all the terms in Pk.
C/ occur in Alexander grading < T .DL/˙ 1� 1, whereas if
there is a term in 
C in Alexander grading T .DL/˙ 1 we have constructed a non-
canceling term in Pk.
C/ in grading T .DL/˙ 1� 1. In either case, Pk.
 / when
simplified has summands in Alexander grading T .DL/˙ 1� 1 D T .DL0/˙ 1 and
lower. Consequently, all the terms in a closed linear combination of generators for DL0

representing u˙ in the homology occur in Alexander gradings T .DL0/˙1. Therefore,
TL0.u˙/� T .DL0/˙ 1.

In every case TL0.u˙1/ � T�.DL0/ � TC.DL0/˙ 1. However, the argument also
applies to L0 and we know that TL0.u�1/D�TL0.u˙1/. In the mirror image there are
TC.DL0/ left-handed regions and T�.DL0/ right-handed regions. Hence, TL0.u�1/�

TC.DL0/�T�.DL0/� 1. Replacing the left side with �TL.u˙1/ gives TL.u˙1/�

T�.DL0/ � TC.DL0/˙ 1, and the result follows. The final statement is simply a
reflection of the even number of twist regions, alternating between handedness, when
there are an odd number of strands.

4 Results for the skein homology of alternating links

The goal of this section is to use the spanning tree presentation of the skein homology
to prove the following theorem:
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Theorem 4.1 Let L be an alternating link in A� I intersecting the spanning disc for
B in an odd number of points. Then the Khovanov skein homology H iIjk.L/ is trivial
unless k�jC2i D �.L/. Thus the homology is determined by the Euler characteristic
V .�1; q;x/D .�1/n�qnC�2n��.ŒL�/, defined in Section 1, and the signature of the
oriented link �.L/, thought of as embedded in S3 .

We will follow [19] in calculating the Khovanov-type homology of an alternating
configuration. In [19] spanning trees are used to provide a simplified proof of E S Lee’s
result concerning alternating links, [8]. This theorem describes the result of computing
the spectral sequence for the axis filtration: the homology will be supported on the
lines j � 2i D��.L/˙ 1. It is towards a variation of this result that we now aim.

Assume that L admits an alternating projection to A D fz
ˇ̌
1 < jzj < 2g � C which

is connected as a subset of A. Let B be the intersection of A � I � C �R with
the half-plane f.z; t/ j arg z D �g. We maintain the assumption that L intersects the
spanning disc for B in an odd number of points; however, we will relax this when it is
to our advantage. We will bi-color the plane according to the following convention:

For any L, regardless of the parity of intersecting the spanning disc, we define M.L/
to be the number NW �NB where NW is the number arcs in the projection of B

to A coming from intersection with the white regions and NB is the number of arcs
coming from intersection with the black regions. When L intersects the spanning disc
in an odd number of points, M.L/D 0; for an even number of points, M.L/D˙1.
This number does not change under Reidemeister moves applied to L, nor does it
change when crossings of L are resolved. Furthermore, all the projections, DS , in
the spanning tree complex will be alternating. We start with a lemma concerning the
twisted unknots in Figure 1.

Lemma 4.2 For each alternating twisted unknot in Figure 1 the non-zero homology
groups H iIjk.L/ are supported on k � j C 2i DM.DS /.

We will show that diagrams of the special form above have the property that H iIjk

satisfies k � j C 2i DM.DS /, and that the last number is determined by the type of
crossing on the outermost boundary. We start with the following cases:

(1) L as a single non-trivial unknot has this property. Its homology is 0 unless
.i I j ; k/D˙.0I 1; 1/, and those have homology F . But then k�jC2iD0DM

since there is one black and one white region.
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(2) If H iIjk.D/ 6Š 0 implies k� j C2i D C , where C is a constant, then D[N ,
where N is a disjoint non-trivial circle, has H iIjk.D[N / 6Š0 when k�jC2iD

C . This follows from H iIjk.D[N /ŠH iIjk.D/˝V .

(3) The closures of braid generators �1 2 B2 and ��1
1
2 B2 , where �1 gives a

positive crossing, have the property that k � j C 2i DM.D/. This requires a
computation. For ��1

1
the shifted complex has homology

H iIjk
Š

�
F�1 if .j ; k/D .�3; 0/

F0 if .j ; k/D .�3;�2/; .�1; 0/; .1; 2/

where the subscript denotes i , and each element has k � j C 2i D C1. Fur-
thermore, NW D 2 and NB D 1, so M.D/ D 1. For the closure of �1 we
obtain:

H iIjk
Š

�
F1 if .j ; k/D .3; 0/
F0 if .j ; k/D .�1;�2/; .1; 0/; .3; 2/

and k � j C 2i D�1DM.D/.

B n�1 crossings

I�
n�1

B
n crossings

I�n

0 1

B
N

B
N

IC

Figure 4: A depiction of I�n for n > 1 , and the corresponding IC , as it
occurs in the resolution tree for the innermost crossing
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B

I�
1

0 1

B

I1

m crossings

B

N ICm

B

J

Figure 5: A depiction of I�1 , IC and J� , as they occur in the resolution
tree for the innermost crossing

The nontrivial unknot and the closures of �1 and ��1
1

are the base cases for our
induction. Note that each of these represent the unknot in S3 and thus have signature 0.
We now assume that we have a twisted unknot as in Figure 1, which has �.L/D 0,
since these are also unknots in S3 . In the following argument, the reader should refer
to Figure 4 and Figure 5 to clarify the notation. We start by assuming that near the
inner point where B crosses the plane the twisting is right-handed. Assume that there
are n > 1 negative crossings, and call this knot I�n . If we 0–resolve the innermost
crossing we obtain I�

n�1
, while if we 1–resolve the crossing we obtain N [ IC .

Let Œs�f.t; 0/g be the contribution to the final shift of I�n arising from the crossings not
involved in this twist region. Let H� denote the skein homology after shifting. There
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is then a long exact sequence:

� � � �!H�.IC[N /Œ�s�f.�t; 0/gŒn� 1�f.2n� 2; 0/gŒ1�f.1; 0/g

�!H�.I�n /Œ�sC n�f.�t C 2n; 0/g

�!H�.I�n�1/Œ�sC n� 1�f.�t C 2n� 2; 0/g �! � � �

where the sequence arises from 0! 1–resolution maps in the unshifted complexes.
The additional shifts for H�.IC[N / come from its arising in the 1–resolution and
from the additional negative crossings introduced by the RI–moves when simplifying to
IC . Those for H�.I�

n�1
/ come from the negative crossings remaining in the resolved

diagram. The two internal arrows are degree preserving. If k � j C 2i D C for the
skein homology for I�

n�1
then applying the shifts in the long exact sequence we have

k 0 D k , j 0 D j � t C 2n� 2 and i 0 D i � sC n� 1. Thus

k 0� j 0C 2i 0 D C C t � 2nC 2� 2sC 2n� 2D C C t � 2s:

Reversing the shifts in the sequence for H�.I�n / gives i D i 0C s�n, j D j 0� tC2n

and k D k 0 . Elements mapping non-trivially to the I�
n�1

–term satisfy

k � j C 2i D C C t � 2s� 2nC t C 2nC 2s D C

in the skein homology for I�n . By assumption C DM.I�
n�1

/, and M.I�n /DM.I�
n�1

/

since there has been no change in the black/white region count. On the other hand,
M.IC/ D M.I�n / � 1 since we have lost the interior region, necessarily white by
our crossing assumption. The addition of N does not change k � j C 2i , so if
k � j C 2i DM.IC/ in the skein homology for IC , we see that the terms in the
unshifted complex for IC used in the long exact sequence satisfy

k 0� j 0C2i 0 DM.IC/C t �1�2nC2C2.�sC1Cn�1/DM.IC/C t �2sC1:

For those elements that map into I�n , applying the shifts to get the skein homology
for I�n produces elements with j D j 0C t � 2n and i D i 0C s � n, which implies
k � j C 2i DM.IC/C 1 DM.I�n /. Every element in the image of H�.IC [N /

will have the property in the lemma. Thus by induction, the property will be true also
for I�n .

This leaves the case where nD 1. The 1–resolution occurs in the same way and we
may draw the same conclusion. However, for the 0–resolution a large collapse can
occur. If IC has m� 1 positive crossings in the next region, the 0–resolution allows
us to untwist all of these until we get to J� . The complex for J� is thus shifted by
f.�m; 0/g when injected into that for I�

1
. This implies that k�j C2i increases by m

in the unshifted complexes. In the shifted complexes, I�
1

is shifted Œ�1�f.m� 2; 0/g

more than J� . That shift reduces k�j C2i by 2�m�2D�m. Thus after the final
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shift there is a difference of 0. But note that the resolution eliminates both a black and
a white region and thus leaves M.J�/DM.I�

1
/. All told, if k � j C 2i DM holds

for the knots with fewer crossings and the innermost crossing is negative then it also
holds for I�n .

A similar argument can be deployed for the case where the innermost crossing is
positive. Alternately we can appeal to the symmetry under reflection to switch the two
cases. Since this switches the black and white regions, it also multiplies M by �1.

Thus for every unknot in the collection depicted in Figure 1 we have k � j C 2i D

M.DS / for every generator in the homology. In particular, .j ; k/ determines i . Note
that this conclusion remains valid if we add a single marked non-trivial circle. It
also remains true if we shift by Œ�w�f.�2w; 0/g. As with the original proofs of the
alternating links property, the value of r.S/ is the same for every complete smoothing
in K1.L/, depending only on the number of black regions and the crossings joining
them. So all the generators for the spanning tree model of the unshifted homology
satisfy k � j C 2i D r.S/ after the Œr.S/�f.r.S/; 0/g shifts and the odd number
of intersections. The final shift of the diagram for L is Œ�n��f.nC � 2n�; 0/g and
produces generators satisfying k � j C 2i D r.S/ � nC . From [8], we have that
r.S/ � nC D �.L/. Thus, after the final shifting, every generator in the spanning
tree complex satisfies k � j C 2i D �.L/, but since the differential preserves .j ; k/
and increases i , it must therefore be trivial. Consequently the spanning tree complex
is also the homology. For those generators which survive the spectral sequence to
the Khovanov homology, we also have that j � 2i D ��.L/˙ 1. Thus, for these
generators, k D˙1.

A comment about supports Wehrli’s argument produces an unshifted chain complex,
which has the same chain groups for l C r D i and 2l C r ˙ 1D j where r D r.S/

is constant. Thus j � 2i D�r ˙ 1, which when shifted yields j � 2i D��.L/˙ 1.
For a given q–grading, j , there are two i –gradings differing by 1. Thus there can
still be non-zero terms in the differential, which may result in torsion or vanishing
homology groups, and thus the homology is at most supported on these lines. In our
case, these groups are distinguished by their k –value, which is also preserved by the
differential. The issue of torsion returns in the spectral sequence, but it is known that
at most 2r –torsion occurs for alternating knots [18], and so working over F2 will
correct it.

Geometry & Topology, Volume 17 (2013)



On knot Floer homology in double branched covers 435

5 The knot Floer homology spectral sequence

We now leave the Khovanov skein homology to recall some results in knot Floer
homology. In the next section we will begin relating these two theories. The two will
intertwine further in later sections.

Let LDL1[ � � � [Ln be a framed link in a three manifold Y . Following section 4
of [13] we let R D .m1; : : : ;mn/ where mi 2 f0; 1;1g and Y .R/ be the result of
fr.Li/Cmi �i –surgery on each Li where �i is the meridian of Li and 1–surgery is
�i –surgery. We let 0< 1<1 define a lexicographic ordering on f0; 1;1gn and call
I 0 an immediate successor of I if, as in [13], all the m0j are the same as mj except for
one where m0i >mi , excluding the case .m0i ;mi/D .1; 0/. Then to each immediate
successor I 0 of I there is a map

FR<R0 W
bHF .Y .R// �! bHF .Y .R0//

arising from the associated 2–handle additions.

According to section 8 of [11], 2–handle additions attached in a manner algebraically
unlinked from a knot induce maps on the levels of the knot Floer homology. Viewed
differently, the knot turns the chain map above into a filtered morphism for the filtered
chain groups defining the knot Floer complex. The “top” levels of these filtered
morphisms form exact sequences that specialize to the skein exact sequence for crossing
changes. Following these thoughts leads to:

Theorem 5.1 Let L D L1 [ � � � [ Ln be a framed link in .Y;K/, with K a null-
homologous knot bounding a surface S , such that Ls \ S D 0 for all s . For each
integer k there is a spectral sequence such that:

(1) The E1 –page is
L

R2f0;1gn
1HFK .Y .R/;K; k/.

(2) The d1 –differential is obtained by adding all yFR<R0 where R0 is an immediate
successor of R.

(3) All the higher differentials respect the dictionary ordering of f0; 1gn .

(4) The spectral sequence eventually collapses to a group isomorphic to

1HFK .Y;K; k/:

The proof can be found in Roberts [17], along with more details concerning the link
surgery spectral sequences. In fact, more can be deduced from the arguments described
above. Namely, there is a filtered chain complex whose chain groups are given by
1CFK .Y .R/;K/, considered as bCF .Y .R// with the filtration induced by K , with

Geometry & Topology, Volume 17 (2013)



436 Lawrence P Roberts

differential induced by counts of higher polygons, which is filtered 1–quasi-isomorphic
to the filtered chain complex 1CFK .Y;K/. With this additional data we may also
capture the spectral sequence from

L
k2Z

1HFK .Y;K; k/ converging to bHF .Y /

through the surgery spectral sequence.

More specifically, in [17], following [13], let L be a framed link in a closed, oriented
three manifold Y , and let K be a null-homologous knot in Y bounding an embedded
surface S . We define X.Y;K/ to be the complex [17] whose chain groups areM

R2f0;1gjLj

1CFK .Y .R/;K/

with 1CFK .Y .R/;K/ in homological grading I.R/D
P

mi when RD.m1; : : : ;mjLj/.
When R0 >R in the sense that, as vectors,

R0�R� E0;

there is a filtered map

DR;R0 W
1CFK .Y .R/;K/ �!1CFK .Y .R0/;K/

described below, such that for x 21CFK .Y .R/;K/,

D.x/D
X

R0�R

DR;R0.x/

satisfies D2 D 0, and D preserves the knot filtrations from K . The knot filtration
preserving part of D induces a differential in each knot filtration level.

The maps DR;R0 are defined by picking a bouquet for L and finding a Heegaard diagram
subordinate to the bouquet and K simultaneously. We let DR;R0 D

P
DR<R1<���<R0

where we sum over all sequences R;R1; : : : ;R
0 where each entry is the immediate

successor of the preceding entry. The map DR<R1<���<R0.x/ is:X
.y;�/2S

#M.�/ y

where

SD
˚
.y; �/

ˇ̌
y2bCF .˛; �k/; � 2�2.x; ‚C�1�2

; : : : ; ‚C�k�1�k
; y/; �.�/D0; nw.�/D0

	
See [17] or [13] for more details. Note that for � as envisioned in the summation
F.y/�F.x/D�nz.�/ since the maps preserve the knot Floer filtration. Here .†; ˛; �1/

is the Heegaard diagram for Y .R/ obtained from the diagram subordinate to the bouquet,
and .†; ˛; �i/ is the diagram for Y .Ri/, while .†; ˛; �k/ is a diagram for Y .R0/. In
particular, the difference between �i and �iC1 is the framing on one component of the
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surgery bouquet. All other curves are small Hamiltonian isotopes of those in �i . All
admissibility requirements can be arranged so that this map is well-defined.

In this paper, we apply these spectral sequences in the following situation. Let L
intersect a spanning disc for B generically in an odd number of points. Let R be a
complete resolution of the crossings in P , a projection of L. Of the closed curves
in the resolved diagram P.R/, some number, m, are geometrically split from the
axis, B . The remainder, l , form an unlink each of whose components link the axis
one time. For such a link of unknots, the double branched cover is easily computed
to be #lCm�1 S1 � S2 . Moreover, zB.R/ is still a knot since each unknot which
is split from B intersects a disc generically an even number of times. This knot is
#.l�1/=2 B.0; 0/ � #lCm�1 S1 �S2 (and the unknot in #m S1 �S2 if l D 1) where
B.0; 0/ � S1 �S2 # S1 �S2 is the knot obtained by performing 0–surgery on any
two of the three components of the Borromean rings. Hence, by calculations in [11]:

1HFK. zB/Š V ˝.l�1/
˝W ˝m

where V Š Z. 1
2
; 1

2
/˚Z.� 1

2
;� 1

2
/ and W Š Z. 1

2
;0/˚Z.� 1

2
;0/

Here the first term in the subscript is the rational grading, whereas the second term
is the filtration. Since l � 1 is even, the filtration levels are integers. Furthermore,
this homology is entirely supported in the trivial Spinc structure. In addition, there
are no higher differentials in the spectral sequence from the direct sum of knot Floer
homology groups to bHF . All we have done is compartmentalize the Heegaard Floer
homology of #lCm�1 S1�S2 in a manner reflecting the filtration induced by the knot
zB . Without the filtration information we recover the which group associated to R

in [13].

Now let R0 be another resolution of P where R0 >R, so some number of 0–resolved
crossings in R will be 1–resolved in R0 and all the other crossings will be resolved
identically. An arc in the plane joining the two strands at a resolved crossing lifts to a
circle in †.P.R//, and the effect of changing from a 0–resolution to a 1–resolution
is to remove a solid torus neighborhood of the circle and glue it in with a different
framing, corresponding to the addition of a four-dimensional 2–handle. If we take
the complete 0–resolution of P , the lift of the arcs for each crossing define a link
L1; : : : ;Ls in †.P.R//. We can encode the 1–resolution at the i th crossing by the
framing of Li required by the aforementioned handle addition. Each of the Li comes
from an arc disjoint from the spanning disc of B , and thus Li will be disjoint from
the double cover of this spanning disc, which we take as the spanning surface S for
the knot zB . Thus, Li \S D 0, and we may apply Theorem 5.1.
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In the following section, we will establish filtered isomorphisms between

1HFK .Y .R/;K/

and copies of V ˝.l�1/˝W ˝m used in the skein homology theory. We then compute
the d1 –differentials for the spectral sequence induced by the I –filtration, corresponding
to the number of surgeries, and herein called the homological filtration. This allows us
to identify the E1 –page with the skein homology complex. Analogous to the results
in [13] we may then conclude:

Proposition 5.2 Let L be a link in A � I � R2 �R as above. There is a spectral
sequence whose E2 –term is isomorphic to the reduced Khovanov skein chain complex
of L0 in A� I with coefficients in F2 and which converges toL

k2Z

1HFK .†.L/ #2 .S1 �S2/; zB # B.0; 0/; k;F2/:

By splitting according to the filtration data we can obtain the slightly stronger result:

Proposition 5.3 There is a spectral sequence whose E2 –term is isomorphic to the sub-
complex of the reduced Khovanov skein complex of L0 generated by the enhanced states
with ‰.S/D 2k and which converges to 1HFK .†.L/ #2 .S1 �S2/; zB # B.0; 0/; k/.

In fact, by taking the direct sum of all the groups for the knot Floer homologies over
all the resolutions we can obtain a bi-filtered complex, filtered by the pair .I; ‰/,
where the E1 term corresponds to the filtration of the bi-filtered reduced Khovanov
homology complex. Using the graded objects for just the ‰ filtration and taking their
homology produces the first proposition above. The additional terms in the maps in the
Khovanov complex induce maps in the E2 –level of the spectral sequence using the ‰
filtration, since these correspond to terms in the filtered cobordism maps between the
Heegaard Floer homologies. These maps fit together to provide a filtered version of
the spectral sequence in section 4 of [13] with K inducing the filtration. Additional
pages ultimately calculate the Heegaard Floer homology of the branched double cover.

More can be concluded from the proof outlined above and the homological algebra in
Appendix A.

Lemma 5.4 For each r � 1, the Er –page of the spectral sequence induced by the
knot Floer filtration from zB , which starts withL

k2Z

1HFK .†.L/ #2 .S1 �S2/; zB # B.0; 0/; k;F2/
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and converges to bHF .†.L/#2 .S1�S2//, is quasi-isomorphic to the Er –page for the
‰–filtered complex X.L/, computed using the maps induced from the link surgeries
spectral sequence.

Thus, the values of ‰ will filter the Heegaard Floer homology groups in a manner
replicating the Alexander filtration (namely, the associated graded groups will be
isomorphic).

6 The E1–page is isomorphic to the skein homology of the
mirror

First, we will establish an isomorphism between the skein homology chain groups
and the E1 –page thought of as a group. We then compute the d1 –differential for this
representation of the chain groups. However, if we try to define an isomorphism

ˆB.R/W zVL.R/
Š
�! 1HFK .†.P.R//; zB/

for any complete resolution R, a slight mismatch arises: the knot Floer homology of
the binding implicitly corresponds to marking a non-trivial circle. This cannot always
be arranged in the skein homology theory. We rely upon a trick to resolve this problem:
we introduce two non-trivial circles into L that link B once and otherwise do not
interact with the diagram. These should be considered innermost circles. We always
mark the innermost one (we need two to keep the binding connected) and since this
circle does not include any crossings, it will be the marked circle throughout. The link
with the addition of these two circles will be denoted L0 .

The effect on the double cover of changing L to L0 is to replace †.L/ with

†.L/ #2 S1
�S2

and to replace zB with zB # B.0; 0/. We see this by shrinking the two new components
to nearby meridians of B and then examining the double cover of a small ball that
includes them and an arc on B . The effect of these connect sums on the Heegaard
Floer homology is well understood. In particular, since B.0; 0/ induces an entirely
collapsed spectral sequence for the Heegaard Floer homology, we will be able to read
off any information about the knot Floer homology of zB from that of zB # B.0; 0/.

With this alteration, we may now define the isomorphism. Order the circles in P.R/
by the marked circle first, then all the non-trivial circles, then all the trivial circles.
An element of zV .P.R/;B/ is encoded as C˝ v1

˙
˝ � � � ˝ wn

˙
and is mapped to


i1
� � � 
ik

�‚C where fi1; : : : ; ikg are the indices for the minus signs on non-marked
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circles, 
j is the first homology class dual to the j th sphere, and ‚C is the highest
degree generator of bHF .†.P.R///. In particular, a representative for 
j in F2 –
homology can be found by lifting an arc between the marked circle and the j th circle.

To explicitly compute the d1 –differential, we associate maps in the knot Floer homology
to the changes in the resolution code at a single crossing. In our case, these maps
become maps between filtered groups. We will work backwards from the unfiltered
maps in [13].

First, we note that the resolution changes occur in three ways: between circles split
from the axis, between circles linking the axis and between circles of mixed linking.
The first occur precisely as in [13] due to the local nature of the surgeries in the double
cover and the connected sum decomposition of the covering manifolds. In particular,
the maps for the filtered theory are just the maps for the unfiltered theory tensored with
the identity on the tensor products of the V –vector spaces. Hence, they reflect the
differential of the reduced Khovanov homology.

Now consider a resolution change joining two circles that link the axis. In the double
cover, this corresponds to a cobordism that involves 0–surgery on a curve that is
homologically non-trivial and intersects only those spheres intersecting the binding.
Such a circle is isotopic to a circle in a fiber of the open book determined by # B.0; 0/

before connect summing with extra S1 �S2 ’s. Moreover, since the circle is the lift of
an arc between two branch points, it is homologically non-trivial in the fiber. Ignoring
the choice of basis implicit in the above description, we can calculate the effect of
such a surgery by looking at the standard picture of B.0; 0/ and doing 0–surgery
on a meridian of one of the 0–surgered components of the Borromean rings. When
we connect sum with copies of B.0; 0/ we obtain a diffeomorphic picture to the one
described above. We then use homology classes to pin down the maps in the original
picture. In the unfiltered version, the model calculation uses the following long exact
sequence (which must split as depicted due to ranks and gradings).

� � � F 1
2
˚F
� 1

2
F1˚F2

0
˚F�1

F 1
2
˚F
� 1

2
� � �............................................................................................... ............

�
1
2

.................................................................................................. .......................
.......
...... �

1
2

............. ............. ............. ............ ............
0

.................................................................................................. ............
�

1
2

In the identification with Khovanov homology, the F1 –term corresponds to vC˝ vC
and it thus maps to wC . The term mapping to F

� 1
2

in the surjection is the image
under �2 of F1 where �2 is the meridian we do not surger. Meanwhile the image
of �1 is annihilated. Transferring back to the basis from the resolution, this tells us
that 
1C 
2 generates the kernel, and 
1 and 
2 are mapped isomorphically to 
 0 .
Transferring back further to Khovanov’s notation, we get 
1! v�˝ vC! w� 
 0

and vC˝ v�! w� .
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For the filtered version, we obtain the model long exact sequence, which filters the
above one:

� � �

F�1

F0˚F0

F1

F 1
2
˚F
� 1

2

F
� 1

2

F 1
2
˚F 1

2

F 3
2

� � �

................................................................................... ............

............................................................ ............

........................................................................................ ............

................................................................................ ............

....................................................... ............

........................................................................................ ............

The first term is the knot Floer homology of B.0; 0/; the second is the knot Floer
homology of the unknot in S1 � S2 , which we obtain after the 0–surgery on the
meridian; the third term is the result of C1–surgery on the meridian, B.0;�1/ in the
notation of [11]. The grading and ranks again determine the filtered maps on the first
page. When we join two curves which link the axis, we obtain one which does not
link the axis. This can be seen by considering the possible winding numbers for the
result: 0 or 2. However, the result is a Jordan curve in the plane and thus cannot have
winding number 2 about the origin. Working back through the basis transformations as
before, these correspond in our notation to the maps vC˝ vC! 0, vC˝ v�! w� ,
v�˝ vC! w� and v�˝ v�! 0.

Finally, the model calculation in the cases of joining a linked with an unlinked circle
corresponds to the map in the following diagram:

v1

0

zB

0

v2

�

w1

0

The surgery circle, � , annihilates 
1C 
2 again in mod-2 homology. The result of the
resolution change is now a circle that links the axis. The relevant cobordism map is
from B.0; 0/#S1�S2!B.0; 0/ and corresponds to vC˝wC! vC , vC˝w�! 0,
v�˝wC! v� and v�˝w�! 0. This can be seen from the following graded exact
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sequence:

� � �

F
� 3

2
˚F
� 1

2

F2

� 1
2

˚F2
1
2

F 1
2
˚F 3

2

F�1

F2
0

F1

F�1

F2
0

F1

� � �

................................................................. ............

......................................................................... ............

................................................................................ ............

..................................................... .......................
.......
......

................................................................. .......................
.......
......

......................................................................... .......................
.......
......

............................................................................................................ ............

................................................................................................................. ............

................................................................................................................. ............

where F 3
2

corresponds to v1
C ˝ v

2
C ˝ wC and is mapped to v1

C ˝ v
0
C , taking into

account both 0–framed knots in the Borromean rings. Note that a w� always forces
the map to be 0.

Due to the introduction of the two new components we do not need to examine what
happens if one of the circles is the marked circle: a division or merging never includes
the marked circle.

Similar considerations, or duality, establish the maps for the case of splitting a circle
into two circles. Note that the above maps are from 1–resolutions to 0–resolutions.
This force us to use the mirror of L in establishing the relationship between the knot
Floer homology of zB and the reduced skein homology.

Proposition 6.1 Let P be a projection for L0 [B . Let R be a choice of resolution
for each crossing of L0 . Then there is an isomorphism:

ˆB.R/W zV .P.R/;B/
Š
�! 1HFK .†.P.R//; zB/

Let R0 be a resolution found by changing a single smoothing in R from 0 to 1. Then
the following diagram commutes:

1HFK .†.P.R//; zB/ 1HFK .†.P.R0//; zB/

zV .P.R/;B/ zV .P.R0/;B/
............................................................................................................
.....
.......
.....

ˆB.R/

............................................................................................................
.....
.......
.....

ˆB.R
0/

............................................................ ............
yFR<R0

......................................................................................................................................................... ............
dL

where yFR<R0 is the cobordism map for the knot Floer homologies induced by the
surgery corresponding to the resolution change, and dL is the differential in the skein
homology. This square is a Z–direct sum of squares where the index corresponds to
the filtration of the knot Floer homology and the k –index in the skein homology (with
F D k

2
after the final shifts).
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This proposition establishes that each component of the d1 –differential, coming from
a change of resolution on a single crossing, corresponds under our isomorphism to the
term in the skein homology differential for the corresponding change of resolution for
the mirror diagram. Consequently, the E1 –page of the link surgery spectral sequence
corresponds to the skein homology in each knot Floer filtration level.

7 Transverse links, open books and contact invariants

First, we note that:

Theorem 1 Any transverse link is transversely isotopic to a braid closure. Furthermore,
two braids represent transversally isotopic links if an only if one can be obtained from
the other by conjugations in the braid group, positive Markov moves and their inverses.

This is the culmination of work by Bennequin for the first part, and by V Ginzburg,
S Orevkov, and N Wrinkle, who independently proved the second part. We will replace
the contact structure with an open book. The standard contact structure on S3 is
supported by the open book with unknotted binding and discs for pages. In the braid
picture, this corresponds to including the axis of the braid, which is an unknot. When
we take a branched cover of a transverse link, the contact structure lifts to a contact
structure in the cover where we use a Martinet contact neighborhood of the transverse
link. In the open book picture, this contact structure is supported by the pre-image of
the open book, whose fibers are now more complicated, but whose binding is the lift
of the axis. This follows since the lifted contact structure remains C 0 –close to the
pages of the open book, and transverse to the binding. We call this contact structure
� . The contact structure on #2 .S1 �S2/ induced by the fibered knot B.0; 0/ will be
denoted �0 .

For a braid, O Plamenevskaya [15; 14] defines a cycle, z .L/, in the reduced Khovanov
homology chain group. First she resolves all the crossings in the direction of the
oriented braid. This constructs the maximal number of non-trivial loops in the skein
algebra perspective. She then labels every one of the unmarked strands with a � and
the marked strand with a C. This enhanced state is closed in the reduced Khovanov
homology theory [14].

Let L be a braid whose closure is the transverse link.

Theorem 7.1 Suppose L intersects the spanning disc for B an odd number of times.
Then the element z .L0/ is closed in the skein Khovanov homology and represents the
unique homology class with minimal ‰–grading. Under the correspondence with the
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E2 –term of the spectral sequence converging to knot Floer homology, it maps to an
element which survives the spectral sequence and generates:

1HFK .�†.L/ #2 .S1
�S2/; zB # B.0; 0/;�1�g. zB//Š F2

Upon mapping this last group into bHF .�†.L/ #2 .S1 �S2//, z .L0/ corresponds to
the contact element c.� # �0/.

Note The correspondence at the end is not the same as first mapping  into the
reduced Khovanov homology and then considering the spectral sequence from it to the
Heegaard Floer homology of the branched double cover.

Proof There is only one element in the skein chain group that has

‰ D�2g. zB # B.0; 0//

and that is Plamenevskaya’s element. For if b is the braid index of L0 , then Euler
characteristic calculations imply that 1�2g. zB#B.0; 0//D2�b and thus ‰ must equal
1�b . This can only happen when all the crossings are resolved in the direction of the link
so that there are b non-trivial circles and precisely one circle (the marked one) is adorned
with a C sign. z .L0/ is characterized as the unique enhanced state with minimal value
for ‰.S/ and thus generates the homology in this f –grading. This enhanced state
survives in the spectral sequence for the knot Floer homology of the binding and yields
in the limit a generator of 1HFK .�†.L0/; zB # B.0; 0/;�g. zB # B.0; 0///Š F since it
is the only generator in the filtration level.

The branched cover of B over L0 is zB # B.0; 0/ which supports the contact structure
� # �0 . The contact element c.� # �0/ is the image in bHF .�†.L0// of the generator
of 1HFK .�†.L0/; zB # B.0; 0/;�g. zB # B.0; 0///. Lemma 5.4 guarantees that this
generator corresponds to the �g. zB # B.0; 0//–level of the associated graded group for
bHF .�†.L0//. This level is either Š F or Š 0 depending upon whether the contact
element vanishes. Thus, Plamenevskaya’s element converges to the contact element in
the Heegaard Floer homology (with F2 –coefficients).

Corollary 7.2 Under the correspondence in the previous theorem, z .L/ corresponds
to c.�/ 2 bHF .�†.L/;F2/.

Proof If L intersects the spanning disc for B an even number of times, use a positive
Markov move to increase the number of strands by 1. z .L/ is mapped to z .LC/
[14] under this move. Meanwhile, in the double cover this corresponds to positively
stabilizing the open book, and thus does not change the contact invariant. Renaming
LC by L, we may now assume L intersects the spanning disc an odd number of times.
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Furthermore, z .L/ clearly corresponds to z .L0/ in a precise way. Using the previous
theorem we have that z .L0/ maps to c.� # �0/ under the spectral sequence and c.� #
�0/D c.�/˝ c.�0/. Adding the two meridional strands tensors both homologies with
V ˝2 . Thus, c.�/ in the knot Floer homology of zB corresponds to Plamenevskaya’s
element in the skein homology of L since both are altered in the same formal manner
by the introduction of the new strands.

We now turn to proving a the non-vanishing result mentioned in the introduction. We
begin with a lemma:

Lemma 7.3 Let C be a bifiltered complex over a field. Then up to isomorphism there
is a unique bifiltered complex C0 such that:

(1) C0 is bifiltered chain homotopy equivalent to C .

(2) C0ij ŠH�.Cij /

(3) The differential d 0 D
P

d 0ij on C0 has d 0
00
D 0, and induces the same spectral

sequences for both filtrations.

Proof Use the cancellation lemma as per sections 4 and 5 of Rasmussen’s thesis, but
only for those elements with the same bifiltration indices.

We note that since the knot Floer spectral sequence for #k B.0; 0/ collapses at E2 ,
the use of the above lemma for the I –filtration means that

L
j C0ij is isomorphic to

the knot Floer homology for the summands in the cube complex corresponding to that
I –value. In particular, there are no differentials keeping I fixed, and reducing ‰ . For
lack of a better name, we will also call this reduced complex X.L/, or just X . As a
result, E1

I
.X /ŠX for the filtration from I . Since X is bi-filtered chain homotopy

equivalent to X.S/, it too is quasi-isomorphic to the chain complex for bCF .�†.L//
by a ‰–filtered map.

We begin with a little notation: we let Xj be the sub-complex of X with ‰ � j .
Likewise, let Kj be the sub-complex of the reduced Khovanov homology with the
same condition. Now the I –filtration—from the flattened cube—filters these sub-
complexes and their quotient complexes.

Corollary 7.4 Suppose there exists a n such that:

(1)  .L/ is exact in Kn .

(2) The I –induced spectral sequence on Xn=X�2g collapses at E2 .

Then c.�/D 0.
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The second condition, of course, makes some complex computed from the knot Floer
chain groups isomorphic to the corresponding complex computed from the skein
Khovanov chain groups.2

Proof Suppose  .L/ has the bifiltration value .I ;�2g/. If we try to compute the
homology of Xn using the I –filtration, then  generates the only group in the ‰–
filtration level �2g . Since  is exact in Kn , there is some element with I –filtration
I � 1 whose differential in Kn is  (recall the differential increases I–values). This
element, � , may be a linear combination of elements with many different ‰ values. We
note that � is closed and not exact in E1.Xn=X�2g/ as a chain complex computing
E2 . It is closed since the only non-zero portion of @Kh� is in X�2g . It is not exact
since it would need to be the differential of something with higher I –filtration, and
for those elements the differential, which is given by the Khovanov differential, is the
same as in E1.Xn/; however in E1.Xn/, � is not closed and hence is not exact. Thus
Œ�� will be non-zero in E2.Xn=X�2g/.

Consider Ci to be the sub-complex of Xn with I –filtration greater than or equal to
i . We have the commutative diagram represented in Figure 6, to which the remaining
argument refers. Here F is the homology of X�2g , Qc is the quotient complex of Xn

by CI C1 and Q is the quotient complex by f‰ ��gg[ fI � I C 1g. The 0 in the
upper left comes from the observation that there are no generators in X with ‰ ��2g

and I � I C 1. The 0 on the map in the upper right indicates that it will generate the
trivial map in homology due to � . From now on we let X 0 DXn=X�2g .

An element of H�.Q/ in filtration level I � 1 must have non-trivial representative in
E2.Xn=X�2g/. Furthermore, the argument above shows that Œ��¤ 0 in H�.Q/. This
is certainly true in Qc since � has a non-trivial differential. However, if in Q there
is an element with differential equal to � , the only other possibility is that in Qc this
element has differential equal to � plus something in X�2g . But then @2 ¤ 0 on this
element.

Suppose Œ�� has non-zero image, Œ!�, under the map H�.Q/ ! H�.CI C1/. If
Œ!� has non-zero image in H�.Xn/, from the middle row, then it too must have a
non-zero representative in E2.Xn=X�2g/, since CI C1 has no representatives with
‰–filtration �2g . But then the induced differential from the long exact sequence
implies that @Œ��D Œ!� in X 0 . Hence, the rank of H�.X

0/ is strictly less than that at
E2 , ie there is a non-trivial differential beyond E2 .

2In an earlier version of this paper, the author incorrectly asserted that the vanishing of  is enough
to conclude that c.�/ also vanishes. John Baldwin [2] pointed out the error and has since discovered
examples where c.�/ is non-zero despite  vanishing in the reduced Khovanov homology.
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0

0

0

CI C1

CI C1

0

0

Xn=X�2g

Xn

F

0

0

Q

QC

F

0

0

0

0

............................................................................................... ............

............................................................................................... ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

Id

............................................................................................................
.....
.......
.....

................................................................................................................. ............

............................................................................................... ............

............................................................... ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

................................................................................................................. ............
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Figure 6

Given the assumptions, we must have Œ!�D 0 in H�.Xn/. Then it is the image of some
non-zero element, Œ��, of H�.Qc/. This element injects into H�.Q/ so that Œ�� minus
the image of Œ�� is the image of some non-zero element of H�.X

0/. Furthermore, since
the image of Œ�� under H�.Q/!F is non-zero, then the map H�.X

0/!F is surjective.
As a result, the map F !H�.Xn/ is zero, but this implies that H�.X�2g/!H�.X /

is zero.

The filtered quasi-isomorphism from X to 1CFK induces a commutative diagram

H�.X�2g/Š F H�.X /

HFK. zB;�g/Š F HF.�†.L//

............................................................................................................ ............
�0

.......................................................... ............

..............................................................................
.....
.......
.....

Š

..............................................................................
.....
.......
.....

Š

thereby showing that the contact invariant vanishes.

Note 1 The purpose of the F2 –coefficients is to connect with the extant versions
of Khovanov homology. In the end, the crucial observation is that Plamenevskaya’s
element uniquely defines the lowest filtered portion of both the skein and knot Floer
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homologies. As long as this remains true and there is an analogous reduced Khovanov
homology, the same argument will work with other coefficients. In particular, just
changing the sign conventions will not change the conclusion, but there should be some
sign convention lifted from the Heegaard Floer world that will allow Z–coefficients.

Note 2 For a braid, L, we can lift a negative crossing or a positive crossing to
negative/positive Dehn twists along homologically non-trivial curves in the fiber of
the open book. These, in turn, fit into the long exact sequences of Heegaard Floer
and knot Floer homology. One sign fits into the 1; 0;C1–sequence for the fiber
framing, while the other fits into the �1; 0;1–sequence. Doing all the surgeries at the
same time yields a spectral sequence as in the previous section, with the maps in the
E1 –page coming either from the maps 1! 0 or 0!1 from the respective long
exact sequence and converging to the appropriate homology of the fibered knot. This
is the same sequence as that constructed above, only the basis for the framings has
been altered. Namely, if the framing from the crossing is declared 1 and the crossing
is negative, then the 0–framing is 1 in the fiber framing, and C1 is 0 in the fiber
framing. The knot for the surgery is the same, a lift of an arc between two branched
points.

We now collect some results for quasi-positive braids. We note that for a quasi-positive
braid, the lifted contact structure is Stein fillable. We can use the above argument
to reprove that the induced contact element is non-vanishing [12]. Let the braid be
given by w1�i1

w�1
1
� � � wk�ik

w�1
k

. We resolve only those crossings corresponding
to the �ik

terms. For the 00 : : : 0–resolution, the result will be b non-trivial circles.
Any 1–resolutions make the situation more difficult, but all the non-zero terms occur
in higher filtration levels. Plamenevskaya’s element is then in the lowest level of
the 00 : : : 0–resolution. There is no possibility in the spectral sequences of a higher
differential landing at this spot as they must all map to enhanced states with at least one
1 in their code. Thus the element survives in this spectral sequence. We now note that
when there is a 1 in the code, and the resulting resolution does not consist of unlinked
circles, that the Heegaard Floer homology of its double cover is, as a filtered group,
the limit of a spectral sequence. Combining all of these shows that Plamenevskaya’s
element survives in the spectral sequence and thus gives the non-triviality of the contact
element in the double branched cover.

8 Heegaard Floer homology for double covers branched over
alternating branch loci

In this section we aim to prove the following result:
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Lemma 8.1 Let D be a (possibly disconnected) alternating diagram in R2 for a link
L� S3 with C crossings. In the complex X.D/, let x be a generator for the torsion
Spinc structure on the all 0–resolution summand, and y be a generator for the torsion
Spinc structure in the all 1–resolution summand. Any homotopy class of polygons,
 2 �2.x; ‚; : : : ; ‚; y/, with �. /D 0 and nz. /D 0 has

grQ.y/� grQ.x/D�1C
C

2

where grQ is the absolute rational grading of [10].

Comment This lemma is more general than it first appears. In particular, if D0 is
any alternating diagram with crossings C 0 , pick any subset of crossings C 00 � C 0 and
resolve them arbitrarily using 0 and 1–resolutions. The resulting diagram D is still
alternating, so the lemma applies with C being the unresolved crossings. By choosing
C 00 appropriately we can apply the lemma to any homotopy class of polygons that
contributes to the differential for X.D0/. Consequently, this lemma governs every
non-zero term in the differential for X.D0/ with implications explored in the next
section.

Proof Let L�R3 be a link with a (potentially disconnected) alternating diagram D

possessing C crossings. Decompose D as D1; : : : ;Dk where Di is the diagram for the
i th connected component of D , thought of as a 4–valent graph. Let Ci be the subset of
crossings in Di . Resolving Di using all 0–resolutions results in a collection of disjoint
unknots, D0

i , sitting in the plane R2 . To obtain the all 1–resolution diagram of Di , we
attach two-dimensional 1–handles to these unknots, with each handle corresponding
to each crossing. Thought of in R2 � I , these handles construct a surface, Si , which
is homeomorphic to a sphere with discs removed, since Di is alternating, according
to [5]. If we do this for all the diagrams Di , we obtain k planar surfaces in R2 � I .
Take R2 as the xy–plane in R3 . Using the one point compactifications of R2 and
R3 , and crossing with I , we obtain embeddings of these k surfaces in S3 � I . Each
surface Si bounds a handlebody in R2 � I , so each Si is unknotted in S2 � I . Call
the union of these connected surfaces S � S3 � I .

We will think of S as the disjoint union of planar surfaces, which provides an orientable
cobordism from an unlink in S3 � f0g to an unlink in S3 � f1g.

We will now describe the structure of the four-manifold obtained by taking the double
branched cover of S3 � I , branched over S . First, since the handles defining S come
from the resolutions of the diagram, they occur independently over A. In particular,
we can add them in any order. Thus by isotoping each component of the surface S

in S2 � I , we can arrange that S in S3 � Œ0; 1
2
� consists of a union of planar surfaces
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with � 1 boundary components on S3 � f0g and exactly 1 boundary component in
S3 � f

1
2
g. Taking the double branched cover of this gives a four-manifold cobordism

from
#l�1 S1

�S2
�! #k�1 S1

�S2;

where l is the number of boundary components in S3 � f0g and k is the number of
components of S in S3 � Œ0; 1

2
�. Assuming that this isotopy has been performed, let

S 0i D Si \ S3 � f
1
2
g, then each handle in S 0i joins two distinct circles and thus, in

the double branched cover, corresponds to a 4D 2–handle addition, which cancels
one S1 � S2 factor. The surface S \ S3 � Œ1

2
; 1� has the reverse structure in each

component: each handle divides a circle, and thus in its branched double cover each
handle corresponds to a two handle addition which gives rise to a new S1 � S2 –
summand.

Consequently, H2.@†.S// �!H2.†.S// is surjective, and the unique torsion Spinc

structures on the boundaries have unique extensions to †.S/, which are also torsion.
We can then compute the change in grading for the cobordism map for the torsion
Spinc structure and the cobordism †.S/

(1)
c1.s0/

2�
�
2�.†.S//C 3�.†.S//

�
4

D
0�

�
2 C C 3 � 0

�
4

D�
C

2

since we have added C 2–handles, since there is one change of resolution per crossing.

†.S/ also occurs in the link surgery spectral sequence approach to computing the
Heegaard Floer homology of the double branched cover. The link surgery spectral
sequence arises from looking at disjoint balls around each crossing intersecting the link
in two unknotted arcs. These balls lift to solid tori in †.L/. Taking the double branched
cover of D resolved at a crossing corresponds to removing this torus and gluing it
back with a framing determined by the resolution. Going from the 0–resolution to
the 1–resolution comes from removing this solid torus again and gluing it back in,
but using the framing coming from the double branched cover of the 1–resolution.
This surgery is effected by a four-manifold 2–handle addition that corresponds to the
branched double cover of the surface locally constructed by taking the arcs of the
0–resolution and adding a handle joining the components to obtain the 1–resolution.

To see this, take S3�I , and consider in it D3�I , where D3 is the small ball near the
0–resolved crossing, containing the 2 arcs used in the resolution change. In D3 � I ,
we take a disc whose boundary is a union of three parts: (1) in D3 � f0g take the two
arcs, (2) in @D3 � I , take the segments formed from the four endpoints of these arcs
crossed with I , and (3) in D3 � f1g use the pair of arcs for the 1–resolution. The
resulting boundary looks like the seam on a tennis ball and bounds a disc in D3 � I .
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This disc comes from the two-dimensional 1–handle addition which changes between
the resolutions. If we take the double branched cover of D3 � I over this disc, we
obtain a solid torus over D3 � f0g, which is the torus we remove in the link surgery
spectral sequence, T 2 � I over @D3 � I , and another solid torus over D3 � f1g,
which is the torus we add. It is straightforward to see that, in this latter solid torus, the
meridional discs have boundary the same as the framing in the surgery spectral sequence.
Furthermore, the decomposition of the boundary of D3 � I extends to D3 � I , so
that the double branched cover of D3 � I over the disc, which is homeomorphic to
D4 , can be thought of instead as D2 �D2 , with S1 �D2 the torus we remove, and
D2 �S1 the torus we glue back. This provides a four-dimensional 2–handle addition
effecting the desired Dehn surgery.

In summary, there is a surface S in D3� I that is built from the resolution changes in
D and whose branched double cover can be constructed from the 2–handle additions
defining the simplest maps in the link surgery spectral sequence.

We can use these descriptions of †.S/ to understand the rational grading change for
any homotopy class of polygons occurring the spectral sequence X.D/. First, taking
all the four-dimensional 2–handles together, we can describe the cobordism map for
†.S/ using a Heegaard triple .†; f˛ig

g
iD1

; fˇig
g
iD1

; f
ig
g
iD1

/ [10] where:

(1) ˇ1; : : : ; ˇC are framings for solid tori corresponding to those from the 0–
resolution double branched cover.

(2) 
1; : : : ; 
C are the framings of the tori that correspond to the 1–resolution double
branched cover.

(3) ˇi ' 
i for all i � C C 1.

(4) .†; fˇig
g
iD1

; f
ig
g
iD1

/ Š #n S1 � S2 , which in bCF has a unique generator,
corresponding to a single intersection point in the Floer chain complex, which is
closed and will generate bHF as an

V
H1 –module. This generator in bCF will

be denoted ‚C .

We will only be concerned with the case where

.†; f˛ig
g
iD1

; fˇig
g
iD1

/ and .†; f˛ig
g
iD1

; f
ig
g
iD1

/

also represent connect sums of S1 � S2 ’s. Given any generators x 2 T˛ \Tˇ and
y 2 T˛ \T
 representing the torsion structures, there is a homotopy class of triangles
 in  2.x; ‚C; y/ with nz. /D 0 due to the topological description of †.S/ above.
Furthermore, any two such classes differ only by doubly periodic domains. Using
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the grading change formula in [10], restricted to the y–theory, and the calculation in
equation (1) we have:

grQ.y/� grQ.x/D��. /�
C

2

for any such  .

We can use these homotopy classes to construct homotopy classes of higher polygons.
From  , we can create a homotopy class of quadrilaterals on�

†; f˛ig
g
iD1

; fˇig
g
iD1

; f�ig
g
iD1

; f
ig
g
iD1

�
where �i is a small Hamiltonian isotope of ˇi , except when i D 1, where �1 is
a small Hamiltonian isotope of 
1 . In effect, we will do the first surgery alone,
and then all the others simultaneously. There is a homotopy class of triangles in�
†; fˇig

g
iD1

; f�ig
g
iD1

; f
ig
g
iD1

�
that represents a class �2.‚

C

ˇ�
; ‚C�
 ; ‚

C

ˇ

/ since the

corresponding cobordism map

yF W bHF
�
fˇig

g
iD1

; f�ig
g
iD1

�
! bHF

�
f�ig

g
iD1

; f
ig
g
iD1

�
is non-trivial (see [10, section 4]). Call this homotopy class  1 . Then  � 1 is a
homotopy class of quadrilaterals in �2.x; ‚Cˇ�; ‚

C
�
 ; y/ and

�. � 1/D �. /C�. 1/C 1D �. /C 1:

We can repeat process for 
2; : : : ; 
C to build a homotopy polygon of the type con-
sidered in the link surgery spectral sequence. Each time we glue in a homotopy class
of triangles from a non-zero cobordism map, and thus construct a homotopy polygon
with one more edge and � incremented by one. Consequently, when we perform all
C –surgeries we will obtain a homotopy C C 2–gon in

�2.x; ‚Cˇ�1 ; : : : ; ‚
C

�C�1

; y/

with �D �. /CC � 1.

In the surgery spectral sequence, we care only about such polygons with �D 0. To
obtain such a polygon from our construction we need �. /D 1�C . Consequently,
for any pair of generators joined by a �D 0 homotopy class of higher polygons, as
occurs for non-zero higher differentials in X.D/, we have:

grQ.y/� grQ.x/D��. /�
C

2
D�1C

C

2

However, given the special topology of †.S/ we knot that all other polygons represent-
ing the same Spinc structure, and joining the same endpoints in the chain complex, differ
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only by doubly periodic domains. The doubly periodic domains in any boundary each
have �D 0, since we have torsion Spinc structures on each boundary. Consequently,
every homotopy n–gon with �D 0 will differ from the one constructed above by such
doubly periodic domains, and thus still have the same change in grading. Finally, the
only Spinc structure on †.S/ restricting to the torsion structures on the boundary is
the torsion one, so every homotopy class of polygon used in the complex X.D/ arises
from the construction above, after adding doubly periodic domains.

Put another way, the calculation above is a homotopy-based calculation, so for any x
and y joined by a homotopy n–gon, we can add doubly periodic domains to obtain an
n–gon homotopic to one constructed by the gluing procedure. We can then conclude
that the grading difference is as stated. Note that we have relied heavily on the fact that
H2.X IZ/ is generated by boundary classes, otherwise we would need to include more
Spinc structures for which c2

1
might not be zero. These additional Spinc structured do

occur for diagrams of non-alternating links.

9 Knot Floer results for alternating branch loci

We now explore the implications of the previous sections for knot Floer homology. First,
we define some notation. Let L be a link in A� I admitting a connected, alternating
projection to A. According to [13], the Heegaard Floer homology of †.L; s/ is
congruent to F for each of the Spinc structures on †.L/. For a Spinc structure s and
a null-homologous knot K �†.L/, define

�.K; s/Dmin
s2Z

˚
sW bHF .Fs; s/

i�
�! bHF .†.L/; s/ is nontrivial

	
where Fs is the sub-complex of generators with filtration index less than or equal to s .
Using the results of the previous sections and Lemma 5.4 we can prove Theorem 1.2:

Theorem 9.1 Let L be a non-split alternating link in A� I intersecting the spanning
disc for B in an odd number of points. Then for each k there is an isomorphism

1HFK
�
�†.L/ #2

�
S1
�S2

�
; zB # B.0; 0/; k

�
Š

M
i;j2Z

H iIj ;2k.L/

where, for each Spinc structure, the elements on the right side all have the same absolute
Z=2Z–grading. Together these isomorphisms induce a filtered quasi-isomorphism
from the E2 –page of the knot Floer homology spectral sequence to that of the skein
homology spectral sequence. Thus the knot Floer spectral sequence collapses after two
steps. Furthermore, for any s 2 Spinc.†.L// we have that

�. zB; s/D 0
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where zB is considered in †.L/.

The content of this theorem is that all the knots zB have the same knot Floer properties
as alternating knots in S3 , and their knot Floer homology (over all Spinc structures) is
determined by the skein homology, and the Göritz matrix of L, when applicable. The
last is used to calculate the signature, through a formula of C Gordon and R Litherland,
and the Heegaard Floer invariants, d.s/, for s 2 Spinc.�†.L// [13], which determine
the precise absolute grading for the homology groups. However, it seems difficult to
recover data about individual Spinc structures from the Khovanov formalism.

Proof of Theorem 1.2 We have established that there is a spectral sequence starting
at the right side of the isomorphism and converging to the left side. The right side is the
E2 –page of this spectral sequence for the homological filtration. The higher pages are
computed using maps between resolutions, R1 and R2 differing in at least two positions.
Thus the maps will necessarily increase I –grading by the number of crossings where
the resolutions differ, N . However, the pair R1 and R2 determine an alternating
diagram (by leaving the crossings where they differ alone) to which the results of the
previous section can be applied. By the absolute rational grading calculation in the
preceding section, the homotopy classes of polygons with �D 0, and thus potentially
giving rise to higher differentials, change the q–grading by 2.�1C N

2
/CN , where (1)

we multiply by two to change from absolute grading on bHF .YI / into q–gradings and
(2) perform the obligatory shift of the q–grading by N since the I –grading has also
increased. As a result, for any polygon used in the differential, the grading change is

I �! I CN

J �! J C 2N � 2

where N is the number of crossings where the corresponding resolutions are different.

Let ı D J � 2I . Then ı changes by �2 for all relevant homotopy classes. Note that
the Khovanov differential, which corresponds to N D 1 as described below, also alters
ı by �2.

We can compute the spectral sequence from the reduced Khovanov homology to
bHF .†.L// in the following manner. First, compute the E1 –page in the spectral
sequence by reducing those differentials with .I;J / change of .0; 0/. This yields the
standard Khovanov complex on the E1 –page, and the higher differentials retain the
grading shifts described above. The differential on the E1 –page consists only of the
Khovanov .1; 0/–differentials (corresponding to N D 1) and reducing them yields the
Khovanov homology at E2 . Furthermore, when we cancel the .1; 0/–differentials,
we cancel differentials with ı–shift of �2, and thus all potential higher differentials
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continue to change the ı–grading by �2. However, by Lee’s theorem [8], in the
reduced Khovanov complex for an alternating knot or link, there is a constant C for
which all the generators lie on diagonals J �2I D C . Thus the E2 –page is supported
in a single grading. Together these results imply that all the higher differentials are
trivial, and the spectral sequence collapses at E2 .

If we consider the spectral sequence for a projection into the annulus, we have E2 –
page equal to the Khovanov skein homology. For the Khovanov skein homology
we have a relationship of the form K � J C 2I D C , even after adding several
non-trivial unlinked circles to the projection. For now we will write the gradings on
the complex X.D/ as .k; ı/, where the second entry is the ı–grading above. Each
of the differentials in the complex X.D/ used to compute bHF .†.L// will change
this pair by .�k;�2/, from the argument above. Furthermore, �k � 0 since the
higher differentials are filtered by zB . Consequently, since at E2 we have K� ı D C

for some constant, after a higher differential we will have a generator for which
K � ı D C C�k � 2 < C . Thus, the spectral sequence for each Alexander grading
collapses at the E2 –page, and the only differentials showing up in the spectral sequence
from

L 1HFK .†.L/; zB; k/)bHF .†.L// must occur before the E2 –page. With the
preceding paragraph this implies that the spectral sequence is modeled on the spectral
sequence from the reduced skein homology to the reduced Khovanov homology.

We now consider the spectral sequence from the knot Floer homology to the Heegaard
Floer homology. The spectral sequence on the reduced skein homology induced by the
Alexander filtration also collapses at its E2 –term. Following the above, after reducing
the Khovanov skein homology differentials, the remaining portion of the Khovanov
differential preserves j , but increases i by 1. Since k � j C 2i D �.L/ for any
non-zero summand of the Khovanov skein homology, any non-trivial entry in these
higher differentials changes k by �2. Canceling these yields the Khovanov homology.
At that stage we recover bHF .�†.L//, as the reduced Khovanov homology has total
rank given by det.L/. By Lemma 5.4, the spectral sequence on the Khovanov skein
homology is quasi-isomorphic to that on the knot Floer homology of zB # B.0; 0/ in
�†.L/. This allows us to draw the conclusion concerning � . Namely, the Heegaard
Floer homology of �†.L/ #2 .S1 � S2/ will have the form zH ˝ V ˝2 under the
isomorphism to Khovanov homology, and will lie on the four lines j � 2i D��.L/
(with multiplicity 2) and j � 2i D��.L/˙ 2 due to our grading convention for the
marked circle. When we factor out the V ˝2 , we have the reduced homology lying on
k D �.L/C j � 2i D 0. Since there is only one grading in each filtration level in the
knot Floer homology, this implies that

�. zB/D 0:
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We can also derive some information about zB for the branch loci depicted in Figure 1,
regardless of whether L is alternating. In particular, zB � S3 in these cases and:

Lemma 9.2 For zB coming from the branch loci depicted in Figure 1,

�. zB/D�1
2
T .L/:

Proof Add two non-trivial, non-interacting unknots to L and mark one of these. There
is then a spectral sequence converging to the knot Floer homology of zB #2 B.0; 0/

from H�I��.L/˝V . Consider an element in the sub-complex corresponding to knot
filtrations less than or equal to �. zB/� 1 that maps to ‚�� 2 bHF . #2 S1�S2/ under
inclusion of the sub-complex. Then there is a element with k –gradings less than or
equal to 2�. zB/� 2 that survives the spectral sequence to the knot Floer homology.
However, since L is an unknot, ‚�� is the element u�1˝ v� . Therefore, this same
element will survive the spectral sequence from the skein homology to the Khovanov
homology. Hence T .L/� 2� 2�. zB/� 2 and �1

2
T .L/� �. zB/. This is also true for

B whence
�

1
2
T .L/� �. zB/:

Therefore, �1
2
T .L/� �. zB/ as well.

These results hold in slightly greater generality. In the sequel to this paper an argument
is given, which holds for a broader class of links, similar to the quasi-alternating links
of [13]. This is the smallest subset of links in A�I , denoted Q0 , with the property that:

(1) The alternating, twisted unknots, linking B an odd number of times, are in Q0 .
(2) If L�A� I is a link admitting a connected projection to A, with a crossing

such that
� the two resolutions of this crossing, L0 and L1 , are in Q0 and are connected

in A, and
� det.L/D det.L0/C det.L1/,

then L is in Q0

The alternating L used above are in Q0 , and the elements of Q0 when considered in S3

are all quasi-alternating as in [13]. For this class of links Wehrli’s algorithm terminates
at the base cases of our induction, from which the conclusion in the theorem can be
drawn. For braids in Q0 we can be more precise about Plamenevskaya’s element:

Corollary 9.3 Let L be in Q0 . If the element z vanishes in the reduced Khovanov
homology, then c.�/D 0.
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Proof This corollary follows from the non-vanishing result in Section 8 since the
spectral sequence for X2�2g=X�2g collapses according to Theorem 1.2. However we
need to verify that z is zero in Kh1�g . The only difficulty arises if there is a � whose
Khovanov differential is z and � D

P
�i where �i is in ‰–filtration level 2i . Since

the Khovanov differential reduces ‰ by at most 2, this requires the i indices to range
from 1� g to l , and for there to be a summand for each index in the range. As we
collapse the complex along differentials preserving the ‰–filtration level, the complex
stabilizes at E2 , and the structure described above yields a differential from �l to z .
However, we know that at E2 , k� j C2i D �.L/, and �l and z must have the same
j value since they are linked by Khovanov differentials. In addition, the change in i

is an increase of 1 from �l to z . This implies that k must decrease by 2, and thus
l D 1�g as required.

10 Examples

B L1 B

L2

Figure 7: The diagram for Example 1 is on the left; that for Example 2 is on
the right.

Example 0 Let L be a non-split alternating link and suppose B is a meridian of one of
the components. Then zB is an unknot in �†.L/ since the spanning disc lifts to a disc.
Mark the link as above, then the reduced skein homology after the final shifting agrees
with the reduced Khovanov homology. On the other hand, the knot Floer homology
of this unknot is just bHF .�†.L// in filtration level 0. The equivalence of these two
groups is a consequence of [13]. In this sense, Theorem 1.2 is a generalization of the
result in [13].

Example 1 See Figure 7 for the diagram. Here L is an unknot in S3 , so zB is a knot
in S3 as well. Untwisting and taking the branched double cover (or using symmetry
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between the two components) shows that zB is the knot:

This is the alternating knot, 61 , with signature equal to 0. The main result in [9]
now verifies the knot Floer conclusions of Theorem 1.2. Furthermore, the Alexander
polynomial is �2 T �1C 5� 2 T . We content ourselves with a direct verification of
the rank of the highest filtration level. Only resolutions with three non-trivial circles
contribute to this level. These resolutions and the associated generators are:

1

2

3 010

001

�C˝ �C˝ �C

�C˝ �C˝ �C

011

�C˝ �C˝ �C˝W

The maps from 010 and 001 to 011 both take vC˝vC˝vC to vC˝vC˝vC˝w� ,
and thus their sum is closed, as is vC˝ vC˝ vC˝wC . The latter is two q–gradings
above the former closed element, but it also has one more 1–resolution. Shifting q

down by 2 decreases the homological grading by 1 when identifying with knot Floer
homology. Thus, these generators are in the same grading in the knot Floer complex.
This confirms Theorem 1.2 for the highest filtration level (modulo some shifting).

Example 2 See Figure 7 for the diagram. Here L is the figure 8 knot, 41 , whose
branched double cover is L.5; 2/. In this arrangement, zB is a genus 1 fibered knot in
L.5; 2/. The possibilities for such a knot are strictly limited, since there is only a Z
in filtration levels ˙1. The real content of the theorem here is that �. zB/D 0, as this
implies that there is one Spinc structure where the knot Floer homology is that of 41 .
We give a non genus 1 example later.

The monodromy for this knot is .
1

�1
2
/2 where 
i is a positive Dehn twist around

a standard symplectic basis element for H1.T
2 �D2/. The monodromy action on
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H1 and the Alexander polynomial associated to the Z–covering from the fibering are
computed to be

AD

�
2 3

3 5

�
H) det.I � tA/

:
D� zB.t/D�T �1

C 7�T 1

where we have symmetrized and normalized det.I�tA/. We can compute the skein ho-
mology directly, but instead we use the theory to compute it from the Euler characteristic
polynomial V .�1; q;x/. The polynomial satisfies:

V .�1; q;x/=.qxC q�1x�1/D q�4
C q4

� 2 q�2
� 2 q2

C q2x2
C 1C q�2x�2

From our conventions, we should add two non-trivial strands, and at the end factor out
V ˝2 to get to the knot Floer homology. However, adding a marked non-trivial circle
and a non-trivial circle amounts to multiplying qx.qxC q�1x�1/V .t; q;x/, so it will
equal the above after shifting and removing V ˝2 .

Since the signature of 41 is zero, we can use k�j C2i D 0 and the form xkqj in the
polynomial above to compute the i –grading. This gives the following diagram, where
the coordinates are on the .j ; k/–axes and the subscripts are the values of i .

�3

�2

�1

0

C1

C2

C3

C4

�3 �2 �1 0 C1 C2 C3 C4

F�2 F2
�1

F0 F2
1

F2

F0

F0

Note that if we shift the elements to j D 0, decreasing i by 1 each time j decreases
by 2, every group in the same horizontal row shifts to the same grading. Note also that
the ranks after shifting horizontally reflect the coefficients of the Alexander polynomial;
and, up to a minus sign, the Z=2Z–gradings are correct. Furthermore, if we consider
the ‰–filtration, in the E1–page of the spectral sequence there will be five terms on
the k D 0 horizontal line, corresponding to the five Spinc structures on L.5; 2/. All
that remains is to identify which generators correspond to which Spinc structure and
then use the Göritz matrix for 41 to complete the absolute grading calculations. To

Geometry & Topology, Volume 17 (2013)



460 Lawrence P Roberts

do this we should use the more refined torsion, L�.Y �K/, in our Euler characteristic
computations [6]. We complete this argument in the sequel to this paper. Comparing
the two will show that the Z=2Z–gradings from the knot Floer homology correspond
to those from the skein homology. However, the correspondence only occurs when we
add over all Spinc structures and all q–gradings.

Appendix A: Homological algebra

All coefficients are taken in F2 , hence the difference from the usual signs. However,
everything can be adapted to work with coefficients in Z.

Let .A;A/ and .B;B/ be filtered differential modules. Let f W A ! B be a fil-
tered chain map. Then the mapping cone M.f / inherits a filtration by declaring
Mi D Ai ˚Bi . That the differential preserves this filtration follows from f being
filtered. When undeclared, a filtration on a mapping cone complex will come from this
construction. The definitions imply that E1.M/ŠMC.E1.f //.

A filtered chain map f will be a 1–quasi-isomorphism if it induces an isomorphism
between the E1 –pages of the spectral sequences for the source and the target. For the
morphism of spectral sequences induced by f , in which the induced maps intertwine
the differentials on each page, this implies that all the higher pages, Er , are quasi-
isomorphic by the induced map, Er .f /. This is probably weaker than f being a
filtered chain isomorphism, but enough for spectral sequence computations.

Let f.Ai ;Ai/g
1
iD0

be a set of filtered chain complexes with each filtration Ai being
bounded and ascending:

Ai W f0g DA
ni

i � � � � �A
j
i �A

jC1
i � � � � �A

Ni

i ŠAi

Let ffi W Ai!AiC1g be a set of chain maps satisfying:

(1) fi is a filtered map for each i .

(2) fiC1 ıfi is filtered chain homotopic to 0, ie, there is a filtered map

Hi W Ai!AiC2

such that fiC1 ıfi D @iC2 ıHi CHi ı @i .

(3) fiC2 ıHi CHiC1 ıfi W Ai!AiC3 is a 1–quasi-isomorphism.
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In this setting we have the lemma, following [13],

Lemma A.1 The mapping cone MC.f2/ is 1–quasi-isomorphic to A4 .

Proof The hypotheses above guarantee that the maps in the proof of lemma 4.4 of
[13] are filtered maps. We need only check the filtering condition for maps in and
out of the mapping cone, but with the aforementioned convention these are clearly
filtered. In particular the map  i D fiC2ıHiCHiC1ıfi is a 1–quasi-isomorphism by
assumption, and the same argument as in [13] implies that ˛2 is a quasi-isomorphism
that is also filtered. This is not quite enough to conclude, but it does ensure that ˛i

induces maps at each page in the spectral sequence.

The module Gr.Ai/ Š
L

j2ZA
j
i =A

j�1
i inherits a differential which maps the j th –

graded component to itself, whose homology provides E1 . The maps fi induce
chain maps between these complexes for each grading level. Indeed each of the
maps  i ;Hi ; fi , etc, likewise induce such maps. Compositions such as fiC1 ıHi

induce maps on the graded components which are the same as the compositions for the
maps induced from fiC1 and Hi separately. Thus for each j , we have the situation
in the lemma in [13] applied solely to the j th –graded component. Applying the
lemma in each grading guarantees that the map induced in that grading by ˛2 is a
quasi-isomorphism, ie, that the induced map on the E1 –page is an isomorphism of
spectral sequences. Thus, ˛2 induces an isomorphism from the E1 –page for A4 to
MC.E1.f2//ŠE1.MC.f2//, which is the desired result.

As in [13], we can reinterpret this as a result on iterated mapping cones. Let M D

MC.f1; f2; f3/ be the filtered chain complex on A1˚A2˚A3 , filtered by

A
j
1
˚A

j
2
˚A

j
3
;

and equipped with the differential 0@ @1 0 0

f1 @2 0

H1 f2 @3

1A
That this is a differential is a consequence of the assumptions made before the lemma.
The lemma then implies that the induced spectral sequence on the iterated mapping
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cone collapses at the E1 –term. This follows according to the following diagram:

0 0 0

0 A
j
3
=A

j�1
3

M j=M j�1 MCj .f1/=MCj�1.f1/ 0

0 A
j
3 A

j�1
1
˚A

j
2
˚A

j
3

A
j
1
˚A

j
2 0

0 A
j�1
3

A
j�1
1
˚A

j�1
2
˚A

j�1
3

A
j�1
1
˚A

j�1
2

0

0 0 0

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

.................................................................................................... ............

.......................................................................................................................................... ............

........................................................................................................................... ............

...................................................................................................................................................... ............

.............................................................................................................................................................. ............

................................................................................................................... ............

.............................................................................. ............

........................................................................................................................... ............

.................................................................... ............

............................ ............

....................................................................................................... ............

........................................................................... ............

where the top two rows are exact, and all the columns are exact. The nine lemma
now guarantees that the bottom row is exact, and each of the maps is a chain map. In
the long exact sequence from the bottom row, there is one map guaranteed to be an
isomorphism by the lemma. Consequently, the groups in E1.M / are trivial.

Appendix B: The structure of twisted unknots

First let:

� L be a knot or link in A� Œ0; 1� where AD fzj1< jzj< 2g.

� D be the a generic diagram for the projection of L along Œ0; 1� in A�R2 .

� �D be the 4–valent graph in A found by stripping the crossing data from D .

If c is a crossing for D , then D0.c/, D1.c/ are the 0=1–resolutions of the diagram
D at c . By an isotopy of a diagram we mean an isotopy in A of the graph �D that
does not change the combinatorial structure of the graph, and thus allows us to carry
along the crossing data in D .

Proposition B.1 Let D be a diagram such that:

(1) �D is connected.

(2) Either �D0.c/ or �D1.c/ is disconnected for each crossing c in D .
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Then in R2 , D can be simplified to a standard unknot diagram using only diagram
isotopies and the first Reidemeister move. In A, D can be simplified using diagram
isotopies and the first Reidemeister move to a diagram in A which differs from one of
those depicted in Figure 1 only by second Reidemeister moves in the horizontal twisted
bands.

First, we establish some conventions. Since �D � A we can checkerboard color
.R2; �D/ with the region jzj< 1 being black, and consider D to be in R2 . To recover
information about the embedding in A we will keep this black region fixed. Let BD

be the black Tait graph, ie, the planar graph whose vertices are the black regions with
edges joining regions which abut at a crossing. The region containing jzj< 1 will be
a root for BL , which will not participate in any simplification due to Reidemeister
moves. We will sometimes think of BL as embedded in A with each vertex lying in
the black region corresponding to it, and each edge passing through the corresponding
crossing.

Given a finite planar graph, � , with at least one vertex, call the components of R2n�

the regions of � . Each region comes with a canonical embedding in R2 . We can thus
take the closure of a region, R, in R2 , which we denote by R. We define the set of
discs of � to be

D.�/D
˚
D �R2

ˇ̌
D ŠD2;D D

S
i2I

Ri

	
where D2 is the closed unit disc, and fRi j i 2I

	
is a finite subset of regions for � . Thus

elements of D.�/ are those discs in R2 formed by taking unions of closures of regions.
Note that the boundary of D is a loop in � , without backtracking, since the regions
are taken to be closed. We give a partial order to this set: D1 � D2() D1 � D2 .
We also note that if �1 � �2 , as graphs, then D.�1/�D.�2/.

We can divide D.�/ into two subsets D1 [D�2 . D1 consists of those discs with
one or fewer vertices of � in its boundary. D�2 consists of all the others. Note that
the boundary of an element of D.�/ is in � . So a disc for � with no vertices in its
boundary would imply that � is either disconnected or a loop with no vertices. Since
we assume � is connected with at least one vertex every disc in D1 has a boundary
consisting of a self-loop, a single edge joining a vertex to itself. Furthermore, if we
take a subgraph of � , discs may switch from D�2 to D1 , but not vice-versa.

For future use, note that two discs in D1 intersect if and only if one is a proper subset
of the other or they intersect only at a shared vertex. We can see this by noting that the
boundary of one is a circle, and so cannot be contained in the boundary of the other,
unless they are equal. Since the circle bounds only one disc in R2 , this would imply
the discs are equal. However, if the discs intersect, then the boundary of one must
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intersect the boundary of the other, or one must be strictly contained in the other. The
boundaries can only intersect if they share the same vertex.

For a rooted planar graph, � , define � 0 to be the graph resulting from deleting the
self-loops. This is still planar, and the vertices and other edges are assumed to be
unchanged. Let � 00 be the result of removing from � 0 all the edges e such that � 0ne
is disconnected, then deleting all the non-root vertices which abut no edges. Each disc
in D�2.�/ corresponds to a unique disc in D.� 00/.

Proof of Proposition B.1 Let D be as in the proposition. Then BD is connected
since �D is connected: for two vertices of BD we can construct a path between them
by first considering BD �A as above. Then we start with a path from v1 to �D lying
entirely in the black region corresponding to v1 , followed by a path in �D to a point in
the boundary of the region corresponding to v2 , followed by a path to v2 contained in
that black region. Away from crossings, we may push this path entirely into the black
regions, and passing through crossings. Reading off the regions the path goes through
interleaved with the crossings the path goes through provides a path in BD from v1 to
v2 . Reversing the process gives shows that �D is connected when BD is connected.

BD always has a vertex, the root, and an edge, unless D is the standard unknot diagram.
The assumptions in the proposition require D�2.BD/ D ∅. If not, we may use the
partial order on D�2 to find a smallest such disc. The interior of this disc can only
intersect BD in trees with self-loops. The boundary of this disc contains more than one
vertex, and thus two or more edges which have distinct endpoints. Each of these edges
corresponds to a crossing in D . If we pick the crossing, c , corresponding to one of
these edges, then D0.c/ and D1.c/ are both connected. One resolution corresponds to
collapsing the edge in BD and the other corresponds to deleting the edge (depending
on the type of crossing), but in either case BD remains connected since the edge is part
of a cycle in BD . Consequently, B00

D
is just the root vertex, since any edge remaining

in B00
D

would participate in a cycle which bounded a disc.

Working backwards, BD is a rooted tree with self-loops attached, with more than one
edge. In A, we apply the following two lemmas to subsets homeomorphic to D2 (no
longer necessarily members of D.D/). � is taken to be a subgraph of BD contained
in D2 with a vertex on the boundary of D2 , for instance along a branch of the tree.

Lemma B.2 Suppose � �D2 with its root on @D2 and otherwise contained in the
interior of the disc. Suppose � is connected, and � 00 is just the root. Either � is just
the root or in D2 there is a sub-disc, zD , whose intersection with � consists solely in
either (1) an edge with two vertices, one in the interior of zD , the other on its boundary
(possibly the root), or (2) a vertex on @ zD and a self-loop in the interior of zD .
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Proof Assume that there are no subdiscs of type (2). If � is not just the root there must
be a vertex or edge in the interior of D2 . Since � 00 is just the root, D.�/DD1.�/. If
D1.�/¤∅, choose an element, zD0 , which is minimal in the partial order. This disc has
boundary given by a vertex, v , and a self-loop. Since there are no regions of type (2),
� must intersect the interior of this disc (or we could enlarge it slightly to obtain a
region of type (2)). We now restrict to this smaller disc, taking �D � \ .int. zD0/[ v/.
� cannot have any self-loops, as these would generate elements of D1.�/ that are
smaller in the partial order. Therefore, � is a tree with at least one edge. Thus �
has a leaf edge. A small neighborhood of this edge, not passing through the terminal
vertex, but passing through the other vertices, will provide a region of type (1) in the
proposition.

Lemma B.3 If D is a diagram in R2 and there is a disc zD �R2 intersecting BD as
in the conclusion of the previous lemma, then we can reduce D in zD using only the
first Reidemeister move.

Proof Let � D zD \ BD , rooted at the single vertex on the boundary of zD . The
assumption is that � 00 is just this root. In the corresponding portion of D a leaf vertex,
without a self-loop, corresponds to an RI–move. We perform all such moves iteratively
until we arrive at a diagram without any more. By the preceding lemma this is either
just the root, or there are now self-loops. These correspond to RI–moves as well.
Adding a leaf corresponds to an RI–move that extends the black regions, whereas a
self-loop bounding a disc corresponds to an RI–move that extends the white regions.
Thus we can continue using RI–moves to reduce the diagram. The preceding lemma
continues to apply to each successive diagram and its black graph until all that remains
is the root, which corresponds to the sole black region not contained in the interior
of zD .

Summarizing, the terminal state of Wehrli’s algorithm gives a diagram D such that
B00

D
D frootg. Inside the annulus A, any self-loop bounding a disc not containing the

root corresponds to an allowable RI–move, as does any leaf, using the lemmas above.
If we apply such a move to D , we obtain a new diagram D1 with BD1

equal to BD

minus a leaf edge and vertex, or a self-loop. In particular, B00
D1
D∅. We can proceed,

therefore, until BD no longer has any leaf edges, or self-loops bounding a disc in A.
All self-loops must bound a disc containing the root, therefore the discs in D1 form
a chain in the partial order, with the smallest containing fz j jzj< 1g. If we take two
consecutive self-loops, they cobound an annulus, which BD intersects in a contractible
graph with a vertex on each boundary. Since this graph also does not have any leaf
edges, it must be a linear graph, with some number of vertices in between the two
boundary vertices.
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Thus, BD must have the following form: it starts at the root, is followed by n1 � 0

vertices without self-loops, a vertex with s1 > 1 self-loops, then n2 � 0 vertices
without self-loops, and a vertex with s2 self-loops, : : : This terminates at a vertex
with sk self-loops (otherwise it is a leaf). When we put in the crossing data to return
to D , we obtain a diagram which is almost isotopic to one of the twisted unknots in
Figure 1. However, if two consecutive edges abutting the same vertex (self-loops or
not) correspond to crossings of different handedness, we will need an RII–move to
obtain the monotonicity of the twisting regions. After performing some isotopies of
the diagram, and a finite number of RII–moves we arrive at a diagram as in the figure.
Of course, if we are considering the diagram in R2 we do not need the RII–moves,
as we can start at the root, which is a leaf vertex, and simplify from there using only
RI–moves.
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