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Parametrized ring-spectra and
the nearby Lagrangian conjecture

THOMAS KRAGH

APPENDIX BY MOHAMMED ABOUZAID

Let L be an embedded closed connected exact Lagrangian submanifold in a connected
cotangent bundle T �N . In this paper we prove that such an embedding is, up to
a finite covering space lift of T �N , a homology equivalence. We prove this by
constructing a fibrant parametrized family of ring spectra FL parametrized by the
manifold N . The homology of FL will be the (twisted) symplectic cohomology
of T �L . The fibrancy property will imply that there is a Serre spectral sequence
converging to the homology of FL . The fiber-wise ring structure combined with the
intersection product on N induces a product on this spectral sequence. This product
structure and its relation to the intersection product on L is then used to obtain the
result. Combining this result with work of Abouzaid we arrive at the conclusion that
L!N is always a homotopy equivalence.

53D12; 55R70, 55T10

1 Introduction

Let N be any closed smooth connected manifold, and let j W L� T �N be a connected
closed exact Lagrangian submanifold. Let � W T �N !N be the obvious projection
and define p D � ı j W L!N . The Nearby Lagrangian Conjecture states that L is
Hamiltonian isotopic to the zero section. In [9], Fukaya, Seidel and Smith introduced
new powerful methods, and there is a good summary of what was known at that time
about this conjecture.

An easy to prove property of exact Lagrangians is that if f W N 0 ! N is a smooth
covering space then the associated pull-back

L0
j 0
//

��

T �N 0

T �f

��

L
j
// T �N
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defines an exact Lagrangian j 0W L0 � T �N 0 . If L0 is not connected, we may make a
choice of connected component. Combining this with the result by Lalonde and Sikorav
[13] that p is always surjective (which also works when N is not closed) one easily
gets that �1.N /=p�.�1.L// is finite. Note that this surjectivity result works when L

is assumed closed but not N , which means that this possibility is in fact excluded. So
the assumption that N is closed is in fact superfluous, but we include it so as not to
cause confusion.

Main Theorem If in addition N is oriented and the induced map p� on fundamental
groups is surjective then the induced map p� on homology is an isomorphism.

To see just how restrictive this is in general we prove a conjecture by Arnold on
the degree of p . This conjecture is stated without the additional assumptions of the
Main Theorem.

Corollary 1.1 The degree of p is nonzero.

Proof Let N be any (possibly nonorientable) smooth connected manifold, and let
L� T �N be as above. By lifting to the finite covering of N associated to the image
p�.�1.L// intersected with the kernel of the first Stiefel–Whitney class of N we get
a lifted exact Lagrangian j 0W L0 � T �N 0 . The actual lift could have 2 connected
components, but as above we let L0 be one of these components. By the definition of
degree (see Epstein [8]) we have that p0D � 0 ıj 0W L0!N 0 has nonzero degree if and
only if p has nonzero degree.

By construction this lift satisfies the assumptions of the Main Theorem and so p0 has
degree one.

We in fact see that the Main Theorem is much stronger because it tells us that up to
a finite lift (and restricting to a component) the map p is a homology equivalence,
and on all further finite lifts it is also a homology equivalence (this is not true for any
homology equivalence so this strengthens the statement).

In the case of vanishing Maslov class and N simply connected Fukaya, Seidel and
Smith proved in [9] that p induces a homology isomorphism. Later in [4], Abouzaid
removed the assumption on N and strengthened this to a homotopy equivalence.
However, the assumption on the Maslov class remained. Only a few, and not very
general, results were known about the nonvanishing case. However, in Appendix E,
Abouzaid uses Corollary 1.2 below to prove that in fact this assumption is always true.
So as Theorem E.2 states we now know that L!N is a homotopy equivalence.
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Corollary 1.2 Lifting L! T �N to the universal cover N 0!N , the Maslov class
of a component L0! T �N 0 vanishes.

Note that the universal cover of N may not be closed and thus L0 may not be closed
either.

Proof Since we have established that some partial lift L00! T �N 00 is a homology
equivalence, we have that in the diagram

�1.L
00/

p�
//

��

�1.N
00/

��

H1.L
00/

p�

Š
//

mL

��

H1.N
00/

xx
Z

the dashed arrow exists, making it commutative. Here the top vertical arrows are the
Abelianization maps, and mL is given by evaluating the Maslov class. This proves that
mL vanishes on the kernel of p�W �1.L

00/! �1.N
00/. So since the Maslov index of

any loop in the cover L0 is the same as the Maslov index of its projection to L, the
corollary follows.

The proof of the Main Theorem uses parts of Viterbo’s transfer map construction in [21],
which we constructed as a map of spectra in [12]. The idea is that the target spectrum,
which represents the (twisted)1 symplectic cohomology of T �L, can be created as a
fibered spectrum FL over the base N and in fact turns out to be fibrant.2 This means
that the homology of the fibers form a local system. It also implies the existence of
a Serre spectral sequence with page 2 given by the homology of N with coefficients
in the homology of the fibers, strongly converging to the homology of FL, ie the
(twisted) symplectic cohomology of T �L. There are also natural product structures on
the fibers (continuous over the base) and when combined with the intersection product
on N we get a product on the spectral sequence. The idea that such a spectral sequence
might exist (and be important) was inspired by a description of a spectral sequence in
[9] by Fukaya, Seidel and Smith.

To construct this fibered spectrum FL we start in Section 2 by introducing finite-
dimensional approximations of the action integral A, which is defined on paths

1“Twisted” is explained in Remark 1.3 and Appendix D.
2Our notion of fibrant is defined in Section 9, but it is close to Serre fibrant.
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 W I ! T �N by

(1) A.
 /D

Z



��H dt:

Here � is the canonical Liouville 1–form given by

�q;p.v/D p.��.v//; q 2N;p 2 T �q N;

and H W T �N !R is a Hamiltonian. We will restrict the class of Hamiltonians that
we will consider. These finite-dimensional approximations are versions of Chaperon’s
broken geodesic approach in [5], which is similar to the generating functions used by
Viterbo in [21]. So, the finite-dimensional approximations will be functions defined
on finite-dimensional manifolds depending on an r 2 N with r � 1 depending on
the Hamiltonian H and other structure. These functions will (when properly handled)
have well-defined Morse homologies, which will equal the (twisted) Floer homology
of A. To define symplectic cohomology one really only needs to consider closed loops
in T �N . However, the fiber over q 2N of our spectrum is constructed by considering
paths starting and ending on the Lagrangian T �q N , ie a different Lagrangian boundary
condition.

There are some difficulties concerning orientations, which we summarize in the fol-
lowing remark. For concreteness (and because this is what we compute with our
spectrum) we describe this in terms of symplectic cohomology. However, the same
difference in orientations is there for the Morse homology of the action and the finite-
dimensional approximations. Indeed, symplectic cohomology is a special case of the
Floer (co)homology associated to a Hamiltonian quadratic at infinity (see Abbondandolo
and Schwarz [1] or Salamon and Weber [18]).

Remark 1.3 When defining symplectic cohomology there are some orientation dis-
crepancies (sign errors) in the literature. To explain this we assume that N and L are
oriented. Until recently it was thought that this implied that the symplectic cohomology
SH�.TN / was isomorphic to H�.ƒN /. Indeed, this was established in [20], [1] and
[18]. There is a slight error in this. The fact is that if the second Stiefel–Whitney class
of N does not vanish on �2.N / this is false. Indeed, in [12] it was proven that Viterbo
functoriality in the case of L� T �N can be realized as a map of Thom-spectra

(2) .ƒN /TN
! .ƒL/TL˚�;

where . � /ˇ denotes Thom-spectrum construction for a bundle ˇ , and � is a virtual bun-
dle, which is not oriented unless the relative Stiefel–Whitney class vanishes on �2.L/

(this last fact is proved in Corollary 7.5 combined with Remark 7.6 and not in [12]). For
the reader mostly concerned with (co)homology this simply means that the homology of
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the target is not the homology of ƒL, but a twisted version of it (basically because the
Thom isomorphism only works for oriented bundles). This is contradictory to previous
results since Viterbo functoriality tells us that symplectic cohomology is natural with
respect to restrictions (as Paul Seidel and Mohammed Abouzaid pointed out to us).
Indeed, this bundle � was thought to be oriented due to the previous results. The
only solution to this problem is that the transgression of the second Stiefel–Whitney
class enters in when defining signs on the differentials of the Floer complex. As a test
Paul Seidel produced a calculation that SH�.T �CP2/ in fact vanishes with rational
coefficients, and this can be explained by it being 2–torsion with Z coefficients, as
one would not previously have expected, but with the correct signs this is the correct
answer. These new signs in the differentials has further been verified by Abouzaid in
[3, Appendix A].

For the purpose of this paper we mention here that for general L � T �N there are
three potentially different orientation choices that seem important in this discussion. We
will for simplicity also assume that L is orientable. The first two are only dependent
on L � T �L and not how it is embedded into T �N . As explained in Appendix D,
different finite-dimensional approximations may give different results.

� As noticed by Viterbo in [21], in the finite-dimensional approximations for
L� T �L, the zero-section does in fact reproduce the loop space homology. Ie,
there is no transgression of the second Stiefel–Whitney class.

� The symplectic cohomology of T �L reproduces the loop space homology
twisted by the canonical transgression of the second Stiefel–Whitney class to
�1.ƒL/, as described by Abouzaid in [3].

� The finite-dimensional approximation of the action provided by DT �L� T �N

gives a potentially third result, which is loop space homology twisted by the
transgression of the relative second Stiefel–Whitney class of L!N transgressed
to �1.ƒL/. This is the homology of the target spectrum in (2) above, and is
also the homology of FL appearing in this paper, and the one used in the main
argument.

The reason for these differences is that the orientation in symplectic homology does
not generally agree with the one defined by finite-dimensional approximations, which
for this purpose can be thought of as depending on a choice of Lagrangian foliation.
This is explained in more detail in Appendix D.

Section 3 and Section 4 define parametrized pseudogradients and parametrized Conley
index theory, which can be thought of as a version of parametrized Morse theory on
noncompact manifolds, which do not suffer from the defect that one actually needs
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the functions to be Morse. And for the finite-dimensional approximations we thus get
parametrized Conley indices over the base N . The fact that we do not need Morse
means that the fibers are defined even in the nongeneric cases.

In Section 5 we relate the finite-dimensional approximations for different r . The relation
can heuristically be thought of as the idea that the fibers of the parametrized Conley
index for r C 1 are given by a reduced suspension of the fibers of the parametrized
Conley index for r . This is not completely true because the fibers may behave slightly
bad due to the nongenericity that we cannot avoid in a parametrized setting. However,
in the end these problems will disappear when considering FL because it is fibrant.

In Section 6 we use the suspension result from Section 5 to construct fibered spectra
over N whose homology (ie, the homology of the total space) will equal the (twisted)
Floer homology associated to the action A. The homologies of the fibers will not form
local systems, ie these fibered spectra will not be fibrant. In fact, we will only see this
special feature for FL because it is defined carefully as a certain limit (see below).
This fibrancy can in fact be generalized to fibered spectra computing the (twisted)
symplectic cohomology of any compact exact sub-Liouville domain in T �N , but we
will not consider this here.

In Section 7 we define FL as a limit when s!1 of the fibered spectra defined in
Section 6 given by a family of Hamiltonians H s; s 2 Œ0;1Œ. This is a refinement of the
idea that symplectic cohomology of DT �L as a symplectic neighborhood of L can be
defined by the limit of Floer homologies for some Hamiltonians that go to infinity on
the complement of DT �L and stay 0 on L. To get all the structure we need – most
importantly fibrancy – we have to be very careful in defining these Hamiltonians, and
this is done in Appendix A.

In Section 8 we construct parallel transport in parametrized Conley indices. We need
this to properly define the continuation maps increasing s (ie, the maps over which we
took the limit) in Section 7 as fibered maps (called ex-maps in the paper) over N . We
also need this at several points later to prove fibrancy and construct other structures
on FL.

In Section 9 and Section 10 we use this parallel transport to construct (stable) homotopy
lifts in FL and prove that the homology of the fibers form a local system and that we
have an associated Serre spectral sequence as mentioned above.

Section 11 through Section 14 concern structures such as products and a careful analysis
of the constant loops on L, which is then related to the spectral sequence. The product
is a generalization of the Chas–Sullivan product (and thus probably related to the
pair of pants products). This product on the spectral sequence can be considered a
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generalization of the product constructed in [6] by Cohen, Jones and Yan. In fact, when
LDN is the zero section we recover their spectral sequence.

All these structures are needed for the main argument, which is carried out in Section 15.
Since this is great motivation for all the structure and is readable without understanding
much of the paper we invite the reader to skip ahead and to read the main argument
before continuing.
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2 Finite-dimensional approximation of the action

In this section we will define smooth functions on finite-dimensional manifolds approx-
imating the action in (1) on the space of paths restricted to:

(1) The free loop space ƒT �N of closed paths in T �N .

(2) The path space �qT �N of paths in T �N starting and ending in the fiber T �q N

over a point q 2N .

In contrast to the infinite-dimensional cases each approximation in case (2) will simply
be the restriction of an approximation in case (1), and so the approximations will be
compatible with each other. Indeed, this is because to approximate the action on closed
loops we in some sense insert discontinuities, which are similar to the one of restricting
the start and end point to a fiber. These approximations will of course depend on a
Hamiltonian H as the action does, but they will also depends on a subdivision ˛ of
the unit interval. In fact they will smoothly depend on the pair .H; ˛/. We will only
need to consider a very restricted class of Hamiltonians. Indeed, we will only consider
Hamiltonians linear at infinity with a slight positive slope.

We fix a Riemannian structure on N once and for all. Throughout the paper let ı0
denote some fixed constant such that 2ı0 is smaller than the injective radius of N

(recall that we assume N to be closed).
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Definition 2.1 The subspace H � C1.T �N;R/ of admissible Hamiltonians is de-
fined by H 2H iff

(3) H.q;p/D �kpkC c when kpk � 1

with c 2R and � 2�0; ı0�.

The slope � is significant since this implies that the Hamiltonian flow outside DT �N

never starts and ends in the same fiber. Indeed, the Hamiltonian flow coinsides with the
geodesic flow with constant speed equal to this slope at infinity (see eg [12, Section 3]).

We let C H
1

denote the supremum of the norm of the covariant derivative (gradient) of
H on the compact set DT �N . Similarly let C H

2
denote the supremum of the norm

of the second order covariant derivative on DT �N . These are both continuous as
functions of H 2H . Note that C H

1
is a bound on the gradient on all of T �N because

of the linearity assumption outside of DT �N .

The Riemannian structure on N provides a canonical vector bundle isomorphism
between the tangent bundle TN and the cotangent bundle T �N . We will without
further warning suppress this isomorphism from the notation. However, we use the
notation T �N to denote the canonical symplectic manifold of dimension 2d , and
we use the notation TN to denote the vector bundle over N . The Riemannian struc-
ture on N induces a Riemannian structure on T �N compatible with the symplectic
structure (see eg [12, Section 3]). We also get induced Riemannian structures on the
manifolds defined below, by considering them submanifolds of the r –fold products
N r and .T �N /r D T �.N r /, respectively. We define the finite-dimensional manifold
approximation to free loops in N by

ƒr N D fEq D .qj /j2Zr
2N r

j dist.qj ; qjC1/ < ı0g:

This is a manifold of dimension rd and we see that its cotangent bundle is

T �ƒr N D f.qj ;pj /j2Zr
2 .T �N /r j dist.qj ; qjC1/ < ı0g:

We will use the notation Ez D .Eq; Ep/ for a point in this space. Compatible with this, we
use the notation zj D .qj ;pj / for a single “coordinate” in T �N .

We define the evaluations Evi W T
�ƒr N !N by Evi.Ez/D qi . We then define

T ��q;r N D Ev�1
0 .q/:

This is the submanifold where q0 is fixed. It is the cotangent bundle above restricted
to the .r � 1/d –dimensional submanifold

�q;r N D fEq 2ƒr N j q0 D qg �ƒr N:
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Obviously it is not the cotangent bundle because we have the extra cotangent vector
p0 , hence the � notation.

The approximations will depend on a subdivision of the interval I D Œ0; 1� into r

subintervals. These are represented by points in the simplex �r�1 defined by

�r�1
D

�
˛ D .˛0; : : : ; ˛r�1/ 2Rr

ˇ̌̌̌
j̨ � 0 8j ;

X
j

j̨ D 1

�
:

The correspondence is such that the length of the j th interval is j̨�1 . We define
the length l of a subdivision ˛ as the longest interval in the subdivision given by
l.˛/Dmaxj j̨ .

Assume that ˛ 2�r�1 is a subdivision and 
 W I ! T �N is a smooth path starting
and ending in the same fiber T �q N . Also assume that k
 0.t/k l.˛/ < ı0 for all t 2 I .
We may then define the ˛–dissection of 
 to be the point

(4) Ez D .zj /j2Zr
2 T �ƒr N given by zj D 


� j�1X
iD0

˛i

�
for j D 0; : : : ; r � 1. The assumption on the length makes the distance dist.zj ; zj�1/

less than ı0 so that this is well-defined. Note that this is well-defined even though the
end points of 
 are far apart because their projection to N is the same. Indeed, this
shows that

dist.qr�1; q0/D dist.qr�1; �.
 .0///D dist.qr�1; �.
 .1///

� dist.zr�1; 
 .1//D dist.
 .1�˛r�1/; 
 .1// < ı0:

We will be ˛–dissecting time-1 flow curves of the Hamiltonian flow of H , so we
assume that

(5) l.˛/C H
1 < ı0:

The converse of dissecting a time-1 flow curve is to start with an “approximated curve”
Ez 2 T �ƒr N and create a piece wise flow curve by defining the j th piece

(6) 
j W Œ0; j̨ �! T �N

to be the Hamiltonian flow curve 
j .t/D 'H
t .zj /D '

H
t .qj ;pj / for all j 2Zr . These

may not fit together to a continuous curve, and the construction of the approximations
of the action is all about fixing this without creating additional critical points, and
retaining that the set of connecting orbits is compact.

Let P
q0

q W TqN ! Tq0N denote the parallel transport induced by the Riemannian
structure of tangent vectors along the unique geodesic when dist.q; q0/ < 2ı0 .
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Because of our assumption in (5), each of the flow pieces 
j are shorter than ı0 . So,
we may for all j 2 Zr define:

T �N

N

T �qjN


j�1


j

"qj

"pj

"qjC1

"pjC1

qj�1

pj�1

q�j

p�j

qj

zp�j

pj

p�
jC1

q�
jC1

qjC1

zp�jC1

pjC1

Figure 1: Broken “geodesics”

.q�j ;p
�
j /D 
j�1. j̨ / zp�j D P

qj
q�
j
.p�/ 2 T �qjN

�qj D exp�1
q�
j
.qj / 2 Tq�

j
N z�qj D P

qj�1

q�
j

.�qj / 2 Tqj�1
N

�pj D pj � zp
�
j P D max

j2Zr

kpjk

These, with the exception of the two last in the right column, are visualized in Figure 1.
Even though all of these depend on ˛;H and Ez , we suppress this from the notation.

We can now define the finite-dimensional approximations. Since we will only be
interested in these when the assumptions of Lemma 2.3 are satisfied, we only define
them in such cases. The assumption in (5) may be obtained by simply assuming that
ı < ı0 in the definition below. However, to get a buffer around the critical points we
assume that ı < ı0=5. So, all the flow curves 
j have length less than ı0=5.

Definition 2.2 For any subdivision ˛ 2�r�1 and any Hamiltonian H 2H such that

l.˛/.C H
1 CC H

2 /� ı;

with ı the constant from Lemma 2.3, we define

Sr W T
�ƒr N !R

by

(7) Sr .Ez/D
X

j2Zr

�Z

j

.��H dt/Cp�j �qj

�
:
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The integration term in each summand of (7) is the action of the flow curve piece.
The second term is the cotangent vector p�j evaluated on the tangent vector �qj and
can be viewed as a way to compensate for the fact that we really should integrate
� over a closed curve. In fact this term is � integrated over the horizontal geodesic
from .q�j ;p

�
j / to .qj ; zp

�
j / (which is the doted line in Figure 1). The integration of �

over the unique line segment connecting .qj ; zp
�
j / to .qj ;pj / (the vertical arrows in

Figure 1) is zero. So, if we so wished we could rewrite Sr as the integration of � over
a closed curve depending on Ez plus

P
j . j̨ H.zj //.

By definition we see that: if for each j 2Zr the curve 
j ends where 
jC1 starts then
Ez is an ˛–dissection of a closed periodic orbit for the Hamiltonian flow of H starting
at z0 2 T �N and the value of Sr is the action of this curve. The following lemma and
corollary are taken from [12].

Lemma 2.3 There are constants K > 0 and 0< ı < ı0=5 independent of r , H 2H ,
and ˛ 2�r�1 such that the assumption

(8) l.˛/.C H
1 CC H

2 /� ı

in Definition 2.2 implies the estimates

krpjSr �z�qjC1
k �

1
4
kz�qjC1

k D
1
4
k�qjC1

k and(9)

krqjSr C �pj k �K max.1;P /.k�qj kCk�qjC1
k/(10)

for all j 2 Zr .

Here rqjSr ˚rpjSr D r.qj ;pj /Sr D rzjSr is the gradient with respect to the j th

factor split into horizontal and vertical vectors.

Corollary 2.4 The critical points of Sr are precisely the ˛–dissections of the 1–
periodic Hamiltonian flow curves of H , and the associated critical value is the action
of this orbit.

Using Lemma 2.3 we can deduce a similar corollary for the approximations restricted
to T ��q;r N , which we denote by

Sq;r D Sr jT ��q;r N :

The proof of this corollary for the restriction is almost identical to the proof of the
above corollary.

Corollary 2.5 The critical points of Sq;r are precisely the ˛–dissections of the time-1
Hamiltonian flow curves of H that start and end in the fiber T �q N , and the associated
critical value is the action of this flow curve.

Geometry & Topology, Volume 17 (2013)



650 Thomas Kragh

Proof The gradient estimates in Lemma 2.3 are the same for the restriction, except
that there is no rq0

Sq;r since q0 is constantly equal to q . So if Ez 2 T ��q;r N is a
critical point we may first use (9) to conclude that �qj D 0 for all j 2 Zr . Then we
use (10) to conclude that all �pj D 0 for j 2 Zr � f0g. This goes both ways so this
is a necessary and sufficient condition to be a critical point. So each 
j ends where

jC1 begins except for 
r�1 , which ends in the fiber over q D q0 . On the other hand
any time-1 flow curve starting and ending over q may be ˛–dissected and produce a
critical point. The critical value is the action by the definition of Sr and the fact that
all the �qj are 0.

3 Pseudogradients and compactness/completeness

In this section we define pseudogradients Xr and Yq;r for the approximations Sr and
Sq;r from Section 2. These will smoothly depend on all parameters (H , ˛ , q ). We will
then prove two important compactness/completeness results for these pseudogradients:

(C1) Their flows exists for all times (future and past).

(C2) The rate of change of Sr when flowing with them is bounded from below by a
positive constant outside a compact set.

These statements are short versions of Lemma 3.6 and Lemma 3.7 below, and combina-
tions of these are very useful. The fact that the pseudogradients Yq;r are the restrictions
of a globally defined vector field Yr is very important, and this Yr is an example of
what we will define as a parametrized pseudogradient (Definition 3.3).

Recall that a pseudogradient for a smooth function f W M !R is a smooth vector field
such that X.f /� 0 and X D 0 only at critical points for f .

To define the pseudogradients we fix once and for all a smooth function �W Œ0; ı0�! I

such that

�.t/D

�
1 t < ı0=5;

0 t > ı0=4:

Using this we define the smooth bump functions �r W T
�ƒr N ! I by

�r .Ez/D

rY
jD1

�.k�qj k/:

Note that since �qj depends on H and ˛ so will this function, but smoothly. Assuming
Sr is defined, we define the following vector fields.
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Definition 3.1 Let Xr be the smooth vector field on T �ƒr N given by

.Xr /Ez D .�r .Ez/rEqSr ;r EpSr /

using the splitting associated to coordinates Ez D .Eq; Ep/.

Similarly we define the smooth vector field Yr on T �ƒr N by

.Yr /Ez D .0; �r .Ez/rEq0Sr ;r EpSr /;

where Eq0 D .q1; : : : ; qr�1/ does not have the q0 –factor.

The coordinates in the definition of Yr are those given by the splitting of the tangent
bundle associated to Ez D .q0; Eq

0; Ep/. In both cases we are as in Lemma 2.3 implicitly
using the Riemannian structure to properly define the horizontal directions associated
to Eq .

Remark 3.2 The vector field Yr is vertical with respect to the submersion

Ev0W T
�ƒr N !N:

Indeed, Yr is simply the orthogonal projection of Xr to the vertical vectors (the kernel
of D Ev0 ). These vertical vectors are canonically identified with the tangent spaces of
T ��q;r N , and so we may define

Yq;r D Yr jEv�1
0
.q/

as a vector field on T ��q;r N .

This leads us to the definition of parametrized pseudogradients. Let M be a smooth
compact manifold possibly with boundary, corners, etc. A submersion of smooth
manifolds � W M 0!M is a smooth map with surjective differential such that @M 0 D

��1.@M /, making each fiber a manifold of constant dimension without boundary.

Definition 3.3 A parametrized pseudogradient for f W M 0 ! R with respect to a
submersion � W M 0!M is a vector field on M 0 , which lies in the kernel of D� , and
which in each fiber over q 2M is a pseudogradient for f restricted to that fiber.

Remark 3.4 Since we assume that the base is compact, we only need to check (C1)
and (C2) fiber-wise. This will come in handy later when we in fact will deal with
compact smooth families of both Xr and Yr .
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We will call a critical point of fj��1.q/ for any q 2M a fiber-critical point. We will
call the value of any fiber-critical point a fiber-critical value. Note that this is for all
fibers simultaneously, ie we do not have an analogue of Sard’s Theorem for these.
Similarly we define fiber-regular value.

Lemma 3.5 The vector fields Xr and Yq;r are pseudogradients for Sr and Sq;r ,
respectively. In particular Yr is a parametrized pseudogradient for Sr with respect to
Ev0W T

�ƒr N !N .

Proof The first gradient estimate (9) in Lemma 2.3 tells us that r EpSr is nonzero on
the set where any of the �qj are nonzero. So we conclude that on the set where we
multiply the Eq–component of rSr with 0 in the definition of both Xr and Yr , the
Ep–components of either gradient are nonzero.

Lemma 3.6 The flows of ˙Xr and ˙Yr are defined for all time.

Proof These vector fields are constructed such that the positive or negative flows
never reach the “boundary” where dist.qj ; qjC1/D ı0 . Indeed, this distance function is
preserved by the flows when � is zero, and this is the case if we assume dist.qj ; qjC1/�

9ı0=20. Indeed, by the triangle inequality and this assumption we see that

k�qj k � dist.qj ; qjC1/� ı0=5� 9ı0=20� ı0=5D ı0=4:

The gradient estimates in (9) and the fact that rpjSr DrpjSq;r are the pj –components
of both Yr and Xr proves that

j˙Yr .kpjk/j D j˙Xr .kpjk/j � krpjSrkk.rkpjk/k � krpjSrk � 5ı0=4

when pj ¤ 0. This implies that the rate of change of kpjk is less than 5ı0=4 and the
lemma follows.

Lemma 3.7 There is an � > 0 such that Xr .Sr /� Yr .Sr /� � on the complement of
the compact set

Br D fEz 2 T �ƒr N j dist.qj ; qjC1/� ı0=2 and P � 2g:

Proof By definition Xr .Sr / � Yr .Sr /, so we only need to consider Yr . Also by
definition of Yr we see that Yr .Sr / � kYrk

2 . So getting a lower bound on kYrk

suffices.

We will thus assume that Ez is a point in the set where kYrk � � intersected with the
complement of Br , and arrive at a contradiction for � small enough. However, for
notational convenience we will often suppress the Ez in the following.
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Using the estimate (9) of rpjSr in Lemma 2.3 we conclude that

(11) k�qjC1
k �

4
3
krpjSrk; j 2 0; : : : ; r � 1:

Since the Ep–part of Yr is the gradient r EpSr the above inequalities imply

(12)
rX

jD1

k�qj k
2
�

r�1X
jD0

2krpjSrk
2
� 2kYrk

2
� 2�2:

So with 2�2 � ı0=5 we see that

(13) k�qj k � ı0=5 8j D 1; : : : ; r;

which implies

dist.qj ; qjC1/� 2ı0=5< ı0=2 8j D 1; : : : ; r:

Since we assumed that we are in the complement of Br this implies the key observation
that

P � 2:

Equation (13) also implies that �r D 1 in Definition 3.1, which means that Yr is the
actual fiber-wise gradient and we thus get

(14) kYrk
2
D

X
j2Zr

krpjSrk
2
C

X
j2Zr�f0g

krqjSrk
2:

The inequality kx � yk � kzk implies that kyk2 � .kxkC kzk/2 . Using (in order)
this on the gradient estimates in (10), the inequality .cC d C e/2 � 3c2C 3d2C 3e3 ,
(11) for all j 2 Zr , and (14), we see that:

r�1X
jD1

k�pj k
2
�

r�1X
jD1

�
krqjSrkCKP .k�qj kCk�qjC1

k/
�2

�

r�1X
jD1

�
3krqjSrk

2
C 3K2P2.k�qj k

2
Ck�qjC1

k
2/
�

�

r�1X
jD1

�
3krqjSrk

2
C 6K2P2.krpjSrk

2
CkrpjC1

Srk
2/
�

�max.3; 12K2P2/kYrk
2
�max.3; 12K2P2/�2
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So for �2 < .4 max.3; 12K2/r/�1 , we have

(15)
r�1X
jD1

k�pj k
2 < P2=4r; which implies

r�1X
jD1

k�pj k< P=2:

This is another key observation and Lemma 3.8 below thus implies that kpjk � P=2

for all j 2 Zr .

In particular we see that kpjk � 1 for all j 2 Zr , and on this set we see that Sr

only depends on the constants � and c (Definition 2.1) and the subdivision ˛ . So
in fact the gradient of Sr only depends on � and ˛ . Analyzing the Hamiltonians
H.q;p/D �kpk on T �N �DT �N and the associated functions Sr (for any ˛ ) we
have

(16) Sr .Eq; t Ep/D tSr .Eq; Ep/;

as long as .Eq; Ep/ has all kpjk� 1 and t � 1. This implies that the norm of the gradient
of Sr increases when Ep is multiplied by t . Indeed, we have

(17) krEqSr .Eq; t Ep/k D tkrEqSr .Eq; Ep/k

and

(18) krt EpSr .Eq; t Ep/k D kr EpSr .Eq; Ep/k

on that same set.

The flow defined by these Hamiltonian has no time-1 flow curves starting and ending
in the same fiber outside of DT �N . Indeed, there is no geodesic starting and ending
at the same point on N with length � 2 �0; ı0�. This means that on the compact set
given by the equations

� 1�minjkpjk �maxjkpjk � 2 and

� dist.qj ; qjC1/� ı0=2

the norm of rSr has a lower bound. Using (18) and (17), this is a lower bound on the
gradient of Sr on the noncompact set given by the equations

� 1� P=2�minjkpjk �maxjkpjk D P and

� dist.qj ; qjC1/� ı0=2.

This provides the contradiction if we finally make � smaller than this lower bound.
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Lemma 3.8 If P � 2 and X
j2Zr�f0g

k�pj k � P=2

then kpjk � P=2 for all j 2Zr .

Proof This relies on the fact that if either pj or zp�
jC1

lies outside DT �N then so
does the other and

(19) k zp�jC1k D kpjk:

Indeed, these two are related by a composition of a parallel transport map (which
preserves norms) and the Hamiltonian flow, which preserves the norm when outside
DT �N .

Since 0 2 Zr is special (omitted from the sum above) it is convenient in the following
to identify Zr with f0; : : : ; r � 1g and use the usual ordering on this set. We may pick
i in this set such that kpik D P � 2. Now assume for contradiction that we have a
0� j < i such that kpjk< P=2; we may assume without loss of generality that j is
the largest such j < i with kpjk< P=2. Then kpjC1k � P=2� 1 and using (19) we
see that

k�pjC1
k D kpjC1� zp

�
jC1k> kpjC1k�P=2:

Using the same equation for all remaining pk with j < k � i , which also lie outside
DT �N , we get

k�pk
k D kpk � zp

�
k k � kpkk�k zp

�
k k D kpkk�kpk�1k:

Adding these for all j < k � i we get that

iX
kDjC1

k�pk
k> kpik�P=2D P �P=2� P=2;

which contradicts (15). The case with i < j � r �1 is similar, summing over k ’s such
that i � k < j .

4 Parametrized Conley indices

In this section we define the Conley index (CI) associated to a smooth function f
and a pseudogradient X satisfying the two compactness conditions (C1) and (C2)
from Section 3. These are based compact Hausdorff spaces Ib

a .f;X / depending on a
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choice of interval Œa; b� and one additional contractible choice. These will come with a
canonical inclusion

(20) Ib
a .f;X /� f

�1.Œa; b�/=f �1.a/;

which we will see is a homotopy equivalence. The only reason we do not use this
“level-set quotient” as the actual definition is that later it will be very convenient to use
the compact replacements that we describe in this section. We will also define a category
of parametrized based spaces (called ex-spaces), and define the parametrized CI (PCI)
as an object in such a category. A PCI will encode the fiber-wise CI, and Lemma 4.5
describes how these are related for different bases. In particular Corollary 4.6 relates
the PCI of .Sr ;Yr / (whose fibers will be Ib

a .Sq;r ;Yq;r /) with the unparametrized CI
of .Sr ;Xr /. For simplicity we will always assume that b is an upper bound on all
fiber-critical values, and hence a fiber-regular value. However, since we will not be
assuming such genericity for a, the fiber CI will be a slight generalization of the usual
notion of CI’s. See eg Salamon [17] for a more conventional treatment of CI’s.

Since the unparametrized case is a special case of the parametrized case (the base
is a single point) we formulate everything parametrized. We will need some basics
about parametrized homotopy theory. As usual a map is a continuous function. In the
following, W is any compact Hausdorff space.

Definition 4.1 The category CC
W

of compact ex-spaces over W has:

� Objects (or ex-spaces): AD .A;pA; sA/, with A a compact Hausdorff space,
pAW A!W a map, and sAW W !A a map such that pA ı sA D IdW .

� Morphisms (or ex-maps): f W A ! B a map such that pB ı f D pA and
sB D f ı sA .

We call pA and sA the projection of A and the section of A, respectively. For each
q 2W the fiber AjqDp�1

A
.q/�A is naturally a based space with base point sA.q/. So

intuitively this category is the category of based compact Hausdorff spaces continuously
parametrized by W .

Definition 4.2 For any A;B 2 CC
W

an ex-homotopy GW A�I!B is a map such that
GjA�ftg is an ex-map for all t 2 I .

In this definition we used the canonical identification of A�ftg with A. As for spaces,
this provides the notions of ex-homotopy equivalences, ex-homotopy type, etc. In
particular restricting any ex-homotopy equivalence hW A!B to the fibers over x 2W ,
we get a based homotopy equivalence of the fibers hjx W Ajx! Bjx .
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By a pair of spaces .A;B/ we mean an ordered pair of spaces .A;B/ with an inclusion
B ,!A. For any pair of spaces .A;B/ with a map � W A!W we define the fiber-wise
quotient A W�

W
B by the push-out diagram:

(21) B

�jB

��

� � // A

��

W // A W�
W

B

If this is compact Hausdorff it will define an ex-space in CC
W

. Indeed, the projection is
the push-out of the map � and the identity on W , ie, the unique � 0 in the diagram:

(22) B

�jB

��

� � // A

�� �jA

��

W
s0
//

Id

))

A W�
W

B

� 0

##

W

The section is the s0 in the diagram. When unambiguous we omit the projection � and
write A WW B . The fiber of this construction at any point q 2W is canonically identified
with the based space given by the quotient ��1.q/=.��1.q/\B/. To make the section
more concrete one can add a W to both A and B . Ie, A WW BŠ .AtW / WW .BtW /.
However, this is not actually necessary by the usual definition of push-out.

The fact that we will mostly use these notions for compact Hausdorff spaces makes
many things easier, however, for a general treatment we refer to May and Sigurdsson
[14]. We will at some points use noncompact ex-spaces. However, the properties we
will use for these will be very basic.

Let f W M 0 ! R be a smooth function and let Y W M 0 ! TM 0 be a parametrized
pseudogradient (Definition 3.3) with respect to a submersion

� W M 0
!M:

We assume that Y satisfies (C1) and (C2) from Section 3. So, there is an � > 0 such
that Y .f / > � outside some compact set K �M 0 . Let  t denote the flow of �Y ,
which exists for all time. We may define

(23) C� D  � .f
�1.Œa; b�//\f �1.Œa; b�/

and

(24) C � D  � .f
�1.Œa; b�//\f �1.a/� C� :
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These sets are illustrated in Figure 2.
f �1.b/

f �1.a/ �
.f
�

1 .b
//

 �
.f
�

1 .a
//

C�

C �

Figure 2: C� and C �

Lemma 4.3 The subspace C� � f
�1.Œa; b�/ is compact for � � ��1.b� a/.

Proof Let t0 D �
�1.b� a/. Then define

K0 D
[

t2Œ0;t0�

 t .K/:

This is compact, and any point x 2 f �1.Œa; b�/ will either flow into and thus end in
this set after time t0 , or satisfy

@

@t
.f ı 
 /.t/D�Y
.t/.f / < ��;

in which case we get f .
 .t0//�f .
 .0//<��.b�a/��1 . This implies that f .
 .t0//<
a, ultimately proving that

C� �K0

for all � � t0 . Since C� is closed and K0 is compact we have proved the lemma.

This leads us to define the parametrized Conley index (PCI) as

(25) Ib
a .f;Y; �/M D Ib

a .f;Y /M D C� WM C � ;

which for � � t0 is compact and thus lies in CC
M

. The choice of � is a contractible
choice, and we will assume that C� and thus the PCI is compact if nothing else is
mentioned. We will comment on the choice of � when appropriate. The following
lemma justifies this suppression.

Lemma 4.4 The subspace C� is a subspace in C� 0 when � � � 0 � 0, and the inclusion
induces an ex-homotopy equivalence

Ib
a .f;Y; �/M ! Ib

a .f;Y; �
0/M

even when the indices are noncompact.
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Proof Since Y is a pseudogradient it is clear that

 � 0.f
�1.Œ1; b�//�  � .f

�1.Œ1; b�//;

which is preserved when intersecting with f �1.Œa; b�/. So C� � C� 0 .

Furthermore, we may define what we will call a stop-flow  t on f �1.Œa; b�/ by the
formula

 t .x/D  s.x;t/.x/;

where s.x; t/D t if f . t .x//� a and otherwise we put

s.x; t/Dmaxfs 2 Œ0; t � j f . t .x//� ag:

This is the flow  s restricted to f �1.Œa; b�/ and stopped (abruptly) when reaching
the set f �1.a/. This is continuous, and since it preserves the set f �1.a/, and the
submersion to M it defines ex-maps

 ��� 0 W I
b
a .f;Y; �/M ! Ib

a .f;Y; �
0/M ;

which is an ex-homotopy inverse to the inclusions. Indeed, in both cases the ex-
homotopy to the identity is simply given by these maps  t for t 2 Œ0; � 0� ��.

Let � 0W M !M 00 be another submersion and let X be another parametrized pseudo-
gradient for f , this time with respect to � 0 ı� W M 0!M 00 satisfying (C1) and (C2).
Then we have two parametrized Conley indices Ib

a .f;Y /M and Ib
a .f;X /M 00 .

Lemma 4.5 There is a canonical (up to contractible choices) ex-homotopy equivalence

Ib
a .f;X /M 00 'M 00 I

b
a .f;Y /M WM 00 M:

Corollary 4.6 The Conley index Ib
a .Sr ;Xr / is homotopy equivalent to

.Ib
a .Sr ;Yr /N /=N;

where . � /=N is the functor from ex-spaces over N to based spaces given by collapsing
the section.

Proof of Lemma 4.5 This follows from Lemma 4.4 and the fact that by definition the
level-set quotients satisfies this, ie�

f �1.Œa; b�/ WM f �1.a/
�
WM 00 M Š f

�1.Œa; b�/ WM 00 f
�1.a/:

This “canonical” ex-homotopy equivalences are thus defined as the maps induced (when
taking quotients over M 00 ) by the composition of:
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� the inclusion C� ! f �1.Œa; b�/ and

� the flow of �X taking the image into a set C 0� 0 defining Ib
a .f;X /M 00 .

Here C� is defined using �Y and C 0� 0 is defined using �X .

The fiber-wise quotient (used in Lemma 4.5) of the section for any map hW W !W 0

is called the push-forward of ex-spaces and is a functor denoted:

h!W CCW ! CC
W 0

The relation to sheaf-shriek push-forward is subtle.

5 The suspension maps

In this section we will, for a given Hamiltonian H , relate the Conley indices for Sr

and Sq;r defined in Section 4 for different choices of r . These turn out to be related
by twisted suspensions, which essentially is why we can use these to define spectra.
More specifically assume that H is a Hamiltonian and ˛ 2�r�1 is a subdivision such
that Sr is defined. Then the top face map

(26) dr W �
r�1
��r

given by appending a 0 defines SrC1 (and YrC1 and XrC1 ) using the same Hamil-
tonian H . Then for each q 2N we construct a map

�q;r W †
dIb

a .Sr ;Yr /q! Ib
a .SrC1;YrC1/q:

Here †d . � / denotes the d –fold reduced suspension of based topological spaces. We
construct these such that they are defined continuously over N , and in the generic case
they will induce homotopy equivalences of unparametrized indices (when a is regular
for Sr ). Here continuous in N means that we in fact define a map of ex-spaces

(27) �r W I
b
a .Sr ;Yr /

TN
N ! Ib

a .SrC1;YrC1/N ;

where Ib
a .Sr ;Yr /

TN
N

denotes the twisted fiber-wise reduced suspension of the index
Ib

a .Sr ;Yr /N using the one-point compactification of the fibers of TN . We start by
defining this properly. We will refer to this procedure as TN –suspending.

The construction of the twisted fiber-wise reduced suspension does not depend on
the fact that TN is the tangent bundle of N . So, assume that � W ˇ ! W is any
metric vector bundle of dimension l over a compact Hausdorff space W . We have the
associated disc bundle

Dˇ D fv 2 ˇ j kvk � 1g
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and sphere bundle
Sˇ D fv 2 ˇ j kvk D 1g:

We then define
Sˇ D .Dˇ/ WW .Sˇ/ 2 CC

W
;

where WW is the fiber-wise quotient defined in (21). This may be identified with the
sphere bundle of ˇ�R!W , with its canonical section. Or, it may be identified with
the fiber-wise one-point compactification of ˇ .

For any two ex-spaces A and B over W we also define the fiber-wise product over
W as the usual pull-back

A�W B D f.x;y/ 2A�B j pA.x/D pB.y/g:

This has the obvious section and projection and it is the categorical product. We also
define the fiber-wise wedge product as

A_W B DA[W B

using the sections sA and sB . This is the categorical coproduct. We may then define
the fiber-wise smash product as

A^W B D .A�W B/ WW .A_W B/:

These are symmetric monoidal products. The smash product ^W distributes over the
wedge _W and defines a symmetric bimonoidal structure on the category of ex-spaces
over W . Restricting to a fiber q 2W defines a symmetric bimonoidal functor to based
spaces (with the usual ^ and _ as products, so we are really just saying that these
structures on ex-spaces behave similarly).

Any ex-space A over W may now be fiber-wise reduced suspended by the sphere
bundle Sˇ . That is we define the ˇ–suspension

(28) Aˇ DA^W Sˇ:

A little more concretely, one may identify Aˇ with

D.p�Aˇ/ WW
�
D.ˇ/[S.p�Aˇ/

�
:

Here D.ˇ/ is identified with the restriction of D.p�
A
ˇ/ to the image of the section

sAW W !A.

Remark 5.1 The symmetric bimonoidal structure on ex-spaces over W has:

� Zero: WW D .W; IdW ; IdW / (to be read W over W ).
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� Unit: S0
W

.

Here
Sn

W D .S
n
�W; �W ;�� IdW /;

where �W W S
n�W !W is the projection and ��IdW W W !Sn�W is the constant

map to the base point of Sn times the identity.

The reason we denote the zero by WW and not simply W is because this would be
very ambiguous with the usual notation for Thom spaces. Ie, for ˇ!W we would
define its Thom space to be

W ˇ
DDˇ=Sˇ Š ..S0

W /
ˇ/=W D Sˇ=W;

which is not W
ˇ

W
.ŠWW /. So, the subscript emphasizes that we are in the category

over W such that we know that . � /ˇ means the ˇ–suspension.

So, Ib
a .Sr ;Yr /

TN
N

is defined as above using the metric bundle TN !N and a choice
of the parametrized Conley index from Section 4. So, we may identify the restriction
of this to the fiber over q 2N with the usual reduced suspension of the Conley index
of that fiber:

†dIb
a .Sq;r ;Yq;r /D Ib

a .Sq;r ;Yq;r /^Sd :

However, this is not canonical since it depends on a choice of isomorphism TqN ŠRd .

Assume now that .H; ˛/2H��r�1 is given and defines Sr . Then, we may define the
stabilized subdivision ˛0 2�r by ˛0j D j̨ for j D 0; : : : ; r � 1 and ˛r D 0. Indeed,
this is the usual top face map dr from (26) evaluated on ˛ . Using .H; ˛0/ we then
define the function SrC1 and parametrized pseudogradient YrC1 .

We will now define �r in a few steps. Let C � � C� � S�1
r .Œa; b�/ be as defined in

(23) and (24) using the function Sr and parametrized pseudogradient Yr . Let � be
such that C� and hence

Ib
a .Sr ;Yr /N D C� WN .C� \S�1

r .a//

is compact. Let E! C� be the vector bundle given by Ev�0 TN . Then, we define the
map

(29) f D fr W E! S�1
rC1.Œa; b�/

given by

(30) f .z0; : : : ; zr�1; v/D .z0; : : : ; zr�1; .q0; v//:
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Here Ez D .z0; : : : ; zr�1/ 2 T �ƒr N and v 2 Tq0
N , and the new “coordinate” in f .Ez/

is simply given by .q0; v/. So if we denote Ez0 D f .Ez/ we may write z0j D zj for
j D 0; : : : ; r � 1 and z0r D .q0; v/. This notation is a little abusive since we originally
assumed that the indices j are in Zr and ZrC1 , and now we are identifying these
with f0; : : : ; r � 1g and f0; : : : ; rg, respectively.

Notice that this in fact does land in S�1
rC1

.Œa; b�/ because the diagram

(31)
E

��

f
// T �ƒrC1N

SrC1

��

C�
Sr

// R

commutes. Indeed, the two new terms in the sum are both zero independent of v . This
is because �qr

D 0 and the flow curve 
r is the constant curve parametrized by the
point 0 2R, so the integral vanishes. In particular we see that SrC1 is constant on the
image of f restricted to any fibers of the vector bundle.

The image of f is not compact, and it does not induce a map of the quotients that we
need it to. However, composing with the flow  0� 0 of �YrC1 and intersecting with
S�1

rC1
.Œa; b�/ will by Lemma 4.3 be compact if � 0 is large enough. That is, if we define

the compact set
C 0� 0 D  

0
� 0.S

�1
rC1.Œa; b�//\S�1

rC1.Œa; b�/

as in (23), but for SrC1 . Then we get

. 0� 0 ıf /.E/� C 0� 0 [S�1
rC1. ��1; a�/:

We may then (using compactness) find a R� 0 such that SRE (the sphere bundle of
E with radius R) is sent by this map to S�1

rC1
.��1; a�/. This means that it induces a

map of quotients

DRE=.SRE [ .DRE/jC � /! C 0� 0 [S�1
rC1.Œa; b�/=S

�1
rC1. ��1; a�/:

However, all maps are over N , so it actually induces a map of the quotients over N .
The source of this ex-map is identified as

DRE WN .SRE [ .DRE/jC � /Š Ib
a .Sr ;Yr /

TN
N

and the target is

C 0� 0 [S�1
rC1.Œa; b�/ WN S�1

rC1. ��1; a�/Š C 0� 0 WN C 0� 0 D Ib
a .SrC1;YrC1/N :

So we have defined the wanted map

�r W I
b
a .Sr ;Yr /

TN
N ! Ib

a .SrC1;YrC1/N ;
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depending on the contractible choices of � and � 0 .

Since this construction generalizes our construction in [12] to a fiber-wise construction
we immediately get the following corollary.

Corollary 5.2 If a is a regular value for Sr (and thus also SrC1 ) then the map

�r=N W .I
b
a .Sr ;Yr /

TN
N /=N ! Ib

a .SrC1;XrC1/

is a homotopy equivalence.

Note that by assumption b is always assumed regular. One could try to prove more
generally that this corollary is true for any a, and even prove a fiber-wise version.
However, we will not need this, and it is thus convenient to avoid the technicalities of
this by simply making sure later that when this corollary is needed a is, indeed, regular
for Sr W T

�ƒr N !R.

Proof Corollary 4.6 tells us that using the functor . � /=N we recover the unpara-
metrized indices Ib

a .Sr ;Xr / and Ib
a .SrC1;XrC1/. These were proved in [12] to be

related by a relative Thom construction with TN relative to C � , and inspecting the
above-defined map we see that it induces this homotopy equivalence.

6 The generating function spectra

In this section we assume that we are given:

(1) A Hamiltonian H W T �N !R in H .

(2) A subdivision ˛ 2�r�1 such that Sr from Section 2 is defined using H and ˛ .

(3) A compact interval Œa; b��R such that
� a is not the action of closed 1–periodic orbit associated to H , and
� b is a strict upper bound on the action of the time-1 flow curves starting and

ending in the same fiber of T �N !N .

After some additional choices (which we suppress from the notation) we will associate
to this a fibered spectrum

GFb
a.H; ˛/

over N . Here fibered3 simply means that for each q 2 N we have a spectrum, and
these glue together continuously in a sense that we will make precise. This fibered

3Not to be confused with fibrant.
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spectrum captures the Floer homology of the action integral restricted to those curves
with action above a, encoding what takes place over each fiber. We warn that as defined
in this section these are not parametrized spectra in the sense considered by May and
Sigurdsson in [14], unless ˇ in the following is trivial. Appendix B, however, describes
a natural functor to a more standard notion of parametrized spectra.

We will then define the notion of homology of such fibered spectra, and prove that for
GFb

a.H; ˛/ this does not depend on anything but H and a, and this will recover the
notion of generating function homology. In fact homology forgets the fibered structure,
and only depends on the unparametrized index. If one wants information about fibers
one should restrict to a fiber and then take homology.

Motivated by the construction in Section 5 we define the following very naïve version
of a category of spectra over any compact Hausdorff space W . Let ˇ!W be any
metric vector bundle. We will use that . � /ˇW CC

W
! CC

W
(defined in Section 5) is a

functor. Indeed, we may extend the construction to ex-maps f W A! B by smashing
with the identity on Sˇ , ie, we get

f ˇ D f ^W IdSˇ W A
ˇ
! Bˇ:

We note that there is an obvious natural isomorphism of functors between .. � /ˇ1/ˇ2

and . � /ˇ1˚ˇ2 . We will use this implicitly on iterations of . � /ˇ and use the notation
. � /kˇ . For the sake of notation we will (when there is no ambiguity) suppress these
exponents on ex-maps, so we will often simply write f instead of f kˇ . Sometimes
we will write f ˚ to emphasize that some (possible) exponent has been suppressed.

Definition 6.1 A ˇ–spectrum A is a sequence of pairs AD .Ar ; �r /r2N0
with each

Ar an ex-space over W and each �r an ex-map

�r D �
A
r W .Ar /

ˇ
!ArC1

over W .

We call the �r structure maps. We define �r;r 0 D �
A
r;r 0 as the composition

�r 0�1 ı �r 0�2 ı � � � ı �r W A
.r 0�r/ˇ
r !Ar 0 ;

so that �r;rC1 D �r and �r;r D Id. Here we have suppressed some ˇ–exponents. Eg,
we have

�r;rC2 D �rC1 ı .�r /
ˇ

as the map

A2ˇ
r

.�r /
ˇ

����!A
ˇ
rC1

�rC1

���!ArC2:
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We will later define morphisms of ˇ–spectra and we denote the category of these
by Spˇ

W
.

If we take a ˇ–spectrum and restrict it level-wise to the fiber over a single point
q 2W then we recover a naïve spectrum (this identification depends on a trivialization
of ˇq ). That is, we get a sequence of based spaces Ar and a sequence of maps
�r W †

l.Ar /!ArC1 , where †l. � / denotes reduced suspension. The “restriction” of
the suppressed natural isomorphism of functors from .. � /ˇ/ˇ to . � /2ˇ is then simply
the natural isomorphisms of functors from .. � /^S l/^S l to . � /^S2l .

Now let H be any Hamiltonian as in Section 2 and ˛ 2 �r0�1 with ˛r0
¤ 0. We

will think of this as a choice of subdivision for all r � r0 by using the top face
inclusion �r�1 � �r defined by appending any subdivision by a zero. This was
already introduced when we defined the ex-map �r in Section 5. Using these maps we
define the infinite simplex �1 by taking the topological union

(32) �1 D
[
r2N

�r�1

with the weak topology. For any point ˛ 2�1 we define r˛ 2N by

(33) r˛ D inffr 2N j ˛ 2�r�1
g:

Now let ˛ 2�1 be such that Sr˛ is defined using H and ˛ . This implies that Sr is
defined for all r � r˛ , which means that the Conley indices Ib

a .sr ;Yr /N are defined.
Also all the suspension ex-maps �r in Section 5 between these indices for different r

are defined.

We thus define the TN –spectrum

(34) GFb
a.H; ˛/

by GFb
a.H; ˛/r DNN (from Remark 5.1) for r < r˛ . For each r � r˛ we define

GFb
a.H; ˛/r D Ib

a .Sr ;Yr /N :

We define �r by the canonical identification N TN
N
ŠNN when r < r˛ � 1, and we

define �r˛�1 by the section (or the fact that NN is initial in CC
N

). For r > r˛ we use
the ex-maps

�r�1W GFb
a.H; ˛/

TN
r�1! GFb

a.H; ˛/r

constructed in Section 5 as the structure maps.

Remark 6.2 It may seem odd that this fibered spectrum is trivial on the first levels.
However, this is a general fact about spectra. It does not really matter up to equivalence
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if one replaces the first finite number of spaces by the trivial space. In fact it is intuitively
convenient to think of spectra as a sort of colimit as r !1 (which is not defined in
the category of spaces). This is reflected in the following definition of homology.

Let F be either Q or Fp for some prime p . Assume that ˇ is F orientable and that we
have chosen an orientation. Using the functor in Appendix B we could define this for
any general homology theory, but to make things as transparent as possible we won’t.
Recall that N is viewed as a subspace of Ar using its section. So in the following
H�.Ar ;N IF/ denotes the usual relative singular homology groups.

Definition 6.3 The homology of a ˇ–spectrum A with coefficients in F is defined to
be the colimit

H�.AIF/D colim
r!1

H�Clr .Ar ;N IF/

using the maps H�.Ar ;N IF/!H�Cl.ArC1;N IF/ given by the composition of the
maps:

� The Thom-map H�.Ar ;N IF/!H�Cl.A
ˇ
r ;N IF/.

� The map induced by the structure map �r W A
ˇ
r !ArC1 .

The Thom-map will, when the sections are cofibrant, be a Thom isomorphism. This is,
indeed, the case for GFb

a.H; ˛/ since a is regular (see the proof below). However, we
want to talk about the homology of fibers as well. So we do not restrict the definition
to this case, and in general we define the Thom-map by the following steps.

� First we use the Thom-isomorphism

H�.Ar ;N IF/ŠH�Cl.Dp�ˇ;Sp�ˇ[DˇIF/

of pairs, which depends on the orientation on ˇ . In the proof of Proposition 10.5
a different perspective on this map is used in the case where ˇ is trivial.

� Then, we compose with the map induced by the fiber-wise collapse map

.Dp�ˇ;Sp�ˇ[Dˇ/! .Aˇr ;N /

defining A
ˇ
r in (28).

Although we have not defined morphisms of TN –spectra yet, we note that homology
is a functor.

Lemma 6.4 The homology H�.GFb
a.H; ˛/IF/ is isomorphic to

H�Clr˛ .I
b
a .Sr˛ ;Yr˛ /N ;N IF/Š �H�Clr˛ .I

b
a .Sr˛ ;Xr˛ /IF/:
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Note that the notion of generating function homology (associated to the action on
closed loops) discussed by, eg, Viterbo in [20] is recovered in this lemma. However,
we will later only use the explicit computations in [12], and not use any relation to
actual (twisted) Floer homology.

There is a notion of an ex-space being well-sectioned, which is more than the section
being a standard cofibration of spaces. This notion does not appear in the following
proof.

Proof If we can argue that all the sections are cofibrations then Corollary 4.6 tells
us that H�Clr˛ .I

b
a .Sr ;Yr /N ;N IF/Š �H�Clr˛ .I

b
a .Sr ;Xr /IF/. Combining this with

Corollary 5.2 we see that in this case the colimit in Definition 6.3 defining the homology
is the colimit of the diagram

0 � � � 0!H�.I
b
a .Sr˛ ;Yr˛ /N ;N IF/

Š
�!H�.I

b
a .Sr˛C1;Yr˛C1/N ;N IF/

Š
�! � � �

proving the corollary.

The sections are cofibrations. Indeed, since a is a regular value for Sr the inclusion
C � � C� (defined in (23) and (24)) is a cofibration, and for any cofibrant pair .A;B/
with a map to N the section of A WN B is cofibrant.

Corollary 6.5 The homology of GFb
a.H; ˛/ does not depend on ˛ .

Proof In the proof above we related the homologies of the parametrized indices to
the homologies of the unparametrized indices, and these satisfy homotopy invariance.
So the corollary follows since the fact that a and b are regular values for Sr does not
depend on the subdivision ˛ .

7 The TN –spectrum FL associated to L exact in T �N

Let j W L! T �N be as in the introduction. In this section we construct the associated
TN –spectrum FL as a “colimit” of certain generating function spectra. We put colimit
in quotes since we have not yet discussed morphisms of TN –spectra. We will instead
construct FL explicitly. The homology of this TN –spectrum will be the homology
of the free loop space of L with possibly twisted coefficients. It will in fact represent
the symplectic homology of DT �L, but with possibly different twisted coefficients;
we discussed these local coefficients in Remark 1.3 and Appendix D. The construction
of FL will depend on a lot of choices, which we suppress from the notation. Indeed,
we will construct a smooth family

.H s; ˛s/ for s 2 Œ0;1Œ ;
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where this family consists of a Hamiltonian and a subdivision for each s . Then for each
s we may pick r large enough to define associated finite-dimensional approximations
S s

r , and define associated (un)parametrized pseudogradients X s
r and Y s

r , all as in
Section 2 and Section 3. This will define a family of generating function spectra, and
we will explicitly describe the “colimit” of these as s tends to infinity. Since we will
be tweaking these choices in later sections, and work with more than one set of choices
simultaneously, we introduce the terminology that a set of choices defines an instance
of FL. However, we note that FL is in the homotopy category of TN –spectra defined
up to unique isomorphism, and we will discuss this in Appendix C.

By choosing an appropriate extension (and rescaling) of j and an appropriate Rie-
mannian structure on L we may assume that we have a symplectic embedding of the
closed unit disc bundle DT �L into D1=2T �N . By abuse of notation we will also
denote this embedding j .

Let �N and �L denote the canonical Liouville forms on T �N and T �L, respectively.
Similarly we will let k-kN W T �N !R and k-kLW T �L!R denote the norm of the
cotangent vectors in N and L, respectively.

Because j is exact symplectic we may choose a function F W DT �L!R such that
dF D j ��N ��L , and this is unique up to a constant because L is connected. Since
DT �L is compact F and its derivatives are bounded. Because of this we will assume
that F takes the value 0, but is nonnegative, and hence kFk D kFk1 is a bound on
jF.z1/�F.z2/j.

If 
 W I !DT �L is any smooth path we can now consider its action in T �L (using
the 1–form �L ) or the action of j ı 
 in T �N (using �N ). We denote these two
different action functionals by AL and AN , respectively. They satisfy the formula

(35) AN .j ı 
 /DAL.
 /C .F.
 .1//�F.
 .0///:

The extra terms vanish on closed loops. So on closed loops the two action integrals
agree.

To create FL we have to construct some families of Hamiltonians associated to j . We
will describe some smooth functions and some of their properties in the following, and
we postpone the actual construction of these to Appendix A. Indeed, we do so because
we need them to satisfy a lot of additional properties later, which we do not want to
mention here.

First we fix a smooth concave function f W RC!R (see Figure 3) such that:

� f .t/!�1 when t ! 0.
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� f .t/D 0 when t 2 Œ1;1Œ .

� f 00.t/ < 0 when t 2 �0; 1Œ, ie f is strictly concave on �0; 1Œ .

For each s > 0 we define ts to be the unique point ts 2 �0; 1Œ such that the tangent of
f at ts intersects the 2nd axis at �s (see Figure 3). By assumptions on f this ts will

t

�s

1ts

f

Figure 3: The func-
tion f

s

ts�1 fs

f C s

t

Figure 4: The func-
tions fs and f C s

go monotonely to 0 as s goes to infinity.

For any smooth function gW R�0!R we define the action set of g as the set of those
s 2 R such that there is a tangent to g which intersects the 2nd axis at �s and has
slope the length of a closed geodesic on L. We also define this for f even though f
is not defined at 0. The action set of f consists of nonnegative real numbers. If we
define the Hamiltonian H.q;p/D f .kpkL/ away from the zero-section on T �L the
action of 1–periodic orbits would coincide with this action set of f , hence the name.
Indeed, this is a standard calculation (see eg [12, Section 3]). Of course we cannot
use this Hamiltonian as it is not extendable to L� T �L. It will thus be convenient to
translate the function f and cap it of depending on a parameter s .

So let fsW R!R for s 2 Œ0;1Œ be the smooth family of smooth increasing functions
constructed in Appendix A using f . These satisfy:

(f2 0 ) For .t; s/ in a neighborhood of .0; s/ � R2
�0

we have fs.t/ D ct2 for some
c D c.s/� 0.

(f3) For t � 1, we have fs.t/D s .

(f4) For s > 0, the restriction of fs.t/ to �0; 1Œ is strictly increasing.

These force f0 D 0. In this section we particularly need for s > 5:

(f5) The tangent to fs at any t 2 Œ0; ts � intersects the 2nd axis in �� 1; 0�.

(f6) We have fs.t/D f .t/Cs when t � ts , making the tangents of fs at these points
intersect the 2nd axis in Œ0; s�.
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Here 5 is a rather arbitrary choice since we in this section really only care about the limit
s!1. The function fs (for s � 5) is illustrated in Figure 3. Let H1W T

�N ! R
be a function in H1 �H from Appendix A. In particular H1 satisfies:

� H1 is zero on D2=3T �N .

� Any time-1 Hamiltonian flow curve for H1 starting and ending in the same
fiber T �q N is constant.

Now define the Hamiltonians H sW T �N !R for all s � 0 by

H s.z/D

�
H1.z/C s z … j .DT �L/;

fs.kj
�1.z/kL/ z 2 j .DT �L/:

k-kL k-kN
0

sr

1
2

2
3

1

Figure 5: Hamiltonian H sr

The reason for introducing this H1 is simply to get a slight positive slope at infinity,
so that H s is in H . These are smooth because fs.kj

�1.z/kL/ is smooth (by (f2 0 )
above), and it is smoothly extendable by the constant function s on a neighborhood of
j .DT �L/ and this agrees with H1.z/C s . Since fs is smooth in s we in fact have
that the adjoint function

H -
W T �N � Œ0;1Œ!R

is smooth, making H s a smooth family of smooth Hamiltonians.

We wish to explicitly construct the TN –spectrum FL by a limiting process as s!1

of certain generating function spectra associated to H s defined in Section 6. First we
consider the critical set associated to the action on closed loops (corresponding to the
unparametrized Conley indices).

Lemma 7.1 For any s 2 Œ0;1� the actions of the closed 1–periodic orbits associated
to the Hamiltonian H s with negative action coincide with the action set of f translated
down by s and intersected with ��1; 0Œ .

Geometry & Topology, Volume 17 (2013)



672 Thomas Kragh

Proof By (35) the actions AL and AN on closed loops agree in DT �L and T �N .
By the explicit construction of H s (and H1 in Appendix A) any closed 1–periodic
orbit in T �N is either

� constant in D2=3T �N � j .DT �L/, or

� a 1–periodic orbit in j .DT �L/.

The constant curves outside of j .DT �L/ have critical value �s , and this corresponds
to the unique horizontal tangent to fs intersecting the 2nd axis at s . The orbits inside
j .DT �L/ can be calculated using the same precise formula that defines the action set
of fs . We conclude that there is a 1–1 correspondence between the action of 1–periodic
orbits and the action set of fs .

For the purpose of this section we now assume that s 2 Œ5;1�. We postpone the rest
of the proof to Appendix A.

The action set of f C s is the action set of f shifted down by s . So we need to see
that the negative part of the action set of fs is the same as the negative part of the
action set of f C s . This is indeed the case by construction of the family fs for s � 5.
Indeed, (f5) and (f6) show that we have been careful to cap of f C s to get fs without
distorting the negative part of the action set.

The above lemma makes it rather easy to construct continuation maps if we did not care
about the fiber-wise structure of the Conley indices. However, we need the fiber-wise
structure, and thus we need similar control of fiber-critical values. So now we consider
these.

Lemma 7.2 For any s � 5 all time-1 Hamiltonian flow curves of H s starting and
ending in the same fiber have action less than kFkC 1, and if the action is less than or
equal to �kFk the flow curve will lie in the set T �N � j .Dts

T �L/.

The most important part of this construction is that we can control the open flow lines
with action less than the fixed number �kFk in such a way that their action is simply
translated downwards when s is increased. This we fully prove in Lemma 7.4, but first
we need this lemma.

Proof On the set j .DT �L/ the Hamiltonian flow is constructed so that it preserves
kj�1. � /kL . So either all of a flow-curve is inside DT �L (or Dts

T �L) or none of
it is. Given any time-1 Hamiltonian flow curve 
 2 C1.I;DT �L/ we consider the
two action integrals in (35). The action AL of 
 in DT �L is given by the usual
intersection formula, which works on open paths in DT �L, because here H s is a
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function of k�kL . So the action AN of j ı 
 in T �N is given by this plus the extra
factors F.
 .1//�F.
 .0//.

The first statement then follows by using the above on any time-1 flow curve 
 in
j .DT �L/ to see that

AN .
 /� 1CF.
 .1//�F.
 .0//� kFkC 1:

Here 1 comes as minus the smallest possible intersection from (f5) (combined with (f6)
this is a global bound on the intersection with the 2nd axis). By construction of H1
any flow-curve outside of j .DT �L/ that starts and ends in the same fiber is constant
and has action �s � �5.

The second statement follows from using it on any flow curve 
 inside j .Dts
T �L/ to

get:
AN .
 /� 0CF.
 .1//�F.
 .0//� �kFk

as needed. Here we used the upper bound 0 from (f5).

The interval of action (energy) Œa; b� that we will be interested in as s tends to infinity
is determined by the above lemma. That is, we will now assume that a and b are fixed
such that

a< �kFk and b � kFkC 1:

Indeed, this makes b an upper bound on all fiber-critical values of the action integrals
as we have been assuming in many constructions thus far. The reason for the bound on
a is that the critical values below or equal to a behave in a very concrete manner (even
fiber-wise), and Lemma 7.4 below is the precise description of this behavior. This idea
and Lemma 7.4 will be essential in constructing the fiber-wise continuation maps and
proving the fibrancy property.

We need a suitable family of subdivisions ˛s; s 2 Œ0;1Œ . This means that we need to
choose a smooth map

˛ -
W Œ0;1Œ!�1

such that the finite-dimensional approximations S s
r˛s

(see (33)) are defined using
.H s; ˛s/ for all s 2 Œ0;1Œ. Here smoothness is well-defined because the top face
inclusions �r�1 � �r are smooth and we used the weak topology on �1 . Such
families are easy to construct because all we need ˛s to satisfy is

l.˛s/.C H s

1 CC H s

2 /� ı;

with ı as in Definition 2.2. We may, in fact, choose this so that ˛s is constantly equal
to the unique subdivision in �0 for s close to 0. Indeed, this follows from the fact
that f0 D 0 and property H4 of H1 described in Appendix A.
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Lemma 7.3 There exists a strictly increasing sequence .sr /r2N 2 Œ0;1Œ converging
to infinity such that

� S s
r is defined for all s 2 Œ0; sr �, and

� the flow associated to H sr has no 1–periodic orbit with action a, ie a is regular
for S

sr
r .

Proof By construction r˛s is defined and finite for all s 2 Œ0; s0� and by compactness
of Œ0; s0� it is bounded on such intervals (here we use the topology on �1 ). So we may
indeed pick a sequence sr (for all r � 1) such that S s

r is defined for s 2 Œ0; sr �. Making
each sr smaller preserves this property and since r˛s starts out being constantly equal
to 1 at s D 0 we can always rechoose the sequence to make it strictly increasing. By
the shift by s in Lemma 7.1 and Sard’s Theorem we see that since a is fixed and
negative, the subset of Œ0;1Œ where the last bullet point is satisfied is open and dense.
Hence, we may perturb any sequence slightly downwards to satisfy this.

We now pick such a sequence sr 2 Œ0;1Œ and call them jump points. As in Section 2
we may thus define the fiber-wise approximations

S s
q;r W T

��q;r N !R

as the restriction of S s
r to T ��q;r N for each s 2 Œ0; sr �. We use the notation

S -
r W T

�ƒr N � Œ0; sr �!R

for the function defined by S -
r .Ez; s/D S s

r .Ez/, and similarly for S -
q;r . These functions

are smooth because H s and ˛s are smooth in s .

We may also define the pseudogradients X s
r and parametrized pseudogradients Y s

q;r as
in Section 3. In fact we define X -

r to be the unique vector field on T �ƒr N � Œ0; sr � that
restricts (and lies in the correct subspace) to X s

r on T �ƒr N �fsg for each s 2 Œ0; sr �.
This makes X -

r a parametrized pseudogradient with respect to the projection to the
second factor

T �ƒr N � Œ0; sr �! Œ0; sr �:

Note that X -
r is smooth because of how it is defined in Section 2 and because S -

r is
smooth.

Similarly we may define Y -
r making it a parametrized pseudogradient with respect to

the projection

(36) � D Ev0 � IdW T �ƒN � Œ0; sr �!N � Œ0; sr �:
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Lemma 7.4 If Ez 2 T �ƒr N is a critical point for S s0

q;r with critical value less than
�kFk, for some s0 2 �5; sr �, then�

@

@s
S -

q;r .Ez/
�
.s0/D�1:

Intuitively this lemma says that the critical values of S s
q;r below �kFk are when s � 5

is increased, simply translated downwards with the same speed. Indeed, this should be
considered a fiber-wise version of Lemma 7.1.

Proof By Corollary 2.5, Ez is the ˛s0 –dissection of a time-1 flow curve for H s0 with ac-
tion less than �kFk. By Lemma 7.2 this flow curve lies in the set T �N �j .Dts0

T �L/.
By (f6) above and how we constructed H s using fs , this means that there is an � > 0

such that: for any z 2 T �N sufficiently close to the time-1 flow curve we have

H s.z/DH s0.z/C .s� s0/; s 2 Œs0� �; s0C ��:

This implies that this time-1 flow curve is a time-1 flow curve for all s 2 Œs0� �; s0C ��

with the action translated by s0� s .

This does not mean that Ez is a critical point for all s in this interval. Indeed, the
subdivision ˛s is not necessarily constant so the dissection could change. So for
each s 2 Œs0 � �; s0 C �� we define Ezs 2 T ��q;r N to be the ˛s –dissection of this
common time-1 flow curve. This is smooth in s because ˛s and the flow curve is. By
Corollary 2.5, Ezs is now a critical point for S s

q;r when s 2 Œs0� �; sC ��.

The corollary also tells us that the critical value is the same as the action, which shows
that

S s
q;r .Ezs/D S s0

q;r .Ez/C .s
0
� s/:

This proves that the directional derivative of S -
q;r along the tangent of the curve

s 7! .Ezs; s/ is �1, and the fact that Ez is a critical point for S s0

q;r implies that the
directional derivative along the curve s 7! .Ez; s/ at the point .Ez; s0/ is the same. Indeed,
the tangent vectors of the two curves at the point .Ez; s0/ 2 T ��q;r N � Œ0; sr � differ by
a tangent that is 0 on the second factor.

The above lemma is the reason for the choice of a to be less than �kFk. Indeed, this
gives us the control we need in Section 8 to define the maps qr in (37) below. These
maps are the usual quotient maps of Conley indices, but lifted to ex-maps over N . So,
they are the fiber-wise continuation ex-maps that we are after, modulo the fact that we
also need the TN –suspensions from Section 5.
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Firstly, we pick r0 > 0 such that sr0
> 5, and consider any r > r0 . Put W DN and

define GW W � I !N � Œ0; sr � by

G.q; t/D .q; .1� t/sr�1C tsr /:

Then Lemma 7.4 tells us that the adjoint of G , say gW W ! C1.I;N � Œ0; sr �/, is
space-like with respect to S -

r (see Definition 8.2), and so Lemma 8.3 provides us with
an ex-map (contractible choice)

(37) qr�1 D p1
0 W I

b
a .S

sr�1
r ;Y sr�1

r /N ! Ib
a .S

sr
r ;Y

sr
r /N

over N . The map induced on the unparametrized indices by qr�1 is simply the usual
quotient map of Conley indices combined with homotopy invariance when changing
H and ˛ (this uses the assumption that a is a regular value for the action).

We now define the TN –spectrum FL by

FLr D

�
NN r < r0;

GFb
a.H

sr ; ˛sr /r D Ib
a .S

sr
r ;Y

sr
r /N r � r0:

The first r0 structure maps are trivial (NN is initial in CC
N

). For r � r0 we define
�FL

r W FLTN
r ! FLrC1 as the composition of the two maps:

� The structure map of the generating function spectrum

�r W GFb
a.H

sr ; ˛sr /TN
r ! GFb

a.H
sr ; ˛sr /rC1;

which were also the ex-maps �r defined in Section 5.

� The ex-map from (37) above:

qr W GFb
a.H

sr ; ˛sr /rC1! GFb
a.H

srC1 ; ˛srC1/rC1:

Although we will not need it in the proof of the main theorem, we will in Appendix C
discuss the fact that for all possible choices made we get canonically (up to homotopy)
ex-homotopy equivalent instances of FL, meaning that they define an object in the ex-
homotopy category up to unique isomorphism. The only thing that we will need for the
main theorem is the following computation of the homology, given some homological
assumptions on L� T �N .

Corollary 7.5 Let F be Q or Fp for p prime. If either

� N and L are orientable and j 0W L!N is relative spin, or

� F D F2 ,
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then the homology H�.FL;F/ is isomorphic to the homology of the free loop space
H�.ƒL;F/ with the usual component-wise regrading by the Maslov class.

Proof Since we assumed that a is regular for S
sr
r for all r � r0 , we know from

Lemma 6.4 that the homology of GFb
a.H

sr ; ˛sr / is the reduced homology of the
unparametrized index Ib

a .S
sr
r ;X

sr
r /. Since a is regular, the usual homotopy invariance

of such Conley indices applies. This was used in [12] to prove that this Conley index
is stably (ie, after some standard reduced suspensions) homotopy equivalent to a Thom
space

.ƒ�L/V� ;

where ƒ�L is the loop space of loops in L with length less than �, V�!ƒ�L is
some vector bundle, and � is the slope of the tangent of f C s intersecting the second
axis at �a. These identifications were also shown to be compatible with the inclusion
of loops when the slope � was increased to �0 , so that the structure map on reduced
homology from .FLr /=N to .FLrC1/=N is the reduced homology of the inclusion
of ƒ�L into ƒ�

0

L with the twisted coefficients associated to V�0 .

This provides the isomorphism for F D F2 because here the Thom isomorphism works
for any vector bundle, except that we should note that the Maslov index shift occurs
because the dimension of V� depends over each component on the Maslov index. For
general F we may use the assumptions in the corollary. Indeed, the virtual bundle over
ƒL constructed in [12] (which is represented by V� minus a trivial bundle on ƒ�L)
is identified with j �TN˚.rC1/�TLC �, where � is the Maslov bundle introduced
there. This is orientable if �, TN and TL are all orientable, and thus V� is orientable
in this case. So, by the assumptions in the corollary we may focus solely on the first
Stiefel–Whitney class of the Maslov bundle �.

The Maslov bundle � was constructed in [12] by using a canonical lift of the map
f W L! BO, which classifies the orientable and spinable virtual bundle TN �TLD

j �TN � TL to a map f 0W L! U=O (the infinite Lagrangian Grassmannian U=O
maps to BO by forgetting that the vector spaces are Lagrangian). Then looping this
we get a map

(38) ƒL!ƒ.U=O/!�.U=O/' Z�BO:

Here the middle map is the canonical projection using that U=O is a based loop space
(in fact an infinite loop space), and the latter map is Bott periodicity as described by
Milnor in [16].

Assume for contradiction that � is not orientable. Then there is a map gW S1!ƒL

such that the first Stiefel–Whitney class of the composition with the map in (38) is
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nontrivial. Using that the map U=O! BO (forgetting the Lagrangian structure) is an
E1 map we get a homotopy commutative diagram:

S1
g
// ƒL // ƒU=O //

��

�U=OD Z�BO

��

// BO

��

ƒ.BO/ // �.BO/' Z=2�SO // SO

Indeed, the first square commutes because the projection uses the loop space structure,
and the second square because taking product with the constant map to f1g �BO�
Z�BO proves that the composition Z�BO! Z=2� SO! SO is the same up to
homotopy on each component. The first Stiefel–Whitney class is the pull-back of the
first cohomology group H 1.BO;Z=2/. One may check that the rightmost vertical
map on first cohomology

(39) Z=2ŠH 1.SO;Z=2/!H 1.BO;Z=2/Š Z=2

is an isomorphism. So by assumption the induced map on cohomology from the lower
right corner to H 1.S1;Z=2/ is nontrivial.

On the other hand, the map in the diagram

S1
!ƒL

f
�!ƒBO

is adjoint to a map S1�S1!L!BO, which by Lemma 7.7 and the assumptions is
homotopy trivial. So, the map S1!ƒBO is seen to be null-homotopic by taking the
adjoint of a null-homotopy.

Remark 7.6 Note that the long exact sequence

4 �! 0 �! 0 �! 0 �!

3 �! Z
�2
�! Z � Z2 �!

2 �! 0 �! 0 �! Z2

g
�!

1
g
�! Z2 �! Z

�2
�! Z �

0 � Z2 �! 0 �! 0 �!

n �n.O/ �n.U/ �n.U=O/

on homotopy groups shows that g is an isomorphism. Looping this isomorphism proves
the isomorphism in (39). It also shows that if the second relative Stiefel–Whitney class
does not vanish on �2 then the bundle � will not be oriented.
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Lemma 7.7 Any map S1�S1!BO with vanishing first and second Stiefel–Whitney
class is null-homotopic.

Proof Since the first Stiefel–Whitney class vanishes, the map lifts to a map

hW S1
�S1

! BSO:

One may construct the space BSO with a single 0–cell, no 1–cells and a single 2–cell.
Indeed, it is simply connected with �2.BSO/ŠZ=2. So h is homotopic to a map that
is cellular and thus factors through the quotient S1�S1=.S1�f�g[f�g�S1/Š S2 .
So, the homotopy type of the map is determined (not uniquely as we will see below)
by a degree d . Indeed, it is homotopic to a composition

S1
�S1 -=�

��! S2 �d
�! S2

� BSO:

However, since the second Stiefel–Whitney class vanishes the degree d is even and
since the map

S2 �2
�! S2

� BSO

is null-homotopic the same is true for h.

8 Parallel transport in parametrized Conley indices

In this section we introduce the notion of parallel transport in parametrized Conley
indices, which is the notion we use to construct the ex-maps qr from (37). Heuristically
these are a “continuous combination” of homotopy invariance and the natural quotient
maps

Ib
a .f;Y /M ! Ib

a0.f;Y /M ;

where a< a0 < b . We could also simultaneously consider varying b and the natural
inclusion/quotient maps:

Ib
a .f;Y /M ! Ib0

a0 .f;Y /M

However, as we assume that b is always an upper bound on all fiber-critical values
this will not be needed. So, in the following we assume that b is always a fiber-
regular value. We will illustrate the idea by describing a simple case, and describe
what assumptions we need and what parallel transport then is (for the most general
description see Lemma 8.3). So assume that

� the base M is the unit interval I ,
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� we have a smooth function f W M 0!R, where M 0 is the product of a manifold
without boundary and I , and

� we have a parametrized pseudogradient Y on M 0 , with respect to the projection
to one factor M 0! I , which satisfies the two properties (C1) and (C2) described
in the introduction to Section 3.

This is equivalent to having a smooth homotopy .fs;Ys/; s 2 I of smooth functions
and pseudogradients, satisfying (C1) and (C2) for all s 2 I . The property we need
to be able to define parallel transport forward in I is: any critical points x for fs

(ie, .x; s/ 2M 0 is a fiber-critical point for the fiber over s 2 I ) with critical value a

satisfies

(40)
�
@

@s
f
�
.x; s/ < 0:

The parallel transport (or homotopy lift if the reader prefers) are then maps

ps0

s W I
b
a .fs/! Ib

a .fs0/

for 0 � s � s0 � 1 continuous in s and s0 such that ps
s D Id. The existence of these

maps in both directions when a is regular for all fibers will describe mutual homotopy
inverses and thus recovers the notion of homotopy invariance of Conley indices.

The condition in (40) is rather intuitive: if we encounter a critical point with value
a when increasing s , it must cross downwards through a such that going forward
corresponds to a usual collapse map of indices. So in generic cases this is homotopic
to a composition of homotopy invariance when a is regular and collapse maps for the
crossings. The trouble is nongeneric cases and the fact that we need these maps to exist
in compact families, ie as ex-maps.

For the general setup we assume that .f;Y / is a smooth function and parametrized
pseudogradient with respect to the submersion

(41) � W M 0
!M;

of smooth manifolds as in Definition 3.3. We as usual denote the flow of �Y by  t .
In addition we are as mentioned above assuming the properties:

(C1) The flow  t of �Y exists for all time (future and past).

(C2) Outside a compact set, Y .f / is bounded from below by a positive constant.

We will in this section use the abbreviation

I.f /M D Ib
a .f;Y /M :
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To describe the general property we need to be able to construct the parallel transport
map we need a few notions. Let 
 W I !M be a smooth path. We may pull-back
everything using 
 . Ie, we get the pull-back diagram:

M 0
I
D 
 �M 0 //

�I

��

M 0

�

��

I



// M;

where the two vertical maps are smooth submersions. The function and parametrized
pseudogradient .f;Y / pulls back to a function and parametrized (with respect to �I )
pseudogradient .f ı 
; 
 �Y /. The manifold M 0

I
is not in general a product, but there

is still a canonical way to ask whether or not (40) is satisfied. Indeed, we may pick a
lift ZW M 0

I
! TM 0

I
of @=@s in the sense that

M 0
I

Z
//

�I

��

TM 0
I

D�I

��

I

@
@s

// TI

commutes. Then Zx.f ı
 / for x 2M 0
I

does not depend on the choice of lift provided
x is a fiber-critical point. So we may define .@=@s/x.f ı
 / as this unique value when
x is a fiber-critical point. We can thus ask that

(42)
�
@

@s

�x
.f ı 
 / < 0

for all fiber-critical points x with critical value a.

Definition 8.1 Any smooth curve 
 W I !M is called space-like (with respect to
f , � and a) if the pull-back above satisfies (42) for the fiber-critical points with
critical value a. We denote the space of these paths by �a.f; �/ and topologize it as a
subspace of C1.I;M / with the weak topology.

In the following W is compact Hausdorff. In particular any map W ! �a.f / has all
derivatives continuous as maps from W � I .

Definition 8.2 The adjoint GW W � I !M of any map W ! C1.I;M / is called
a path-smooth homotopy. Furthermore if the image of the adjoint is in �a.M; f / we
call it a space-like homotopy.
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For such homotopies we use the notation

Gs DG. � ; s/W W !M

for s 2 I , and C1.I;M / 3G.w/DG.w; � /W I !M for w 2W .

Notice that since the flow of Y is fiber-wise the properties (C1) and (C2) are preserved
under the pull-back. In fact the Conley indices pull back as ex-spaces. Indeed, if
hW W 0!W is any map of compact Hausdorff spaces then we have an induced pull-
back functor

(43) h�W CC
W
! CC

W 0

of ex-spaces. Indeed, this is simply defined as the usual pull-back of spaces, which has
canonical sections and projections.

Lemma 8.3 Let I.f /M be a parametrized Conley index with all the assumptions
above. Let GW W �I!M be any space-like homotopy. Then there exists a contractible
choice of a continuous family of parallel transport ex-maps

ps0

s W G
�
s .I.f /M /!G�s0.I.f /M /

over W for 0� s � s0 � 1 such that ps00

s D ps00

s0 ıps0

s and ps
s is the identity.

By contractible choice we simply mean that all the choices we make to construct these
ex-maps form a contractible space, and that the family of course depends continuously
on these choices.

Proof First we consider the case where W is a point, and thus G is a single smooth
curve GW I!N . As above we can use G to pull everything back and have everything
parametrized by I , and thus in this first case we may assume that M D I , and the
path is simply the identity on I .

Recall the subspaces

C� D  � .f
�1.Œa; b�//\f �1.Œa; b�/

and
C � D C� \f

�1.a/

defined in Section 4. Assume, using Lemma 4.3, that � is large enough for this to be
compact. This is thus one of the possible definitions of I.f /I DC� WI C � . We see that

C� D fx 2M 0
j f .x/� a; f . �� .x//� bg;
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which implies that the boundary satisfies

(44) @C� � f
�1.a/[ .f ı �� /

�1.b/:

So let g D f ı �� . Notice that Y is also a parametrized pseudogradient for g and b

is a fiber-regular value for g .

We define Ds DC� \�
�1.s/ and Ds DC � \�

�1.s/ for each s 2 I and we thus have

C� D
[
s2I

Ds and C � D

[
s2I

Ds:

Moreover, we have that the fiber of I.f /I at s 2 I is Ds=Ds . The goal is thus to
construct maps

ps0

s W Ds=Ds!Ds0=Ds0

satisfying the requirements.

The idea is to flow the set Ds; s 2 I to the fiber over s0 2 Œs; 1�, in such a way that we
get maps induced on the quotients Ds=Ds!Ds0=Ds0 . In the following we make this
idea precise.

Start by choosing any vector field ZW M 0! TM 0 lifting @=@s . To accommodate the
general situation later we will only assume that Z is continuous. The fact that the
curve is space-like means that we have that

Zx.f /D
�
@

@s

�x
f < 0

for all x 2M 0 such that f .x/D a and x is a critical point for fs D fj��1.s/ .

We will alter this Z to another lift Z0 which has better properties. Indeed we will find
a c� 0 such that the flow of the vector field Z0 D Z � cY W M 0! TM 0 defines a
map from one fiber of the parametrized Conley index to the other. Notice that Z0 is
indeed another lift of @=@s since Y is vertical. So the flow of Z0 for time s0� s takes
the fiber M 0

s D �
�1.s/ to the fiber M 0

s0 (when it is defined). The point is that we may
pick c� 0 such that

� Z0x.f / < 0 for all x 2 C� with f .x/D a, and

� Z0x.g/ < 0 for all x 2 C� with g.x/D b .

Indeed, this is true by compactness of C� and in each separate case because:

� When f .x/ D a we have either Y .f / < 0 or by the space-like assumption
Y .f /D 0 and Z.f / < 0.

� When g D b then Y .f / < 0 since b is fiber-regular.
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Now let s 2 I �f1g be given. Then since Ds � C� is compact there is an � > 0 such
that the flow (which is C 1 ) of Z0 is defined on Ds for time Œ0; ��. We may shrink this
� and get that any point in a neighborhood of g D b in Ds is flown to the set where
g � b . Similar for f D a. So by possibly shrinking � again we may assume that the
flow of Z0 for time t 2 Œ0; �� maps Ds to

g�1.��1; b�/[f �1.��1; a�/DDsCt [f
�1.��1; a�/

and similarly Ds to
f �1.��1; a�/;

and hence induces a map of quotients

psCt
s W Ds=Ds! .DsCt [f

�1.��1; a�//=f �1.��1; a�/ŠDsCt=DsCt :

Obviously ps
s is the identity, and dividing the interval Œ0; �� into smaller bits and

composing the resulting maps yields the same map, so we may uniquely extend this to
all s0 � s and the maps will then satisfy

ps00

s0 ıps0

s D ps00

s :

There are no problems at 1 2 I since we can argue backwards in time and find the �
above such that the maps exists locally for any s 2 Œ1� �; 1� and any 1� s0 � s .

For any map gW W ! �a.f / the same argument extends. The pull-back M 00 defined
topologically by the pull-back diagram

M 00 //

��

M 0

��

W � I // M

is, when restricted to fwg�I for each w 2W , naturally manifolds M 00
w . Their tangent

bundles define a vector bundle E!W � I with a surjective map to the vector bundle
W �TI!W �I . We may lift @=@s to a continuous section Z , and also the pull-back
of Y defines a continuous section in E . By compactness we may now find c� 0 as
above working for all w 2W simultaneously. The flow of Z0 is then defined fiber-wise,
but glues together to continuous ex-maps over W .

Contractibility follows from the fact that lifts Z0 satisfying the needed equations above
are a contractible space. Also one could consider � as part of the chosen structure,
but this is also contractible, and even though the conditions on Z0 depends on � the
combined set of choices is still contractible.
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9 3S–fibrancy of FL

In this section we define the notion of a ˇ–spectrum over a smooth compact manifold
M being 3S–fibrant (smoothly and stably Serre fibrant). As we will see in Section 10
this will imply that the homology of the fibers is a local coefficient system and that
there is a Serre spectral sequences, with second page isomorphic to the homology of N

with coefficients in this local coefficient system. This will converge to the homology
of the ˇ–spectrum. It is convenient at this point to introduce the version of morphisms
we will use in the categories Spˇ

W
. The fact that we restricted our attention to spectra

with levels given by compact Hausdorff ex-spaces makes everything a little easier than
it would be in a more general setting.

The morphisms of ˇ–spectra we will define can be considered analogous to the notion
of maps of colimits over N of finitely generated Abelian groups. Indeed, even though
the homology groups of a ˇ–spectrum are not always finitely generated at each level
(eg the Hawaiian earring example) the morphisms of our spectra will behave as if
they were, due to compactness. In particular this means that for any level, say r , of a
ˇ–spectrum any morphism has to be defined on the image of �r;r 0 for some structure
map with sufficiently large r 0 . Hence we use the following definition, which really
only defines a map in the homotopy category.

A map of ˇ–spectra f D Œ.fr ; hr ; kr /�W A! B , with A;B 2 Spˇ
W

, is an equivalence
class of triples of

� a sequence of increasing integers kr � r ,
� a sequence of ex-maps

fr W A.kr�r/ˇ
r ! Bkr

in CC
W

, and
� a sequence of ex-homotopies

hr W A
.krC1�r/ˇ
r � I ! BkrC1

between the maps frC1 ı �
A
r and �B

kr ;krC1
ıfr (here we have suppressed some

ˇ–suspensions on ex-maps).

The equivalence relation is generated by:

� Ex-homotopy equivalence on both sequences fr and hr through ex-maps such
that they satisfy the above.

� Replacing kr with k 0r � kr and thus compatibly ˇ–suspending fr (and hr )
with .k 0r � kr /ˇ and composing with �B

kr ;k
0
r

.
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For W a point this defines a morphisms in the usual homotopy category of spectra
(only for spectra with compact Hausdorff levels, if not one has to be a little more
careful).

Without the ex-homotopies hr this would not make much sense as maps of colimits,
ie homology would not be a functor. We could simply have asked that the maps were
ex-homotopic and not included the ex-homotopies hr in the structure. However, it is
well-known that this produces an extra unwanted equivalence on the morphisms, and
although this has little bearing on the main argument we include it so that we really do
get morphisms in a more conventional homotopy category of ˇ–spectra.

Let gW W 0!W be any map between compact Hausdorff spaces. The pull-back g�Sˇ

of Sˇ is naturally identified with Sg�ˇ . Also the smash product over W is pulled
back to the smash product over W 0 . So g� naturally defines a functor from ˇ–spectra
over W to .g�ˇ/–spectra over W 0 .

Let M be a closed neighborhood retract of some open manifold. Let A be a ˇ–
spectrum in Spˇ

M
, and let

GW W � I !M

with W compact Hausdorff. Then we say that G has a stable lift to A if there is a
map of G�ˇ–spectra

(45) GW .G�0A/� I !G�A

over W � I , where

� G0 DGjW �f0g ,

� we have identified G�
0
ˇ� I with G�ˇ in a way compatible with the canonical

choice over 0 2 I , and

� G is the canonical identification (or identity) over 0 2 I .

The existence of such a stable lift has nothing to do with the choice in the second
bullet point. Indeed, any two choices are related by an automorphism, which induces
an automorphism of G�A, which is seen to be the identity because we only defined
morphisms over W � I up to (ex-)homotopy. Also this choice is a contractible choice,
since we required it to be the canonical choice over 0 2 I . In fact, these identifications
will in the following construction come for free since we are using the parallel transport
from Lemma 8.3. Indeed, using the lemma on a parametrized Conley index that happens
to be the sphere bundle Dˇ=Sˇ (eg having a single nondegenerate critical point in
each fiber) produces maps that are ex-homotopic to standard parallel transport in ˇ
descended to the sphere bundle Dˇ=Sˇ .
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Definition 9.1 An ex-spectrum A 2 Spˇ
M

is 3S–fibrant if it has stable lifts of all
path-smooth homotopies GW W � I !M with W a compact CW–complex.

The TN –spectrum FL has this property mainly because of the following lemma and
Lemma 7.4. Let H s; ˛s for each s 2 Œ0;1Œ and a; b; .sr /r�r0

be as in Section 8
defining the families of smooth finite-dimensional approximations S s

r (and S s
q;r ) and

subsequently defining an instance of FL.

Lemma 9.2 For any s 2 Œ0; sr � let Ez be a fiber-critical point for S s
r with respect to

Ev0W T
�ƒr N !N , ie a critical point for S s

r;q0
. Then

k.rS s
r /Ezk � 2:

The proof of this is a simple reference to the gradient approximation from Lemma 2.3 of
the finite-dimensional approximations. However, the action on the infinite-dimensional
space of paths starting and ending in the same fibers behaves in the exact same way.
Indeed, the gradient of an open time-1 path for the Hamiltonian flow only depends on
the end-points and if we calculate the gradient keeping in mind that we are restricted to
paths that start and end in the same fiber within DT �N we get the exact same gradient
and bound as in the proof below.

Proof Corollary 2.5 tells us that the fiber critical points over q 2 N are precisely
those points for which �qj D 0 for all j and �pj D 0 for all j ¤ 0. The gradient
estimates in Lemma 2.3 then tell us that

krS s
r k D krq0

S s
r k D k�p0

k � 2;

the latter because all our Hamiltonians are such that S s
r only has fiber-critical points

with all zj in DT �N . In particular p0 2DT �N and p�
0
2DT �N .

To prove the 3S–fibrancy structure of FL we need to understand how to create ex-
homotopies by “varying” the jump points sr where we Thom-suspend using the map
from Section 5 and combine this with the parallel transports from Section 8. The best
way to understand this concept is proving the following concrete lemma.

Lemma 9.3 If we replace srC1 with s0
rC1
2 Œsr ; srC1� in the definition of FL we get

the same composed structure map �FL
r;rC2

up to ex-homotopy.

When we defined FL we did not actually allow sr D srC1 . However, this was only
to exclude the possibility of having to do parallel transport along constant paths (see
definition of qr from (37)) and because it will be convenient later when considering
products. It is convenient to allow the case of sr D srC1 in this section and the argument
in the following proof makes it very clear how this can be handled in more generality.
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Proof The definition of the composed structure map �FL
r;rC2

depends on contractible
choices. We will make these choices now such that the similar structure maps, say

�
s0

rC1

r;rC2
;

defined using s0
rC1

instead of srC1 is continuous in s0
rC1

. Indeed, let

P s0

s W I
b
a .S

s
rC2;Y

s
rC2/N ! Ib

a .S
s0

rC2;Y
s0

rC2/N

be parallel transport maps for s � s0 2 Œsr ; srC2� defined by the obvious space-like
homotopy N � I !N � Œsr ; srC2� (similar to those defining qrC1 in (37)) and let

ps0

s W I
b
a .S

s
rC1;Y

s
rC1/N ! Ib

a .S
s0

rC1;Y
s0

rC1/N

be defined similarly for s � s0 2 Œsr ; srC1�. These are illustrated in Figure 6.

r
s

r C 1

r C 2

sr s0rC1
srC1 srC2

p -
-

P -
-

Figure 6: The horizontal lines represent parallel transport forward in s and
the vertical dotted line represents when we choose to use the suspension from
Section 5.

Then the structure maps may be defined by

�
s0

rC1

r;rC2
D P

srC2

s0
rC1

ı �
s0

rC1

rC1
ıp

s0
rC1

sr
ı �r ;

where �
s0

rC1

rC1
is the suspension ex-map

Ib
a .S

s0
rC1

rC1
;Y

s0
rC1

rC1
/TN
N ! Ib

a .S
s0

rC1

rC2
;Y

s0
rC1

rC2
/N

easily defined to be continuous in s0
rC1

. Indeed, the suspension maps from Section 5
can be defined continuously over any compact smooth family of Hamiltonians and
subdivisions.

Proposition 9.4 Any instance of FL is 3S–fibrant.

The intuitive idea of the following proof is: Lemma 9.2 tells us that the movement
of the fiber-critical points for fixed s is bounded by 2 when following a unit length
path in N . Lemma 7.4 tells us that the relevant critical points moves down with speed
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1 when s increases by unit length. This means that if we lift any smooth path in N

to N � Œsr ;1� such that the speed in the second factor is more than two times the
speed in the first factor then we get a space-like path. This is also the reason for the
suggestive name space-like; indeed, we are lifting the path to the cone where the rate
of change of these critical points is guaranteed to be negative by Lemma 7.4.

Proof Let GW W � I !N be any path-smooth homotopy, and let r 2N0 be given.
Then let c� 0 be a bound on the norm of the first derivative of all the paths G.w/ 2

C1.I;N /. Pick an increasing sequence kr � r such that

(46) skr
� sr > 2c:

We claim that there is a stable lift G D .fr ; hr ; kr / as in (45) with this sequence kr .

The structure maps of the generating function spectrum GF.H sr ; ˛sr / (the ex-map
from Section 5) are

(47) �r;kr
W FLˇ.kr�r/

r D Ib
a .S

sr
r ;Y

sr
r /

.kr�r/ˇ
N

! Ib
a .S

sr

kr
;Y

sr

kr
/N :

This does not map to the correct ex-space. Indeed, we need to map to the indices
defined at skr

(not sr ). But, moreover we need it to be defined on the pull-back using
G0 and “lift” the homotopy G in the sense of (45).

We will generalize the construction of the structure maps using the bound skr
�sr >2c to

construct space-like homotopies, which are equal to restrictions (and reparametrization)
of G in the N factor. Indeed, for each r � r0 define

F D F r
W W � I � I !N � Œsr ; skr

�

by
F.w; t; �/D .G.w; � t/; .skr

� sr /� C sr /:

Then this is space-like (using the � -factor) with respect to S -
kr

and a. Indeed, with
s D .skr

� sr /� C sr we see that at a fiber critical point (ie, critical for S s
q;r ) we have�

@

@�
F
�
.w; t; �/� 2ct C .skr

� sr /
�
@

@s
S -

kr

�
.s/:

Indeed, this uses Lemma 9.2, the assumed bound on G , and the chain rule. Then using
Lemma 7.4 (remembering that a< �kFk and sr � 5) and (46) we may bound this to
be strictly less than 2ct � 2c which is nonpositive for all t 2 I .

Lemma 8.3 thus gives us parallel transport ex-maps

p1
0 W F

�
0 Ib

a .S
-
kr
;Y -

kr
/N DG�0 Ib

a .S
sr

kr
;Y

sr

kr
/N � I

! F�1 Ib
a .S

-
kr
;Y -

kr
/N DG�Ib

a .S
skr

kr
;Y

skr

kr
/N ;
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over W � I , which when precomposed with the map from (47) define the wanted lifts
fr for each r . However, we also need to construct the homotopies hr and argue that
the morphisms over 0 2 I are (homotopic to) the identity.

Firstly we notice that the restriction of each fr to 02 I is ex-homotopic to the structure
maps (pulled back by G0 ). Indeed, the homotopy for t D 0 is a homotopy that is
constant in the N factor. This means that the map is defined precisely as in the
lemma above, except that we are considering more than two suspensions and the longer
interval Œsr ; skr

�. The natural generalization of the above lemma to several jump points
s0
rC1
� � � � � s0

kr�1
with each s0m 2 Œsr ; sm� shows that fr restricted to 0 2 I is defined

precisely as G�
0
�r;kr

if we have sr D s0
rC1
D � � � D s0

kr�1
. Intuitively this means that

we get an ex-homotopy between the two maps by sliding down the jump points in the
interval to all be equal to sr .

A generalization of the same idea can be used to construct hr . For this it is convenient
to introduce some notions:

� We say that two homotopies G0;G00W W �I!N are concatenable if G0
1
DG00

0
.

� When two space-like homotopies G0;G00 are concatenable we define the con-
catenated parallel transport

ps
0 D

�
.p0/2s

0
s 2 Œ1; 1

2
�;

.p00/2s�1
0
ı .p0/1

0
s 2 Œ1

2
; 1�;

where p0 and p00 are parallel transports associated to G0 and G00 , respectively.

� We may generalize this to any number of concatenable homotopies, and in fact
in general get parallel transport for any piecewise space-like homotopy.

� The choices of such parallel transports are contractible even when considering
different choices of division points. Indeed, the choice of a parallel transport is
contractible on each piece, and introducing a redundant division point we may
consider the usual parallel transport as defined by the concatenation above.

We now realize that the two compositions frC1 ı�r and �kr ;krC1
ıfr are in fact both

defined in the following general way:

� We have given piece-wise space-like homotopies in N � Œ5;1Œ , which are
space-like because their derivatives lie in the cone given by k
 0

N
.t/k � 2
 0s.t/.

Here the subscript denotes the components in TN and T Œ5;1Œ , respectively.

� We then parallel transport along these homotopies and at several given values of
s we stop the parallel transport and suspend to a higher level and continue the
parallel transport on this higher level.
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The generalization of the above lemma tells us that we can ignore where we do the
suspensions. Indeed, we may homotope them all to happen at the beginning, ie at sr .
The space-like homotopies used to define these two different maps are homotopies
between the same two maps, ie the maps W � I !N defined using G0 (constant in
the I factor) and all of G . Figure 7 illustrates the two different paths taken for some

�

G.w; 0/

G.w; t/

N

sr srC1 skr
skrC1

qr

fr
frC

1

qkr ;krC1

Figure 7: Paths in N � Œ0;1Œ defined by homotopies for a fixed .w; t/ 2
W � I . The paths are labeled by which ex-map they induce, and qkr ;krC1

D

qkrC1�1 ı � � � ı qkr
.

fixed .w; t/ 2W � I (by construction we see that all these paths are constant in N

when t D 0). We can interpolate between these two homotopies and stay within the
space-like cone, and we may use parallel transport on the family of such an interpolation
to construct the ex-homotopies hr .

10 Serre’s spectral sequence and 3S–fibrancy

In Section 9 we introduced the notion of a ˇ–spectrum A2 Spˇ
N

being 3S–fibrant over
N . In this section we describe the Serre spectral sequence converging to the homology
of such a ˇ–spectrum. In particular we show that page 2 is the homology of N with
coefficients in the local coefficient system given by the homology of the fibers. Some
may want to call this an Atiyah–Hirzebruch spectral sequence. However, since we are
calculating standard singular homology with coefficients F of a fibered spectrum, and
not thinking of this as homology of the base with coefficient in a twisted homology
theory, we have kept the Serre terminology.

Firstly – using Appendix B – we will assume that ˇ comes with a trivialization
ˇ ŠRl �N . Secondly, the following lemma tells us that we need not worry that we
can only lift path-smooth homotopies.

Lemma 10.1 Let W be compact, any homotopy H W W � I ! N is homotopic rel
W � @I to a homotopy that is path-smooth. If the original homotopy was constant
on a subspace A�W we may assume that the new path-smooth replacement is also
constant on A.
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Proof One can compose smooth paths and get smooth paths if one is willing to
reparametrize them to make them constant close to the endpoints. So by subdividing
the homotopy using compactness we may assume that each path H.x; � / is contained
within a ı0 neighborhood of H.x; 0/ for all x 2W . Now the family of paths 
 .q; q0; t/
given by the unique shortest geodesic between two points q and q0 in N with distance
less than �0 are smooth in all three variables. This means that all the derivatives with
respect to t (defined locally in charts) are continuous as functions of .q; q0; t/. So, let
�W W W �I!W and �I W W �I! I be the projections; then, the homotopy defined
by 
 .H0 ı�W ;H1 ı�W ; �I /W W � I !N is adjoint to a map W ! C1.I;N / and
is homotopic to H rel W � @I .

The last statement in the lemma follows by construction.

As in Appendix B we let l 2N denote the trivial l –dimensional bundle over any space.

Lemma 10.2 All fibers of a 3S–fibrant l –spectrum A2 Spl
N are homology equivalent

and their homologies define a local coefficient system on N .

Proof This is standard, except that from the definition of 3S–fibrant we only have a
lifting property for smooth paths and path-smooth homotopies of these smooth paths.
However, we simply note that defining the fundamental groupoid using smooth paths
and path-smooth homotopies yields the same groupoid as the continuous construction,
essentially because of Lemma 10.1.

We will need to get a good hold on products and suspensions on the level of chains.
So, we need the Eilenberg–Zilber operators. Let A and B be spaces. Define the
Eilenberg–Zilber operator

Pn;m
W Cn.A/˝Cm.B/! CnCm.A�B/

by subdividing �n ��m in the following way: let �n D Œx0; : : : ;xn� and let �m D

Œy0; : : : ;ym� then each subset S � f1; : : : ; nCmg with jS j D n defines a sequence of
cross-products of 0–simplices in �n ��m by starting with .x0;y0/, and then if 1 is
in S the next point is .x1;y0/, but if 1 is not in S it is .x0;y1/. Continuing like this,
the k th point is .xjS\f1;:::;kgj;yk�jS\f1;:::;kgj/. This defines a nondegenerate linear
nCm simplex in �n ��m , and these subdivide the product into n choose nCm

simplices. We then define Pn;m on the tensor product of generators ˛W �n!A and
ˇW �m!B as the sum over ˛�ˇW �n��m!A�B precomposed with each of these
.nCm/–simplices times the sign on each that corresponds to preserving orientation.

The Eilenberg–Zilber operators are strictly associative since we may index similar
nondegenerate simplices in the triple product �n ��m ��k by two disjoint subsets
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S1;S2 � f1; : : : ; nCmC kg of size jS1j D n and jS2j Dm, and the sign is still the
orientation-preserving sign. So this defines

Pn;m;k
W Cn.A/˝Cm.B/˝Ck.C /! CnCmCk.A�B �C /;

and similar for more than 3 factors.

Remark 10.3 By keeping track of the orientations one may check that the Eilenberg–
Zilber operator satisfies the derivation property

(48) @Pn;m.˛˝ˇ/D Pn�1;m.@˛˝ˇ/C .�1/nmPn;m�1.˛˝ @ˇ/;

which implies that it induces maps on homology

H�.A/˝H�.B/!H�.A�B/:

More generally, for pairs .X;A/ and .Y;B/ it induces maps

H�.X;A/˝H�.Y;B/!H�.X �Y;A�Y [X �B/:

We will use these to define products, and also to systematically treat the suspensions.

Remark 10.4 We will also need the fact that the Eilenberg–Zilber operators are strictly
(graded) commutative, that is, the diagram

(49)

Cn.A/˝Cm.B/
Pn;m

//

.�1/nm�

��

CnCm.A�B/

T�
��

Cm.B/˝Cn.A/
Pm;n

// CmCn.B �A/

commutes, where � and T are the obvious twists. The sign is obvious by considering
that the twist on the product �n ��m is not always orientation-preserving.

All of the above can be done with coefficients in any ring, and we may now formulate
the following stable (in the fiber direction) version of the Serre spectral sequence.

Proposition 10.5 Let F be any coefficient ring. For a 3S–fibrant A 2 Spˇ
N

, there is a
1st and 4th quadrant spectral sequence fEr

n;m; dr g such that:

� The spectral sequence strongly converges to a filtered quotient of H�.AIF/.
� E2

n;m ŠHn.N IHm.Aj�IF//, where H�.Aj�IF/ is the graded local coefficient
system defined by A from Lemma 10.2. Since N is d –dimensional this implies
that the spectral sequence collapses on the .d C 1/st page.
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Remark 10.6 The proof follows several ideas from Cohen, Jones and Yan [6], Hatcher
[10], Hatcher [11] and McCleary [15].

Proof For notational purposes we will only consider F D Z. However, the general
case is similar.

We start by using the Eilenberg–Zilber operators to define the stabilization maps, used
in Definition 6.3, on the level of chains. Define the chain map on singular chains

(50) †� D†�;r W C�.Ar ;N /! C�Cl.ArC1;N /

as the composition of

� The chain map

C�.Ar ;N /! C�Cl.Ar �S l ;N �S l
[Ar � fs0g/;

is given by sending ˛ to P�;l.˛˝ˇ/, where ˇ 2Cl.S
l/ is some fixed represen-

tative of the generator of Hl.S
l ; fs0g/. This is a chain map due to the derivation

property (48) and the fact that ˇ is closed.

� The chain map induced by the quotient map

.Ar �S l ;N �S l
[Ar � fs0g/! .Ar ^N S l

N ;N /:

� The chain map induced by the structure map �r of A.

Now define
C� D C�.A/D colim

r!1
.C�Clr .Ar ;N //

in the category of chain complexes, using the chain maps †� . Since limits of chain
complexes commute with homology we have H�.C�/ŠH�.A/. Indeed, †� represents
on chains the limit used in Definition 6.3 to define H�.A/.

We call a singular m–simplex ˛W �m!Ar n–degenerate over N if the projection
p ı˛ is a singular simplex in N that is a degeneration of a simplex of dimension less
than or equal to n. Ie, there is a commutative diagram

�m //

L

��

Ar

pAr

��

�n // N;

where L is a linear degeneration. So L is given by an order-preserving map from
f0; : : : ;mg to f0; : : : ; ng. Let FnCm.Ar ;N / be the free Abelian group generated
by the n–degenerate m–simplices in Ar quotiented by the free subgroup generated
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by those in N (or more precisely in the image of the section of Ar ). Since the
degeneracy property is preserved when taking boundary we see that FnC�.Ar ;N / is
a subchain complex. We also see that the chain map †� preserves this property since
the suspension is in fiber direction. Indeed in general if ˛ 2 Cn.Ar / and ˇ 2 Cm.Y /

then Pn;m.˛; ˇ/ is n–degenerate when projected to Ar . So we may define the nth

filtration of C� by

FnC� D colim
r!1

.FnC�Clr .Ar ;N //� C�:

Since FnC� D 0 for n < 0 and
S

n FnC� D C� we get a filtration of H�.C�/ as
0�H�.F0C�/�H�.F1C�/� � � � , giving a spectral sequence .E�n;m; d�/ converging
as described in the first bullet point. Here the initial exact triangle A1!A1!E1!A1

is given by A1
n;mDHnCm.FnC�/ and E1

n;mDHnCm.FnC�=Fn�1C�/, with the usual
maps.

To get the second bullet point we need to inspect the first page and its differential
d1W E

1
�;�!E1

��1;�
. First notice that any n–degenerate simplex that is not .n� 1/–

degenerate has a unique nondegenerate n–simplex in N over which it is nondegenerate.
This implies that the quotient FnC�=Fn�1C� is given by a direct sum as chain com-
plexes over all the nondegenerate n–simplices in N . Let ˛W �n ! N be such a
nondegenerate simplex, and let F˛s C� denote the subspace in FsC� spanned by those
s–degenerate simplices which if projected to N are a composition of face maps
and degeneracies of ˛ . Then, the direct summand of the quotient FnC�=Fn�1C�
corresponding to ˛ may be canonically identified with F˛n C�=F

˛
n�1

C� .

Let hW �n � I ! N be a homotopy from the constant simplex mapping to q D

˛.1; 0; : : : ; 0/ and ˛ relative to �0 D f.1; 0; : : : ; 0/g � �n . We may assume by
Lemma 10.1 that h is path-smooth and thus invoke Definition 9.1 and get a map (when
evaluating at 1 2 I ) of ex-spectra

�n
�Ajq! ˛�A

over �n . By using the homotopy in the opposite direction we may get a map of
ex-spectra in the other direction

˛�A!�n
�Ajq:

By usual arguments (using a null-homotopy of concatenated homotopies) these two
maps are homotopy inverses as .˛�ˇ/–spectra over �n (since we are only considering
maps up to homotopy this means it is an isomorphism in the category). So they induce
a homology isomorphism, but that is not precisely what we are after. Looking at the
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universal property for pull-backs

�N

$$

��

""

˛�A //

��

A

��

�n // N

we realize that the chain complex F˛s C� is isomorphic to the chain complex given
by the span of those simplices in ˛�A, which projects to actual simplices in the
simplicial structure of �n that are s–degenerate. However, the maps also induce a
chain homotopy equivalence of such restricted chain complexes simply because the
maps and homotopies are over �n . This means that we may identify the homology of
the quotient complex F˛n C�=F

˛
n�1

C� with Hn.�
n; @�nIH�.Aq//. In fact we may

do this such that d1 is compatible with the usual boundary operator on ˛ . We have
thus argued that .E1

�;m; d1/ is chain homotopy equivalent to the normed chain complex
C�.N IHm.Aj�//, which establishes the second bullet point.

11 The inclusion of constant loops

The identification of the homology in Corollary 7.5 tells us that there is an inclusion of
constant loops H�.L;F/!H�.FL;F/. The goal of this section is to prove that this
inclusion exists as a map of spectral sequences from the usual Serre spectral sequence
for a fibrant replacement of the map L!N into the Serre spectral sequence associated
to FL in Proposition 10.5.

The main part of the section is to construct a map of pairs

(51) ik W .DV;SV /! .FLk ;N /

for each k sufficiently large (depending on the instance of FL). Here V ! L will
(under the assumptions of Corollary 7.5) be an F –oriented kd –dimensional vector
bundle. The induced map on homology

H�.LIF/ŠH�Ckd .DV;SV IF/

.ik/�
���!H�Ckd .FLk ;N IF/!H�.FLIF/ŠH“�”.ƒLIF/

will be the inclusion. Note that the latter isomorphism is graded component-wise by
the Maslov index. However, the grading on the component containing constant loops is,
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indeed, 0. Of course since we want to involve the Serre spectral sequence associated to
the fibrant replacement of L!N we need ik to somehow relate to this map. Indeed,
we will construct ik such that after restricting it to the zero-section L � DV and
projecting to N (using the projection of FLk ) it is homotopic to the composition
pW L! T �N !N .

Lemma 11.1 A map ik as in (51) with the above properties will induce a map from
the Serre spectral sequence associated to the fibrant replacement of pW L!N into the
Serre spectral sequence associated to FL.

In the following proof we use several noncompact ex-spaces. However, no subtleties
arise from this and we refer to May and Sigurdsson [14] for a thorough discussion.

Proof Define ADDV WP
N

SV by using the map P W DV
ik
�! FLk !N . This is an

ex-space over N . However, it is not in general a sphere bundle and not in general
fibrant in any way. The map from A! FLk induced by ik is by definition of A an
ex-map over N . So if we replace the map with a map of ex-fibrations (see [14]) over
N it will induce a map of the Serre spectral sequences associated to the ex-fibrant
replacements of A and FLk . Since the spectrum FL is already 3S–fibrant there is a
map from the target spectral sequence into the spectral sequence associated to FL in
Proposition 10.5. So to prove the lemma we are left with identifying the Serre spectral
sequence associated to the ex-fibrant replacement of A as the one associated with the
fibrant replacement of the map pW L!N (shifted upwards in degree by the dimension
of V ).

When constructing A and taking ex-fibrant replacement we would get ex-homotopy
equivalent results if we replaced the map to N by a homotopy equivalent map. So since
P restricted to the zero section is homotopic to pW L!N and the inclusion L!DV

is a homotopy equivalence we may pick a homotopy from P to P 0W DV !L
p
�!N ,

where the first map is the projection to the base of the vector bundle. So, the ex-
fibrant replacement of A is ex-homotopy equivalent to the ex-fibrant replacement of
A0 DDV WP

0

N
SV , and hence has the same Serre spectral sequence.

Now let � W PN L ! N be a fibrant replacement of L ! N (not an ex-space so
standard path-space construction will do). Let VP ! PN L denote the pull-back of V

to PN L. One may check that

PA0 DDVP WN SVP

is an ex-fibrant replacement of the ex-space A0 .
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Recall that the Serre spectral sequence for a fibration PN L! N uses nonrelative
homology groups H� , while the Serre spectral sequence for an ex-fibration uses relative
homology groups H�. � IB/, where B is the image of the section. This is compatible
with the functor

.spaces with a map to N /! CC
N

given by disjoint union with N , and defining the section and projection as the obvious
ones. Indeed, by applying this functor to � W PN L! N we see that for all B � N

the Thom-isomorphism takes the form

H�.�
�1.B//ŠH�.�

�1.B/tB;B/ŠH�Ckd ..DVP /j��1.B/; .SVP /j��1.B//

ŠH�Ckd ..DVP /j��1.B/ WB .SVP /j��1.B/;B/DH�Ckd .PA0
jB;B/:

Note that we used here that the section B! ��1.B/tB is a cofibration. Using the
fact that the Thom-isomorphism is natural with respect to restriction we now see that
the Serre spectral sequence associated to PA0 is isomorphic (only from page 1) to the
one associated to PN L!N shifted by the dimension of V .

The rest of the section thus concerns the construction of ik . Let FL be defined as in
Section 7. In particular a< �kFk and sr 2 Œ0;1� is an increasing sequence. We will
need k to satisfy

(52) sk > �a and as usual sk > 5:

So fix k for the rest of this section such that this is true. The level FLk is defined using
the Hamiltonian H sk and the subdivision ˛sk 2 �k�1 , and so we need to consider
these more carefully.

To construct the map ik we use that the family H s; s 2 Œ�; sk � defines a homotopy from
H sk to an almost constant Hamiltonian H � . We pick this � > 0 small enough such
that:

(�1) H � is sufficiently C 2 –close to H1 for S�
1

to be defined.

(�2) H � has only constant periodic orbits of the Hamiltonian flow, hence by (f4) in
Appendix A the critical set of S�

1
is f��; 0g.

(�3) The interval �� s;�sC �Œ is regular for S s
k

for all s 2 Œ�; sk �.

(�4) �sk C �=2< a.

(�5) Lemma 11.2 holds.

The first is simply (H3) in Appendix A and the fact that f0 D 0. The second follows
from (f4) in Appendix A and by making � so small that the slope of fs is smaller
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than the length of any nonconstant closed geodesic on L. The third follows from
(�2) and Lemma 7.1. Indeed, the action set of f does not depend on s . The fourth
follows easily for small � from (52). The last one will be taken care of in the proof of
Lemma 11.2. We then define the varying lower bound

k-kL k-kN

�

1
2

2
3

1

Figure 8: Hamiltonian H �

av.s/D�sC �=2 (v for varying):

By .�3/ above av.s/ is regular for S s
k

and we thus get by homotopy invariance of
Conley indices that

(53) Ib
��=2.S

�
k ;X

�
k /D Ib

av.�/
.S�k ;X

�
k /' Ib

av.sk/
.S

sk

k
;X

sk

k
/D Ib

�skC�=2
.S

sk

k
;X

sk

k
/:

As usual b is a fixed upper bound on all critical values for any s . We may then compose
with the quotient map

Ib
av.sk/

.S
sk

k
;X

sk

k
/! Ib

a .S
sk

k
;X

sk

k
/D FLk=N:

Indeed, by (�4) above we have av.sk/ < a. As we will see below the index

Ib
��=2.S

�
k ;X

�
k /

is homotopy equivalent to a Thom-suspension of L and it is well-known that the
quotient above recovers the inclusion of constant curves into the loop space when
passing to homology (see eg [12]). So this map is the map we need to lift to a map of
pairs .DV;SV /! .FLk ;N /. The plan for the rest of the section is:

� First we construct a similar lift for s D � and r D 1.

� Then we use the TN –suspensions in Section 5 to get lifts for larger r (but
keeping sD � ). This is where the vector bundle V D Vk appears for the specific
r D k that we chose above.

� Then we use the homotopy invariance in (53) (with some extra structure) to
“transport” the lift to work for s D sk .

The first part is to explicitly describe a map that induces a homotopy equivalence on
quotients for S�

1
.
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Lemma 11.2 The embedding j W DT �L! T �N induces a homotopy equivalence

DT �L=ST �L! Ib
av.�/

.S�1 ;X
�
1 /:

Note that inducing a map to a Conley index means: The embedding j satisfies

j .DT �L/� C� [ .S
�
1/
�1.��1; av.�/�/ and(54)

j .ST �L/� .S�1/
�1.��1; av.�/�/:(55)

for some index pair .C� ;C � /. Indeed, this is how we have produced most maps to
Conley indices so far.

Proof By construction S�
1

has critical set precisely L disjoint union with

.D2=3T �N � j .DT �L//;

and the critical values are 0 on L and �� on the rest. Since L is isolated from
infinity by the other set this implies that L consists entirely of local maxima. So
since av.�/D��=2 we see that (54) and (55) are satisfied for any index pair .C� ;C � /

(in fact the index pair does not depend on � and is hence unique). We will show
that in a neighborhood of L, S�

1
is Morse–Bott. This will imply that the index pairs

.C� ;C � / are in fact diffeomorphic to the disc bundle and sphere bundle of the normal
bundle, which is isomorphic to T �L!L. So, indeed, the map j induces a homotopy
equivalence.

To see that S�
1

is Morse–Bott we consider points .p0; q0/ 2ƒ1T �N D T �N close
to L. Let d D d.q0;p0/ denote the distance from .q0;p0/ to L in the Riemannian
structure induced by L on DT �L. We may express S�

1
as a sum of two terms,

S�1.q0;p0/D�H �.q0;p0/C

Z



�;

where 
 W S1! T �N is the small contractible curve defined by the concatenation of
the pieces:

� The time-1 Hamiltonian flow line associated to H � starting at .q0;p0/

� The horizontal geodesic in T �N (using the Riemannian structure induced by
the one on N ) back to a point in the fiber over q0 2N

� The vertical geodesic back to the point .q0;p0/

Indeed, this is how Sr is defined when r D 1 in Section 2. We may bound the
symplectic area of this small “right angled triangle” by the length of the flow path
squared times a constant. By (f2) in Appendix A this length is 2�c0d , for some c0 > 0,
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in the Riemannian structure induced by L. The length is thus bounded by a constant
times 2�c0d in the structure induced from N on T �N (a compactness argument on
DT �L). So we in fact see that close to L we have

S�1.q0;p0/� ��c0d2
CK.2�c0d/2:

Indeed, H � is the distance d squared times �c0 by (f2) in Appendix A. For small �
this proves that the Hessian of S�

1
is negative definite in the normal bundle to L.

The next step is to use the iterations of the suspensions from Section 5. So, we define
the vector bundle V1 D TL over L and inductively define Vr D Vr�1˚p�TN over
L for r > 1. Also we abbreviate

V D Vk D TL˚ .p�TN /˚.k�1/:

Lemma 11.3 There is a map DVr ! T �ƒr N (homotopic to p when restricted to L

and projected to N ) that induces a homotopy equivalence

(56) DVr=SVr ! Ib
av.�/

.S�r ;X
�
r /:

Proof Since DV1 D DTLŠ DT �L the lemma is true for r D 1 by Lemma 11.2.
So we proceed by induction and assume that the lemma is true for r � 1 with a map
gr�1W DVr�1! T �ƒr�1N .

The fact that the map induces a map like in (56) means that we may fix an index pair
.C� ;C � / such that

gr�1.DVr�1/� C� [ .S
�
r�1/

�1.��1; a�/ and(57)

gr�1.SVr�1/� .S
�
r�1/

�1.��1; a�/:(58)

Recall the construction of the suspension maps in Section 5. We may pull the bundle
called E in that section back to DVr�1 . We thus get a map

DR.g
�
r�1E/

gr�1
���!DRE

fr
�! T �ƒr N:

Here fr is the map from (29) and R� 0 was chosen in that section as well. After
applying the same flow as we did in Section 5 this will produce a map, which sends both
SR.g

�
r�1

E/ and DR.g
�
r�1

E/jSVr�1
to the set .S�r /

�1.��1; a�/. Indeed, the latter
is already sent there by (58) and (31) and the former was the whole point of making
R large and using the flow in Section 5. The disc bundle DR.g

�
r�1

E/ over the disc
bundle DVr�1 is homeomorphic to a disc bundle over L. Indeed, it is homeomorphic
to the disc bundle of

V 0r D Vr�1˚ .g
�
r�1E/jL:
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Furthermore, the sphere bundle S.V 0r / corresponds under this homeomorphism to the
union of the two sets SR.g

�
r�1

E/ and DR.g
�
r�1

E/jSVr�1
. So we have a map

D.V 0r /! T �ƒr N

inducing a map
D.V 0r /=S.V

0
r /! Ib

av.�/
.S�r ;X

�
r /:

Notice that D.V 0r /=S.V
0

r / is homeomorphic to the relative Thom-construction of E

on the pair .D.Vr�1/;S.Vr�1//. So, by Corollary 5.2 and the fact that gr�1 induced
a homotopy equivalence we see that this later map is a homotopy equivalences.

Finally, we see that .g�
r�1

E/jL is isomorphic to p�TN . Indeed, by induction assump-
tion gr�1 is homotopic to p when restricted to L and projected to N . Also, we used
the projection to N given by q0 to define E in Section 5. So Vr Š V 0r and the new
gr is homotopic to p when restricted to L and projected to N .

The next (and most subtle) step is to use the homotopy .H s; ˛s/ and homotope the
map from DV DDVk to induce a similar homotopy equivalence to the index defined
at sD sk . Here we need the parallel transport from Lemma 8.3, and since this assumes
the lower bound av.s/ to be constant it is convenient to shift the Hamiltonians and
approximations. This will also make the proof of Lemma 11.5 easier. Ie, we define:

H
s
DH s

C c � s

S
s

k D S s
k � cC s

aD av.s/� cC s D��=2� c

b.s/D b� cC s

Here c is chosen such that the asymptotic tangent of H
s

goes through 0 for one s ,
hence all s , because we used the same H1 for all s . Notice that S

s

k is indeed the finite-
dimensional approximation associated to .H

s
; ˛s/ and X s

k
is still a pseudogradient.

We may ignore the fact that b.s/ depends on s because we may simply pick the
common maximum b D b.sk/ for s 2 Œ�; sk �. Indeed, all we need is an upper bound
on all critical values.

The following lemma may be considered a lift of the parallel transport construction in
Lemma 8.3 to the pair .DV;SV /.

Lemma 11.4 There is a homotopy hsW DV ! T �ƒkN , s 2 Œ�; sk � which induces
homotopy equivalences

hs=� W DV =SV ! Ib
a .S

s

k ;X
s
k/D Ib

av.s/
.S s

k ;X
s
k/:
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Proof We use the map from Lemma 11.3 for r D k as h� . As mentioned earlier,
since a and b are regular for all s 2 Œ�; sk � we get by homotopy invariance of Conley
indices that all these indices are, indeed, homotopy equivalent. The parallel transport
maps from Lemma 8.3 using the projection

T �ƒkN � Œ�; sk �! Œ�; sk �

realizes the homotopy equivalences of the fibers of the index parametrized over Œ�; sk �.
However, to get the maps defined on DV before we take the quotients we need an
elaboration on these parallel transport maps. Indeed, the maps were constructed by
creating a vector field whose induced flow locally defined maps of the quotients. We
can use the idea from the proof of Lemma 8.3 to flow the map h� forward in the s

variable. However, we need to be able to control it so that the image of SV �DV is
contained in the sets defined by

(59) .S
s

k/
�1. ��1; a�/

and the image of DV is contained in a set

(60) .S
s

k/
�1. ��1; a�/[C� ;

where .C� ;C � / is an index pair for the specific s that we are considering; and this is a
little tricky. Indeed, we will need some global bounds that were unnecessary in the
proof of Lemma 8.3 (due to compactness and the fact that we only needed the flow to
work locally in s ).

We thus elaborate on the proof of Lemma 8.3 by constructing the vector field Z0

appearing there with certain additional properties. In that proof, Y was the parame-
trized pseudogradient over the base, which in our case is simply the interval Œ�; sk �,
and so, consistent with this, we use the notation Y D X -

k
viewed as a parametrized

pseudogradient for S
-
k over Œ�; sk �, not to be confused with the previously defined

parametrized pseudogradient Y -
k

, which is parametrized by N � Œ�; sk �.

We see that Y .S
-
k/ is bounded from below by a positive constant c0 > 0 on the set

Wa D .S
-
k/
�1.a/� T �ƒkN � Œ�; sk �:

Indeed, a is a regular value for all s and Lemma 3.7 tells us that outside a compact set
Y .S

-
k/ is bounded from below by a nonzero constant. The set Wa is the set we wish

to keep SV (and parts of DV ) below for all s . We thus define

Z0 D
@

@s
�K.1CP /Y;
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for some large K� 0. In the proof of Lemma 8.3 @=@s was denoted Z because we
did not have a canonical lift of @=@s to the total space. Also the interval was I not
Œ�; sk �. Furthermore, we have put an extra factor of 1CP in front of Y , which did
not appear in the proof. Recall that P Dmaxjkpjk is continuous. By Lemma 11.5 we
may pick this K� 0 such that

(61) Z0
Ez;s
.S

-
k/ < 0 for all .Ez; s/ 2Wa:

Indeed, the lemma says that the factor @=@s S
-
k can be bounded by K.1CP /Y .S

-
k/�

k.1CP /c0 . We may also pick this K large enough for the top part of the index pairs
to flow into the index pairs, precisely as in the proof of Lemma 8.3, where the top part
is the latter part of the union in (44).

It is now clear that all points in Wa are immediately flowed below Wa in positive time,
and thus the set in (59) is preserved under positive time flow. So, the image of SV

stays below Wa for all s 2 Œ�; sk �. It is also clear that the positive time flow preserves
the set in (60).

The only subtlety left is that we need to argue that the flow of Z0 exists until we reach
s D sk . This is an easy extension of Lemma 3.6, and requires the fact that any solution
to P 0 � c1P C c2 does not go to infinity in finite time. Indeed, in Lemma 3.6 we
basically used jY .P /j � 5ı0=4. In this case we see that

jZ0.P /j DK.1CP /jY .P /j �K.1CP /5ı0=4:

So the change of P when flowing with Z0 is indeed bounded by c1P C c2 for some
c1; c2 2RC . Here we are hiding the fact that P is not everywhere smooth. However,
fixing a flow line 
 for Z0 and looking at P .t/D P .
 .t// we see that

j
@
@t
jP D lim sup

t!t0C

j�j
P .t/�P .t0/

t � t0
�K.1CP /5ı0=4;

which is good enough.

So define hs as the map into T �ƒkN �fsg�T �ƒkN � Œ�; sk � given by h� composed
with the flow of Z0 for time s� � .

The next part of the construction is realizing that hsk
from the lemma above actually

induces a map to the parametrized index. Indeed, we simply do not take the full
quotient but the quotient over N and get a map of pairs

hsk
W .DV;SV /! .Ib

a .S
sk

k ;Y
sk

k
/N ;N /:
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Here the sphere is sent to .S
1

k/
�1.�1; a�/, which is collapsed to N (instead of a point)

when defining the parametrized index. We may then compose hsk
with the quotient

(over N )

Ib
a .S

sk

k ;Y
sk

k
/N D Ib

av.sk/
.S

sk

k
;Y

sk

k
/N ! Ib

a .S
sk

k
;Y

sk

k
/N

to define
ik W .DV;SV /! .Ib

a .S
sk

k
;Y

sk

k
/N ;N /D .FLk ;N /;

which then realizes the inclusion of the constant curves on the level of homology.

We used the following technical lemma above.

Lemma 11.5 There is a K > 0 such that: for any Ez 2 T �ƒkN and any s 2 Œ�; sk � we
have ˇ̌̌

@

@s
.S

-
k.Ez//.s/

ˇ̌̌
�K.P C 1/;

where P .Ez/Dmaxjkpjk.

Proof First notice that S
s

k splits as a finite sum

S
s

k.Ez/D
X

j2Zk

fj .qj ;pj ; qjC1; s/;

where

fj .q;p; q
0; s/D

Z

 s
j

�N �H
s
dt Cp�.exp�1

q�.q
0//;

and 
 s
j is the smooth homotopy of curves given by (6) and the smooth homotopies

˛s and H
s
, and .q�;p�/D 
 s.˛s

j /. We suppress that .q�;p�/ depends on s , but
keep it in mind. We define this fj when

.q;p/ 2 T �N and dist.q0; q/� ı0 and t 2 I:

This is slightly more than we need because S
s

k is a sum of these with dist.q0; q/ < ı0 ,
but we need the extra boundary for a compactness argument. Since P � kpjk we may
assume without loss of generality when bounding the derivative @=@sfj that P D kpk.

The rate of change @=@sfj of fj is bounded by compactness on the set given by
kpk � 1. Outside this set the integration term vanishes because of the adjustment we
did to H s to define H

s
. Indeed, the action of any flow curve outside DT �N is 0 for

H
s
. This implies that we need to bound the s derivative of the function

gj D fj jfkpk�1g.q;p; q
0; s/D p�.exp�1

q�.q
0//
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by a constant times P C 1. We, in fact, can bound it proportionally to p . Indeed, this
is easy since it scales in p . That is, for � � 1 we have

gj .q; �p; q
0; s/D �p�.exp�1

q�.q
0//

because the Hamiltonian flow outside of DT �N is scale equivariant. So any bound
on the set kpk D 1 scales with � .

12 The fiber-wise product

In this section we will construct a fiber-wise product on (some instances of) the TN –
spectrum FL from Section 7. That is, we will for some (not all) instances of FL
construct a product map of spectra

(62) �W FL^N FL! eFL;

where eFL is another instance of FL, ie, eFL is defined using another set of input
data (see below). There are a couple of very good reasons for using different instances
of FL at this point:

(1) This is how the maps naturally occur.

(2) Had we insisted on using the same FL as the target we would have to “stabilize”
the map using ideas from Appendix C. Doing it this way we can actually get a
morphism of 2TN –spectra that has kr D r in the definition in Section 9.

(3) All we really need for the main argument is that it realizes the intersection
product on the constant loops on L, and this we only need homologically using
the identifications in Corollary 7.5.

Smash products of spectra are rather delicate, and we will only define a very naïve
version of these, and this will suffice for our purpose.

Remark 12.1 We will not explicitly need the Chas–Sullivan product in this construc-
tion. However, we note that the construction here is based on it. In fact for LD N

(the zero section) we recover the spectral sequence by Cohen, Jones and Yan in [6],
which converges to the Chas–Sullivan homology ring. This is not that surprising since
below we are concatenating the loops in each fiber.

We define the smash product FL^N FL as the 2TN –spectrum defined by

.FL^N FL/r D FLr ^FLr ;
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with structure maps

�^r W .FLr ^N FLr /
2TN
Š FLTN

r ^N FLTN �r^N �r
�����! FLrC1 ^N FLrC1:

We can easily consider any other instance eFL as a 2TN –spectrum by simply forgetting
every other ex-space in the sequence eFLr , and making the new structure maps the old
�2r;2rC2 . This does not change its homology, and in fact defines an equivalence of
categories, but we will not need the latter. We will thus define � in the category Sp2TN

N .

We start by defining the fiber-wise product on the level of the underlying smooth
manifolds as maps

Gr W .T
�ƒr N /�N .T �ƒr N /! T �ƒ2r N

given by simply concatenating. Ie, given two points Ez1D .q
1
0
;p1

0
; : : : ; q1

r�1
;p1

r�1
/ and

Ez2 D .q
2
0
;p2

0
; : : : ; q2

r�1
;p2

r�1
/ with q1

0
D q2

0
(the definition of �N provides precisely

this equality) we can define

(63) Gr .Ez1; Ez2/D .q
1
0 ;p

1
0 ; : : : ; q

1
r�1;p

1
r�1; q

2
0 ;p

2
0 ; : : : ; q

2
r�1;p

2
r�1/:

This is well-defined because dist.q1
r�1

; q2
0
/D dist.q1

r�1
; q1

0
/ < ı0 and similar for q1

0

and q2
r�1

.

Now assume we are given a Hamiltonian H and a subdivision ˛ 2 �r�1 such that
Sr is defined for the pair .H; ˛/. We may then define zS2r as the finite-dimensional
approximation using the Hamiltonian 2H and the subdivision 2r˛ 2�

2r�1 given by

(64) .2r˛/j D .˛.j mod r//=2:

The twiddle is put on zS2r because we wish to emphasize that we are not using the
same Hamiltonian and subdivision. In fact twiddles will signify that we are dealing
with structure related to the target eFL (which will be constructed during the course of
this section). Using that q1

0
D q2

0
in the definition of Gr it is easy to check that these

functions satisfy

(65) zS2r .Gr .Ez1; Ez2//D Sr .Ez1/CSr .Ez2/:

The factor 2 in the Hamiltonian is compensated by the 1
2

in the subdivision, and
is explained by the fact that the action is additive under strict concatenation. Here
strict concatenation takes two curves parametrized by an interval of length 1 and
spits out a curve parametrized by an interval of length 2. However, since this is not
the concatenation we use (we identify the result as parametrized by an interval of
length 1 using the unique affine reparametrization) we effectively need to scale up the
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Hamiltonian and scale down the length of the pieces in the subdivision to get the same
result.

The point of these maps and (65) is that Gr now induces a map of Parametrized Conley
indices. Indeed, for any pair .C� ;C � / in T �ƒr N as in Section 4, (65) shows that

Gr .C� ;C� /� . zS2r /
�1.Œ2a; 2b�/ and

Gr .C � ;C� /[Gr .C� ;C � /� .
zS2r /

�1.Œ2a; aC b�/;

and thus as usual by composing with the flow of �zY2r (to get the image inside some
zCt defining the target parametrized index) we get an induced ex-map

�r W I
b
a .Sr ;Yr /N ^N Ib

a .Sr ;Yr /N ! I2b
aCb.

zS2r ; zY2r /N :

Note that this, indeed, is an ex-map over N because Gr preserves the projections to
N and so does the flow. We would like to say that this defines a map of generating
function spectra. However, strictly speaking it does not. Indeed, the doubling of the
subdivision in (64) is not compatible with the top face inclusions used to define the
suspensions in the generating function spectra. Ie, the diagram

(66)
�r�1

2r .-/
//

dr

��

�2r�1

d2rC1ıd2r

��

�r
2rC1.-/

// �2rC1

does not commute. The difference is precisely a reordering of the numbers in the
sequence (moving one of the introduced zeros around).

To be as precise as possible we now assume that we have

� a smooth family of Hamiltonians H s 2H , s 2 Œ0;1Œ , defined as in Section 7
but with H1 2H1 such that 2H1 2H1 ,

� a smooth family ˛s 2�1 ,s 2 Œ0;1Œ of subdivisions,
� constants a< �2kFk� 1 and b D kFkC 1 (kFk as in Section 7), and
� a strictly increasing sequence sr 2 Œ0;1Œ , r � r0 ,

defining FL (the source) as in Section 7. Here we have put slightly more restrictions
on H1 and the bounds a and b than we did in that section, and we will need this to
define the product.

We will need the target spectra eFL to be defined using a smooth family of subdivisions
z̨s 2�1 , s 2 Œ0;1Œ such that z̨sr D 2r .˛

sr /. Since

l.2r .˛
s//D 1

2
l.˛s/
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there are no problems in choosing such a family such that

l.z̨s/� 1
2
.˛s/:

Basically this family could be constructed as a twisted ˛s , where “twisting” takes
place on each open interval �sr ; srC1Œ and compensates for the noncommutativity of
the diagram in (66). We thus use the following data to define eFL :
� The smooth family of Hamiltonians 2H s .
� A strictly increasing sequence zsr with zs2r D sr .
� A smooth family z̨s such that z̨s2r D 2r˛

sr satisfying the above.
� The constants zaD aC b < �kFk and zb D 2b .

By the above we have made sure that zS s
2r

is defined for s 2 Œ0; zs2r �. It is no problem to
extend the sequence zs2r to include odd numberings zs2rC1 . However, we are throwing
the odd levels away anyway so in light of Lemma 9.3 it really does not matter. We thus
define for each r 2N such that sr > 5 the ex-map

(67) �r W FLr ^N FLr !
eFL2r

by the map induced by Gr above.

Lemma 12.2 The ex-maps �r fit together to define a morphism �D .�r ; hr ; r/ in
Sp2TN

N as in (62).

See Section 9 for definition of morphism in Sp2TN
N .

Proof Since the proof is highly technical and not very deep (except the usual issues
about reordering suspension for spectra), we only provide a sketch of the argument.
Also we do not really need this because as an alternative one can prove the main
theorem using a compactness argument and a single �r , provided r is chosen large
enough. However, this way of thinking makes notation much more compact.

Firstly it is convenient to apply the functor from Appendix B to trivialize the bundles,
and to do so in a way that makes the trivial bundles even-dimensional (this avoids some
sign issues).

The noncommutativity in (66) is taken care of by the fact that the family z̨s interpolates
between the different 2r .˛

sr / and 2rC1.˛
srC1/. However, inspecting the Thom-

suspensions from Section 5 we see that when comparing the two sides we are in
fact putting in the vector from the first copy of TN over different qj , and in fact
shifting the identification of the pj coming from the second factor by one. Indeed, this
corresponds to the usual problem with nonassociativity of smash-products of spectra
and the rearranging needed to define a map from the product of two spectra to a third
spectrum.
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13 The global product

The products �r in Section 12 were defined fiber-wise (as ex-maps) over N . In this
section we define associated products on the “total spaces” by combining the fiber-wise
products with the intersection product on N , and we prove that it will be compatible
with the intersection product on L. We will use the description of the intersection
product as the map induced by a Pontryagin–Thom collapse map N �N ! N TN .
The goal is thus to extend �r from Section 12 to induce a map

.�r /!W FLr=N ^FLr=N ! .eFLTN
2r /=N;

and then prove that for large r this extends the intersection product on constant loops
in L (compare with Corollary 7.5). Note that we will use the fact that FL is a TN –
spectrum below and use a suspension from Section 5 to get the TN factor on the target
of the above map. However, in general it is not important that such a fiber-wise product
is defined on a TN –spectrum to induce a global product as above. We use this not so
general construction because it is the most convenient way of proving that the product
extends the intersection product on L.

The additivity rule in (65) of Gr does not a priori extend to a neighborhood of

T �ƒr N �N T �ƒr N � T �ƒr N �T �ƒr N:

However, if we insert an extra point in the target .q;p/ 2 T �N we can actually
accomplish this. So extend Gr to points

Ez1 D .q
1
0 ;p

1
0 ; : : : ; q

1
r�1;p

1
r�1/ and

Ez2 D .q
2
0 ;p

2
0 ; : : : ; q

2
r�1;p

2
r�1/

such that all three distances dist.q1
0
; q2

r�1
/, dist.q2

0
; q1

r�1
/ and dist.q1

0
; q2

0
/ are less

than ı0 . Then

Gr .Ez1; Ez2/D .q
1
0 ;p

1
0 ; : : : ; q

1
r�1;p

1
r�1; q

2
0 ;p

2
0 ; : : : ; q

2
r�1;p

2
r�1/

lies in T �ƒ2r N . In the following we are implicitly using Hamiltonians H and 2H

and subdivisions ˛ and z̨ D 2r .˛/ as assumed in (65). We wish to construct a smooth
function

p D F.Ez1; Ez2/ 2 T �
q2

0

N

such that if we define

(68) GCr .Ez1; Ez2/D .q
1
0 ;p

1
0 ; : : : ; q

1
r�1;p

1
r�1; q

2
0 ;p

2
0 ; : : : ; q

2
r�1;p

2
r�1; q

2
0 ;p/;
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which by assumption on Ez1; Ez2 above lies in T �ƒ2rC1N , we get the subadditivity
rule

(69) Sr .Ez1/CSr .Ez2/� zS2rC1.G
C
r .Ez1; Ez2//;

with equality only on the diagonal where q2
0
D q1

0
. We will construct it so that the

equality on the diagonal is nondegenerate in the sense that if we move all terms to one
side of the equation the diagonal is a nondegenerate critical manifold in the sense of
Morse–Bott. Here we used the usual top face inclusion z̨ 2�2r ��2rC1 to define
zS2rC1 as we did when defining the suspension maps in Section 5. Indeed, as mentioned
in the introduction we will use this suspension to get the extra TN factor.

Using Definition 2.2 we calculate (keeping in mind the reindexing from (68)) the
difference for arbitrary p 2 T �

q2
0

N to be

zS2rC1.Ez/�Sr .Ez1/CSr .Ez2/(70)

D .p1
r�1/

�.exp�1

.q1
r�1

/�
.q2

0/� exp�1

.q1
r�1

/�
.q1

0//Cp exp�1

q2
0

.q1
0/:(71)

Indeed, since z̨2r D 0 we do not need the minuses on q2
0

and p in the last term. If
q2

0
D q1

0
(the diagonal on which we worked in Section 12) both terms vanish and

we can set p equal to anything. However, to solve when q1
0
¤ q2

0
we need that the

gradient of this thing on the diagonal with respect to both q2
0

and q1
0

vanishes. This is
easily accomplished by noticing that there is a unique p where this is true. Indeed, the
gradient on the diagonal is antisymmetric in q2

0
and q1

0
, and since the term

p exp�1

q2
0

.q1
0/

has gradient with respect to .q1
0
; q2

0
/ equal to .p;�p/ there is such a unique p . Then,

it is simply a matter of defining the general

p 2 T �
q2

0

N

by choosing some extension of this unique p defined on the diagonal and adding a
positive smooth function times

� exp�1

q2
0

.q1
0/

to make the quantity in (70) nondegenerately negative for all Ez1 and Ez2 . In fact by
picking this function we can get the value of zS2rC1 as small as needed on any compact
set disjoint from the diagonal, which we will use in the proof below.

For any ı > 0 and any two maps pi W Ai!N for i D 1; 2 we define

A1 �
ı
N A2 D f.x;y/ 2A1 �A2 j dist.p1.x/;p2.y//� ıg:
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Let C� � T �ƒr N be as in Section 4 defining the parametrized Conley index FLr .

Lemma 13.1 There is a ı > 0 such that the map

GCr W C� �
ı
N C� ! T �ƒ2rC1N

is well-defined, and being careful about the choices above it will induce a map

.�r /!W FLr=N ^FLr=N ! eFLTN
2r =N;

which realizes the Pontryagin–Thom collapse map to the new factor TN .

Proof Since C� is compact and satisfies the inequalities assumed on Ez1 and Ez2

above, GCr must be well-defined on a small neighborhood of C� �N C� . This small
neighborhood will contain C� �

ı
N

C� for small ı . By using the subadditivity (and
possibly composing with the negative gradient flow) we get a map

C� �
ı
N C� ! eFLTN

2rC1=N

induced by GCr , which sends C � �
ı
N

C� [C� �
ı
N

C � to the base point. Inspecting
C� �

ı
N

C� we see that it is neither open nor closed. It will be a closed set if we add
the compact set of .Ez1; Ez2/ 2 C� �C� , which has dist.q1

0
; q2

0
/D ı . This compact set is

isolated from the diagonal, and by being careful with the choices above we can make
sure that GCr sends this compact set to points with value less than za. Ie, the lower
bound used to define eFL2r . This means that the induced map extends to all of C� �C�
by sending everything outside C� �

ı
N

C� to the base point. This is the usual idea of
Pontryagin–Thom collapse maps, except we now have good control over what GCr
does to the action values.

For the last statement notice that when defining the suspension in Section 5 the vectors
of TN correspond to the p defined above and with a large factor in front of

exp�1

q2
0

.q1
0/

we see that this p really measures the distance of the two points q1
0

and q2
0

, which is
how one constructs the Pontryagin–Thom collapse map.

The rest of this section is devoted to proving that for large r this product extends the
intersection product on constant loops in L. This is done by combining this construction
with the construction in Section 11. We will not need the subtle two last lemmas in
that section. Indeed, the statement we need here is a purely homological statement,
without any fiber-wise concerns.
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Lemma 13.2 With F as in Corollary 7.5 the diagram

H�.LIF/˝H�.LIF/
\

//

.ir /�˝.ir /�

��

H�.LIF/

.zi2r /�
��

H�.FLr ;N IF/˝H�.FLr ;N IF/
.�r /!

// H�.eFLTN
2rC1

;N IF/

commutes up to a possible graded sign. Here \ is the intersection product and the
vertical maps are the inclusions of constant loops described in Section 11.

Proof We assume that r is as large as needed in the construction in Section 11, and
the notation from that section is used in the following. We need to identify the product
on the inclusion constructed there, and we start by taking a closer look at the homotopy
.S s

r ;X
s
r /; s 2 Œ�; sr �.

In Section 11 we considered a varying lower bound aW Œ�; sr �!R, but we got rid of
this s–dependence by translating the functions based on the parameter s (which we
shall generalize in Lemma 13.3). We will also need to vary the upper bound b in this
proof. Indeed, we will need the varying bounds:

av.s/D�sC �=2

bv.s/D s=3

for s 2 Œ�; sr �. This is the same av.s/ as in Section 11, which is regular for S s
r . The

construction of the product is such that we need to define the bounds associated to the
target eFL as:

zav.s/D av.s/C bv.s/D�2s=3C �=2;

zbv.s/D 2bv.s/D 2s=3:

Varying bounds is not really problematic when dealing with parametrized Conley
indices. However, we postpone the technical details of this to the following lemma,
and simply suppress the s from the notation.

We may construct the products .�r /
s
!

above for each s 2 Œ�; sr �. In fact using a
compactness argument we may define the family of these as an ex-map:

.�r /
-
! W I

bv
av
.S -

r ;X
-
r /Œ�;sr � ^Œ�;sr � I

bv
av
.S -

r ;X
-
r /Œ�;sr �! I

zbv
zav
. zS -

2rC1;
zX -

2rC1/Œ�;sr �

Lemma 13.3 tells us that there are parallel transports

(72) ps0

s W I
b
a .S

s
r ;X

s
r /! Ib

a .S
s0

r ;X
s0

r /; and

zps0

s W I
zb
za .
zS s

2rC1;
zX s

2rC1/! I
zb
za .
zS s0

2rC1;
zX s0

2rC1/;
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both for s � s0 2 Œ�; sr �.

This provides a homotopy

zp
sr

t ı .�r /
t
! ı .p

t
� ^pt

�/W I
b
a .S

�
r ;X

�
r /^ Ib

a .S
�
r ;X

�
r /! I

zb
za .
zS

sr

2r
; zX

sr

2r
/

for t 2 Œ�; sr �, which shows that the diagram

I
bv
av .S

�
r ;X

�
r /^ I

bv
av .S

�
r ;X

�
r /

.�r /
�
!

//

p
sr
� ^N p

sr
�

��

I
zbv
zav
. zS�

2rC1
; zX �

2rC1
/

zp
sr
�

��

I
bv
av .S

sr
r ;X

sr
r /^ I

bv
av .S

sr
r ;X

sr
r /

.�r /
sr
!

// I
zbv
zav
. zS

sr

2rC1
; zX

sr

2rC1
/

homotopy commutes. The av.sr /; bv.sr /; zav.sr /; zbv.sr / we have used as bounds in
the lower horizontal map (sr were suppressed) are as in Section 11 all smaller than the
actual chosen a; b; za; zb when we defined the product .�r /! in Lemma 13.1. Moreover,
the construction of .�r /! is obviously compatible with quotients to larger such bounds
if of course these satisfy zaD aC b and zb D 2b before and after. So we get another
commutative diagram

I
bv
av .S

sr
r ;X

sr
r /^ I

bv
av .S

sr
r ;X

sr
r /

.�r /
sr
!

//

��

I
zbv
zav
. zS

sr

2rC1
; zX

sr

2rC1
/

��

Ib
a .S

sr
r ;X

sr
r /^ Ib

a .S
sr
r ;X

sr
r /

.�r /!
// I
zb
za
. zS

sr

2rC1
; zX

sr

2rC1
/

which fits directly below the previous one. Putting them on top of each other we see
that the inclusion of constant curves corresponds to going from top to bottom, and
so we only need to see that .�r /

�
!

realizes the intersection product. So we need to
consider

GCr W U D T �ƒr N �ıN T �ƒr N ! T �ƒ2rC1N

a little more carefully in the case of .H �; ˛�/.

Since � is small we have from Lemma 11.2 and the ensuing construction that both
Conley indices used in the definition of .��r /! are Thom-spaces over L. In fact the
nondegeneracy proved for small s in Lemma 11.2 close to L can easily be extended
to S�r . Indeed, consider R2n where the action on closed loops for H D 0 is well
understood and the constant loops (a copy of R2n ) is a nondegenerate critical manifold,
if we change H by a sufficiently small perturbation that has a nondegenerate critical
manifold then the action will have this same nondegenerate critical manifold. So let
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E� be a maximal subspace of T .T �ƒr N /jL on which the Hessian of S�r is negative
definite. Also let �L be the normal bundle of the diagonal L�L�L. We have the
commutative diagram:

U
G
C
r
// T �ƒ2rC1N

L�L

OO

L
�

oo

OO

Now E� �E� is a subbundle in the tangent bundle of U along L�L. Restricting
it to the diagonal we get E�˚E� � T UjL . The bundle �L may also be considered
such a subbundle by �L � T .L�L/jL � T UjL , and these two subbundles intersect
trivially. Indeed, the Hessian of S�r .Ez1/CS�r .Ez2/ is zero on L�L so �L is part of
the kernel and cannot be part of any negative bundle.

Now GCr is an embedding and by the subadditivity and its nondegeneracy on the
diagonal we see that E�˚E�˚�L is sent to a negative subspace, which by dimension
counting is maximal. This means that the map realizes the Pontryagin–Thom collapse
map from L�L to L�L , and the extra negative bundle of E�˚E� is by assumption
oriented, so on the level of homology the lemma follows.

Lemma 13.3 The parallel transport maps in (72) exist.

Proof The varying bounds are easy to get rid of by simply replacing S s
r with the

function
S s

r � av.s/

bv.s/� av.s/
:

This does not change the fact that X s
r is a pseudogradient, and now the bounds av.s/

and bv.s/ are replaced by the constants 0 an 1. We can do the same for the target
approximations zS s

2rC1
using zbv.s/ and zav.s/.

The trouble is that when defining zps0

s the value zav probably has to cross several critical
values because it is far from zs2r D sr . However, this is where the parallel transport in
Lemma 8.3 comes in handy again.

Indeed, for there to be a parallel transport forward in s for zS s
2rC1

we need that�
@

@s

�Ez� zS -
2rC1

� zav

zbv� zav

�
< 0

for any Ez 2 T �ƒr N regular for zS s
2rC1

and such that zS s
2rC1

.Ez/D zav . This translates
into the need for

(73)
�
@

@s

�Ez
zS -

2rC1 <
@

@s
zav

Geometry & Topology, Volume 17 (2013)



716 Thomas Kragh

reflecting that zav is not constant. By Lemma 7.1 the left hand side is �1 and by the
choice of zav the right hand side is �2

3
. The intuition is that even though the lower

bound zav goes down with speed �2
3

, the critical values of zS -
r moves down faster, ie

with speed �1. So, indeed, there is a parallel transport

zps0

s W I
zb
za .
zS s

2rC1;
zX s

2rC1/! I
zb
za .
zS s0

2rC1;
zX s0

2rC1/:

The source is much easier to handle since av is always regular. In fact it is a limit
case of the above idea where the bound av moves with same speed �1 as s , but then
we still have a parallel transport because it is always regular (it moves parallel to the
critical values without being one).

14 The product on the Serre spectral sequence

In this section we describe how the products define a product on the Serre spectral
sequence. First we consider an external smash product and the associated map on
spectral sequences, which will be an appropriate derivation on all pages inducing the
map on subsequent pages. Then we consider the Pontryagin–Thom collapse map, and
finally we use the map � defined in Section 12.

As in the proof of Proposition 10.5 this will work with any coefficient ring F , but for
notational purposes we suppress this and consider only F D Z. We have borrowed
some ideas from Cohen, Jones and Yan [6].

First we define the exterior smash-product ^e as a functor from Spˇ
W
�Spˇ

0

W 0
to

Spˇ�ˇ
0

W �W 0
by

.A^e B/r D .Ar �Br / WW �W 0 .Ar �W 0[W �Br /;

so that the fiber at .x;x0/ 2 W �W 0 is Ar jx ^ Br jx0 . The structure maps are the
obvious ones defined using the identification

.A^e B/ˇ�ˇ0r Š .Aˇr �Bˇ
0

r / WW �W 0 .Aˇr �W 0[W �Bˇ0r /:

The Eilenberg–Zilber operators defined in Section 10 induce maps on the chains relative
to the sections and we thus have maps

C�.Ar ;W /˝C�.Br ;W
0/! C�..A^e B/r ;W �W 0/:

When both ˇ and ˇ0 are trivialized of respective dimension l and l 0 (which we may
assume) and one of them is even-dimensional the suspensions †� defined on the chain
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level in (50) are compatible with these maps. Ie, the diagram

C�.Ar ;W /˝C�.Br ;W
0/ //

†�˝†
0
�

��

C�..A^e B/r ;W �W 0/

†00�
��

C�Cl.ArC1;W /˝C�Cl 0.BrC1;W
0/ // C�ClCl 0..A^e B/rC1;W �W 0/

commutes. Here †00� is the suspension on chains induced by the structure maps of
A^eB . Indeed, this follows from the commutativity mentioned in Remark 10.4 and the
way the suspension maps on chains were defined. Furthermore, this is graded from the
bigraded tensor complex to the graded complex. In addition it adds the filtration degrees.
This implies that it induces a map from the tensored spectral sequence, which on each
page is a derivation inducing the product on the next page (see eg McCleary [15]).

The next step is the spectral sequence version of the Pontryagin–Thom collapse map.
For this we need a relative version of the spectral sequence. So assume B0 � B �M

are closed neighborhood retracts of any compact manifold M and A is a 3S–fibrant
l –spectrum over M . Then we have a relative Serre spectral sequence given by the
relative chain complex

C�.AjB;AjB0/D colim
r!1

C�Clr .Ar jB;Ar jB0 [B/;

which on page two can be identified with H�.B;B
0IH�.Aj�//. Indeed, this is a relative

version of Proposition 10.5.

For any closed proper submanifold M 0 �M with oriented (in general with respect
to F ) normal bundle � of dimension k we would like to create a spectral sequence
version of the “Pontryagin–Thom collapse” map

(74) H�.A/!H��k.AjM 0/;

where A is any 3S–fibrant l –spectrum over M . We will start by replacing the spectral
sequence with a spectral sequence which is isomorphic from page 2 and onwards.

We may identify D� with a closed tubular neighborhood of M . Let U � D� be a
neighborhood whose closure deformation retracts onto D� , and let D�c denote the
open complement of D� . We may use Hatcher [10, Proposition 2.21] together with
the identification of page 2 in our proof of Proposition 10.5, and conclude that the
inclusion

(75) C
U;.D�/c

� .A/ WD colim
r!1

C
Ar jU ;Ar j.D�/c

�Clr
.Ar ;N /! C�.A/;
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induces an isomorphism on page 2 and thus also on higher pages (this subcomplex
inherits its filtration from C�.A/). So we may replace the spectral sequence for A
with this.

Now pick a deformation retraction of the closure of U onto D� , where we can as
usual use Lemma 10.1 to make sure that it is path-smooth. We may also make sure that
everything that starts outside D� never enters the interior of D� , and thus everything
outside D� must be deformed onto the sphere bundle S� � D� . Using this with
Definition 9.1 and restricting to 1 2 I we get a map

pW A
jU !AjD� ;

where all the fibers outside D� are mapped to fibers over points in S� . We may
use this on the chain complex in (75) by sending all simplices ˛ living over U to
p�.˛/ and the rest to 0. This is a chain map into C�.AjD� ;AjS�/ because the new
boundary we create by “ignoring” some simplices in D�c is all sent to C�.AjS�/. It
is also filtration-preserving because the projections of simplices are governed by the
deformation retraction.

To continue this map into C��k.AjM / we simply do as in [6] and pick a Thom class
� in C �.D�;S�/ that vanishes on simplices contained in S� and on degenerate
simplices. Denoting � pulled back to Ar jD� by � 0 we get

� 0\ .�/W C�Clr .Ar jD� ;Ar jS�/! C��kClr .Ar jD�/;

which is a chain map for the usual reasons and because � 0 is zero on simplices in
Ar jS� . This lowers the filtration by k for the same reasons as in [6] although we above
made the choice to cap away the first c indices. This choice makes it commute with our
suspensions (which adds to the other end of the indices defining the simplices). So, this
is compatible with the limit as r tends to infinity, and thus induces a map of spectral
sequences which lowers the degree by .k; 0/. To end up in C�.AjM 0/ we again simply
use a path-smooth deformation retraction of D� onto M 0 with Definition 9.1 and
restrict to 1 2 I to get a morphism

AjD�!AjM ;

which preserves filtration.

Using the above steps on FL^e FL and the diagonal N �N �N we get a map from
the tensor product of the spectral sequence defined using FL with itself to the spectral
sequence defined by FL^N FL. Indeed, FL^N FL is the restriction of FL^e FL
to the diagonal. Composing this with the product � from Section 12 we get a product
on the spectral sequence associated to FL. It lowers degree by .d; 0/ due to the Thom
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isomorphism used at one of the steps, so if unital the unit would have degree .d; 0/ (the
fundamental class for L is in fact a unit, but we do not prove this at any point). Since
Section 13 and the construction here both realize the Pontryagin–Thom construction
combined with the fiber-wise product we have the following lemma.

Lemma 14.1 The product above induces on nonfiltered homology the same map as the
product in Section 13 does up to the shift by d coming from the Thom-isomorphism.

15 Proof of the main theorem

As usual N is a closed d –dimensional manifold with a Riemannian structure and
L� T �N is an exact Lagrangian.

Proposition 15.1 Let F be either Q or Fp for some p such that the requirements
in Corollary 7.5 are satisfied. Assume also that �1.L/! �1.N / is surjective. Then
L!N is a homology equivalence with coefficients in F .

Proof Under the assumptions in Corollary 7.5 the induced map

.ir /�W H�.L/!H�.FL/ŠH“�”.ƒL;F/

from Section 11 is an injection on the level of homology. Indeed, evaluation at base-
point defines a splitting. In Lemma 11.1 we proved that this gives a map of Serre
spectral sequences, one coming from fibrantly replacing L! N and the one from
FL from Proposition 10.5. More precisely this defines two (at this point possibly
different) filtrations on Hp.L/, one coming from the Serre filtration over N and
one coming from applying .ir /�.˛/ and restricting the filtration associated to FL.
Denote the Serre-filtration FS

n H�.L/ and the FL–filtration FFL
n H�.L/. The fact

that Lemma 11.1 says that we have a map of the spectral sequences proves that

FS
n H�.L/� FFL

n H�.L/:

In particular

(76) Hn.L/� FFL
n H�.L/;

which was not a priori clear because the spectral sequence associated to FL can be
nontrivial in the 4th quadrant.

Claim: FS
n�1

Hn.L/D0. Proof of claim: Assume for contradiction that 0¤˛2Hn.L/

is in Serre-filtration n� 1. This implies by the above that it is also in FL–filtration
n�1. By assumption F is a field for which the intersection product on H�.L/, which
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is Poincaré dual (up to a sign) to the cup product, is a perfect pairing. So there exists a
ˇ 2Hd�n.L/ such that ˇ � ˛ D 1L 2H0.L/. By (76), ˇ is in filtration d � n. The
construction of the product in Section 14, which by Lemma 13.2 and Lemma 14.1
realizes the intersection product, tells us that the intersection product preserves the
FL–filtration up to a shift by d . This implies that 1L is in filtration �1 in the FL–
filtration. This is a contradiction, since the entire spectral sequence is supported in the
1st and 4th quadrant.

The above claim implies that the Serre spectral sequence associated to the map L!N

has support entirely on the 1st axis in the abutment.

The fact that �1.L/! �1.N / is surjective implies that the homotopy fiber of L!N

is connected, and combining this with the fact that the E1 term of the Serre spectral
sequence for L!N is concentrated on the first axis we get that H�.L/ injects into
H�.N /. Since L and N are both d –dimensional manifolds this implies that the
degree is invertible and thus the map is also surjective on homology.

This now implies the main theorem rather easily.

Main Theorem If N is oriented and the induced map p� on fundamental groups is
surjective then the induced map p� on homology is an isomorphism.

Proof of Main Theorem Since the assumptions in Corollary 7.5 are satisfied for
F D F2 the above proposition proves that p� is a F2 –homology equivalence. It is a
fact that any F2 –cohomology equivalence of manifolds preserves the Stiefel–Whitney
classes of the tangent bundles (this is also mentioned by Fukaya, Seidel and Smith
in [9] and used by Abouzaid in [4] in the exact same context). This implies that L

is also oriented. It also implies that pW L!N is relative spin. This means that the
assumptions in Corollary 7.5 are satisfied for any F .

The above proposition thus works for all F D Fp and F DQ, and it is well-known
that a map which is a homology equivalence for all these coefficients is a homology
equivalence with Z coefficients.

Appendix A: Construction of Hamiltonians

Asymptotic behavior and H1

In the constructions throughout the paper we use functions H1W T
�N ! R with

certain properties. We now construct the space H1 �H in which these should lie.
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We need this space to satisfy several assumptions, and the easiest way to get this is to
explicitly construct it and then prove all of these.

So fix any hW R�0!R, which satisfies

� h is convex,
� h.t/ is zero for t 2 Œ0; 2=3�, and
� h.t/D �t C c for t 2 Œ1;1Œ for some constants �;�c 2RC .

Define H1 to be in H1 if

H1.q;p/D �h.kpk/

for some 0< � < ˇ with ˇ > 0 small enough for (H1) through (H4) below to hold.

For ˇ > 0 small enough we have for any H1 2H1 that:

(H1) H1 is 0 on D2=3T �N .

(H2) tH1 2H1 for all t 2 �0; 1�.

(H3) Any time-1 Hamiltonian flow line for H1 starting and ending in the same fiber
T �q N is constant.

(H4) The finite-dimensional approximation S1 from Section 2 is defined using the
unique subdivision in �0 and any Hamiltonian in H sufficiently C 2 –close to
H1 .

Obviously (H1) and (H2) hold by construction. (H3) follows because the Hamiltonian
flow of H1 is a reparametrization of the geodesic flow with constant speed krH1k.
So if krH1k � ı0 (smaller than the injective radius) then it cannot return to the same
starting point, unless it had speed 0, in which case it is constant. (H4) is a simple matter
of making sure that

C H
1 CC H

2 < ı;

with ı from Definition 2.2.

Constructing fs from f

In this section we construct the smooth family of smooth increasing functions

fsW R�0!R; s 2 Œ0;1Œ;

used in Section 7 and later. Throughout the paper we need this to satisfy several
properties.

We assume that we are given a smooth function f W RC!R such that:
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� f .t/!�1 when t ! 0.

� f .t/D 0 when t 2 Œ1;1�.

� f 00.t/ < 0 when t 2 �0; 1Œ , ie f is strictly concave on �0; 1Œ .

For each s > 0 we define ts to be the unique point ts 2 �0; 1Œ such that the tangent of
f at ts intersects the 2nd axis at �s (see Figure 3).

The first properties we want (see Figure 3) for all fs are:

(f1) fsW R�0!R is a smooth family for s 2 Œ0;1Œ of smooth increasing functions.

(f2) In a neighborhood of the set .0; s/ � R2
�0

we have fs.t/ D c.s/t2 for some
c.s/� 0, and c.s/D sc0 for s close to 0 and some constant c0 2RC .

(f3) For t � 1 we have fs.t/D s .

(f4) For s > 0 the restriction of fs.t/ to �0; 1Œ is strictly increasing.

Of course these force f0 D 0. In the construction of FL we need the following for
s � 5 (here 5 is a rather arbitrary choice).

(f5) The tangent to fs at any t 2 Œ0; ts � intersects the 2nd axis in �� 1; 0�.

(f6) For s � 5 we have fs.t/D f .t/C s when t � ts .

At other points in the paper we will need for all s 2 Œ0;1Œ that:

(f7) The tangent to fs at any t 2 Œ0; 1� intersects the 2nd axis above �s=4.

(f8) Lemma 7.1 is true for all s 2 Œ0;1Œ.

The last one uses the definition of the Hamiltonians H s in Section 7, and depends on
the fixed choice of Riemannian structure on L from that section, which we will thus
assume is given.

As Figure 9 suggests it is not difficult to use bump functions and cut-off functions
together with f 0 to construct a smooth family hs; s > 0 satisfying (f1)–(f7) for all
s > � for any � > 0 (the � makes the last part of (f2) void). Indeed, pick hs as the
unique antiderivative to the pictured h0s (which is equal to f 0 for t � ts ) going through
.0; 0/. By making this h0s depend smoothly on s we get (f1). We get the first part of
(f2) because h0s is linear close to 0. We get (f4) trivially, and by making sure that the
two areas marked with a are the same, this will automatically satisfy (f6) and thus
also (f3). Properties (f5) and (f7) follow if we make h0s have a unique critical point (a
maximum) close to ts , as suggested in the figure. Indeed this controls the inflection
point of hs . We can make this maximum value as close to f 0.ts/ as we would like by
increasing c and thus decreasing the area a. We may thus assume that
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t

1ts

f 0.ts/

f 0

h0s a
a

1

c

Figure 9: Constructing h0s

� h0s tends to 0 when s tends to 0.

The proof of Lemma 7.1 then works as written for this family for all s > 0. The
problem is having (f6) satisfied close to 0, and retaining smoothness (C 2 would be
enough, but this seems no easier).

We thus use that h0s tends to zero when s does. Indeed, pick some s0 > 0 small enough
such that h0s.t/ is less than the shortest nonzero geodesic length of L for all t and all
s 2 Œ0; s0�. Then the family

s

s0
hs0
W R!R

satisfies all the requirements for s < s0 ((f6) is now considered void because s < 5).
Indeed, the family satisfies all but the last part of (f2), which is now taken care of by
the explicit construction. All properties (f1)–(f7) are for fixed s preserved by convex
combinations. So we may choose any smooth function  W R�0! Œ0; 1� with  .s/D 0

for s � s0=2 and  .s/D 1 for s � s0 and define

fs.t/D .1� .s//
s

s0
hs0
.t/C .s/hs.t/:

This then satisfies all the requirements. Indeed, it is smooth (f1), satisfies the last
part of (f2) by construction, and first part of (f2) and (f3)–(f7) are handled by the
convex combination argument. Even (f8) is true simply because fs for s 2 Œ0; s0� has
f 0s bounded by the length of any nonzero geodesic on L, and so only the constant
geodesics contribute, and by (f4) these lie in the set defined by kpkLD 0 or kpLk� 1,
which were already considered in the proof of Lemma 7.2.
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Appendix B: A functor from ˇ–spectra to parametrized
spectra

In Section 6 we defined ˇ–spectra and their homology. In this appendix we describe
a functor F from ˇ–spectra over W to l –spectra, where l 2 N denotes the trivial
bundle W �Rl . This functor preserves the homology in the cases that we care about,
and we used it to simplify the construction of the spectral sequence in Section 10.

Let i W ˇ!W �Rl be an embedding of the bundle ˇ over W . Then we get a canonical
isomorphism ˇ?˚ˇ Š l DW �Rl , where ˇ? is the orthogonal complement bundle
of ˇ in W �Rl . We then define the functor F on an object A 2 Spˇ

W
by

.FA/r DArˇ?

r :

The new structure maps are defined by

.F�r /D �
ˇ?

r W Arˇ?˚l
r ŠArˇ?˚ˇ?˚ˇ

r ŠAˇ˚.rC1/ˇ?

r !A.rC1/ˇ?

rC1
:

This is easily extended to morphisms since the fiber-wise Thom suspension is functorial
on ex-spaces as described in Section 6.

Global homology is easily seen to be preserved in all cases of interest. Indeed, we
made sure that the sections are cofibrations and that ˇ (and hence ˇ? ) is oriented. We
could also argue that for a 3S–fibrant ˇ–spectrum the homologies of the fibers are
preserved, ie, the nongenericity of the fibers goes away. However, we will not actually
need this since we never use what exactly the homology of the fibers are in any of the
arguments.

Lemma B.1 The functor F preserves 3S–fibrancy.

Proof This follows from the fact that any stable lift for A can, by using parallel
transport in (copies of) ˇ? , be turned into a stable lift for F.A/.

Appendix C: Homotopy invariance of FL

In this appendix we discus why the construction of FL is unique up to unique isomor-
phism in the homotopy category of parametrized spectra over N . A similar discussion
can be done for the product, but we omit this.

Following notation from Section 7 we assume for the moment that f and the capping off
family fs is fixed. The extra choices of .a; b; .sr ; qr ; �r /r2N/ in defining an instance
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of FL is contractible, that is, if we forget the assumption that a should be a regular
value for each S

sr
r . We only assumed this so that the sections would be cofibrations

making subsequent calculations easier, so we will simply not assume this here. The
argument in Section 9 that FL is 3S–fibrant can be extended to any compact smooth
family of such a set of choices. That is, if K is a compact subset of a smooth manifold
that smoothly parametrizes choices as above then we get a 3S–fibrant TN –spectrum
over N �K . So, in fact the object in the homotopy category does not depend on these
choices up to unique isomorphism.

This can be extended to families of .f; fs/ if we ask that the family of f ’s agree close
to 0, and that the same is true for fs for large s > 0 (on the same given neighborhood
of 0). Indeed, with this we can see that the differences in the functions are pushed
away from what happens at a critical values a if s is large enough, and so the fibrancy
still holds at least for large s .

For two different choices .f i ; f i
s /; i D 1; 2 that do not agree like above one can create

interpolations and construct a zig-zagging argument. Indeed, we can construct a pair
.F;Fs/ such that away from a small neighborhood of 0, F D f 1 , but on an even
smaller neighborhood we have F D f 2 ; we may thus construct the sequence Fs such
that for small s it looks like f 1

s and for large s it looks like f 2
s close to 0. Sequences

of these that agree with f 1 on smaller and smaller sets can be used to construct a
map from the instance defined by .f 1; f 1

s / to the one defined by .f 2; f 2
s /. To prove

that this is an equivalence we create interpolations from .F;Fs/ to .f 1; f 1
s /, which

on smaller and smaller sets agree with .F;Fs/, but which look like .f 2; f 2
s / on a

set .�; �0/ (here one needs to choose � dependent on �0 for the last part to work) and
for some range of s such that we can factor the identity on the instance defined by
.f 1; f 1

s / through the map defined by the first sequence.

Appendix D: Coherent orientations and finite-dimensional
approximations

To understand the issue in Remark 1.3 better we will in this appendix describe why
coherent orientations can be subtle from the point of view of finite-dimensional approx-
imations. We will also relate this to stable homotopy types and discuss why in some
sense Viterbo functoriality is not natural for the stable homotopy types, unless extra
structure is considered as in [12] where we realize it as a map of spectra.

Consider the following abstract situation: assume that i W M!M 0 is a finite-dimension-
al manifold M embedded into an infinite-dimensional manifold M 0 . Also assume
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that we have a Morse–Smale function f W M 0! R for which some sort of infinite-
dimensional Morse homology with Z coefficients can be defined, even though Morse
indices happen to be infinite. Furthermore, assume that all critical points of f and
all flow lines between such (defined by a PDE and not a flow) are contained in the
image of i as an isolated invariant set S �M (see Conley [7] for definition of isolated
invariant set) for f ı i . To define this we use some pseudogradient for f ı i .

In such a situation we cannot conclude that the homology of the Conley index of S

equals the Morse homology defined for f . Indeed, to define Morse homology of f
with Z coefficients we need some sort choice of coherent orientations that depends on
more than just the isolated invariant set. To see this take any finite-dimensional vector
bundle E!M , whose restriction to S is not orientable. Then because the Morse
indices of f are infinite there will often (if not always) be “room” to do the following:
we may extend i to an embedding i 0W E!M 0 in such a way that f ı i 0 is strictly
concave on the fibers with unique maximum on the zero-section. With a little precision
one can prove that the Conley index of f ı i 0 is the Thom space of E on the Conley
index of f ı i (relative to the base point). This means that the homologies are not the
same because E is not orientable on S .

The above discussion seems to indicate that it is difficult to capture the “correct”
orientation on the homology theories when doing finite-dimensional approximation.
However, in cotangent bundles there is a canonical choice of Lagrangian foliations
which from the stable homotopy theory point of view settles the above problem in
more generality than just Z–coefficients. Indeed, one may heuristically think of this
choice of Lagrangian at each point in T �N as canonically identifying a subset of the
finite-dimensional approximations as above, which are only related by an E (also as
above) if this E is stably parallizable. So in fact there is a canonical way of constructing
a spectrum. However, it turns out that the orientation coming from this choice is not
the one usual used in Floer theory, and, indeed, this is why the symplectic cohomology
does not agree with the homology of this spectrum. Even more, when one considers
Viterbo functoriality from T �N to DT �L the Lagrangian foliations induced by the
cotangent bundle structures do not agree, and the different choices induce the bundle �
in (2).

Appendix E: Nearby Lagrangians are homotopy equivalent
by Mohammed Abouzaid

As in the introduction, let N be a closed smooth manifold, L a closed exact Lagrangian
in T �N , N 0 the universal cover of N , and L0 the inverse image of L in T �N 0 . In
this short appendix, we prove the following result:
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Proposition E.1 If L0 has vanishing Maslov class, then so does L.

As a corollary, we conclude:

Theorem E.2 If L is a closed exact Lagrangian in T �N , then L is homotopy equiv-
alent to N .

Proof By Corollary 1.2, every closed exact Lagrangian satisfies the hypothesis of
Proposition E.1, so L has vanishing Maslov index. The result therefore follows from
[4], which proves that every closed exact Lagrangian in T �N with trivial Maslov class
is homotopy equivalent to the base.

The starting point for the proof of Proposition E.1 is the main result of [3] that the
wrapped Fukaya category of T �N is split-generated by a fibre T �q N . In particular,
the Floer cohomology of L with T �q N does not vanish. To be more precise, [3,
Theorem 1.1] shows that the Fukaya category consisting of Lagrangians of vanishing
Maslov index is generated by a fibre. As an intermediate step, one proves a split-
generation result, and that proof applies, without modification, to the more general
case in which the Maslov index may not necessarily vanish. To see this, we use the
fact that the proof of [3, Theorem 1.1] itself relies on [2, Theorem 1.1], which asserts
that the Fukaya category of a symplectic manifold is split-generated by a Lagrangian
L whenever a certain geometric criterion involving the Hochschild homology of the
Floer complex CF�.L;L/ is satisfied. The fact that the cotangent fibre in a cotangent
bundle satisfies this property is verified in [3, Proposition 1.6]. Once this criterion is
satisfied, the annulus degeneration argument described in [2, Section 6] shows that the
self-Floer cohomology of any Lagrangian in T �N vanishes if and only if its Floer
cohomology with a fibre vanishes. This result in no way uses integral gradings in Floer
cohomology. If L is an exact Lagrangian, its self-Floer cohomology is isomorphic to
its ordinary cohomology, so we conclude:

Proposition E.3 If L is an exact Lagrangian in T �N , then the Floer cohomology
HF.L;T �q N / does not vanish.

In order to derive Proposition E.1, we need to discuss the construction of gradings
in Lagrangian Floer cohomology. Starting with a Riemannian metric on any smooth
manifold N (not necessarily closed), we obtain a density which assigns to a basis of
tangent vectors at a point the square of the volume of the corresponding parallelepiped.
Whenever N is oriented, this density is the square of the volume form determined by
the metric and the orientation. By complexifying this density, we obtain a quadratic
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complex volume form � on T �N ; in local volume-preserving coordinates .q1; : : : ; qn/

with dual coordinates .p1; : : : ;pn/ we have the expression

(77) �D
��

dp1C
p
�1dq1

�
^ � � � ^

�
dpnC

p
�1dqn

��˝2
;

where the symbol ˝2 means that we assign to an n–tuple of tangent vectors on T �N

the square of the complex number obtained by applying the complex-valued n–form
written in coordinates inside the parentheses.

Given any Lagrangian L� T �N , we may evaluate � on a basis of tangent vectors to
obtain a complex number. The Lagrangian condition implies that this number does not
vanish, so we obtain a complex phase map

�LW L!R=2�Z;(78)

e
p
�1�L.x/ D

�.v1 ^ � � � ^ vn/

j�.v1 ^ � � � ^ vn/j
;(79)

where .v1; : : : ; vn/ is an arbitrary basis of tangent vectors for L at x .

Definition E.4 The Maslov class of L is the integral first cohomology class repre-
sented by �L . If L has vanishing Maslov class then a grading is a choice z�L of an
R–valued lift of �L :

(80) L //

%%

R

��

S1 DR=2�Z

Vanishing of the Maslov class is the condition needed in order to be able to assign an
integer (up to global shift) to each intersection point between a pair of Lagrangians, and
the choice of a grading determines such an integer and hence equips Lagrangian Floer
complexes and cohomology groups with Z–gradings. We shall only need the following
case: Assume that we are given a Lagrangian L that intersects T �q N transversely as a
point x . Since L is Lagrangian, one may choose local coordinates .q1; : : : ; qn/ on N

so that the tangent space of L is spanned by products of n lines, each lying in a plane
spanned by @pi

and @qi
, with phase ˛i.x/ 2 Œ0; �/.

Note that �T �q N is independent of the point on T �q N , so that we can choose z�T �q N to
be identically 0. In this case, the following formula for the Maslov index is given in
[19, Section 3.2]:

(81) �.x/D
1

�

� nX
iD1

˛i.x/� �L.x/

�
:
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With this formula at hand, we can finish the proof of the result announced at the
beginning of this note.

Proof of Proposition E.1 Assume that L0 has vanishing Maslov class. In [4], a
wrapped Fukaya category was assigned to the universal cover of T �N , which is also
the cotangent bundle T �N 0 of the universal cover of N . By comparing holomorphic
discs in T �N and T �N 0 , we find that the Floer cohomology of L with a fibre T �q N

is isomorphic to that of L0 with any cotangent fibre T �q0N
0 , and in particular has finite

rank. Upon choosing a grading on L0 , we conclude from Proposition E.3 that

(82) HF�.L0;T �q0N
0/ is nonzero, and is supported in finitely many cohomologi-

cal degrees.

Since all cotangent fibres are Hamiltonian isotopic via an isotopy that preserves the
vanishing of the phase, and Floer cohomology together with its grading is invariant
under such isotopies, the group HF�.L0;T �q0N

0/ is moreover independent of q0 .

We now shall use (81) to derive a contradiction to the bounded support of the Floer
cohomology group HF�.L0;T �q0N

0/ if L does not also have vanishing Maslov class.

Choose a quadratic volume form on T �N 0 that is pulled back from T �N . In particular,
a grading z�L0 on L0 fits in a commutative diagram:

(83)
L0

z�L0
//

��

R

��

L
�L
// S1

Given any point x0 2L0 , lying over a point x , the commutativity of the above diagram
implies that for any loop 
 2 �1.L;x/, with image p�.
 / 2 �1.N;p.x//, we have

(84) �L.p�.
 / �x
0/D �L.x

0/ChŒ�L�; Œ
 �i;

where p�.
 / � x
0 is the image of x0 under the action of p�.
 / on T �N 0 by deck

transformations, Œ
 � is the class of 
 in H1.N /, and Œ�L� is the Maslov class of L.

Let us now assume that L intersects T �q N transversely, which may be achieved after
a small perturbation. Applying (81), we conclude that:

(85) �.p�.
 / �x
0/D �.x0/� hŒ�L�; Œ
 �i

Since 
 � .L0 \T �q0N
0/D L0 \T �
 �q0N

0 , with a corresponding identification of holo-
morphic curves for appropriate complex structures, we conclude that

(86) HF�.T �
 �q0N
0;L0/DHF��hŒ�L�;Œ
 �i.T �q0N

0;L0/;
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which, because of the finite-dimensionality and invariance of this group, implies that it
vanishes, contradicting the output of Proposition E.3.
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