Volume 17, issue 1 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Cubic differentials and finite volume convex projective surfaces

Yves Benoist and Dominique Hulin

Geometry & Topology 17 (2013) 595–620
Abstract

We prove that there exists a natural bijection between the set of finite volume oriented convex projective surfaces with nonabelian fundamental group and the set of finite volume hyperbolic Riemann surfaces endowed with a holomorphic cubic differential with poles of order at most 2 at the cusps.

Keywords
affine spheres, convex projective surfaces, Teichmüller spaces, cubic differentials, Monge-Ampère equations
Mathematical Subject Classification 2010
Primary: 30F30, 35J96, 53A15, 57M50, 53C56
References
Publication
Received: 12 May 2012
Accepted: 10 November 2012
Published: 8 April 2013
Proposed: Danny Calegari
Seconded: Jean-Pierre Otal, Benson Farb
Authors
Yves Benoist
Département de Mathématiques
Université Paris-Sud
Bâtiment 425
Faculté des Sciences d’Orsay
91405 Orsay Cedex
France
http://www.math.u-psud.fr/~benoist
Dominique Hulin
Département de Mathématiques
Université Paris-Sud
Bâtiment 425
Faculté des Sciences d’Orsay
91405 Orsay Cedex
France