Volume 17, issue 2 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A universal characterization of higher algebraic $K\mkern-4mu$–theory

Andrew J Blumberg, David Gepner and Gonçalo Tabuada

Geometry & Topology 17 (2013) 733–838
Bibliography
1 J Adámek, J Rosický, Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser. 189, Cambridge Univ. Press (1994) MR1294136
2 C Barwick, On the algebraic $K$–theory of higher categories, I. The universal property of Waldhausen ${K}$–theory arXiv:1204.3607
3 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010) 245 MR2771591
4 C Barwick, D M Kan, Relative categories: another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 MR2877401
5 H Bass, Algebraic $K$–theory, W A Benjamin (1968) MR0249491
6 D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 MR2669705
7 J E Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043 MR2276611
8 J E Bergner, A survey of $(\infty,1)$–categories, from: "Towards higher categories" (editors J C Baez, J P May), IMA Vol. Math. Appl. 152, Springer (2010) 69 MR2664620
9 A J Blumberg, D Gepner, G Tabuada, Uniqueness of the multiplicative cyclotomic trace arXiv:1103.3923
10 A J Blumberg, M A Mandell, Localization for ${THH}(ku)$ and the topological Hochschild and cyclic homology of Waldhausen categories arXiv:1111.4003
11 A J Blumberg, M A Mandell, The localization sequence for the algebraic $K$–theory of topological $K$–theory, Acta Math. 200 (2008) 155 MR2413133
12 A J Blumberg, M A Mandell, Algebraic $K$–theory and abstract homotopy theory, Adv. Math. 226 (2011) 3760
13 A J Blumberg, M A Mandell, Derived Koszul duality and involutions in the algebraic $K$–theory of spaces, J. Topol. 4 (2011) 327 MR2805994
14 A J Blumberg, M A Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012) 1053 MR2928988
15 J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer (1973) MR0420609
16 M Bökstedt, Topological Hochschild homology, preprint
17 M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465 MR1202133
18 A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133 MR0380779
19 D C Cisinski, Invariance de la $K$–théorie par équivalences dérivées, J. $K$–Theory 6 (2010) 505 MR2746284
20 D C Cisinski, G Tabuada, Non-connective $K$–theory via universal invariants, Compos. Math. 147 (2011) 1281 MR2822869
21 D C Cisinski, G Tabuada, Symmetric monoidal structure on non-commutative motives, J. $K$–Theory 9 (2012) 201 MR2922389
22 G Cortiñas, A Thom, Bivariant algebraic $K$–theory, J. Reine Angew. Math. 610 (2007) 71 MR2359851
23 V Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004) 643 MR2028075
24 D Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001) 177 MR1870516
25 D Dugger, D I Spivak, Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11 (2011) 263
26 B I Dundas, Relative $K$–theory and topological cyclic homology, Acta Math. 179 (1997) 223 MR1607556
27 W G Dwyer, D M Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 MR578563
28 W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267 MR579087
29 W G Dwyer, D M Kan, Equivalences between homotopy theories of diagrams, from: "Algebraic topology and algebraic $K$–theory" (editor W Browder), Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 180 MR921478
30 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monographs 47, Amer. Math. Soc. (1997) MR1417719
31 Z Fiedorowicz, R Schwänzl, R Steiner, R Vogt, Nonconnective delooping of $K$–theory of an $A_\infty$ ring space, Math. Z. 203 (1990) 43 MR1030707
32 T Geisser, L Hesselholt, Topological cyclic homology of schemes, from: "Algebraic $K$–theory" (editors W Raskind, C Weibel), Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 41 MR1743237
33 T Geisser, L Hesselholt, On relative and bi-relative algebraic $K$–theory of rings of finite characteristic, J. Amer. Math. Soc. 24 (2011) 29
34 P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser (1999) MR1711612
35 T G Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985) 187 MR793184
36 L Hesselholt, Witt vectors of non-commutative rings and topological cyclic homology, Acta Math. 178 (1997) 109 MR1448712
37 L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1 MR1998478
38 N Higson, A characterization of $KK$–theory, Pacific J. Math. 126 (1987) 253 MR869779
39 P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monographs 99, Amer. Math. Soc. (2003) MR1944041
40 A Hirschowitz, C Simpson, Descente pour les $n$–champs arXiv:math/9807049
41 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
42 A Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002) 207 MR1935979
43 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
44 B Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 MR1667558
45 H Krause, On Neeman's well generated triangulated categories, Doc. Math. 6 (2001) 121 MR1836046
46 H Krause, Localization theory for triangulated categories, from: "Triangulated categories" (editors T Holm, P Jørgensen, R Rouquier), London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press (2010) 161 MR2681709
47 J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ. Press (2009) MR2522659
48 J Lurie, Higher algebra, preprint (2012)
49 M Makkai, R Paré, Accessible categories: the foundations of categorical model theory, Contemporary Mathematics 104, Amer. Math. Soc. (1989) MR1031717
50 J P May, $A_{\infty }$ ring spaces and algebraic $K$–theory, from: "Geometric applications of homotopy theory, II" (editors M G Barratt, M E Mahowald), Lecture Notes in Math. 658, Springer (1978) 240 MR513580
51 R McCarthy, On fundamental theorems of algebraic $K$–theory, Topology 32 (1993) 325 MR1217072
52 R McCarthy, The cyclic homology of an exact category, J. Pure Appl. Algebra 93 (1994) 251 MR1275967
53 R McCarthy, Relative algebraic $K$–theory and topological cyclic homology, Acta Math. 179 (1997) 197 MR1607555
54 R Meyer, R Nest, The Baum–Connes conjecture via localisation of categories, Topology 45 (2006) 209 MR2193334
55 F Morel, V Voevodsky, $\mathbf{A}^1$–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45 MR1813224
56 A Neeman, The connection between the $K$–theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 25 (1992) 547 MR1191736
57 A Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton Univ. Press (2001) MR1812507
58 E K Pedersen, C A Weibel, $K$–theory homology of spaces, from: "Algebraic topology" (editors G Carlsson, R L Cohen, H R Miller, D C Ravenel), Lecture Notes in Math. 1370, Springer (1989) 346 MR1000388
59 D Quillen, Higher algebraic $K$–theory. I, from: "Algebraic $K$–theory, I: Higher $K$–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 MR0338129
60 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
61 C Rezk, S Schwede, B Shipley, Simplicial structures on model categories and functors, Amer. J. Math. 123 (2001) 551 MR1833153
62 J Rognes, A spectrum level rank filtration in algebraic $K$–theory, Topology 31 (1992) 813 MR1191383
63 J Rognes, Two-primary algebraic $K$–theory of spaces and related spaces of symmetries of manifolds, from: "Algebraic $K$–theory" (editors W Raskind, C Weibel), Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 213 MR1743242
64 M Schlichting, Negative $K$–theory of derived categories, Math. Z. 253 (2006) 97 MR2206639
65 S Schwede, B Shipley, Stable model categories are categories of modules, Topology 42 (2003) 103 MR1928647
66 C Simpson, A Giraud-type characterization of the simplicial categories associated to closed model categories as $\infty$–pretopoi arXiv:math/9903167
67 R J Steiner, Infinite loop structures on the algebraic $K$–theory of spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981) 85 MR611287
68 G Tabuada, Higher $K$–theory via universal invariants, Duke Math. J. 145 (2008) 121 MR2451292
69 G Tabuada, Homotopy theory of spectral categories, Adv. Math. 221 (2009) 1122 MR2518634
70 G Tabuada, Matrix invariants of spectral categories, Int. Math. Res. Not. 2010 (2010) 2459 MR2669656
71 Z Tamsamani, On non-strict notions of $n$–category and $n$–groupoid via multisimplicial sets arXiv:alg-geom/9512006
72 R W Thomason, T Trobaugh, Higher algebraic $K$–theory of schemes and of derived categories, from: "The Grothendieck Festschrift, Vol. 3" (editors P Cartier, L Illusie, N M Katz, G Laumon, K A Ribet), Progr. Math. 88, Birkhäuser (1990) 247 MR1106918
73 B Toën, The homotopy theory of $dg$–categories and derived Morita theory, Invent. Math. 167 (2007) 615 MR2276263
74 B Toën, G Vezzosi, A remark on $K$–theory and $S$–categories, Topology 43 (2004) 765 MR2061207
75 V Voevodsky, Triangulated categories of motives over a field, from: "Cycles, transfers, and motivic homology theories", Ann. of Math. Stud. 143, Princeton Univ. Press (2000) 188 MR1764202
76 J B Wagoner, Delooping classifying spaces in algebraic $K$–theory, Topology 11 (1972) 349 MR0354816
77 F Waldhausen, Algebraic $K$–theory of topological spaces. II, from: "Algebraic topology" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer (1979) 356 MR561230
78 F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 MR802796