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Knot contact homology
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The conormal lift of a link K in R? is a Legendrian submanifold Ak in the unit
cotangent bundle U*R3 of R3 with contact structure equal to the kernel of the
Liouville form. Knot contact homology, a topological link invariant of K, is de-
fined as the Legendrian homology of Ak, the homology of a differential graded
algebra generated by Reeb chords whose differential counts holomorphic disks in the
symplectization R x U*R?3 with Lagrangian boundary condition R x Ak .

We perform an explicit and complete computation of the Legendrian homology
of Ak for arbitrary links K in terms of a braid presentation of K, confirming a
conjecture that this invariant agrees with a previously defined combinatorial version
of knot contact homology. The computation uses a double degeneration: the braid
degenerates toward a multiple cover of the unknot, which in turn degenerates to a
point. Under the first degeneration, holomorphic disks converge to gradient flow
trees with quantum corrections. The combined degenerations give rise to a new
generalization of flow trees called multiscale flow trees. The theory of multiscale
flow trees is the key tool in our computation and is already proving to be useful for
other computations as well.

53D42; 57R17, 5TM27

1 Introduction

1.1 Kbnot contact homology

Let K C R3 be a link. The conormal lift Ag C U*R3 of K in the unit cotangent
bundle U*R? of R? is the sub-bundle of U*R? over K consisting of covectors that
vanish on 7K. The submanifold A g is topologically a union of 2—tori, one for each
component of K. The unit cotangent bundle carries a natural contact 1-form «: if
p dq denotes the Liouville form on 7*R3 then « is the restriction of p dg to U*R3.
The conormal lift A g is a Legendrian submanifold with respect to the contact structure
induced by «. Furthermore, if K;, 0 <7 <1, is a smooth isotopy of links then A,
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is a Legendrian isotopy of tori. Consequently, Legendrian isotopy invariants of A g
give topological isotopy invariants of K itself.

Contact homology, and Legendrian (contact) homology, is a rich source of deformation
invariants in contact topology. Legendrian homology associates a differential graded
algebra (DGA) to a Legendrian submanifold A C Y of a contact manifold Y, in
which the algebra is generated by the Reeb chords of A and the Reeb orbits in Y,
and the differential is defined by a count of holomorphic curves in the symplectization
R x Y with Lagrangian boundary condition R x A. The main result of this paper is a
complete description of the DGA of the conormal lift Ag of a link K in terms of a
braid presentation of K; see Theorem 1.1 below.

Before presenting Theorem 1.1, we discuss some consequences of it. Theorem 1.1
confirms the conjecture that the combinatorial knot invariant defined and studied by
the third author in [26; 27; 29], called “knot contact homology” in those works, indeed
equals the Legendrian homology of the conormal lift. (In fact, the Legendrian homology
described here is a non-trivial extension of the previously defined version of knot contact
homology; see Section 1.2.) We note that Legendrian homology can be expressed
combinatorially in other circumstances, for example by Chekanov [7] and Eliashberg
[19] for 1—dimensional Legendrian knots in R? with the standard contact structure.
Also, computations of Legendrian homology in higher dimensions have been carried
out in some circumstances; see eg Dimitroglou Rizell [8], Ekholm, Etnyre and Sullivan
[15], and Ekholm and Kalman [18].

The results of the present paper constitute one of the first complete and reasonably
involved computations of Legendrian homology in higher dimensions (in the language
of Lagrangian Floer theory, the computation roughly corresponds to the calculation
of the differential and all higher product operations). Extensions of our techniques
have already found applications, see eg Bourgeois, Ekholm and Eliashberg [5], and we
expect that further extensions may be used in other higher-dimensional situations in
the future.

A more concrete consequence of Theorem 1.1 is its application to an interesting general
question in symplectic topology: to what extent do symplectic- and contact-geometric
objects naturally associated to objects in smooth topology remember the underlying
smooth topology? More specifically, how much of the smooth topology is encoded by
holomorphic-curve techniques on the symplectic/contact side? The construction that
associates the (symplectic) cotangent bundle to any (smooth) manifold has been much
studied recently in this regard; see eg Abouzaid [1; 2], Fukaya, Seidel and Smith [21],
and Nadler [24]. In our setting, the general question specializes to the following.
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Question How much does the Legendrian-isotopy class of the conormal A g remem-
ber about the smooth-isotopy class of K ? In particular, if Ak, and A, are Legendrian
isotopic, are K| and K, necessarily smoothly isotopic?

At this writing, it is possible that the answer to the second question is “yes” in general.
One consequence of Theorem 1.1 is that the answer is “yes” if K; is the unknot: the
conormal lift detects the unknot. See Corollary 1.4 below.

Another geometric application of our techniques is the development of a filtered version
of the Legendrian DGA associated to Ax when K is a link transverse to the standard
contact structure ker(dz — y dx) in R3. This is carried out in Ekholm, Etnyre, Ng and
Sullivan [12], which relies heavily on the computations from the present paper. There is
a related combinatorial treatment in Ng [30], where it is shown that this filtered version
(“transverse homology”) constitutes a very effective invariant of transverse knots. We
remark that although [30] can be read as a stand-alone paper without reference to
Legendrian homology or holomorphic disks, the combinatorial structure of transverse
homology presented in [12; 30] was crucially motivated by the holomorphic-disk
enumerations we present here.

1.2 Main result

We now turn to a more precise description of our main result. To this end we first
need to introduce some notation. Let K be an arbitrary »—component link in R3,
given by the closure of a braid B with n strands. Then Ak is a disjoint union
of r 2-tori, which (after identifying the tangent bundle with the cotangent bundle
and the normal bundle to K with its tubular neighborhood) we may view as the
boundaries of tubular neighborhoods of each component of K. We can then choose
a set of generators Ay, y,...,Ar, i of Hi(Ag), with A; and p; corresponding to
the longitude (running along the component of K') and meridian (running along a fiber
of Ak over a point in K) of the i torus.

We proceed to an algebraic definition of the DGA that computes the Legendrian
homology of Ag. The DGA is (A,, d), where the algebra A, is the unital graded
algebra over Z generated by the group ring Z[H{ (A k)] = Z[kftl , /L?El AL
in degree 0, along with the following generators:

{aij}i<i,j<n;i#j in degree 0,

{bij}1<i,j<n;i#; in degree 1,

{cijt1<i,j<n  indegree 1,

teijti<i,j<n in degree 2.
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Note that in 4, the generators a;j, b;j, cij, e;j do not commute with each other or
with non-trivial elements of Z[H; (Ag)].

We next define a differential d on A, . Introduce variables ji{,..., iy of degree 0,
and write /Tg for the free unital algebra over Z generated by the ring Z[,ZZ?:I e ﬁ,f: 1
and the a;;j. Now if oy is a standard generator of the braid group B, on n strands,
then define the automorphism ¢, : 2(2 — .,Zl?, by:

boy (aij) = aij i j#kk+1
bo A k41) = —Ap g1k

~ ~—1
Gor (Ak+1k) = —HkAk k+1Hx 11

boi (@i k+1) = ik i £k k+1
boy (A +1i) = Ak i #k,k+1
Poi (@ik) = Aj k+1 — Aik Ak k+1 i<k

~ ~—1 .
boy (i) = i k1~ Qik ok Qr k+1 R4 i>k+1

Poy (aki) = Ak+1i — Ak+1kki i#k.k+1
o () = T}
bor (it 1) = !

b (B = i i £k k41

The map ¢ induces a homomorphism from B, to the automorphism group of .ZO
B =0y -0 € By, with ¢ = £1 for [ = 1,...,m, then ¢p = ¢, © ¢akm.
See Proposition 2.9.

Now let LAY denote the subalgebra of A, of elements of degree 0, generated by the i
Ajand a;;. For 1 < j <m,leta(j)<{l,...,r} be the number of the link component
of K corresponding to the j strand of B. Then ¢p descends to an automorphism of
Ag, which we also denote by ¢p, by setting ji; = 1o ;) forall j, and having ¢p act
as the identity on A; forall ;.

For convenient notation we assemble the generators of A, into n x n matrices. Writing
M;; for the element in position ij in the n xn matrix M, we define the n x n matrices

Ajj = ajj ifi <j, Bij = bij ifi <j,
A: Ajj = dij La(j) ifi > j, B: B;; :b,-j,ua(j) ifi > j,
Aji =14 pgys B;i =0,
C: {Cij = Cij, E: {Eij = €jj.
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To the braid B, we now associate two n X n matrices CIDJIB', d>§ with coefficients in A9
as follows. Set B to be the (n + 1)—strand braid obtained by adding to B an extra
strand labeled 0 that does not interact with the other strands. Then ¢ gives a map ¢ 3
acting on the algebra generated by homology classes and {a;j }o<;, j<n:ij. and we
can define @Ié, Cbg by

n

dg5laio) = Z(Qé)ijajo and ¢ p(ao)) = Za()i((b}l;)ij‘

j=1 i=1

(Note that by the above formula for ¢, , any monomial contributing to ¢p(a;o)
(respectively ¢p(ag;)) must begin with a generator of the form a;( (respectively, end
with a generator ag;). Also, since the 0 strand does not interact with the others, ji,
does not appear anywhere in the expressions for ¢ 5(a;0). #5(dao;), and so oL, q>§
have coefficients in A9.)

Finally, define a diagonal n» x n matrix  as follows. Consider the strands 1,...,n of
the braid. Call a strand leading if it is the first strand in this ordering belonging to its
component. Define

=0 ifi#
ii = Aq@) if the i™ strand is leading,
ii=1 otherwise.

We can now state our main result.

Theorem 1.1 Let K C R? be an oriented link given by the closure of a braid B with
n strands. After Legendrian isotopy, the conormal lift Ax C U*R? has Reeb chords
in graded one-to-one correspondence with the generators of A, . Consequently, the
Legendrian algebra of

Ag C JY(§?) ~ U*R3
is identified with A,,. Under this identification, the differential of the Legendrian DGA
is the map 0: A, — A, determined by the following matrix equations:
J0A =0,
B=—"1-A +0f A OF
IC=A- +A OF,
E=B-(@5H1+B. '—0oL.c. '+ ~1.Cc. (@),

where if M is a matrix, the matrix M is defined by (0M);; = 9(M;;).
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Theorem 1.1 has the following corollary, which establishes a conjecture of the third
author [28; 29].

Corollary 1.2 For a knot K, the combinatorial framed knot DGA of K, as defined in
[29], is isomorphic to the Legendrian DGA of Ag .

In [29], the framed knot DGA is shown to be a knot invariant via a purely algebraic but
somewhat involved argument that shows its invariance under Markov moves. We note
that Theorem 1.1 provides another proof of invariance. Here the relevant equivalence
relation for invariance is that of stable tame isomorphism of DGAs introduced in [7].

Corollary 1.3 The DGA given in Theorem 1.1, and consequently the framed knot
DGA of [29], is a link invariant: two braids whose closures are isotopic links produce
the same DGA up to stable tame isomorphism.

Proof This is a direct consequence of invariance properties of the Legendrian DGA
under Legendrian isotopy; see Theorem 2.6. a

Quite a bit is known about the behavior of combinatorial knot contact homology, and
Corollary 1.2 allows us to use this knowledge to deduce results about the geometry of
conormal lifts. For instance, we have the following results.

Corollary 1.4 A knot K is isotopic to the unknot U if and only if the conormal lift
Ak of K is Legendrian isotopic to the conormal lift Ay of U .

Proof The degree—0 homology of the framed knot DGA detects the unknot [29,
Proposition 5.10]. a

Corollary 1.5 If K| and K, are knots such that Ak, and Ak, are Legendrian
isotopic, then K| and K, have the same Alexander polynomial.

Proof The degree—1 linearized homology of the framed knot DGA with respect to a
certain canonical augmentation encodes the Alexander polynomial [29, Corollary 4.5].
O

We close this subsection by discussing a subtlety hidden in the statement of Corollary 1.2.
The DGA (A, d) defined in Theorem 1.1 is actually an extension of the combinatorial
knot DGA introduced by the third author in [26; 27; 29], in two significant ways.1 First,

IThere are also some inconsequential sign differences between our formulation and the knot DGA of
[26; 27; 29]; see [30] for a proof that the different sign conventions yield isomorphic DGAs.
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the original combinatorial knot DGA assumed that K is a one-component knot, whereas
our (A, d) works for general links, associating separate homology variables A;, j; to
each component. Second, in the original combinatorial knot DGA as presented in [29],
and in the filtered version for transverse knots presented in [12], homology variables
commute with the generators a;; , etc, while they do not commute here. We may thus
think of the original knot DGA as a “homology-commutative” quotient of our “full”
DGA; see Section 2.3.2 for further discussion.

Although we do not pursue this point here, it seems quite possible that the full DGA
introduced here constitutes a stronger link invariant, or otherwise encodes more in-
formation, than the homology-commutative knot DGA from [29]. For example, the
proof in [29] that the framed knot DGA detects the unknot uses work of Dunfield and
Garoufalidis [9], building on some deep gauge-theoretic results of Kronheimer and
Mrowka [22]. However, if we use the full DGA rather than the homology-commutative
quotient, then there is an alternate proof that knot contact homology detects the unknot,
in unpublished work of the first and third authors along with Cieliebak and Latschev,
which uses nothing more than the Loop Theorem.

1.3 Strategy and outline of paper

We conclude this introduction with a description of the strategy of our proof of
Theorem 1.1. A loose sketch of this approach has previously been summarized in
Ekholm and Etnyre [11].

The unit cotangent bundle U*R? with contact form the restriction of the Liouville
form p dq is contactomorphic to the 1—jet space J1(S?) ~ T*S? xR of S2, with
contact form dz — p dg where z is the coordinate along the R—factor. To find the
rigid holomorphic disks that contribute to Legendrian homology for a Legendrian
submanifold of any 1-jet space, one can use gradient flow trees (Ekholm [10]). In
our case, rather than directly examining the gradient flow trees for the conormal lift
Ag C J1(S?) of alink K, we break the computation down into three steps. First,
we compute the differential for the conormal lift A = Ay of the unknot U, which
we represent as a planar circle. This is done by calculating gradient flow trees for a
particular small perturbation of A.

Second, given an arbitrary link K, let B be a braid whose closure is K. We can view
the closure of B as lying in the solid torus given as a small tubular neighborhood of U,
and we can thus realize K as a braid that is C!—close to U . Then Ak lies in a small
neighborhood of A, and by the Legendrian neighborhood theorem we can choose this
neighborhood to be contactomorphic to the 1—jet space J(A) = J(T?):

Ag CJY(A) = TN T?) c JN(S?).
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We can use gradient flow trees to find the rigid holomorphic disks in J!(7?) with
boundary on A g . This turns out to be easier than directly calculating the analogous
disks in J'(S?) because Ag is everywhere transverse to the fibers of J1(7°2) (ie, its
caustic is empty). We can assemble the result, which is computed in terms of the
braid B, as the Legendrian DGA of Ax C J!'(T?), which is a subalgebra of the
Legendrian DGA of Agx C J1(S5?).

Finally, we prove that there is a one-to-one correspondence between rigid holomorphic
disks in J1(S?) with boundary on A g, and certain objects that we call rigid multiscale
flow trees determined by A and A g, which arise as follows. As we let K approach
U, Ak approaches A and each holomorphic disk with boundary on A g approaches a
holomorphic disk with boundary on A with partial flow trees of A g C J!(A) attached
along its boundary. Here the flow trees correspond to the thin parts of the holomorphic
disks before the limit; in these parts, the energy approaches zero. In a multiscale
flow tree we substitute the holomorphic disk with boundary on A in this limit by the
corresponding flow tree computed in the first step, and obtain a flow tree of A C J1(S?)
with portions of flow trees of Ag C J!(A) attached along its boundary.

Remark 1.6 An alternative proof strategy would be to apply the relation between
flow trees and holomorphic disks directly for the front of Ax C J!(S?) and find the
relation to multiscale flow trees from there. The current approach has advantages over
the direct approach in that it keeps more symmetry, reminiscent of phenomena in Morse
theory in Bott degenerate situations where it is sometimes an advantage to keep the
Bott symmetry rather than perturbing out.

From a more computational perspective, the actual flow trees on the front of Ak,
pass through front singularities numerous times and their study is complicated by tree
vertices related to the cusp edge (called Y;—vertices, ends, and switches in [10]). In
any pure flow tree approach one would have to deal with these. Our current setup, by
contrast, introduces some amount of new technical analytical problems, but allows us
to push all these complications to the study of the front of the unknot, where they are
readily solved. The remaining study of flow trees is then carried out near the conormal
lift A of the unknot; the front of A g is non-singular in J°(A), and the flow trees in
our approach do not see the singularities of the front of Ag as a subset of J%(S?).
The relative simplicity of the flow trees for this non-singular front and their rather
direct connection to the braid group is what allows us to find a closed formula for the
differential.

Here is the plan for the rest of the paper. In Section 2, we present background material,
including the definitions of the conormal construction, Legendrian homology, and
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gradient flow trees. In Section 3, we use gradient flow trees to accomplish the first
two steps in the three-step process outlined above: calculating holomorphic disks for
A CJ'(S?) and Agx C JI(T?). We extend these calculations to multiscale flow trees
in Section 4 to count holomorphic disks for A g C J'(S?), completing the proof of
Theorem 1.1.

The computations in Section 4 rely on some technical results about multiscale flow
trees whose proofs are deferred to the final two sections of the paper. In Section 5, we
establish Theorem 4.3, which gives a one-to-one correspondence between holomorphic
disks and multiscale flow trees. In Section 6, we prove Theorems 4.5 and 4.6, which
deal with combinatorial signs arising from choices of orientations of the relevant moduli
spaces of flow trees and multiscale flow trees.
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2 Conormal lifts, Legendrian homology, and flow trees

In this section we review background material. We begin by discussing the conormal
lift construction for links in R3 in Section 2.1, and place it in the context of 1—jet
spaces of surfaces in Section 2.2. In Section 2.3, we review the definition of Legendrian
homology. For our purposes, the holomorphic disks counted in Legendrian homology
are replaced by flow trees, which we discuss in Section 2.4. Vector splitting along flow
trees, which is needed later when assigning signs to rigid flow trees, is discussed in
Section 2.5. We end with a compilation in Section 2.6 of algebraic results about the
map ¢p and the matrices <I>]l§ and (DILe that are used in the proof of our main result,

Theorem 1.1.
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2.1 The conormal construction

Fixing the standard flat metric on R3 we consider the unit cotangent bundle U*R? ~
R3 x S? of R3. The Liouville form on the cotangent bundle 7*R? is

3
0= pida,

i=1

where ¢ = (¢1,¢2,q3) are coordinates on R3 and p = (py, p»2, p3) are coordinates
in the fibers of 7*R>. The restriction |y «gs3 is a contact 1—form. We denote its
associated contact structure £ = ker 6.

The standard contact 1—form on the 1—jet space J!(S2?) = T*S? xR of S? is given
by
oa=dz—0,

where z is a coordinate in the R—factor and where @ is the Liouville form on 7*S?.
Using the standard inner product (-,-) on R? to identify vectors and covectors we
may write 7*S? as follows:

T*S? ={(x,y) e R*xR?: x| =, (x, y) = 0}.
We define the map ¢: U*R3 — J1(8?) = T*S? xR by
- ¢(q.p) = (p.q—{q.p)p. (4. P))
and notice that ¢ is a diffeomorphism such that ¢*a = @. Thus U*R3 and J'(S?)
are contactomorphic.
Let K be a knot or link in R3. We associate to K its conormal lift
Ag ={u e U*R*|g :u(v) =0 forall ve TK},

which topologically is a union of tori, one for each component of K. By defini-
tion 6|5, =0, ie, Ag is Legendrian. Furthermore, smooth isotopies of K induce
Legendrian isotopies of Ag . In particular the Legendrian isotopy class of A g (and
consequently any invariant thereof) is an invariant of the isotopy class of K. For more
on this construction, see [11].

2.2 Legendrian submanifolds in the 1—jet space of a surface

In this section we review well-known material on fronts associated to Legendrian
submanifolds in a 1—jet space. For general treatments of this subject, see eg Arnold
and Givental [3], and Arnold, Gusein-Zade and Varchenko [4].
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Let S be a surface and consider a Legendrian submanifold A € J1(S) = T*S xR.
After a small perturbation of A we can assume that A is in general position with respect
to the Lagrangian projection T1: J1(S) — T*S, the front projection 1 g: J1(S) —
S xR and the base projection w: J'(S) = S.

General position for IT means that the self-intersections of the Lagrangian immersion
IT(L) consists of transverse double points. General position for I1r means that
singularities of 1| are of two types: cusp edges and swallow tails. For a more
precise description we first introduce some notation: the caustic ¥ C A is the critical
set of ITg|A . General position for ITF first implies that X is a closed 1-submanifold
along which the rank of ITg|p equals 1. The kernel field ker(dT1fg|,) is then a
line field / along X and general position for I1r implies that / has only transverse
tangencies with 7' (ie, all tangencies have order one). This gives a stratification of the
caustic: the 1-dimensional top stratum, called the cusp edge, consisting of points where
[ is transverse to X and the O—dimensional complement, called the set of swallow tail
points, where [ is tangent to T'X of order 1. Finally, general position for 7 means
that the image of the caustic under 7 is stratified: 7(X) = X1 D (¥, U Z5Y), where
%, is the set of transverse self-intersections of (%), and X3" is the image under 7
of the swallow tail points around which (%) has the form of a semi-cubical cusp.

For A in general position we obtain the following local descriptions:

e If pem(A)—X; then p has a neighborhood U C S such that 77/ (U)NA C
J1(S) is the union of a finite number of 1—jet graphs of functions fi,..., fu
on U. We call such functions local defining functions of A .

=

Figure 1: A local model for the cusp edge is shown on the left and a local
model for the swallow tail singularity is shown on the right.

o If pe X — (X UZX3) then there is a neighborhood U C § of p that is

diffeomorphic to the open unit disk, U = Uy U U_, where U4 (respectively
U_) corresponds to the upper (respectively lower) half disk and where 7 (X)NU
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corresponds to U4 N U_, with the following properties. The intersection
7' (U)N A c JI(S) consists of # > 0 smooth sheets given by the 1—jet
graphs of local defining functions and one cusped sheet given by the 1—jet graph
of two functions /g, i1: U+ — R. We can choose coordinates (xp, x,) near
dU4 so that /iy and /&1 have the normal form

ho(x1.x2) = $2x1)¥2 + Bx; +ax,
hi(x1,x2) = —1(2x1)%2 + Bx; + ax;

for some constants o and §; see [10, Equation (2—1)]. In particular dhy and
dh, agree near the boundary; see the left diagram in Figure 1. We also call /4
and /1 local defining functions (for a cusped sheet).

e If p e X3 then there is a neighborhood U in which n > 0 sheets are smooth
and one sheet is a standard swallow tail sheet; see [10, Remark 2.5] and the right
diagram in Figure 1.

e If p e m(X,) there is a neighborhood U diffeomorphic to the unit disk over
which the Legendrian consists of # > 0 smooth sheets and two cusped sheets,
one defined over the upper half-plane and one over the right half-plane.

The following simple observation concerning double points of IT will be important in
the definition of the Legendrian homology algebra.

Lemma 2.1 A point s € TI(A) is a double point if and only if p = n(I17!(s)) is a
critical point of the difference of two local defining functions for A at p.

2.3 Legendrian homology in the 1—jet space of a surface

In this subsection we briefly review Legendrian (contact) homology in J!(S), where S
is an orientable surface. In fact, for our applications it is sufficient to consider S ~ S2
and S &~ T?2. We refer the reader to Ekholm, Etnyre and Sullivan [14] for details on
the material presented here.

2.3.1 Geometric preliminaries As in Section 2.1, we consider J!(§) = T*S xR,
with contact form o = dz — 0, where z is a coordinate in the R—factor and 9 is
the Liouville form on 7*S. The Reeb vector field R, of « is given by Ry = 0,
and thus Reeb flow lines are simply {p} x R for any p € T*S. In particular, if
A C J1(S) is a Legendrian submanifold then Reeb chords of A (Reeb flow segments
which begin and end on A ) correspond to pairs of distinct points y1, y, € A such that
I1(y;) = I(y5), where IT: J!1(S) — T*S is the Lagrangian projection. As noted in
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Lemma 2.1, for such Legendrian submanifolds there is thus a bijective correspondence
between Reeb chords of A C T*S xR and double points of TT(A) and in this case
we will sometimes use the phrase “Reeb chord” and “double point” interchangeably.
As mentioned in Section 2.2, after small perturbation of A, IT|A is a selftransverse
Lagrangian immersion with a finite number of double points.

Consider an almost complex structure on 7*S that is compatible with d6, by which we
can view T(T*S) as a complex vector bundle. Since T(T*S)|s is the complexifica-
tion of 7*S we find that ¢{ (7 (T*S)) = 0 and hence there is a complex trivialization
of T(T*S). The orientation of S induces a trivialization of the real determinant line
bundle (second exterior power) A2T* M , which in turn gives a trivialization, called the
orientation trivialization, of the complex determinant line bundle A2T(T*S) (second
exterior power over C). The complex trivialization of 7'(7*.S) is determined uniquely
up to homotopy by the condition that it induces a complex trivialization of A2T(T*S),
which is homotopic to the orientation trivialization. We will work throughout with
complex trivializations of 7'(7*.S) that satisfy this condition.

Let A C T*S xR be a Legendrian submanifold and let y be a loop in A. Then
the tangent planes of TT(A) along TI(y) constitute a loop of Lagrangian subspaces.
Using the trivialization of T'(T*S) we get a loop of Lagrangian subspaces in C?2;
associating to each loop y the Maslov index of this loop of Lagrangian subspaces
gives a cohomology class i € H'(A;Z) called the Maslov class of A. We assume
throughout that the Maslov class of A vanishes so that the Maslov index of any such
loop equals 0; this holds in the situation considered by this paper by Lemma 3.1. (Note
that the vanishing Maslov index implies that A is orientable.) In order to orient the
moduli spaces of holomorphic disks with boundary on A we will further assume that
A is spin and equipped with a spin structure. See Ekholm, Etnyre and Sullivan [16] for
more details. For future use, we note that the Maslov index of the loop of Lagrangian
tangent spaces as described can be computed by first making the loop generic with
respect to fibers of 7*S and then counting (with signs) the number of instances where
the tangent space has a 1—-dimensional intersection with the tangent space of some
fiber. In terms of the front projection, once y is generic (in particular, transverse to the
cusp edges and disjoint from the swallow tail points), one counts the number of times
the curve transversely intersects cusp edges going down (that is, with the R coordinate
of § xR decreasing) minus the number of times it transversely intersects cusp edges

going up.

2.3.2 The Legendrian algebra In the remainder of the present subsection, Section
2.3, we describe the differential graded algebra (LA(A), d), which we call the Legen-
drian DGA, associated to a Legendrian submanifold A C J!(S), whose homology is
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the Legendrian homology of A . This description is divided into three parts: the algebra,
the grading and the differential.

The algebra LA(A) is simple to describe; in particular, the Legendrian algebra is
simpler in our setting than for general contact manifolds since J!(S) has no closed
Reeb orbits. Assume that A is in general position so that II|, is a Lagrangian
immersion with transverse self-intersections. Let Q denote the set of Reeb chords of
A. Then LA(A) is the non-commutative unital algebra over Z generated by

e eclements of Q (Reeb chords) and
e Z[H{(A)] (homology classes).

Thus a typical generator of LA(A) viewed as a Z-module is a monomial of the form

Yoq1Y1492 - dm¥Ym,

where ¢; € Q and y; € H;(A), and multiplication of generators is the obvious
multiplication (with H;(A) viewed as a multiplicative group). Note that homology
classes do not commute with Reeb chords; LA(A) is more precisely defined as the
tensor algebra over Z generated by elements of Q and elements of H;(A), modulo
the relations given by the relations in H;(A).

To simplify notation, for the remainder of the paper we will assume that A is a disjoint
union of oriented 2—tori Aq,..., A,. We will further assume that each component
Aj is equipped with a fixed symplectic basis (A, u;j) of Hi(Aj) (for conormal lifts,
these correspond to the longitude and meridian of the link component in R?). Then
ZIH (M) = ZFE ' F !

Remark 2.2 In the subject of Legendrian homology, it is often customary to quotient
by commutators between Reeb chords and homology classes to obtain the homology-
commutative algebra. This quotient can also be described as the tensor algebra over
Z[Hy(A)] freely generated by elements of Q. The homology-commutative algebra
is the version of the Legendrian algebra considered in many sources, in particular the
combinatorial formulation of knot contact homology in [29] and the transverse version
in [12; 30].

From the geometric viewpoint of the present paper, there is no reason to pass to the
homology-commutative quotient, and we will adhere to the rule that homology classes
do not commute with Reeb chords in the Legendrian algebra. There are indications
that the fully non-commutative Legendrian DGA may be a stronger invariant than the
homology-commutative quotient; see the last paragraph of Section 1.2.
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Remark 2.3 When A has more than one component, there is an algebra related to
the Legendrian algebra LA(A), called the composable algebra, which is sometimes
a more useful object to consider than LA(A). This was introduced in Bourgeois,
Ekholm and Eliashberg [6; 5]; see also Mishachev [23] and Ng [25] for precursors
to this notion. We do not need the composable algebra in this paper, but we briefly
describe its definition here and note that one can certainly modify our definition of
knot contact homology to the composable setting; that is, the Legendrian DGA for
knot contact homology descends to a differential on the composable algebra.

Suppose A has r components Aq,...,A,. Let R denote the ring

r
R = Z[H1(A))]
j=1

with multiplication given as follows: if y; € Z[H;(Aj,)] and y, € Z[H;(A},)], then
vi-y2is 0if ji # ja,or y1y2 € Z[H (Aj,)] C R if j1 = j». (Note that R is nearly
but not quite a quotient of Z[H;(A)]: the identity in Z[H; (A )] is an idempotent in R
distinct from 1.) Let Q;; denote the set of Reeb chords beginning on A; and ending
on Aj. A composable monomial in LA(A) is a monomial of the form

Yoq1vViqz---4qivi

for some / > 0, such that there exist o, ...,i; € {1,...,m} for which y;; € Hi(Ay;),
viewed as an element of R, and ¢; € Qij_lij for all j.

The composable algebra is the Z—module generated by composable monomials, with
multiplication given in the obvious way; note that the product of two composable
monomials is either 0 or another composable monomial. This algebra, which is
naturally the path algebra of a quiver with vertices given by components of A and
edges given by Reeb chords, is almost but not quite a quotient of LA(A): if we
replace Z[H;(A)] by R in the definition of LA(A), then the composable algebra is
the quotient setting non-composable monomials to 0.

2.3.3 Grading in the Legendrian algebra In order to define the grading on LA(A)
we fix a point p; € A; on each component A; of A, and for each Reeb chord endpoint
in Aj we choose an endpoint path connecting the endpoint to p;. Furthermore, for
J=1,...,r,wechoosepaths y;; in T*S connecting IT(p;) to I1(p;) and symplectic
trivializations of yl*j T(T*S) in which the tangent space IT1(7,, A) corresponds to the
tangent space I[1(7Tp; A); for j =1, yyy is the trivial path. Forany 7, j €{1,...,r}, we
can then define y;; to be the path —yy; Uy joining IT(p;) to I1(p;), and yi’; T(T*S)
inherits a symplectic trivialization from the trivializations for yq; and yy; .
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The grading |- | in LA(A) is now the following. First, homology variables have
degree 0:
Ajl=|pjl=0 for j=1,...,r

(Recall that the Maslov class u of A is assumed to vanish; in general a homology
variable t € Hy(A) would be graded by —u(7).) Second, if ¢ is a Reeb chord we
define the grading by associating a path of Lagrangian subspaces to ¢. We need to
consider two cases according to whether the endpoints of the chord lie on the same
component of A or not. In the case of equal components, both equal to A, consider the
path of tangent planes along the endpoint path from the final point of ¢ to p; followed
by the reverse endpoint path from p; to the initial point of ¢. The endpoint of this path
is the tangent space of TT(A) at initial point of ¢. We close this path of Lagrangian
subspaces to a loop ¥, by a “positive rotation” along the complex angle between the
endpoints of the path (see [15] for details). In the case of different components, we
associate a loop of Lagrangian subspaces ), to ¢ in the same way except that we insert
the path of Lagrangian subspaces induced by the trivialization along the chosen path,
Yij » connecting the components of the endpoints in order to connect the two paths from
Reeb chord endpoints to chosen points. The grading of ¢ is then

g1 = (g — 1.

where p denotes the Maslov index.

Remark 2.4 Note that the grading of a pure Reeb chord (a chord whose start and
endpoint lie on the same component of A ) is well-defined (ie, independent of choice of
paths to the base point and symplectic trivializations) because the Maslov class vanishes.
The grading of mixed chords however depends on the choice of trivializations along the
paths y1; connecting base points. Changing the trivializations changes the gradings as
follows: for some fixed (ny,....n,) € Z", forall i, j, |q| is replaced by |q| + n; —n;
for all Reeb chords ¢ beginning on component i and ending on component ;. If we
choose orientations on each component of A, and stipulate that the base points p; are
chosen such that 7: A — § is an orientation-preserving local diffeomorphism at each
p; (and that the symplectic trivializations on y;; preserve orientation), then the mod 2
grading of the mixed chords is well-defined, independent of the choice of base points.

For computational purposes we mention that the grading can be computed in terms of
the front projection ITg: J1(S) — S xR; compare [14]. By Lemma 2.1, a Reeb chord
g corresponds to a critical point x of the difference of two local defining functions f;
and f> for A C J1(S). We make the following assumptions, which hold generically:
A 1is in general position with respect to the front projection, the critical point is non-
degenerate with index denoted by index ( /1 — f2), where f; defines the upper local
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sheet (the sheet with the larger z—coordinate) of A, and the base points p; do not lie
on cusp edges.

Lemma 2.5 There is a choice of trivializations for which the following grading formula
holds for all Reeb chords. Let ¢ be a Reeb chord with final point (respectively initial
point) in component Aj (respectively A;). Let y be the union of the endpoint path
from the chord’s final point to the base point p;, and the reverse endpoint path from
base point p; to the chord’s initial point. Assume y is in general position with respect
to the stratified caustic ¥ C A. Then

(2-2) lgl = D(y) —U(y) +indexx(f1 — f2) — 1,

where D(y) (respectively U(y)) is the number of cusps that y traverses in the down-
ward (respectively upward) z —direction.

2.3.4 Differential in the Legendrian algebra In general, the Legendrian algebra
differential of a Legendrian submanifold A in a contact manifold Y is defined using
moduli spaces of holomorphic curves in the symplectization R x ¥ of Y with La-
grangian boundary condition R x A. In our case, Y = J!(S), one can instead use
holomorphic disks in 7*S with boundary on TT(A). We give a brief description. See
Ekholm, Etnyre and Sullivan [17] for details and [14] for the relation to curves in the
symplectization.

The differential 0: LA(A) — LA(A) is defined on generators and then extended by
linearity over Z and the signed Leibniz rule,

Ivw) = Bv)w + (=1)lv(Ow).

We set dA; = du; =0 for j =1,...,m. It thus remains to define the differential on
Reeb chords.

To do this, we begin by fixing an almost complex structure J on 7(7*S) that is
compatible with df. Let q¢,q1,...,qr be Reeb chord generators of LA(A). Let
Dy 41 be the unit disk in C with k 4+ 1 boundary punctures zy,...,z; listed in
counterclockwise order. We consider maps

u: (D41, 0D 41— {20, ... 2x}) > (T*S, TI(A))

such that u|yp, , | —{z....,z,,} lifts to a continuous map # into A C T *§'. Call a puncture
z mapping to the double point g positive (respectively negative) if the lift of the arc just
clockwise of z in 0Dy is a path in A approaching the upper Reeb chord endpoint
gt (respectively the lower endpoint ¢~ ) and the arc just counterclockwise of z lifts to
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a path approaching ¢~ (respectively g™*). For a (k + 1)—tuple of homology classes
A= (Ao,....Ar), Aj € HI(A;Z), j =0,...,k, welet

M 7(q0: 91 - - -+ qk)

denote the moduli space of J—holomorphic maps
u: (Dk+1, aDk+1 — {Z(), . ,Zk}) — (T*S, H(A))

with the following properties: u|yp, . ,—{z....,z} lifts to a continuous map # into A,
Zo is a positive puncture mapping to ¢go, z; is a negative puncture mapping to ¢;,
J=1,...,k,and when u|(; ;) is completed to a loop using the endpoint paths then
it represents the homology class A;. Here (z;,z;+1) denotes the boundary interval
in 0Dy 4 between z; and zj4; and we use the convention zx4; = zo. Note that
the moduli space is obtained from the space of maps by dividing by the action of the
3—dimensional group of conformal automorphisms of the unit disk D.

For a generic A and J the following holds (see Ekholm, Etnyre and Sabloff [13], and
Ekholm, Etnyre and Sullivan [15] for details):

* M7(qo:q1.--..qk) is a manifold of dimension (recall that the Maslov class of
A is assumed to vanish)

k
dim(M 7(qo: 1. - - qx)) = lgol = ) _ lgil = 1,

i=1

which is transversely cut out by the d;—operator. Furthermore it admits a
compactification as a manifold with boundary with corners in which the boundary
consists of broken disks. Consequently, if the dimension equals O then the
manifold is compact.

* The moduli spaces M 7(qo:¢1, - - .. qx) determined by A and J can be “coher-
ently” oriented; see Section 6. (Note that the assumption that the components
of A are tori and thus admit spin structures is used here. The moduli space
orientations depend on the choice of spin structure on A.)

The differential of a Reeb chord generator ¢ is then defined as follows:

dgo= > |Mzgqo:q1---qx)| Adoq1A1g24; ... Ak_1qx Ag.
A=(Ay,..., Ay),
YK 1 laj1=lg0l-1

where | M| denotes the algebraic number of points in the oriented compact O—manifold

M.
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2.3.5 Invariance of Legendrian homology The main properties of LA(A) are sum-
marized in the following theorem.

Theorem 2.6 (Ekholm, Etnyre and Sullivan [17]) The map 0: LA(A) — LA(A)
is a differential, that is, 3> = 0. The stable tame isomorphism class of LA(A) is
an invariant of A up to Legendrian isotopy; in particular, its homology LH(A) is a
Legendrian isotopy invariant. (For the notion of stable tame isomorphism in this setting,
see [14].)

This result is stated and proven in [17] for the homology-commutative quotient, but the
proof there extends verbatim to the full non-commutative algebra.

2.4 Flow trees

Consider a Legendrian submanifold A C J!(S) = T*S xR as in Section 2.2. There is
a Morse-theoretic description of the differential in the Legendrian DGA of A via flow
trees, as developed in [10], which we will describe in this subsection (in less generality
than [10]). The motivation is as follows. For o > 0, the map

¢o: T*S xR —>T*S xR, (q.p.z)~ (q,0p,0z),

satisfies ¢ (dz—6) =o0(dz—0). Hence Ay = ¢p5(A) is a Legendrian submanifold that
is Legendrian isotopic to A. For ¢ > 0 small enough there are regular almost complex
structures for which there is a one-to-one correspondence between rigid holomorphic
disks with boundary on A, with one positive puncture and rigid flow trees determined
by A; see [10].

We now define flow trees. Fix a metric g on S. Then two local defining functions f
and f7 for A defined on the same open set in S define a local vector field on S':

=V(f1— /o).

where V denotes the g—gradient. The 1—jet lift of a path y: (—e€,€) — S is a pair of
continuous paths y;: (—€,€) — A, i =0, 1 with the following properties: woy; =y
and either y(¢) # y1(¢) or yo(t) = y1(¢) is a point in X. A path y: (a,b) — S is
called a flow line of A if it has a 1—jet lift y;,i = 0, 1, such that for each ¢ € (a, b)
there are local defining functions fy, f7 defined near y(¢) such that y; lies in the sheet
determined by f;, i =0, 1, and

y(@) ==V{fi = Jo)(r ().

See Figure 2. If y is a flow line with 1—jet lift 4, y; we define its cotangent lift
as IToyg, IToyy.
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Iy, 1
S xR
1—‘fo
S0 Yo }
S
s 14
[

Figure 2: Graphs I's; of the local defining functions f; for two sheets of
IIr(A). A flow line y and critical point s in S and their lifts to TTr(A).
Notice s is a positive puncture.

Let y be a flow line of A with 1—jet lift Yy, y; in sheets with local defining functions
fo, f1- Then the flow orientation of yy (respectively y;) is given by the lift of the
vector

—V(fo— f1) (respectively =V (/1 — /o))
If y: (—o0,b) — S (respectively y: (a,00) — §) is a flow line as above such that
lim y(t)=s€S (respectively lim y(z) =)
t—>—00 t—>00

is a critical point of f; — fo, then we say s is a puncture of the flow line y. Let
s; be the point in the sheet of f; with 7 (s;) =5, i =0, 1. Choose notation so that
f1(s1) > fo(sg); then s is a

positive puncture  if the flow orientation of Yy points toward sg
and that of y; points away from sy,

negative puncture if the flow orientation of y; points toward s;
and that of yy points away from sy.

If s is a puncture of a flow tree then the chord at s is the vertical line segment oriented
in the direction of increasing z that connects so and s .
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A flow tree of A C J1(S) is a map into S with domain a finite tree T', which may
have semi-infinite edges, with extra structure consisting of a cyclic ordering of the
edges at each vertex and with the following three properties.

(1) The restriction of the map to each edge is a flow line of A.
(2) If v is a k—valent vertex with cyclically ordered edges e1,...,e; and Ej(.), E} is
the cotangent lift of ej, 1 < j <k, then there exists a pairing of lift components

such that forevery 1 < j <k (withk+1=1)
e (v) :_](.)+1(v):pe II(A)CT*S,

and such that the flow orientation of E} at p is directed toward p if and only if
the flow orientation of Ejo 41 at p is directed away from p. Thus the cotangent
lifts of the edges of I" then fit together as an oriented curve I" in TT(A).

(3) This curve T is closed.

We first notice that vertices may contain punctures. We will be interested in flow trees
with only one positive puncture. Such flow trees can have only one puncture above each
vertex; see [10, Section 2]. Thus for such flow trees I" we divide the vertices into three
sets: the set of positive punctures P(I"), the set of negative punctures N (I") and the
set of other vertices R(I"). Recall at a (non-degenerate) puncture v the corresponding
difference between the local defining functions has a non-degenerate critical point.
Denote its index by 7(v).

If T is a flow tree as above then its formal dimension (see [10, Definition 3.4]), which
measures the dimension of the space of flow trees with 1—jet lift near the 1—jet lift of
J

@y ann)=( ¥ 0w-n- X aw-n+ ¥ uw)-1,

veP() veN(T) veR(T)

where (v) is the Maslov content of v and is defined as follows. For a vertex v € R(I")
let x € 771 (v) be a cusp point that lies in the 1—jet lift of I" (if such a point exists).
If yo and y; are two 1—jet lifts of an edge of I" adjacent to v that contain x and for
which the flow orientation of yq is pointed towards x and that of y; is pointed away
from x, then we set ji(x) = +1 (respectively —1) if o is on the upper (respectively
lower) local sheet of A near x and y; is on the lower (respectively upper) local sheet.
Otherwise define fi(x) = 0. We can now define p(v) = ) _ fi(x), where the sum is
taken over all x € 7~ !(v) that are cusp points in the 1—jet lift of T".

There is also a notion of geometric dimension of ", gdim(I") (see [10, Definition 3.5]),
which measures the dimension of the space of flow trees near I" that have the exact same
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geometric properties as I". In [10, Lemma 3.7] it is shown that gdim(I") < dim(I") for
any flow tree I', and a characterization of the vertices of trees for which equality holds
is given. In combination with transversality arguments for Morse flows, this leads to
the following result; see [10, Lemma 3.7 and Proposition 3.14].

Theorem 2.7 (Ekholm 2007 [10]) Given a number n > 0, after a small perturbation
of A and the metric g on S we may assume that for any flow tree I" having one
positive puncture and dim(I") < n, the space of flow trees with the same geometric
properties in a neighborhood of I' is a transversely cut out manifold of dimension
gdim(I"). In particular, trees I with dim(I") = 0 form a transversely cut out 0—
manifold. Furthermore, such rigid trees satisfy gdim(I') = dim(I") = 0 and have
vertices only of the following types; see Figure 3.

(1) Valency one vertices that
(a) are positive punctures with Morse index # 0,
(b) are negative punctures with Morse index # 2, or
(c) lift to a cusp edge and have Maslov content +1, called a cusp end

(2) Valency two vertices that
(a) are positive punctures with Morse index 0,
(b) are negative punctures with Morse index 2, or
(c) have order one tangencies with a cusp edge and Maslov content —1, called a
switch

(3) Valency three vertices that
(a) are disjoint from the projection (%) of the singular locus to S, called a Y
vertex, or
(b) lie on the image of the cusp locus and have Maslov content —1, called a Y,
vertex

Notice that we may endow a flow tree I' that has exactly one positive puncture with
a flow orientation: any edge e is oriented by the negative gradient of the positive
difference of its defining functions.

When working with flow trees it will also be useful to consider the symplectic area
of a flow tree I'. Given a flow tree I', let I denote its 1—jet lift (which, in previous
notation, projects to I' C TI(A)), and define the symplectic area of T to be

A(F)z—/fpdqz—/fdz.

The name comes from the connection between flow trees and holomorphic curves.
The important features of the symplectic area are summarized in the following lemma.
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S xR
S - S
— —
S xR
S
\
> S xR

~ ~>—

Figure 3: Lifts of neighborhoods, in I, of vertices into the front space S xR.
Dashed lines in S are cusp edges.
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Before stating it we introduce some notation. A puncture a of a flow tree lifts to a
double point in the Lagrangian projection IT(A) and hence corresponds to a Reeb
chord. Thus in the 1-jet lift of I" there will be two points that project to @. We denote
them a* and ¢~ where a™ has the larger z—coordinate.

Lemma 2.8 (Ekholm 2007 [10]) For any flow tree I" the symplectic action is positive:
A(T") > 0. The symplectic action can be computed by the formula

AD) =) (z2(pH) =z(p7) =D _(z(¢T) - z(¢))).
y4 q

where the first sum is over positive punctures of I', the second sum is over negative
punctures of I' and z(a) denotes the z—coordinate of the point a.

For our applications two further types of flow trees will be needed. First, a partial
flow tree is a flow tree T for which we drop the condition that the cotangent lift T is
closed and allow I to have 1-valent vertices v such that ' intersects the fiber over v
in two points. We call such vertices special punctures. In the dimension formula (2-3),
I(v) = 3 for a positive special puncture. Theorem 2.7 holds as well for partial flow
trees with at least one special puncture; see [10]. Second, in Section 5.1 we consider
constrained flow trees: if py,..., p, are points in A then a flow tree constrained by
P1,-.., pr isaflow tree I' with 1—jet lift which passes through the points pq,..., p,.

2.5 Vector splitting along flow trees

In this subsection we describe a combinatorial algorithm for transporting normal vectors
in a flow tree to all its vertices which will combinatorially determine the sign of a flow
tree; see Section 3.4. Specifically we will be concerned only with flow trees that do
not involve cusp edges and only have punctures at critical points of index 1 and 2.

Suppose A is a Legendrian submanifold in J1(S) that does not have cusp edges (see
Remark 1.6) and only has Reeb chords corresponding to critical points of index 1 and 2.
Let T be a partial flow tree with positive special puncture determined by A C J1(S).

Consider the local situation at a Yy—vertex of I" at # € S. (Note that because of the
lack of cusp edges, I' has no Yj—vertices.) In the flow orientation of I' one edge
adjacent to 7 is pointing toward it (we call this edge incoming) and the other two edges
are pointing away from it (we call them outgoing). Furthermore, the natural orientation
of the 1—jet lift of the tree induces a cyclic order on the three edges adjacent to ¢ and
thus an order of the two outgoing edges. (Specifically, the edge e; will have the same
upper sheet as the incoming edge while the edge e, will have the same lower sheet.)
If vy denotes the negative gradient of the incoming edge at ¢ and vy, v, the negative
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gradients of the two outgoing edges, all pointing according to the flow orientation of
I', then v; and v, are linearly independent and the following balance equation holds:
vo = v1 + vy. (This follows from the fact that the difference between the local defining
functions along the incoming edge is the sum of the function differences along the
outgoing edges.)

We next define vector splitting. Let p denote the special positive puncture of I,
let #1,....%,—1 denote its trivalent vertices, and let ¢q,...,q; denote its negative
punctures. Vector splitting along I' is a function

k—1 k
N, T =[] Fiy S x [ [ Ng T
j=1 i=1
where N,I' denotes the normal bundle of the edge of I" containing the point x € I"
(which is assumed not to be a trivalent vertex) and where F'S denotes the frame bundle
of S. It is defined as follows.

Translating n € N,I' as a normal vector along the edge in the direction of the flow
orientation of the tree, it eventually arrives at a trivalent vertex ¢. At this vertex, the
translated vector n(¢) is perpendicular to the incoming edge at ¢ and determines two
unique vectors w1 (¢) and w,(¢) in T;S perpendicular to the first and second outgoing
edges at ¢, respectively, by requiring that n(z) = w;(z) + w,(¢); see Figure 4. The
frame at ¢ is (wq(2), wy(?)).

wq

—_—

W3

2

Figure 4: Vector splitting at a trivalent Yp—vertex

Regarding wq(¢) and w,(¢) as normal vectors of their respective edges, the above
construction can be applied with n replaced by w;(¢), j = 1,2, and I" replaced by the
partial tree I'; that is obtained by cutting I' in the j % outgoing edge at ¢ and taking
the component that does not contain . When a subtree I'; contains no trivalent vertex
we translate wj(¢) along its respective edge to the negative puncture at the vertex.
Continuing in this way until the cut-off partial trees do not have any trivalent vertices,
we get:
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e two vectors wq(¢) and w,(¢) perpendicular to the first and second outgoing
edge at ¢, for each trivalent vertex ¢, and

e avector w(q) perpendicular to the edge ending at ¢, for each negative puncture
q.

The vector splitting of n along T is

n> (wi(t), wa(t1), ..., (Wi (tr—1), w2 (tx—1)): w(G1), - .., w(gx)).

2.6 Algebraic results

In this subsection, we collect for convenience some algebraic results about the map
¢ and the matrices ®L and ®X, which were defined in Section 1.2 and play an
essential role in the combinatorial formulation of the Legendrian algebra for knot
contact homology, Theorem 1.1. These results, which will occasionally be needed
in the remainder of the paper, have essentially been established in previous work of
the third author [26; 27; 29; 30]. However, we repeat the caveat from Section 1.2
that in our present context, homology classes (u and A) do not commute with Reeb
chords (a;; ), while the previous papers deal with the homology-commutative quotient
(see Section 2.3.2). Nevertheless, all existing proofs extend in an obvious way to the
present setting.

Proposition 2.9 The map ¢: ,Zg — ﬂ,‘; defined in Section 1.2 for braid generators oy,
of the braid By, respects the relations in the B),, and thus extends to a homomorphism
from By to Aut AY.

Proof The proof is by direct computation; cf [26, Proposition 2.5]. O

Proposition 2.10 Let B € By, and let ¢g(A) be the n x n matrix defined by
(#B(A));; = ¢B(Aij). Then we have the matrix identity:

op(A) = 05 - A . 0

Proof The proof is by induction on the length of the braid word representing B; cf
[26, Proposition 4.7; 30, Lemma 2.8]. The latter reference proves the result stated
here (A and A there correspond to A here once we set U = V = 1), but in the
homology-commutative quotient, for the case of a single-component knot, and with
slightly different sign conventions. Nevertheless, the inductive proof given there works
here as well; we omit the details. O
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We remark that Proposition 2.10 can be given a more natural, geometric proof via the
language of “cords” [27]. This approach also provides an explanation for the precise
placement of the homology classes i in the definition of ¢4, from the introduction. We
refer the interested reader to [29, Section 3.2], which treats the homology-commutative
single-component case, and leave the straightforward extension to the general case to
the reader.

One consequence of Proposition 2.10 is that the differential for knot contact homology
presented in Theorem 1.1 is well-defined. More precisely, the differential for the b;;
generators is given in matrix form by:

—1 L R
B=— 1A +L. A 0F

However, since B has 0’s along the main diagonal, it is necessary that the right hand
side has 0’s along the diagonal as well. This is indeed the case: the (i, i) entry of
“LLA. is 1+ g (), while the (i, ) entry of dDILg-A-d)g is (1 +pg@)) = 1+ o) -

3 The differential and flow trees

In Section 4, we will prove Theorem 1.1 by using multiscale flow trees to compute
the differential of Ag in J!(S?) = U*R3. These multiscale flow trees combine two
types of flow trees, which are the focus of this section. Specifically we will see that
if A is the conormal lift of the unknot U then by thinking of K as a braid about U
we can isotope A g into an arbitrarily small neighborhood of A = Ay, which can be
identified with a neighborhood of the zero section in J!(A). Thus we may think of
Ak as asubset of JI(A).

To use multiscale flow trees to compute the differential of Ag in J1(S?) we will
combine flow trees of A C J1(S?) and Ax C J'(A). The content of this section
is a computation of these flow trees; in Section 4, we then combine the flow trees to
complete the computation of the Legendrian DGA for Ag C J!(S5?).

Here is a more detailed summary of this section. In Section 3.1, we discuss the
Legendrian torus A and describe a generic front projection for it. In Section 3.2, we
compute the rigid flow trees for A as well as the 1-parameter families of flow trees. In
Section 3.3, we give an explicit identification of a neighborhood of the zero section
in J1(A) with a neighborhood of A in J!(S?), use this identification to explicitly
describe Ag in J!(A), and find all the Reeb chords of Ax C J!(A). Section 3.4
computes the rigid flow trees of Ag in J!'(A) modulo some technical considerations
concerning “twist regions” that are handled in Section 3.5. We comment that Section 3.4
produces an invariant of braids (cf [26]) using only existing flow tree technology and
not multiscale flow trees.
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3.1 A generic front for A

Let U be the round unknot given by the unit circle in the xy—plane in R3. We give a
description of the conormal lift A = Ay in J1(S?) = U*R? by describing its front
projection in S? x R. In the figures below, we draw S2 x R as R® — {0} and identify
the zero section S?2 x {0} with the unit sphere. If C is the circle in the conormal
bundle of U lying over a point x € U then its image in S x {0} C S? xR is a
great circle running through the north and south poles of S2. See Figure 5. By the
contactomorphism ¢ between U*R3 and J!(S?) from Section 2.1, the image of C
in S2 xR is the graph of (x, y), where y € C. This is shown in the leftmost picture

in Figure 6.
U
<P

Figure 5: On the left is the unknot U in the xy—plane with a point p on U
labeled and its unit (co-)normal bundle shown. On the right is the tangent
space R® = T,R? at p with the unit sphere indicated along with the image
of the unit (co-)normal bundle to U at p.

Figure 6: The front of the unknot. On the left is the image of the circle shown
in Figure 5 in the front projection in J°(§?) = $2 x R = R? — {0}. The
center image shows the entire front projection (with the unit sphere S2 x {0}
shown in light grey) and the image on the right shows the two Reeb chords
after perturbation.
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By symmetry we get the entire front projection by simply rotating this image of C
about the axis through the north and south pole as shown in the middle picture of
Figure 6. Using Lemma 2.1 we see that this representative of A has an S's worth of
Reeb chords over the equator. We perturb A using a Morse function on the equator
with one maximum and one minimum, so that only two Reeb chords ¢ and e, as
indicated in the rightmost picture in Figure 6, remain. Here e and ¢ correspond to the
maximum and minimum, respectively, of the perturbing function, and both correspond
to transverse double points of TT(A).

This perturbation does not suffice to make the front of A generic with respect to
fibers of T*S?2: over the poles of S? we see that A consists of Lagrangian cones.
We first describe these in local coordinates and then show how to perturb them to
become front generic. Let x = (x1, x») be local coordinates near the pole in S? and
let (x,y) = (x1, y1. X2, y2) be corresponding Darboux coordinates in 7*S?, with
symplectic form given by dx Ady = dx; Ady; +dxy Ady;.

Consider S! = {£ € R? : |§| = 1}. The Lagrangian cone is the exact Lagrangian
embedding C: S! x R — R* given by

CE,r)=(r§.§).

As mentioned above, the Lagrangian cone is not front generic: the front projection
I1 g oC is regular for r # 0 but maps all of S x {0} to the origin. In order to describe
perturbations of C we first find a cotangent neighborhood of it. See Figure 7.

Consider T*(S! xR) = T*S! x T*R. Let (£, 7,1, p) be coordinates on this space
where p is dual to r and 7 is dual to &. Here we think of 1 as a (co)vector perpendicular
to £ € S! C R?, thatis, n € R? and n-£ = 0. Consider the map

®: T*S' x T*R — T*R? = R*
given by
1
o) = (16 1 014 ).
+p

Then ®*(dx Ady) =d& Adn+ dr Adp. To see this we compute

1 dp
dn+ ,
T+o " (U4 p2"
dy = (dp) &+ (1+p)dE,

dx =(dr)é+rdé—
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’ ’ ’ ’ ) ’
1 1 1 1 ! 1
1 1 1 1 ¢ 1
\ \ \ \ , \
\ \ \ \ | \

N
450’

O ©

Figure 7: A perturbed Lagrangian cone. Along the top of the figure is an
annular neighborhood of the circle in A = Ay that maps to the fiber above
the north pole. On the middle left, we see the image of this annulus near the
north pole in the front projection, a cone whose boundary is two circles. On
the bottom left is the image of this annulus near the north pole in S? (that is,
the top view of the cone where we have slightly offset the circles so that they
are both visible). On the middle right, we see the top view of the cone after it
has been perturbed to have a generic front projection. More specifically, the
lighter outer curve is the image of the cusp curves, the dotted lines are the
image of double points in the front projection and the darkest inner curve is
the image of the circle that mapped to the cone point before the perturbation.
On the bottom right, we see the image in S? of the cusp curve and the two
boundary circles on Ay .

and hence

dx ndy = (dr ndp)(E-E)+dENdn+ (1 + p)dr —rdp) A (E-dE)
d
Fipp Nt dg)
=dr Andp+dE Adn,

since £-£€=1and £-n=0.
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Thus & is a symplectic neighborhood map extending the Lagrangian cone. It follows
that exact Lagrangian submanifolds C!-near C can be described by ®(Tyr), where
f is a smooth function on S! xR and where [4r denotes the graph of its differential.

We will consider specific functions of the form

S r)=a(r)g®).

where o(r) is a cut off function equal to 0 for |r| > 2§ and equal to 1 for |r| < § for
some small § > 0. Write Cy = ®(Iyy).

We first give a description of the caustic of Cr. Note that [Tz o C is an immersion for
|r| > 6. The same therefore holds true for Cy provided f* is small enough. In order to
describe the caustic we thus focus on the region where |r| < § and hence a(r) = 1.
Here

Cr(E.r) = (rE +dg. &) = (C/ (£,1), C}(E,1)).

The caustic is the set where Cy has tangent lines in common with the fiber. Consequently
apoint p € S! xR belongs to the fiber provided the differential of the first component
C fl of the map Cy has rank less than 2. Write £ = (cos6,sinf) € S ! and take
g(&) = g1(§) = €cos26. The caustic is then the image of the locus r = 4¢ cos 260
under the first component of the map

o6, r) = (r (cos 8, sin 0) — 2¢ sin (—sin 0, cos B), (cos 8, sin 9));

see Figure 7.

Lemma 3.1 The Maslov class of A vanishes and consequently the grading of any
Reeb chord of A is independent of choice of capping path. Let e and ¢ denote the
Reeb chords of A, as described above; then

le|l]=2 and |c|=1.

Proof To see that the Maslov class vanishes we need to check that the Maslov index
of any generator of H;(A) vanishes. We compute the Maslov index of a curve as
described at the end of Section 2.3.1. Take one generator as a curve in A over the
equator; since this curve does not intersect any cusp edge its Maslov index vanishes.
Take the other generator as a curve perpendicular to the equator going to the poles and
then back; since such a curve has two cusp edge intersections, one up-cusp and one
down-cusp, its Maslov index vanishes as well.

Finally choose the capping path of e and ¢ which goes up to the north pole and then
back. This capping path has one down-cusp and the Morse indices of e and ¢ are 2
and 1, respectively. The index assertions now follow from Lemma 2.5. a
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3.2 Flow trees of A

We next determine all flow trees of A.

Lemma 3.2 There are exactly six rigid flow trees of A : four with positive puncture at
¢ (Iy, Yn, Is and Yg ) and two with positive puncture at e and negative puncture at
¢ (Ey and E,). Furthermore, if p is a point of A lying over a point where the front
of A has 2 sheets then there are exactly two constrained rigid flow trees with positive
puncture at e with 1—jet lift passing through p.

Before proving Lemma 3.2, we make a couple of remarks.

Remark 3.3 In fact one can show the followmg There are exactly four 1-parameter
families of trees with positive puncture at e: I N> YN, T, s and YS The boundaries of
these 1—parameter families are as follows:

Ay = (E1#1IN)U(Ex#ly), Yy =(E #YN)U(E,#YN),
g = (E | #1g)U(E #1g), 0Yg=(E #Ys)U(E,#Yg).

Here E|# Iy denotes the broken tree obtained by adjoining Inx to Ej, etc. See
Figures 8 and 9. Furthermore, the 1—jet lifts of the flow trees in each of these families
sweep the part of the torus lying over the corresponding hemisphere (N or .S') once.

The formal proof of this result about 1—parameter families would require a more
thorough study of flow trees in particular including a description of all vertices of flow
trees that appear in generic 1—-parameter family. This is fairly straightforward; see [10,
Section 7]. For the purposes of this paper it suffices to work with constrained rigid
trees rather than 1-parameter families so details about 1—parameter families of flow
trees will be omitted.

N\

¢ ¢ ¢ d

Figure 8: Rigid flow trees for A on the northern hemisphere of S?2
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Remark 3.4 We will not need a precise expression of the 1-dimensional families
T N Yn, I s, and Y, s in our computations, but we do need a rough understanding
of them. To see the family of disks, start with the symmetric picture of A coming
from the conormal lift of U. Now make a small perturbation of the north and south
poles as shown in Figure 7. Then we see an I and Y flow tree from each point on the
equator into the northern hemisphere and another into the southern hemisphere. Now
perturbing slightly so the equator is no longer a circle of critical points but contains
only the critical points ¢ and e and two flow lines between them, we will see that each
of the I and Y disks will become part of one of the 1-dimensional families of disks
TN, YN, fs, and }75. See Figure 9.

It is also useful to see these trees as arising from the Bott-degenerate conormal lift of
the round unknot. Here there are four holomorphic disks emanating from each Reeb
chord. The corresponding trees are just flow lines from the equator to the pole. The
1—jet lift of such a flow line can then be completed by one of the two half circles of
the circle in A which is the preimage of the pole. The Bott-degenerate 1—parameter
family then consists of a flow segment starting at the maximum in the Bott-family and
ending at some point where a disk emanating at that point (corresponding to a flow
line from that point to a pole) is attached.

51016
plc

Figure 9: One of the 1—dimensional flow tree families for A lying over the

northern hemisphere of S?

Proof of Lemma 3.2 We are only considering flow trees with exactly one positive
puncture. First consider a rigid flow tree I" with a positive puncture at ¢. Using
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Lemma 2.8 we see that there can be no negative punctures since the symplectic area
must be positive. Thus all vertices of I" are Y, or Y; vertices, switches or cusp ends.

We can rule out switches as follows. Since the front is a small perturbation of a
Lagrangian cone, it is possible to arrange the following: along a cusp edge in the image
(%) of the caustic, the gradient vector fields for the function difference between a
sheet meeting the cusp edge and a sheet not meeting the cusp edge are transverse to the
caustic except at the swallow tail points, where they are tangent to the caustic (or zero).
This is a non-generic situation, generically tangencies occur only at smooth points of
the caustic, and after small perturbation tangency points lie close to the swallowtails.
Switches of flow trees lie at tangency points in the caustic and thus a switch could only
occur near a swallow tail point. Now, using again that the front is a small perturbation of
a Lagrangian cone, we can also arrange that near a swallow tail, the function difference
between any one of the three sheets involved in the swallow tail and the fourth sheet is
larger than any function difference in the small region bounded by 7 (X) away from
swallow tails. Then since the unique flow line that leaves ¢ hits 7 (X) away from the
swallow tails, by positivity of symplectic area (in this case, the fact that the function
difference decreases along a flow line), there is a neighborhood of the swallow tail
points that the flow tree cannot reach and in particular it cannot have any switches.

Thus the vertices of I" are all Y or Y7 vertices or cusp ends. By the dimension formula
(2-3), we see that for the flow tree to be rigid there is some # > 0 such that there are
n type Y7 vertices and n + 1 cusp ends (each with = +1). To have a Y; vertex a
flow line must intersect a cusp edge so that when traveling along the flow the number
of sheets used describing A increases (as one passes the cusp). Around the north and
south pole of S? the cusp edges are arranged so that only flow lines traveling towards
the poles could possibly have a Y7 vertex. Thus for » > 1 one of the edges in the
flow tree will be a flow line that travels from near the north pole to near the south pole.
Since this clearly does not exist, as there are two flow lines connecting e to ¢ along
the equator and A has only two sheets along the equator, we must have n =0 or 1.

There are only two flow lines leaving ¢ (that is, two flow lines that could have ¢ as a
positive puncture), one heading towards the north pole and one heading towards the
south pole. When n = 0 we clearly get I and Ig from these flow lines when they
do not split at a Y; vertex and when n =1 we get Y and Y when they do split at
a Y7 vertex. Conversely, this argument shows that In, Is, Yy, Yg are indeed rigid
flow trees with positive puncture at ¢ (refer to Figure 8 for I and Y ).

Notice for future reference that the above analysis shows that there are no 1—parameter
families of flow trees with ¢ as a positive puncture.
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Now consider a flow tree I with e as a positive puncture. Noting that the Reeb chord
above ¢ is only slightly shorter than the chord above e we see, using Lemma 2.8,
that I' can have either no negative punctures or just one negative puncture at c. If
dim(I") = 0, then by the dimension formula there must be a negative puncture at c.
Then, since A is defined by only two functions away from neighborhoods of the poles,
the only vertices of I" are the punctures e and c¢. Thus I' is simply a flow line from e
to ¢ and there are precisely two: E and E,.

The argument for constrained rigid trees with positive puncture at ¢ follows from the
argument used for rigid flow trees with positive puncture at ¢ above. a

3.3 Conormal lifts of general links

In order to describe the conormal lift of a general link K C R3 we first represent
it as the closure of a braid around the unknot U . More precisely, K lies in a small
neighborhood N = S! x D? C R? of U and is transverse to the fiber disks {#} x D?
forall @ € S!. Note that B is a braid on n strands if and only if K intersects any fiber
disk n times. We write B for the closed braid corresponding to K considered as lying
in S'x D2,

We represent a closed braid B on n strands as the graph I's, of a multi-section
fp: S'— D?, where fg(s) consists of n distinct points in D? varying smoothly with
s, so that T'f,, is a smooth submanifold. Representing S! as [0, 27] with endpoints
identified, we can express fp as a collection of n functions { f1(s), ..., fu(s)}, where
f;1 [0, 2] — D? are smooth functions, i = 1,...,n. (The sets { £;(0), ..., f»(0)} and
{fi@2m),..., fu(2m)} are equal but it does not necessarily hold that f;(0) = f;(2x).)
Note that the distance between A and A is controlled by the C!—distance from f3
to the trivial multi-section, which consists of 7 points at the origin. In particular if NV is
a fixed neighborhood of A then Ax C N provided that fp is sufficiently C!—small.

3.3.1 A 1-jet neighborhood of A In order to describe the multiscale flow trees on
A determined by Ax we need to identify some neighborhood of A with J!(A) ~
T*T?xR. Thinking of 7% as S! x S! we use two different versions of the cotangent
bundle of S' to describe T*7T?. First, we think of S! as [0, 27] with endpoints
identified, we let s be a coordinate on [0,27] and 0 € R be a fiber coordinate in
T*S!' = ST xR. We write T*S )3 for the cotangent bundle with these coordinates:

T*S) ={(s,0):s€[0,2n],0 € R}.
We denote the second version 7*.S /i and define it as

T*S), ={(n) e R*xR*: | = 1,§-n=0}.
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Let r(s) = (cos s,sins,0), 0 <s <27 denote a unit vector in the xx,—plane at an
angle s from the x;—axis and 0(s) = (—sins, cos s, 0) the vector r(s) rotated /2
counter-clockwise in the x;x;,—plane (we can think of it as the standard angular vector
at r(s) translated back to the origin). Let ¢ be the coordinate on R. Consider the map

®: T*S) xT*S), xR —> U*R? =R? x 2,
where ® = (&, ;) is defined by

(3'1) CD](S,O’,S, 77@) :}"(S)—l- (771’”(S)+772(0, 0, 1))

1
V1—o?
+5(=08(s) + V1 =02 (§17(s) +£2(0,0,1))),
CDZ(Sv o, év n, é‘) = _UQ(S) + VI —o? (SIV(S) + '%-2(()’ 0, 1))

Then ®| 1 %08}, x0x0 is a parametrization of A and its restriction to a small neigh-
borhood of the 0—section is an embedding. Furthermore, since & - = 0, we know that
n-d& = —&-dn. Using this and the fact that r(s)-6(s) =0 and r’(s) = 6(s) we can
compute

O*(pdq) =dt—ods—&-dn— ﬁam ds.
We introduce the following notation:
(3-2) Bo=ods+E&-dn,
(3-3) o= ;07’]1 ds,
V1—o?
(3-4) Br=Po—ta, 0=<t=<1.

Note that df; is symplectic in a neighborhood of the 0—section, for all #. Using
Moser’s trick we define a time-dependent vector field X; by

(3-5) —a =dB(Xt,-)
and find that if i, denotes the time ¢ flow of X; then
Vi dBe = dpo.
In particular,
d(y7 Bt — o) = 0.

Equation (3-5) and the definition of « imply that X; = 0 along the O—section and
thus ¥/ B; — Bo = 0 along the O—section. By the homotopy invariance of de Rham
cohomology, the closed form v/ 8; — Bo is exact. Let the function / be such that
Bo = ¥{ B1 + dh and such that 1 = 0 on the O—section.
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We can bound the growth of «, X;, & in terms of distance r := (||? + |o|*)!/? from
the origin. From the explicit expression for & in (3-2), we have @ = O(r?) and thus
from (3-5),

(3-6) Xe| = O(n* +o1*) and [dX:| = O(n* +1ol*)'?).

Then from the definition of 4, |dh| = O(r?) and so

(3-7) @) =0l +10)C072), k=0.1.2.

We will use these estimates in the proof of Lemma 3.6 below.

Finally, if W is the diffeomorphism of 7*S,} x T*S} xR given by
W((s,0.6,m),8) = (1(s.0,6,m), L+ h(s. 0,8, 1)),

then
V*o*(pdg)=dl—ods—&-dn.

The map ® = ® o W is the 1—jet neighborhood map we will use. It is an embedding
from a neighborhood of the 0—section in J!(7?) = T*T? xR to a neighborhood of
A C U*R3 = J1(S?) such that ®*(p dq) = d{ — 6, where ¢ is a coordinate in the
R —factor and where 6 is the Liouville form on T*T2.

Remark 3.5 Notice that the contactomorphism © sends the Reeb flow of J1(7'?) to
the Reeb flow of J1(S?). (Here, as throughout the rest of the paper, we are identifying
J1(5?) with U*R? using the contactomorphism in (2-1).) Thus any Reeb chord of
Ak in J1(T?) corresponds to a Reeb chord of Ag in J!(S?) and any Reeb chord of
Ak in J1(S?) that lies entirely in N corresponds to a Reeb chord of Ag in J'(7'?).

3.3.2 Conormal lifts of closed braids as multi-sections Consider 7> = S} x S
as above. A multi-section of J°(7'?) is a smooth map F: T? — J%(T'?) such that
o F is an immersion (ie, a covering map). In particular, a multi-section can be thought
of as the graph of a multi-function F: T? — R. (Context will designate whether F
refers to a (multi)function or its graph, a (multi)section.) The 1—jet extension of a
generic multi-section is a Legendrian submanifold. We denote it I';1(g). Let K C R3
be a link and let B be a closed braid representing K with corresponding multi-section
fB=1{f1,---, Ju}» };: [0,27] — D2, as described at the beginning of Section 3.3.

Lemma 3.6 The conormal lift A g is Legendrian isotopic to the Legendrian submani-
fold ©(T'j1(py)), where Fp is the multi-section given by the functions

Fj:[0,2n]xSli—>R, j=1,....n, where Fj(s,§) = fj(s)-&.
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Here we think of S }f as [0, 27r] with endpoints identified and we identify S ,blL with the
unit circle in the plane of the disk where fj: [0, 2] — D? takes values.

Proof Let N C U*R? denote a §—neighborhood of A in which ® and @ give local
coordinates. Take the C%—norm of f3 sufficiently small so that A g will be in N . We
first show that ®~!(Ag) is given by the 1—jet lift of Fp. To see this notice that the
image of the braid B is given by the image of the maps

(/i ($))xr (s) + (fj (5))y (0,0, 1),

where (fj)x and (fj), are the x and y—coordinates of f;, and r(s) is as in (3-1).
Thus the normal component in J!(§2) = T*S? xR (ie, the R—component) of the
braid at the point (£ (s))xr(s) + (fj(5)),(0,0, 1)) is given by

((fi ())xr () + (fj ())p(0,0. D)) - (517 (s) +£2(0,0, 1)) = fi(s)-§.

According to the definition of ® we see that the R—factor of T*T? xR = J1(T?)
maps to the R—factor in 7*S? x R by ¢ > {+/1 —02. Thus the multi-section of
JO(T?) corresponding to ®~1(Ag) is given by (1/v1—02) fj(s)-&, butin JO(T?)
the o—coordinate is always equal to zero. Thus the multi-function Fp does indeed
describe ®~1(Ag) as claimed.

Now ®~!(Ag) is the 1—jet graph T 1(Gp) of some multi-section Gp. In general,
Legendrian submanifolds of J!(72?) will be given by cusped multi-sections, but since
each point in ®~!(A g) has a neighborhood in ® (A k) that can be made C!—close
to the zero section in J!(7'?), we see that ® (A g) has empty caustic and hence is
the 1—jet extension of a multi-section.

From the above discussion we see that I'j1(g) is the same as W™ ([j1(fy)). The
estimates (3-6) and (3-7) then imply that the C I _distance between Fp and Gp is
O(8?%). Consequently, for § > 0 sufficiently small, T'j1(g,) = Ag and T'j1(p,) are
Legendrian isotopic. a

3.3.3 Reeb chords and grading Let K C R? be alink. We assume that K is braided
around the unknot as a braid on 7 strands and we represent Ag as I'j1(fp) C J L(T?)
as in Lemma 3.6. Then the Reeb chords of Ag in J!(S?) are of two types: short
chords, which are entirely contained in the neighborhood N of A, and long chords,
which are not. According to Remark 3.5 we see that the short chords of A g correspond
to chords of Ax in J!(T'?). As with A, one can use the techniques of Section 2.3.1
to conclude that the Maslov class of A g vanishes, and thus the grading of any Reeb
chord of A g with both endpoints on the same component is independent of capping
path. For Reeb chords with endpoints on distinct components the grading depends on
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the chosen transport along the paths connecting the components; cf Remark 2.4. Here
we use the following choice throughout. Fix a point x € A and let the base points of
the components of Ak all lie in the intersection J!1(A) N Ag of Ag and the fiber of
JU(A) at x. Take the connecting paths as straight lines in 77 (x)/A and use parallel
translation in the flat metric followed by a rotation along the complex angle or the
complementary complex angle, whichever is less than 7, as transport. Note that as K
gets closer to U the angle of this rotation approaches 0.

Lemma 3.7 Up to smooth isotopy, we can choose the link K C R? so that A g has
exactly 2n(n — 1) short Reeb chords,

{aijhi<ij<n,i#j. laijl =0,
bijyi<ij<n, i#j. |bijl =1,
and exactly 2n? long Reeb chords,

{cijbi<ij<n. lcijl =1,
{eijti<ij<n. leijl =2.

Here c;j (respectively e;; ) lie in small neighborhoods of the Reeb chords ¢ (respectively
e) of A for all i, j. Furthermore all Reeb chords can be taken to correspond to
transverse intersection points in T*S?.

Remark 3.8 We will use the following notation for the Reeb chords of A g. We say
that the short Reeb chords are of type S and the long of type L. We sometimes specify
further and say that a short (long) Reeb chord of grading j is of type S; (L;j).

In a neighborhood of the short chords, the Legendrian consists of the conormal lifts
of n distinct arcs. The notation for short Reeb chords in Lemma 3.7 is chosen so that
aij begins on the conormal lift of the i™ strand and ends on that of the ;™ strand and
similarly for b;; .

Proof of Lemma 3.7 The statement in the lemma for long chords is immediate from
the fact that Ag is the 1—jet graph of a multi-section with n sheets over A which
has two Reeb chords: e with |e| =2 and ¢ with |¢| = 1. To prove the statement on
short chords we note that we may choose the multi-section fp so that for any i # j,
| fi — fj| has a maximum at 27 —§ € [0, 2], a minimum at 27 — 26, and no other
critical points. Parameterizing S [,ll, by & = (cost,sint), t € [0,2x], we find that the
difference between two local functions of A g is

Fij(s,t) = (fi(s)— fj(s)) - (cost,sint).
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Now dF;; =0 if and only if

(3-8) (f{ ()= f{(5)) - (cost,sint) =0  and
(3-9) (fi(s) — fj(s)) - (—sint, cost) = 0,

which in turn happen if and only if s is critical for | f;(s) — fj(s)| and ¢ takes one
of the two values, say 7o and 7y + 7, for which (3-9) holds. We take a;; to be the
chord corresponding to the minimal distance between strands and b;; to the maximal
distance.

In order to compute the gradings of @;; and b;; we note that the front of Ag in J O(A)=
A xR has no singularities and that the chords a;; (respectively b;;) correspond to
saddle points (respectively maxima) of positive function differences of local defining
functions. The grading statement then follows from (2-2). m|

3.4 Counting flow trees of Ax in J1(A)

In this subsection we determine all the flow trees for Ax C J!(A). Our enumeration
relies on a particular and fairly technical choice of position for A g over the regions
where the braid twists, whose details we defer to Section 3.5. For our current compu-
tational purposes, we only need a few qualitative features of these twist regions, as
described in Sections 3.4.1 through 3.4.3 below, which will serve to motivate the more
technical parts of our discussion of twist regions in Section 3.5.

Given these qualitative features, we perform the actual combinatorial computation of
flow trees in Sections 3.4.5 through 3.4.8 (after first presenting a scheme for calculating
signs for flow trees in Section 3.4.4), culminating in Lemma 3.21, which presents a
purely algebraic formula for the Legendrian DGA of Ag C J!(A). This comprises
an important subalgebra of the Legendrian DGA of A g C J!(S?), the rest of which
is computed in Section 4.

3.4.1 Basicsetup Recall that K is the closure of a braid in S! x D? given by a col-
lection {f1,..., fx} of functions f;: [0,27]— D?, j =1,...,n. We use Lemma 3.6
to represent Axg C J!(A) as the 1-jet graph of the functions Fj: [0,27]*> — R given
by

Fj(s,t) = fj(s)-(cost,sint).
Here (s, ) €[0, 27]? are coordinates on A, with s corresponding to the parameter along
the unknot (represented by the unit circle in the x;x,—plane) and ¢ to the parameter

along a unit circle in the normal fiber of the unknot with 0 corresponding to the
positive outward normal of the unit circle in the x;x,—plane. Furthermore, recall from
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Lemma 3.7 that Reeb chords of Agx C J!(A) correspond to points (s,7) € A where s
is a critical point of | f; (s) — fj(s)| and where ¢ is such that the vector (cost,sint) is
parallel to the vector f;(s)— fj(s).

Let [so,s51] C [0, 27]. We refer to the part of Ak lying over an interval [sq, 1],
Ag 0T ([s0.511x ST € TH(A),

as the [sg, 51]—slice of A g . We will represent the braid as follows: the actual twists
will take place in an [sgr, s'fr]—slice, where [Sgr, s'fr] C (0, Z). Inside the [sgr, sll’r]—slice
the braid is given by sub-slices where it twists so that two strands are interchanged,
separated by slices where the braid is trivial. Outside the [sgr, s'l’r]—slice the braid is

trivial.

We will choose perturbations so that the following holds: Reeb chord endpoints of the
Reeb chords e and ¢ of A have the following coordinates:

et =(0,0), e =@n), ¢ =0 and ¢ =(0,7);

see Lemma 3.1. Consequently, all Reeb chords ¢;; and ¢;j, 1 <1i, j <n, of type L

are located near these points. The Reeb chords a;; and b;; of type S are located near
T

s =5 and s = §, where >

< 8§ <§ < 2m; see the proof of Lemma 3.7.

3.4.2 Reeb chords and trivial slices Consider an interval [sq, s;] where the braid is
trivial. We will describe a model for the [sg, s1]—slice of the conormal lift of a trivial
braid which we will use in two ways: to control Reeb chords and to define a normal
form of a slice of the trivial braid in which there are no Reeb chords. We first describe
a somewhat degenerate [sq, s1]-slice of A g : we represent the trivial braid by

fi$)=0.7v(s), j=1....n,

where 1 (s) is a positive function that has a non-degenerate local minimum at s and a
non-degenerate local maximum at §. Here sy <s < § <s; and ¥ has no other critical
points.

We call the 1—jet graph of the function
Fj(s,t) = fj(s)-(cost,sint)
the j‘h sheet of Ak and denote itby S;, j =1,...,n. Writing
Fij(s,t) = Fi(s,t) = Fj(s,t) = (fi(s) — fj(s)) - (cost,sin?t)
= (i — j)¥(s)sint,
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Reeb chords correspond to critical points of F;; and are all located in the fibers over
the following points in A:

(s.3): (s, %5). (5. 7). and (5, 3F).
The Reeb chords lying in the fibers over the first (respectively second) two points
correspond to saddle points (respectively extrema) of the functions F;;. We denote
them by a;; (respectively b;; ). Here the labeling is such that a;; and b;; begin on S;
and end on S;. Thus, if i > j then the 7—coordinate of a;; and b;; equals % whereas
if i < j itequals 37”

The flow trees that we study all have their negative punctures at a;; and thus we must
understand the unstable manifold W"(a;;) of a;; as a critical point of Fj;. (Recall that
we are using the positive gradient flow when discussing stable and unstable manifolds.)
It is straightforward to check that

W) = {{(s, t):t= 3%,,} 1fz > ]

{Gs,0):t==F} ifi<j.
Note that the [sq, s1]-slice of Ag as defined above is degenerate: Reeb chords are not
disjoint, the unstable manifolds W"(a;;) are not mutually transverse, and their stable
counterparts are not mutually transverse either. The following lemma describes the
[S0,51]-slice of Ak after a small perturbation which makes it generic. In particular,
the perturbation is so small that there is a natural one-to-one correspondence between
Reeb chords before and after perturbation and we will keep the notation a;; and b;;
from above. There are of course many perturbations which make A g generic. The
particular choice studied here is designed to make counting flow trees as simple as

possible.

Lemma 3.9 For ¢y > 0 arbitrarily small, there exist a Legendrian isotopy of A g and
a collection of functions €, e;j, e;}: [s0.51] = (0,€q) foreachn >1i > j > 1, so that
the following conditions hold:

e ¢ are lexicographically ordered in (i, j): for any s,s’, €;;(s) > €y j/(s") if
i>i,orifi =i"and j > j'.

s Similarly, €;

* The unstable manifolds W"(a;j) are curves of the following form:
— ifi > j then W¥(a;;j) = {(s,1) :t = 5 — € + €;j(s)} and

— ifi < j then W"(ajj) = {(s,1) : 1 = 3F +¢},(s)}.

and €, are lexicographically ordered in (i, j).

e The Reeb chords corresponding to critical points in these unstable manifolds
satisty the following:
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- ifi > j then the s—coordinate of a;;j (respectively b;j) equals s + el/; (s)
(respectively § + el/; (),
— ifi < j then the s—coordinate of a;; (respectively b;; ) equals s + e]/.’l. ()
(respectively 5 + €};(3) ).
Remark 3.10 The functions €;j, €;;, €/; are chosen so that the unstable manifolds
W'(a;j), i > j, appear in the lexicographical order on {(i, j)}1<j<i<n if read in the
increasing 7 —direction, so that the W"(a;;), i < j, appear in the lexicographical order
of {(J,i)}1<i<j<n if read in the positive 7—direction, and so that no W"(a;;) lies in
the region 7 <t < 37”; see Figure 10.

' ajj bij

L<J . lex. order
_ 3 . ..
t =3 : (j, i)

t
t=7% lex. order
> @ j)

aij bij
—)

Figure 10: Ordered unstable manifolds after perturbation

Proof of Lemma 3.9 Throughout the proof we use the notational conventions above
for Reeb chords. We will consider two different perturbations of the braid representative
for the trivial braid given at the beginning of this subsection and then combine them to
give the desired perturbation.

We first choose the scaling function ¥ (s) from the beginning of this subsection to
additionally satisfy ¥ (s) = %(S —5)2 4 ¢ in a 2¢y neighborhood of s and V¥ (s) =
—%(s —35)2 + ¢’ in a 2¢y neighborhood of §, where ¢ and ¢’ are constants, M is
some large constant and €( is some small positive constant.

Now choose constants 61, ..., 8, so that

0<081 <6, <28, <83<363<-+-<b, <né, <eyp.
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For i > j, define €/; = (id; — jd;)/(i — j). The above inequalities imply that the €’
are positive, less than €o and lexicographically ordered in (i, j): indeed, we have

" i . l . TN
e (l,_sz,, l,_j5,) C (51.i8).

Set i (s) = ¥ (s — §;). Defining the trivial braid by the multi-function determined by
fi(s) = (0, jyj(s)), we see that the Reeb chord a;; has s—coordinate determined by
the solution near s to

iM(s—8; — ) = iY](s) = j¥i(s) = jM(s — 8 —5).

which is precisely s = s + €/’
are at

i and similarly for b;; and §. Thus the Reeb chords a;;

{( 7))+ (€5, 00 ifi>j,
(_, )—i—(],, 0) ifi<j,
and the Reeb chords b;; are at

{( 5) + (€50 ifi> g,

(5. 3F) + (¢];,0) ifi <.

Now consider a different representation of the trivial braid. In particular, returning to
the original representation of the trivial braid given at the beginning of this subsection,
we can replace the curve {x = 0} where the functions f;(s) take values, with a curve
family {x = h;(y)} where h;: R — R is a smoothly varying family of functions such
that:

o Ny isconstantintnearz:%andz:%”,
* hygpp(j)=j@n—24j) for j=1,....n

o h3ga(j)=—jjfor j=1,....n

where the J; are as before. (We can assume that the ¢ dependence of /; is supported
in an arbitrarily small neighborhood of 7 and 0. While this is not necessary here, it
will be important when describing the lift of a non-trivial braid in Section 3.5.) Then
let

Fj(s.1) =y (s)(he(j). j)- (cost,sinr)
be the function of the j sheet. The critical points for F; j=F;—Fj areat s =5 or
s = §, with ¢ given by
he() —he(j)
i—j+(0h/0t)(i) — (0h/31)(j)

cot(t) =
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Since /4, is small (and can be made arbitrarily small by the appropriate choice of §;),
this equation can only hold for ¢ near /2 or 37 /2, whence
hyp(@)—h ' h i)—h '
x/2( ) -71/2(]) cot() = 37/2( ) .3:1/2(])’
i—j i—j

cot(z) =

respectively.

In the former case, the expression for /1, /, implies that the Reeb chords a;;, b;; for
i > j have t—coordinate near 7/2 and are given by the solution to cot(t) = 8, — e;; >
0. If # = t;; is the solution to this equation, then #;; < m/2 and ¢;; is ordered in
lexicographic order on (i, j), and so we can write #;; = w/2—€g +¢;; with €;; ordered
lexicographically in (7, j). Similarly, the expression for /13,/, implies that the Reeb
chords a;j, b;j for i < j have t—coordinate near 37r/2 and are given by the solution
to cot(r) = —6}’1. < 0, which yields 1 = 37 /2 + e}i with 6;- ; ordered lexicographically
on (i, j). Furthermore, the unstable manifolds W"(a;;) and W"(a;;) are horizontal
(constant in ) since the d; component of V Fj; is zero at f = ;;.

Combining the perturbations, we find that the location and ordering of the critical
points and unstable manifolds of

Fj(s.1) = yj(s)(h:(j). J) - (cost, sint)

is as desired. O

Remark 3.11 Recall that our notation for (un)stable manifolds refers to the positive
gradient flow of positive function differences and note that the unstable manifolds
W'(aij) can be characterized as the only flow line determined by sheets S; and S;
along which the local function difference stays positive for all time under the negative
gradient flow: along any other (non-constant) flow lines of the negative gradient, the
local function difference eventually becomes negative.

Remark 3.12 Consider next an [s’, s”/]—slice where the braid is trivial, eg, the slices
mentioned above that separate the slices where twists of the braid occur. In each such
slice we will take the braid to look much like in the [sq, sg + &]-slice of the braid
in Lemma 3.9, where § > 0 is small enough so that the s—coordinate of any Reeb
chord a;; is larger than 59 + §. More precisely, we require that the functions f;(s),
j =1,...,n take values in a family of graphical curves {x = h;(y)} (with y = j for
Jj), where h; is a small function which is independent of ¢ near % and 37” In order
to make sure that the [s’, s”’]-slice does not have any Reeb chords we let the points
/j(s) move away from each other along the curves {x = h,(y)} as we go through
[s",s"] from right to left, so that | f;(s) — fj(s)| decreases with s for all i, j. We call
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a braid with these properties a standard trivial braid and we number the functions
f1,..., fu according to the order in which they appear along the curve {x = h;(y)}
with orientation induced from the positively oriented y-—axis.

3.4.3 A model for Ag, endpoint paths, and homology indicators Here we de-
scribe the qualitative features of the gradient flows associated to Ag in J!(A) that
will be necessary for our computation of the rigid flow trees. Some of these features
have been discussed in Sections 3.4.1 through 3.4.3. For the actual construction of
gradient flows with these properties, see Section 3.5.

For the braid B = ak . Uk = +1, we can build a braiding slice [sgr, r] where

B lives, by starting Wlth a twist shce corresponding to o;" “m and then attachmg slices
corresponding to the other twists 01 consecutively, Workmg backwards in /. We then
extend B to the complement of the braiding slice by closing it with a trivial braid as in
Lemma 3.9. This is the model of Ak that we will use below. More precisely, we will
construct the braid model to have the following properties:

o Aslice [s/, 27] of a trivial braid contains all of the Reeb chords of Ag C J1(A),
as in Lemma 3.9. The Reeb chords a;; (respectively b;j) of Ak lie near
s =2m—48 (respectively s =2 —26), which is in the slice that is complementary
to the braiding region. The manifolds W"(a;;) in this slice lie just below ¢ = 7
and are ordered in the 7—direction according to the lexicographical order on
{(i. j)}1<j<i<n- The manifolds W"(a;;) lie just above t = 2 and are ordered

in the 7—direction according to the lexicographically order on {(7, j)}1<j<i<n-

e All twists of the braid occur in the braiding region 26 < s < 46, where Ag
looks like twist slices separated by standard trivial braid slices; see Section 3.5.

e There are points 51 = 2§ < sz < .+ < S, = 46 so that the [s97_1, 557]-slice
contams the tw1st region for 0 . For a slice corresponding to the braid cross-
ing 0 = ak , the unstable mamfolds for ay g4+1 and agyqx are shown in
Flgure 11. The unstable manifolds for the other a;; are as for the trivial braid.

e Foreachi # j and [ € {1,...,m}, there is an interval neighborhood Jij 2l
{s = sy} of Wh(a;j) N{s = 321} such that the intervals le are dlSJOlnt for
fixed /, and if we consider the set of all negative gradient ﬂow lines of Fjj in
the [s27_1, 57;] slice that start on Jl%.l for all 7, j, then any pair of distinct flow
lines from this set intersect transversely. See Figure 12.

e Oneach {s = sy} there are two intervals J~ 21 Uand J2/7) such that

3n)2
73521 2 U(W (ajj)N{s =s3-1}) and
i>j
JE S Wi @i 0 ds = su-1)).
i<j

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1021

—1
Ok

;W"(ak,k+1) - N W*"(ar,i+1)

Ok
/ W (ag+1,%) \ W (ag+1,%)

, _

— > —_—

N N

t=2m
_ 3m
=5
_ T
=3

Figure 11: Flow lines in positive and negative twist slices
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~

2[—2 [ 20—1 - 21
J2 i\wﬂz ///// iJ,.j
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Figure 12: The intervals Jl%.l ,J ;5;1 , and J3271r721 , and some representative
gradient flow lines

JZl—l

Moreover, any negative gradient flow line of Fj; (i > j) that intersects J~ /2

: 202 s 20-1 P
also intersects J; ¥ , and similarly for J; /2 fori <j.

Assume that Ag has r components A = Ag.; U---UAg.,. We will keep track of
homology classes of cycles in Hq(Ag) by counting intersections with certain fixed
cycles. On each component A ;, fix the curve u} that is the preimage under the base
projection map m: Ag.; — A of the curve 1 = %n — €1 for €1 positive and extremely
small (for now, the line # = 7 will suffice; in Section 4, we will need u} to lie below
t = % but above the unstable manifolds of the a;; for all i > j). Also, fix the curve

A} which is the preimage of the curve s = 2 — 3§ (a vertical curve between the a;;
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and the b;;) in the leading sheet of Ag.;, where we recall from the introduction that
“leading” refers to the first of the n sheets of A g that belongs to component Ak, ;.
Intersections of a cycle in Hy(Ag) with #/; and A’; then count the multiplicity of the
j™ meridian and longitude class in the cycle. See Figure 13.

2 N
2
{ braiding region

bid

T

2 ’ 0 0

H dij bij
0
0 S 2

Figure 13: Schematic picture of A g, as projected to the torus A ~ T2

Z %) and endpoint paths for

each Reeb chord endpoint which are disjoint from k} and ,u;. . (Since the complement
of k} U M} in Ag.; is a disk such paths exist.)

We choose a base point in each component over (s,?) = (

3.4.4 Orientation choices and sign rules for A g C J!(A) Before we proceed with
the computation of flow trees for Ax C J1(A), we discuss the general method we
use to assign signs to flow trees. These signs come from a fairly elaborate orientation
scheme which depend on certain initial choices, some of which are of global nature
which we call basic orientation choices, and others which are local, more specifically,
the choice of orientations of determinant lines of a capping operator associated to
each Reeb chord. Here we will simply state a combinatorial rule that comes from one
particular set of choices. The derivation of the combinatorial rule and the effect of
orientation choices is discussed in detail in Section 6. (For later computations, we will
also need signs for multiscale flow trees; this is discussed in Section 4.3.)

We will discuss signs of rigid flow trees with one positive puncture or partial flow trees
of dimension 1 with a special positive puncture of Ax C J'(A). Cutting a rigid flow
tree close to its positive puncture we obtain a partial flow tree of dimension 1 with
special positive puncture so it suffices to consider this case.

We first discuss how orientation choices for the “capping operators” corresponding to
the Reeb chords a;; and b;; of Ax C J 1(A) are encoded geometrically:
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» Consider a Reeb chord a;;, which is of type S¢ (with notation from Remark 3.8).
Let W'(a;;) denote the unstable manifold of the positive local function dif-
ference defining a;;. Fix a vector v*(a;;) perpendicular to W4(a;;); see
Figure 14. (This choice corresponds to the choice of an orientation of the
capping operator of a;; .)

 Consider a Reeb chord b;;, which is of type S; and note that b;; € W"(a;;). Fix
vectors v¥(b; ) parallel to W"(a;;) and peoker (p; i) perpendicular to W'(a;;);
see Figure 14. (This choice corresponds to the choice of an orientation of the
capping operator of b;;.)

e If ¢ is a trivalent vertex of a partial flow tree I" then we let v°°"(¢) be a vector
tangent to the incoming edge at ¢ and pointing into this edge; see Figure 15.
(This is a reflection of a chosen orientation on the space of conformal structures
on the disk with boundary punctures.)

vker(aij) UCOker(bij)
W“(a,-j) T
dijj bij Uker(bij)
Figure 14: Orientation data at b;; and a;; . (The unstable manifold W"(a;;)
is in grey.)
,UCO]‘I (t)
<—

t

Figure 15: Orientation data at a trivalent Yp—vertex. (Gradient flow tree is in grey.)

We next define two functions that are central to our definition of signs of rigid multiscale
flow trees. Let (-,-) denote a Riemannian metric on S (which we will take to be the
flat metric on the torus) and let

signn R—{0} - R

be the function that maps negative numbers to —1 and positive numbers to 1. First
consider a flow tree I' of A C J!(S). Let b;; be its positive puncture, vi1o%(T") denote

Geometry & Topology, Volume 17 (2013)



1024 Tobias Ekholm, John Etnyre, Lenhard Ng and Michael Sullivan

the vector field of the flow orientation of I" and define
Opos(T) = sign ((v™(I), v*" (b;)))) .

Next consider a partial flow tree I' of A C J!(S) with positive special puncture p,
trivalent vertices #1, ..., fx_1 , and negative punctures ¢1, ..., g, and let n be a normal
vector of I at p. Denote the result of vector splitting of n along I" by

(w1 (1), watr)). ..., (W1 (tg—1) w2 (tr—1)); w(g1). . .., w(gk))

and define

(3-10) 0n,0 (1) = sign((wa(0) = wi (). V(D). 1€ {t1. . k1),
(3-11) on,r(q) = sign((w(g;), v (¢;))), g €G- k)
Finally we define

k k—1
o(.T)=[]onr@) [ onr®).
j=1 j=1
We can now assign orientations to trees according to the following theorem.

Theorem 3.13 There exists a choice of basic orientations and of orientations of
capping operators for all Reeb chords of type L such that for a rigid flow tree I" of A
in J1(S) with positive puncture at b;; of type S, the sign of T is

Opos (F) o (UCOker (bij ) s F) .

Proof Theorem 3.13 is a special case of Theorem 4.6, which is proved in Section 6.6.
O

3.4.5 Partial flow trees in twist slices We now begin our enumeration of flow trees
for Ag C J1(A). Consider a braid whose closure is K, and assume that the braid is in
the form given in Section 3.4.3. Then flow trees for A g decompose nicely into pieces in
each twist region [s,57_», $5;], which we call partial flow trees. Using the notation from
Section 3.4.3, we focus on one of these twist regions, an interval [s,7_5, $57] X [0, 27]
(for fixed / € {1,...,m}) containing the / th twist OI?:I from the braid. We first define
a special type of partial flow tree in such a slice, which we call a slice tree.

Let n>i> j > 1. Fix symbols a;; and aj; for negative punctures and Z;,' j and Bji for
positive punctures; at the moment, these are just symbols and do not correspond to actual
punctures or special punctures. Now for each i > j choose one point a; ;€ {821} % J{‘}l
and think of it as a special puncture connecting the sheet S; to S;, where the sheets are
numbered by the order of the braid strands at s = s,;. Similarly choose E}i e{syxJ jzl_l
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and think of it as a special puncture connecting the sheet S; to S;. Once this choice
is made we will frequently conflate the variables @;; and a a . We will only use the
primes when we need to refer to specific special punctures.

Given these choices any flow tree lying entirely in the [s5;_5, s5;]-slice that has a
positive special puncture connecting sheets S; to S; at any point in J 21-2 and negatlve
punctures at the @, pq
(think of b; ; as the intersection of the flow tree with Jl%.l 2), We let T+ (b,- j) denote
the set of slice trees in the [sq, 51]—slice with positive special puncture at b;; .

will be called a slice tree with positive speczal puncture at bij ;

Remark 3.14 Note that the formal dimension of slice trees 7+ (Z;,- 7) is 0 (recall we
have fixed the locations of all the a4 ). Note also that the set T* (l;i ) is independent
of the specific choice of _the E;,q, ie, a different choice of the 5;7q induces a one-to-one
correspondence of T+ (b; 7). This follows from the choice of the intervals Jlil , J 352 L
J321/21 in Section 3.4.3.

In order to keep track of orientation signs of flow trees, we will decorate the special
punctures with arrows which should be thought of as normal vectors to flow lines
through the special punctures. We write EkT ; and b kT ; for the relevant special puncture
decorated with a vector v normal to the slice tree at that point with (v, d;) > 0; similarly,
we write a ki ; and b k¢ ; for the same special puncture decorated with a normal vector v/
such that (v’,d;) <0

Furthermore, as the twist is part of a larger braid, each strand belongs to a link component
and we need to keep track of the corresponding homology coefficients. We write (4
(respectively up) for the homology variable of the meridian of the component of A g
associated to sheet A (respectively B), which is the sheet numbered by k (respectively
k+1)at s =5, and by k + 1 (respectively k) at s = 557_5.

Let B denote the set of decorated special chords at s = s5;_5:

T pY
B= {bu’ 'j}lsi,an, i#j’
and let A denote the Z—algebra generated by ,ujl , ,ufl , and decorated special chords
at s =sy;:

T_ +1 b gt
A_Z<MA MB ’ lj’ 1]>1<1,]<n i#j"

Given a tree T € TE(b; 7) and a normal v for bi i, the 1—jet lift of I determines a
word in A, in a manner that we now describe. Orient the 1—jet lift of " by the flow
orientation (see Section 2.4). This orientation induces an ordering a;, j,, .. .,ai,j, of
the negative punctures of I' so that the 1—jet lift of I' consists of a union of oriented
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paths yo, ..., vy C Ak, with the beginning point of yo and the end point of y; equal
to the ends of b;; (the points in Ag lying over b;; on sheets i and j), and with
the beginning point of ), and the end point of y,_; equal to the ends of a;, ;, for
r=1,....,q.

For 0 < r < ¢, define n/,ny € Z to be the intersection numbers of y, with the

preimage of 1 = 5 in sheets A, B, respectively. (In the notation of Section 3.4.3,

these numbers count intersections with ©’4 and u'g.) Also, use vector splitting (see
Section 4.3) from the normal vector v at b;; to obtain normal vectors v, at each a;, j, .
Finally, define the word

(1% i) ny ng
q(Fvv)-— (l"LA /"LB) ll]l(MA /"LB) 12]2.. lq]q(MA /"LB)
We can now define maps 7_x+:: B — A as follows, with v € {1, | }:
k
Nxi(by) =) t(D)q(T.v).
FGTi(l;ij)

where 7(I') =[], 0, (¢) € {1, —1} with the product running over all trivalent punctures
of T'; see (3-10).

If b € B then define b as the same chord but with the decorating normal reversed.
Similarly, for a monomial ¢ € A define qJr as the same monomial of chords but with
all decorating normals reversed. Write

Mot (b) = n"dd (0) + 1555 ().

where the two terms on the right hand side are summands containing all monomials
with an odd and even number of variables, respectively.

Lemma 3.15 For any b € B, the map Mokt satisfies
T
e (01) = (158, ®) = (556))

Proof Let n be a normal at the positive puncture. Then the vector splittings of —n
and n along I' differs by an over all sign. Since the number of trivalent vertices in I’
is one less than the number of negative punctures of I', the lemma follows. a

We next turn to the actual calculation of the maps 74, and n ol By Lemma 3.15, it

is sufficient to compute for blI, 1<i,j<n,i#].
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Lemma 3.16 Let ”ail B — A denote the maps associated to a twist representing

the braid group generator ail in an [sg, s1]-slice, as described above. Then
Tla,\(b,-j)=5£- i,j £k k+1

Nok (bkk—i—l) _ak—Hk

-1 —1
Moy (bk—i—lk) = KAl 1B

Mo (b, ) =T, P £k k41
Mo (b, ) = a,f, i Ak k+1
nffk(bzk) zk+1 +asz“ka+1 i<k
Mok (bik) = aiTk+1 +aiTk“Aaka+1/’“51 i>k+1
nak(EkTi):ach+li_akT+1k5kTi i #kk+1
and
Mot (b =) i j#kk+1
Mot (Eka—H) = “ElakTJrl KA
n _I(E]j-i-lk) _aka+1
l(b,k) ,k+1 i £k k+1
Ty (Bl =0, i £k k41
_l(bik—i-l) =aiTk_aiTk+1MEIakT+lkMA i<k
1(b1k+1)_azk _sz+1"kT+1k i>k+1
—l(bk+1z) akTi"“akaHakTﬂi i #k k+1.

Proof We label the sheets of Ag in the slice under consideration by
Sl? o o ,Sk_l,A, B, Sk+2, ceey Sn

Here the sheet S corresponds to the j™ strand of the standard trivial braid, and sheets
A and B are defined as before.

Consider first the linear terms in the expressions for 74, and n ot The trees that give
these contributions are simply the (negative) gradient flow lines of positive function
differences that end at @;;. They obviously exist, are unique, and transport normal
vectors as claimed. This proves that the linear terms of the equations are correct except
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for homology coefficients. To see these, note that only the flow lines between sheets 4
and B intersect t = 7. Further, a flow line between sheets 4 and B intersects this
curve only if the twist is positive and it ends at ay ;41 or if the twist is negative and it
ends at aj 1 i . Finally, noting that the component in the upper sheet of the 1—jet lift
is oriented according to the flow orientation and that the component in the lower sheet
is oriented opposite to the flow orientation, it follows that the coefficients are as stated.

We next study higher order terms arising from trees with trivalent vertices. Such a
vertex arises as follows: a flow line determined by sheets X and Y splits into two flow
lines determined by sheets X and Z, and by Z and Y . Furthermore, since we consider
only trees with one positive puncture it is required that all flow lines correspond to
positive function differences. In other words, the z—coordinate of the sheet Z must lie
between the z—coordinates of the sheets X and Y at the splitting point.

Given a slice tree I" suppose that a;; is a negative special puncture of I' with 7, j #
k,k + 1. Then the negative gradient flow y;; of F;; ending at E;.j in [sp7—1, 5p7] is
disjoint from all the flow lines starting at all the other @, jr» except the flow line of
Fy k41 ending %t L_Z;ck—l—l or of Fy1x ending e%t E;y+1.k' However we cannot have a
Yy vertex here since i, j # k,k 4 1. Also, y;; is disjoint from the other flow lines in
the interval [sy7_5, 527—1]. Thus if @; ; is a negative special puncture of I" then I' has
just one edge.

If 5;. k41 s anegative puncture of I' and i < k then the negative gradient flow line of
Fjj+1 starting at E;. k1 intersects only the flow line of Fj x4 1, but since they have
the same upper sheets these flow lines cannot merge at a Y vertex. Thus again I" just
has one edge. Similarly I" will only have one edge if i > k + 1. The same argument

shows that a slice tree with negative puncture at E;{ +1; must have only one edge.

. . . . . - -
I_t, rerria;uns to -cons1der slice tree.:s with negatlYe punctl-lres an_l/ong ay g 1 a4 > and
al.'k, ay; for i <k, k+1. B_emdesihe flow lines ending at akk-[—l or dj 4> all such
slice trees must have some a;. & Or a;( ;» 1 #k,k+1, as a negative puncture.

If c_z;. x 1s a negative puncture of I' then the negative gradient flow line y;; of Fix
ending at @, intersects the flow line yx 41 of Fgx+1 ending at @, . . Thus we
can have a Y splitting of the flow line from F; ;4 into these flow lines; see Figure 16
for an illustration when i > k + 1. Thus there is a point ¢ in J j;;l or J 32711 721 and a
flow line y of Fjx4 starting at ¢ so that ¥ U yg x4+1 U yix forms a flow tree. Notice
assuming the twist interval is small enough it is clear that ¥ does not intersect any
unstable manifolds of the a;; in [sp;_1,52;]. We can extend y through the interval
[s27_2,527_1] and see that there is a unique point l;lf © in Jizli_z that y runs through.
(Recall our labeling conventions from the beginning of the subsection: the sheets on
the left side of the interval [s,;_», s;] are labeled just as on the right, but with the role
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_ 21—1 Yk k+1 —/
- ‘]12]1] 2 J37\'/2 mn ré— A k1
b. i a,
ik ik
c i
y A’ ¥ ! ik
1
1
1
1
!
1
!
4/
(Ve ks1)
S21—2 S91-1 S91

Figure 16: A flow tree with one Yy vertex and negative punctures at @;, and
@y jo41- The case i < k is shown here.

of k and k + 1 switched.) Moreover notice that by the lexicographical ordering on the
unstable manifolds, y will not intersect any of the unstable manifolds of the @}, jo over
the interval [s57_5, S27_1].

Thus we see that if E;. « is anegative puncture of I' then I' either has one edge (this is
the trivial flow line mentioned above) or exactly one Y, vertex. A similar argument
says the same for I having a negative puncture at 5}“. . See Figure 17 for an illustration
of all slice trees with a Y, vertex and a negative puncture at E;. x Or E}ﬂ. for some

i#kk+1.

We conclude that all slice trees in [s5;_5, §,;] either have one edge or, if the positive
puncture is b or by;, are of the type described above (and shown in Figure 17) with
three edges and one Y vertex. This shows that the quadratic terms of the equations
are correct except for homology coefficients and vector splittings. To see the homology
coefficients simply notice that the only flow trees that intersect # = 7 are the ones
containing a flow line of Fy x4, and having i > k 4 1. Since such a flow tree crosses
|4 positively between @;;, and @), . ,, and crosses u'p negatively after @, ,, it
contributes the word 5:'k“AE;ck+1/”‘t_?l to o, (bik)-

As for vector splittings for the Y, trees, note that the upward normal at El’ x Or EI’( ;18
split into upward normals at each of the negative punctures (5; © and c_l;{ k410 OF 5}{1.
and a}( 414)- Fora Yy tree I', an easy application of the definitions from Section 3.4.4
shows that t(I") is +1 for the top two trees in Figure 17 and —1 for the bottom two
trees. (The difference between these pairs is the relative placement at the trivalent
vertex of the flows labeled 1 and 2 from Figure 4.) Thus the arrow decorations and
signs are as given in the statement of the lemma.
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/i aj, .
372 ik [ af» k+1 7 J éfx k+1
. ik ik ik
1< k: J
7r/2 Vi k+1 - _M_, ___________
5212 S21-1 Sa1
Vektl | _, —y
A k1 Al 41
1> k+1:
ik — P
) @ik Qe
I — _y
J ki | i i
. Vk+1k
1< k: Y
( a’;c+1k __________ { ____ af;nglk
. Ve+1k
7> k —+ 1: u/
al ______________ &/
Vki Fe_ 7k+1k, _ 7k+1k
I i b f—————— - ay;

Figure 17: The four slice trees that consist of more than one edge (right),
resulting from the four configurations of intersecting flow lines (left). The
cycle ' is also shown on the right, and intersects only the second slice tree.
Up to sign, we can read off the words associated to these four slice trees, from

.5 =/ =/ -1 = =/ —/ —/
top to bottom: @ dy 1> &g hAy gy 1 g s Dy ki> Vg k%
The case for o, I can be handled similarly. a

3.4.6 Decomposing flow trees Our expression for the differential derives from the
following geometric decomposition of flow trees. Consider a braid B = O’; i e GZ:: ,
€7 = =£1, on n strands. Let K denote the closure of B and consider A g . We represent
Ak as described above as a sequence of twists slices separated by trivial braid slices in
the braiding region, one small slice containing all Reeb chords, and the remaining trivial
braid slice, which is the complement of these two slices. Consider an [s’, s”']—slice as

just described in which there are no Reeb chords.
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Lemma 3.17 Any rigid flow tree or 1—dimensional partial flow tree of A g with one
positive puncture intersects the [s’, s”'|-slice in a union of slice trees (for appropriately
chosen a; ).

Proof Suppose I' is a flow tree for Ag. We see that I' will intersect the slice
immediately preceding the a;; —chords of Ak in a union of slice trees, where the
a; ; = aij, by definition. Notice that the slice trees in this slice define a; ; for the next
slice. Using the new a; ; we see again that I" will intersect this next slice in a union of
slice trees. Continuing by induction we see that I" will intersect each slice in a union
. . . -

of slice trees determined by appropriately chosen «; it a
Remark 3.18 We note that any partial flow tree I’ of A g, with only the positive
puncture p special, can be completed in a unique way to a flow tree I by appending a
flow line connecting p to a Reeb chord b;; .

3.4.7 Twist morphisms The following algebraic construction makes it possible to
apply the result in Lemma 3.16 inductively. Let K be a link with » components and
let Ak = Ag;1U---U Ak, be the subdivision of its conormal lift into components.
Let pj,Aj € Hi(Ak;j;Z) be as described above. As in the introduction, consider
the algebra A9 over Z generated by Z[H;(Ag)] along with the Reeb chords a;;,
1<i,j<n,i# j.Wewill define morphisms ¢a,§c 10 AY — A9 associated to braid
group generators.

Consider a twist corresponding to G,;H . We use the notation 4 and pp for homology
variables exactly like in Lemma 3.16 and in order to connect to that result we make the
following identifications:

bl = +ai; ifi> ],
= e
3-12) bij =—aqa;j ifi>j],
bt =—aij ifi <],

biﬁ =+a;; ifi<j

in the source A9, and

al=+ay ifi> ],

ay =—ay ifi> ],
(3-13) It

a;; = —ajj ifi <j,

al =-+a; ifi<j
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in the target A9. We define a homomorphism ¢, : A9 — A9 using this identification in
combination with Lemmas 3.16 and 3.15. That is, we define it as follows on generators:

boy (aij) = aijj i, j#k k41,
o Ak k+1) = —Ak 41k

—1
bo (k1K) = —HNAQk k+1/4p

boy (@i k1) = aix i #k k41,
boy (Ak+1i) = aki i#Fk.k+1,
Poy (Qik) = @i k+1 — AikAk k+1 i <k,
bo (Aik) = Qi k1 — Aik[oalk k+1 L5 i>k+1,
Poy (ki) = Ak+1i — dk+1kki i #kk+1.

Similarly, we define ¢UI—1: Ao — Ay as follows on generators:

b1 (aij) = aij i,j#kk+1,
¢,,k—1(akk+1) = —Wp k1 kia

bor1 (k1K) =~k k+1

b1 (@ik) = i kt1 i#kk+1,

b1 (ki) = k1 i #k.k+1,
b1 (@ik+1) =ik — i k1 g Ak1kla 1<k,
Po1 (@i k+1) = dik — Qi k+19k+1k i>k+1,
Pt (Aht1i) = Aki = Ak k+10k+1i i #k,k+1.

Note that ¢o,-! 0 ¢, = gy 0 P01 = id, since A, B switch places between the oy
and Uk_l twists.

Remark 3.19 In any equation above where the sign differs from that of the corre-
sponding equation of the formulas in Lemma 3.16 the following holds. If we use (3-12)
and (3-13) to substitute decorated variables l;l; etc, exactly one arrow of a decorated
chord in the target monomial is oriented differently than all other arrows in the equation.

For the braid B = o,fil ---alffnl, define

¢B=¢O'killo.”o¢akini'
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Note that ¢ then gives a representation of the braid group into the group of automor-
phisms of A?.

Remark 3.20 In order for ¢p to respect the order of composition we think of the
braid as written in the “operator order,” so that B above should be interpreted as: apply
O']?;n ! first and okill last. Thinking of the braid in the opposite order, B — ¢p would
be an anti-homomorphism. See Figure 18.

3.4.8 Flow trees for Ag in J!(A) Since there are no cusps of Ag in J!(A), we
know for grading reasons that any rigid flow tree must have its positive puncture at
some Reeb chord b;; and its negative punctures at Reeb chords «;;. Consequently,
Theorem 2.7 implies that the differential of the Legendrian algebra can be computed as

obij)= Y e)q(),
TeT(bij)

where 7 (b;;j) denotes the set of all flow trees with positive puncture at b;; and where,
if I" is such a tree, ¢(I") denotes the monomial of its negative punctures and €(I") its
sign. To compute this differential we fix orientation choices as follows, see Figure 18:

(3-14) V' (bij) =05, forall 1 <i,j<n,i#
and
0 ifi > j
315 coker bii) = ker( ..\ — 4 ’
( ) v (lj) v (alj) {—at ifi <.
0iy Oiy
)\‘l
vker(aij)T bcoker(bij) /
L} ker(z, ..
aij bij b b \
>» 5
¢Gi20¢0i1

Figure 18: Flow trees contributing to dB
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The following lemma, where we use the matrix notation from Theorem 1.1, determines
the differential discussed above.

Lemma 3.21 With orientation data as in (3-14) and (3-15), the following equation
holds:

0B=—""A +¢pd)=—""A- +OF-A g

Proof We will prove the left equality, as the right equality follows from Proposition
2.10. The first term in the right hand side of the left equality comes from the short
flow lines connecting b;; to a;j, with flow orientation given by —d;. These flow lines
clearly exist and are unique. The sign € of one of these flow lines I is given, according
to Theorem 3.13, by

e() = sign({v*(by;), v () sign (v (bij), v*" (ai;)))
=(-1)-1=-1.

Consider their homology coefficients. Since no endpoint path intersects ,u;. or )\} it
is sufficient to consider the intersection between [L} and )\} and the 1—jet lift of the
trees. Clearly, all flow lines under consideration are disjoint from /,L}, j=1,...,r.
Furthermore, the 1—jet lift in the upper (respectively lower) sheet of flow line passes
A’ in the negative (respectively positive) direction. Consequently @;; comes with
homology coefficients if and only if either the sheet S; or the sheet §; is the leading
sheet for that link component. If S; (respectively S;) is the leading sheet, then the
intersection with X;/( ) (respectively A, (;)) in that sheet contributes the coefficient k;(li)
on the left of a;; (respectively A, (;) on the right). This corresponds to multiplication
by the matrix ~! from the right and  from the left as claimed. See the leftmost
picture in Figure 18.

The second term in the right hand side comes from the flow trees that end as flow lines
in W'(a;;) flowing in the 40y direction. By Lemma 3.17 we find that the intersection
of such a flow tree with any twist slice is a twist tree and thus any flow tree starting
at b;; and ending at the a;; along unstable manifolds oriented in the 0, direction
will contribute a term from ¢pg(a;;). Moreover any term in ¢p(a;;) gives a flow tree
starting at b;; . See the rightmost picture in Figure 18. Note also that no such tree
passes A’. Lemma 3.16 in combination with the composition formula for ¢ and the
sign rule in Theorem 3.13 then shows that the second term is ¢g(A) (since all the
non-trivial terms in the sign rule appear at the Y, vertices, which were accounted for
in the formula for ¢). a
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3.5 Negative gradient flows in twist slices

Our goal in this subsection is to construct a braid B = 0,2 "'Uli:: ,€ ==l1,ina
braiding slice [sgr , stl’r], in such a way that the properties of unstable manifolds detailed
in Section 3.4.3 are satisfied. We perform this construction twist by twist going from
right (larger s) to left (smaller s). To facilitate the formulas we will change coordinates
from (s, 1) to (u,t) where u = stl’r — 5. So the braid region happens over u € [0, U]
where U = s1 sgr. Throughout the computation we will also change u by translations,
but the key is that u is always —s up to translations. In (u, ) coordinates we will
build up the braid region, twist by twist, going from left (smaller u) to right (larger u);
moreover in the u coordinates we consider the reversed word U;:z ~~-U,2 so that when

we switch back to the s coordinates it is K that is represented.

More specifically we will break [0, U] into 3m subintervals Iy, ..., I3, ordered from
left to right. For / = 1,...,m, the union of the three intervals I3;_, U I3;_; U I3

is associated to the brald generator Uk’" - +11 and will be called the braid interval
associated to ok’" —iH

—I+1

The intervals I3;_,, /=1, ..., n, will contain trivial braids as discussed in Remark 3.12
and are used to adjust the braid to prepare for a twist between two strands of the braid.
These will be called preparatory intervals. The intervals I3;_1, [ =1,...,n, will be
the intervals over which two strands of the braid will actually twist. These will be
called rwist intervals. The intervals I3;, [ = 1,...,n, will contain the trivial braid and
will be used to adjust the braid so that we can more easily count the flow trees. These
will be called concentration intervals.

For comparison with Section 3.4.3, we set s,;_, and s,;_; to be the endpoints (in
reverse order) of the concentration intervals I3(,—741) for/=1,...,m, and s5,, to be
the leftmost (in u) endpoint of 7. Then s¢, ..., s2;, are arranged in increasing order
and B is trivial in each s € [s57_5, 52;_1] slice (which corresponds to a concentration
interval) and comprises the braid generator 0,2 in each s € [s57_1, §o7] slice (the union
of a preparatory and a twist interval).

In the rest of this subsection we will describe the braid interval corresponding to the
twist 012 , but before focusing on this we make an observation and some conventions.
First, for convenience, we will think of the function f; describing the braid as maps
[0, C] — R?2, for some arbitrarily large constant C, rather than [0, U] — D?. Since
scaling the variable u and multiplying all the functions by a small constant will not
affect the discussion below we will be able to return to the appropriate braid setup
once we have constructed our desired functions [0, C] — R?. (This step could be
avoided by choosing appropriate scaling constants throughout the argument, but as
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these constants would depend on the entire braid it is considerably simpler to proceed
as we do.) Moreover we will start by considering the trivial braid over Rx¢, that is, our
functions f; will be maps [0, 00) — R2. We will then alter the f; over some interval
[0, c1], which we call Iy, then over [cq, ¢2], which we call I,, and so on. Once we
finish with the interval I5,, we let [0, C] be the union of these intervals and our braid
will be described by the functions f; restricted to this interval.

Just as in the proof of Lemma 3.9 we will describe our Legendrian A g in two steps.
We begin, using the notation from Lemma 3.9 and its proof, by considering the standard
trivial braid { f1,..., f4} given by

Ji(u) = ¥i(u)(h: (D). 1),

where V;(u) = u + k; for some constant k; > 0. Throughout our construction, as
we alter the functions ¥;, we will always assume that i1/; has slope in the interval
[i —1/2,i4+1/2). We will also assume the f; are exactly equal to (u + k;)(h(i),1)
near the endpoints of each of the braid intervals, though the k; will depend on the
particular braid interval. Before we perform any braiding the unstable manifolds
WY(a;;) of any Reeb chord a;; intersect {u} x S' near t = Zifi>jort= 37” if
i < j and are lexicographically ordered as in Lemma 3.9. As we inductively build up
our braid we will assume that these unstable manifolds have this same property at the
boundary of all the I;. (We will see in the construction that we can make them as near

as we like.)

We will now focus on the braid interval associated to the braid generator oy, ; the case
of o I is completely similar and is treated at the end of this subsection. We reset
our coordinate u so that the braid interval for o is [0, U]. Recall the braid interval
consists of three subintervals: the preparatory interval I, the twist interval /; and
the concentration interval /.. In the interval I, we will alter the slopes of the curves
i¢;(u). In particular, we alter the slopes of the strands over the interval so that near the
upper endpoint of the interval we have that the difference of the slopes of the k" and
(k + 1) strands is constant and very small (that is each slope is near k + 1/2) and the
slope of the i strand is /. Thus the difference in the slopes of the functions f; and f
is greater than 1 whereas the slope of the difference function f;. — fx is arbitrarily
small. Allowing u to increase sufficiently, we can assume that | fj (1) — fx(u)| and
| fj(u) — fk+1(u)| are sufficiently large compared to | fi4;(u) — fx(u)| for each
Jj #k,k+1 so that a certain approximation described below is valid. This completes
the description of the braid in 7,. Notice that none of these alterations affect the
unstable manifold of the g;; .

(Here, as below, it might be useful to consider the situation when /;(y) is zero or
constant in y, and then notice that perturbing it slightly to another function /,(y) does
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not affect the qualitative behavior of the flow. Here this is clear since the unstable
manifolds stay far away from the regions near t = 0 and & where /,(y) actually
depends on #. Also keep in mind that /;()) can be taken to be arbitrarily small.)

Now consider the twist region I, for a braid generator o that interchanges the k™
and (k + 1)* strands by a 7 rotation of the line segment between them around its
midpoint in the positive direction as s increases. This means that the strands are also
interchanged by a rotation in the positive direction as u increases. For the standard
trivial braid under consideration we let fi(u) and f(u) rotate at a fast rate around
the midpoint between fi () and f4(u) while still moving slowly away from each
other.

For the functions f; and f;4; we begin by replacing /,(k) and h;(k + 1) by 0,
though we leave the other f; as they were. Specifically before we perform the twist we
can assume (after possible translations) that there are constants ¢ < ¢’ such that f; (u) =
SR = (0, (k+1/2=Ju+c) and fiep1 () = £2 @)1= (0, (k+1/2+yu+c')
for some very small €. Now to perform the twist over the interval [u’, u”], choose an
increasing surjective function 8: [u’,u”] — [0, ] that is constant near the endpoints,
and let

0 0 0 10

oty = P IER0  AE R0 I i, ot
0 0 0 10

Sier1 () = S @) +2f @ | "“(”)2 fie@) ‘(smﬂ(u), — cos B(u).

This describes the half twist between the two strands.

Note that if the distances | fj (u) — fr(u)| and | fj (u) — fr+1(w)|, j #k,k + 1, are
sufficiently large compared to | fx(u) — fk41(u)| then the gradient flows of & Fjj
and +Fj ;4 can be made arbitrarily close to the corresponding flows for the standard
trivial braid, ie, the same braid but with non-rotating fx (x) and fz4(u). We assume
that in the interval I, we arranged that the other points are sufficiently far away from
Ji(u) and fi 4 (u) so that these approximations of the gradient flows of + Fj; and
* Fj 41 are valid.

Consider next the gradient flow of £ Fjx, which, in contrast to the flows just
discussed, changes drastically. We take the rotation to be supported in a small subinterval
[/, u"] of [0, U]. We have

Frp1x(u,t) = eu + ¢’ —c)(sin(B(u)), cos(B(u))) - (cos 1, sint)
= 2eu + ¢’ —c)sin(t + B(u)).
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The gradient is
VFiri1k = Qesin(t + B(u)) + Qeu+ ' — c)% cos(t + B(u))) 9,
+2eu + ¢’ —c) cos(t + B(u)) 9;.

In order to understand relevant negative gradient flow lines of this vector field we
first note that Fy i is positive for —B(u) <t < m — B(u) and negative in the
complementary region. Moreover, in the limit where € = 0, the gradient flow of
Fy 41k is perpendicular to the level sets {# + () = a} and flowing towards the curve
of critical points {¢ + B(u) = 7 /2}.

Now instead let € > 0 be small, and choose a;,, < /2 < aps so that aps —ay, is small.
Notice V Fy 1y is still transverse to {t + B(u) = ap,} and {¢t + B(u) = aps} and
pointing into the region R bounded by these level sets and containing {¢ + §(u) =7 /2}.
Along the curve I = RN {u = u'}, the u—component of V Fy  is positive and
the flow is into R, while along the curve I’ = RN {u = u”}, the u—component of
V Fj 41k 1s also positive but now flows out of R. Thus since there are no critical points
of VFy41x inside R, we see that any flow line starting on I will exit R along I’. It
follows that the flow lines in R are approximately equal to the level sets {t + B(u) = a}
inside R.

From this we see that the unstable manifold W"(ay41%) exits the twist region near
3m/2 and by choosing € small in the region /, (which can be done without affect-
ing any essential feature mentioned above) we can arrange that the #—coordinate
of W'(agy1x,) N{u = u"} is as close to 37/2 as we like. Furthermore, we can
choose small intervals J” and J’ in the slices {u = u”} and {u = '}, containing
the respective intersection points of W"(ay41x) with these slices, such that any flow
line of —V Fj 41 that starts in J” leaves through J’ and is transverse to the flow
lines of the other Fj;j. We can also then choose intervals Ji’j’. and Ji’j in the slices
{u =u"} and {u = u'}, containing the respective intersection points of W"(a;;) with
these slices, so that all of these intervals are disjoint from each other and from J” and
J’, and so that all flow lines of —V F; j that start in Jl./j/. are disjoint from each other
and transversely intersect the flow lines of —V Fy 41 that begin in J” .

The above discussion assumes that /i, (k) = h;(k + 1) = 0, whereas in fact /;(y) is a
small function that is constant in # outside of small neighborhoods of 0 and 7 (see the
proof of Lemma 3.9). In the argument above, the same qualitative features of the flow
hold if we change /,(k) and /;(k + 1) from 0 to constants in ¢, since the level sets
of Fj41k only change slightly. If now we choose /;(y) to be the function from the
proof of Lemma 3.9, as is needed to define the trivial braid, then the flow only changes
near t = 0 and ¢ = 7. But here by taking 8 to have very large derivative over most
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~
I
[SIE]

Figure 19: The twist interval. The shaded regions are where Fyyqy is
negative. The dark lines are level curves of ¢ 4+ B(u) and the thinner lines are
approximate flow lines of the negative gradient flow of Fj 14 . The left-hand
end is ¥ = u’ and the right-hand end is u = u”.

of its support we see that the alteration to the gradient of Fy . in the f—support of
h:(y) can be thought of as arbitrarily small. Thus again we see that the qualitative
features of the flow are unchanged.

Analogously, W"(ag x+1) lies close to the curve {¢ = 37” — B(u)} and we can argue
for the same intervals J’ and J” here too. This completes the discussion of the twist
interval I; for oy .

Now for the concentration interval /.. The purpose of this interval is to concentrate
gradient flow lines near the unstable manifolds. Specifically, in the first part of I, we
alter our V; so they are the standard affine functions again. Notice that in the region
where Fj; is positive all the flow lines of V F;; converge towards a constant ¢ line
near t = /2 if i > j or 3w /2 if i < j. Thus choosing the interval I, = [a, b] large
enough we can find intervals J /5 and J3,/, on {u = a} and for each (i, j) intervals
Jij on {u = b} that are an arbitrarily small neighborhood of W¥(a;;) N{u = b}, so
that all the unstable manifolds intersect J;/, or J3;/2 and any flow line of V Fj;,
i > j, that starts on J/, intersects J;; and if i < j then a flow line that starts in
J37/2 intersects Jj;j.

Similarly, we consider the inverse o, 1 of the braid generator oy that interchanges the
k™ and (k + 1) strands by a rotation of magnitude 7 of the line segment between
them around its midpoint in the negative direction as s increases. The analysis of this
situation is exactly as above, except the unstable manifolds veer up instead of down.
See Figure 11 above (where we have returned to s coordinates).
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4 Combinatorial computation of the differential

In this section we compute the differential in the Legendrian algebra of A g, where
K C R3 is alink braided around the unknot. Our computation heavily uses the results
of Section 3, where we determined all flow trees of Ag viewed as a Legendrian
submanifold of J1(A), where A ~ T'? is the conormal lift of the unknot. These flow
trees give the differential for a subalgebra of the Legendrian DGA of Agx C J'(S5?).

In Section 4.1, we introduce the notion of a multiscale flow tree of Ag C J!(S?),
which is essentially a collection of partial flow trees for Ax C J!(A), glued to a
flow tree of A C J'(S?). By a result (Theorem 4.3) whose proof is deferred to
Section 5, there is a one-to-one correspondence between rigid multiscale flow trees
and rigid holomorphic disks with boundary on A g and one positive puncture. This
allows us to reduce the computation of the Legendrian DGA of Ax C J!(S?) to
a combinatorial enumeration of all rigid multiscale flow trees. The enumeration is
performed in Sections 4.2 through 4.4 (for signs associated to multiscale flow trees, we
use some results whose proofs are postponed to Section 6) and completes the proof of
the main theorem of this paper, Theorem 1.1.

4.1 Multiscale flow trees

We begin by discussing multiscale trees. We first recall the basic notation that will be
used in this section. Let U C R? denote the unknot and write A = Ay C J1(S?).
Let K be a link given by the closure of an n—strand braid around U such that each
(local) strand is C2—close to U. Then Ax C J1(A) € J1(S?), and we have the front
projection H%: J1(A) — A xR and the base projection 72: J'(A) — A. The latter
induces an n—fold cover Ax — A;if y is a path in A, then there are n distinct lifts
7 of y with 72 o % =y, which we call neighborhood lifts of y .

If T is a flow tree of A C J!(S?), let I denote its 1—jet lift.

Definition 4.1 A multiscale flow tree T'o on A determined by A g is a flow tree " of
A C J'(S?) and a finite set of partial flow trees A = {A; };”=1 of Ax C J1(A) each

with exactly one special puncture x;j, j =1,...,m, such that the following holds.
e xjey,j=1,....m.
e For each component of y —{x1, ..., X;} a neighborhood lift to Ag in J1(T?)

is specified.

* The union of the 1-jet lifts of the flow trees A;, j =1,...,m, and the specified
neighborhood lifts, together with their flow orientation, gives a collection of
consistently oriented curves I' C Ag .
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e The curve I is such that HA(f‘) is closed, where ITA: J1(A) — T*A is the
Lagrangian projection.

I" is called the big tree and A the small tree part of T'a.

Remark 4.2 As we shall see, cf Section 4.2, the partial trees A; of I'a are of two
types: either A; is constant at one critical point b of Morse index 2, with both its
positive special puncture x; and its negative puncture lying at b, or A; is non-constant
with positive special puncture at x; .

The punctures of a multiscale flow tree I'a are the punctures of the flow trees A; (not
including the special punctures) and the punctures of the tree I'. We say that the chord
at a positive (respectively negative) puncture of I connects the sheets determined by the
neighborhood lift of the arc oriented toward (respectively away from) the puncture, to
the sheet determined by the neighborhood lift of the arc oriented away from (respectively
toward) the puncture. A puncture of a multiscale flow tree is positive (respectively
negative) if the corresponding puncture of the flow tree I' or A; is positive (respectively
negative). A straightforward application of Stokes’ theorem shows that every multiscale
flow tree has at least one positive puncture.

Define the formal dimension of a multiscale flow tree I'p as
dim(T'a) = dim(T") + ) _ (dim(A;) — 1),
Aj eA

where the (formal) dimension of a (partial) flow tree is given in (2-3); see also [10,
Definition 3.4].

We say that a multiscale flow tree ['a is rigid if dim(I'a) = 0 and if it is transversely
cut out by its defining equation.

As discussed above in Lemma 3.7, the set of Reeb chords Q(Ak) of Ax C J1(S?)
can be written as follows:

QAax) =2 u | omy,
1<i,j<n

where O? (A k) is the set of short Reeb chords (contained in J'(A) c J1(S2)) and
Q(A);j denotes the set of long Reeb chords of A C J 1(S?) with endpoint on the i
sheet of A g and beginning point on the j® sheet.

Theorem 4.3 For any € > 0, there exists an almost complex structure J on T*S?,
regular with respect to holomorphic disks with one positive puncture of dimension at
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most 1, such that: there is a one-to-one correspondence between rigid holomorphic
disks with one positive puncture and boundary on A g, and rigid multiscale flow trees on
A determined by A g with one positive puncture, and the 1—jet lift of a multiscale flow
tree lies in an € —neighborhood of the boundary lift of the corresponding holomorphic
disk.

Theorem 4.3 is proved in Section 5, and constitutes the basic tool in our calculation of
the differential in LA(Ag).

Above we described the front of A, the conormal lift of the unknot, and its flow trees.
With this established we will next classify possible multiscale flow trees determined
by a braid closure (Section 4.2) and give an algorithm for the sign of such a tree
(Section 4.3). In Section 4.4 we then turn to the actual calculation of the Legendrian
DGA of Ak by explicitly computing all multiscale flow trees for A g with signs.

4.2 Classification of rigid multiscale flow trees of A

To apply Theorem 4.3 to calculate the Legendrian DGA of A g, we need to classify all
possible rigid multiscale flow trees of Ax C J1(S?). We give a rough characterization
of such trees in this subsection, examine the signs associated to the trees in Section 4.3,
and present the full classification in Section 4.4.

Let K be a link and assume that A g satisfies Lemma 3.7. We first consider flow
trees and partial flow trees for Ag in J!(A). Since the front of Ag in J°(A) does
not have any singularities and since all critical points of positive differences of local
defining functions are either maxima or saddle points it follows from Section 2.4 that
for generic functions a rigid tree for Ag C J1(A) must have

(1) a positive puncture at a Reeb chord b;; of type Sy,

(2) k—1 Yy—vertices (trivalent vertices away from (non-existent) cusps of A) and

(3) k negative punctures at Reeb chords a;; of type Sy.

Likewise, a partial flow tree of dimension 1 has the same vertices and punctures, except
its positive puncture is a special puncture instead of a maximum. Also the constant
partial flow tree with both special positive and negative puncture at b;; of type S; will
be of importance.

Since the 1—jet lift of any flow tree of A C J!(S?) has codimension 1 in A, it
follows that any tree in the small tree part of any rigid multiscale flow tree is either a
1—-dimensional partial flow tree with positive puncture on the 1—jet lift of the big tree
on A or it is a constant tree at some b;; of type S;. Furthermore, the flow tree on

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1043

A corresponding to the big tree part must either be rigid, or rigidified by a constant
tree (a point condition at some m(b;;)). In the case where the big tree is rigidified by
point conditions, its dimension must be equal to the number of point conditions, ie, the
number of constant trees in the multiscale flow tree. Combining this discussion with
Lemma 3.2 we find that (after small perturbation) there are the following types of rigid
multiscale flow trees for A determined by A :

MT, A rigid flow tree I' of A with constrained rigid partial flow trees of Ag
attached. Here the constraint says that the special positive puncture of each
partial flow tree must lie on the 1—jet lift of T".

MT; A constrained rigid flow tree T'* with constrained rigid partial flow trees of
A g attached. Here the constraint of I'* is the requirement that the 1—jet lift
passes a point in A in the fiber where a Reeb chord b;; lies, and the constraint
of the partial flow trees is as above.

MTg A rigid flow tree of Ag .

Remark 4.4 In our setting, we can rule out one other ostensible possibility for a rigid
multiscale tree: those with big tree a constant rigid flow tree I of A and with small
tree a constrained rigid flow tree of Ag . Here I' would correspond to a Reeb chord
and the constraint would say that the special positive puncture of the partial flow tree
must lie on the Reeb chord on the 1—jet lift of I". If the location of the Reeb chord is
generic with respect to the flow determined by A g then its endpoints do not lie on
W' (a;j) for any a;; or on b;; and such a configuration is rigid only if the flow line
ends at a minimum. As there are no positive local function differences of A g that are
local minima no such trees correspond to disks with one positive puncture. (The rigid
configurations with flow lines that end at a negative local minimum correspond to disks
with two positive punctures.)

4.3 Signs of rigid multiscale flow trees

In this subsection we describe a combinatorial algorithm for computing the sign
of a rigid multiscale flow tree, which determines its contribution to the Legendrian
algebra differential. This is the analogue for multiscale flow trees in the discussion in
Section 3.4.4. We will discuss the derivation of the combinatorial rule as well as the
effect of orientation choices in detail in Section 6.

We will use the notation established in Section 2.5 for vector splitting along flow trees
and signs associated to rigid flow trees of A g as well as partial flow trees of Ag of
dimension 1 with special positive puncture.
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Before we can state the combinatorial rule for orienting rigid multiscale flow trees, we
need to discuss signs of rigid trees determined by A ; see Sections 3.1 and 3.2 for the
notation for these rigid trees. Except for basic orientation choices the signs depend
on orientations of determinants of capping operators. We call such choices capping
orientations. Recall that there are two Reeb chords of A, e and ¢, and that if K C R?
is a link represented as a closed braid on # strands, then the long Reeb chords of A g
are ¢;; and ¢;;, 1 =i, j <n, where ¢;; lies very close to ¢ and e¢;; lies very close to
e. In particular, capping orientations for ¢ and e induce capping orientations for ¢;;
and ¢;; , respectively.

Theorem 4.5 There is a basic orientation choice and choice of capping orientation for
¢ so that the sign €(T), for T a rigid flow tree of A, satisfies

€(Uny)=€e(Yy)=€e(ls)=€e(Ys) =1 and €(E;)=—€(E,).
Proof This is a consequence of Theorem 6.4 below. |

Furthermore, the choice of capping orientation of e induces an orientation of the
1—-dimensional moduli spaces of flow trees such that the induced orientation at the
broken disk E; #T is €(Ej)e(T) for T € {In,Yn,Is,Ys}. If T is a flow tree in
such a 1-dimensional moduli space we consider the orientation as a normal vector
field v along the 1—jet lift of I".

In order to state the sign rule for multiscale flow trees, we first make some definitions.
MT; Consider a multiscale rigid flow tree ® of type MT; with 1-dimensional big
tree ' and a negative puncture at b;;. Let v1°%¥(I") denote the vector field
along the 1—jet lift oriented in the positive direction (ie, the 1—jet lift of each
edge is equipped with the flow-orientation, defined in Section 2.4). The sign

€(®) of the rigid tree constrained by b;; of type S is defined to be

€(©) = sign((v, V" (by)) (V1 (T), v (by))).

If non-constant flow trees I'y, ..., I'x are attached to © then define n; to be
the normal vector at the special puncture of I'; with positive inner product
with vov(T).

MT, Consider a multiscale rigid flow tree ® of type MT, with big tree I". Let
€(®) equal the sign of I". If I has two punctures (positive at e, negative at ¢),
then we define v°V(T") as the vector field along the boundary pointing toward
the positive puncture. If I has only one puncture (positive at c), let v1°¥(I")
point in the positive direction along the boundary. Then take n; as in MTj.

MTg Consider a flow tree ' of Ag in J'(A). Let n = vkt (p; j) be the normal
vector of I" at its positive puncture.
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Theorem 4.6 There exists a choice of basic orientations and of orientations of capping
operators for all long Reeb chords such that Theorem 4.5 holds and such that the sign
of a rigid multiscale flow tree is as follows.

MT; Let ' be a multiscale rigid flow tree of type MT; with constrained rigid flow
tree ® (ie, © has only one negative puncture at some b;; ) and attached flow
trees I'1, ..., . Then the sign of T is

k
e(l) = e(@)l_[cr(nj, Iy).

j=1
MTy Let " be a multiscale rigid flow tree of type MT, with rigid flow tree ® and
attached flow trees I'y, ..., ['y. Then the sign of T is
k
() =e(®) [ [o(n. T).
j=1

MTg LetI' be a flow tree of type MTg. Then the sign of T" is

Upos(F) o(n,I).
Proof Theorem 4.6 is proved in Section 6.6. a

4.4 Counting multiscale flow trees

In this section we complete the computation of the Legendrian algebra differential of
Ak C J'(5?), and thereby obtain a proof of Theorem 1.1, by counting all multiscale
flow trees determined by Ag and A. In Section 3, we counted flow trees of Agx C
JY(A). This leads to the expression for dB in Theorem 1.1. In this subsection we
derive the expression for dC and JE in Theorem 1.1 by counting multiscale flow trees
with non-empty big tree part. Our technique relates these multiscale trees to ordinary
flow trees of a stabilized braid obtained by adding a trivial non-interacting strand to
the given braid.

For notation used throughout this section, see Section 3.4.

4.4.1 Multiscale flow trees of type MTy We first consider the part of the differential
in the Legendrian algebra of A g that accounts for multiscale flow trees of type MTg,
ie, the parts which count only trees of the braid localized near A. Such a tree has its
positive puncture at some Reeb chord b;; and its negative punctures at Reeb chords a;; .
Furthermore, a straightforward action argument shows that any multiscale flow tree
with its positive puncture at a Reeb chord b;; must lie inside the 1—jet neighborhood
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of A. Consequently, flow trees of type MTg account for the boundary of the Reeb
chords b;; of type S;:
obij)= Y eMq(),

FGT(bij)

where 7 (b;j) denotes the set of all flow trees with positive puncture at b;; and where,
if I is such a tree, ¢(I") denotes the monomial of its negative punctures and €(I) its
sign.

In Section 3.4.8 above, orientation conventions were picked for the Reeb chords a;;
and b;; and the differential was computed in Lemma 3.21.

4.4.2 Multiscale flow trees with positive puncture at ¢;; of type L; In this section,
we compute the differentials of the ¢;; Reeb chords. This involves counting rigid
multiscale flow trees of type MTy, with big-tree component given by one of the four
rigid big trees with positive puncture at c.

We introduce the following notation for 1—jet lifts of flow trees with one positive
puncture. Each point in the 1—jet lift that is neither a 1—valent vertex nor a trivalent
vertex belongs to either the upper or the lower sheet of its flow line. We call points
on the 1-jet lift head-points if they belong to the upper sheet and tail-points if they
belong to the lower. Because of positivity of local function differences of trees with one
positive puncture, points in a component of the complement of preimages of 1—valent
and trivalent vertices in the 1—jet lifts are either all head-points or all tail-points.

There are four rigid flow trees with positive puncture at ¢, denoted in Section 3.2 by
In,YN.Is,Ys. When we project the 1—jet lifts of these trees to the torus A, we
obtain the four curves I'yg(c), o, B € {0, 1}, shown in Figure 20. We decompose
[gp(c) as follows:

QM@:F&&ﬂUWH@UF&@)

o
See Figure 20 for I'gg(c). More precisely, Fgl; (c) consists of head-points, Fé;(c)
consists of tail-points, and Fg 8 (c) is the portion near the cusp edge. For our purposes,
we will assume that Fgﬂ(c) liesat t = 5 (for B =0)or t = 37” (for B =1), as
is the case in the degenerate picture where U is the unperturbed round unknot (see
Section 3.1).

The following lemma determines the differential acting on Reeb chords ¢;;. We use
the matrix notation of Theorem 1.1.

Lemma 4.7 With capping operator of Reeb chord ¢ of A as in Theorem 4.6 and with
orientation choices as in (3-14) and (3-15), the following equation holds:

IC=A- +A 0K
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braiding region aj; and b;;
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Figure 20: The 1—jet lifts of flow trees with positive puncture at ¢

Proof We count multiscale flow trees contributing to dc;;, divided into four cases
based on their big tree part, which must be one of the I'yg(c). For ease of reference,
all of these flow trees are pictorially represented in Table 1.

Before we proceed, note that the braiding region is disjoint from I'1o(c) and from
I'11(c) and intersects T'go(c) and Tg;(c) in tail-points, since the braiding region has
small s—coordinate values. Also, from Section 3.4, the unstable manifolds W"(a;;)

are essentially horizontal and have ¢—coordinate as follows: just less than Z for

i > j, ordered lexicographically by (i, j), and just over 37” fori < j, orcziered
lexicographically by (j,7). Finally, we recall from Section 3.4.3 and Figure 13 that
we have cycles A’ and p’ in A for the purposes of counting homology classes, where
A is a vertical line between the a; ; and the b;;, and w' is a horizontal line just below

t = Z. We can in particular choose W' to lie above all of the W"(a;;) fori > j.

Case 1 Bigtree I'1g(c).

If i = j, there is a “trivial” multiscale flow tree with boundary on sheet .S; that projects
to ['19(c). To count other multiscale flow trees corresponding to I';¢(c), note that the
curve FIV(')" (c) intersects W"(a;j) for all i > j, while the curves F?O (¢) and T} (c)
are disjoint from W"(a;;) for all i, j. As we move along I‘IV(’)L (c) in the sheet S;, at
the intersection between FIV(J)r (c) and W'(a;j), i > j, aflow line to a;; can split off
and the 1-jet lift of I'jo(c) continues to move along sheet S;. Note that no other flow
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Big tree Multiscale flow tree Term

Mo (i)
[1o(c)
Aij Ma(j)
i
1
Ti1(c)
Loy (PR)i;
LCoo(c)
% . D ik at) (PR
7 ik k<i
)i |
(®8)ij
Lo1(c)
Z air (DR

k>i

Table 1: Contributions to dc;j. For each of the four big disks, schematic
diagrams for corresponding multiscale flow trees are shown, along with the
algebraic contribution to dc;; (with powers of the longitudinal homology
classes A suppressed for simplicity). In the diagrams, along the boundary of
the big disk, the index of the sheet (one of i, j, k) is labeled.

line can split off after this event since, according to the orientation requirement in the
definition of multiscale flow tree, such a flow line could split off only at an intersection
with W'(a;x), j > k; however, by our choice of ordering, such an intersection
precedes the intersection with W"(a;;) and hence no further splitting is possible.

Thus for each ¢;; with i > j, there is a multiscale flow tree with big tree I'jo(c) and
a single negative puncture at @;; (or no negative puncture if i = ;). We next consider
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homology coefficients and signs. Note that each tree which is lifted to a leading sheet
Sy (i) intersects Ay, ;) once positively and that each lifted tree intersects ig(;), Where
y (i) and « (i) are the indices of the components of the sheets considered. Furthermore,
by Theorem 4.6, each tree has sign +1: at the splitting point (for i > j ), the tangent
vector to the positively oriented 1—jet lift is d;, which transports to 9; = v*(g; j) at
ajj, i > j,and the big tree has sign +1. Finally, we conclude that the contribution to
dc;j of Case 1 is:

Ay (i) M (i) ifi = j and S; is leading,
M (i) if i = j and S; is not leading,
ajjhy(j)Ma(y ifi > j and Sj is leading,
ajj o)) if i > j and Sj is not leading.

Case 2 Bigtree I'11(c).

As with I'g(c), if i = j then there is a trivial multiscale tree with boundary on
sheet S; that projects to I'jo(c). To count other multiscale trees, notice that Fﬁr (c)
intersects W'(a;;), for all i > j. As above we find that a 1—jet lift in sheet S; can
split off a flow line to aj; for k > j, then continue along Sy, and that no further
splittings are possible. We thus find multiscale flow trees with positive puncture at ¢j;
and negative puncture at a;; for all i > j. As above the (signed) coefficient equals
+1 since the normal at the special puncture of the partial tree attached is —d;, which
agrees with v*"(a;;), i < j. To see homology coefficients, we note that all 1—jet lifts
are disjoint from ' and calculate as above. We conclude that the contribution to dc;;
from Case 2 is:

Ay(j) if i = j and S; is leading,

1 if i = j and S; is not leading,

ajjhyjy ifi < j and Sj is leading,

ajj if i < j and S is not leading.

When we combine the contributions of Cases 1 and 2 to dc;;, we obtain precisely the
(i, j) entry of the matrix A - .

Case 3 Big tree ['go(c).

Here we will make use of the stabilized braid B, which is B along with one non-
interacting strand labeled 0. Any multiscale flow tree begins on sheet S; along FS(J)F (c).
As above it is possible to split off either no flows and arrive on S; at the initial point
of I‘l(;o (c), or one flow to a;; (for any k < i) and arrive on S} at the initial point of
F(};o (¢). Note further that Fgo (c) intersects the braiding region in tail-points since the
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braiding region is to the left of s = 7r/2; thus, its flow orientation is the same as the
oriented lift of the flow line of B in W'(agy) for any k. Consequently, the flow trees
that can split off from Fgo (c) on sheet Sy as it passes the braiding region agree with
the flow trees that can split off from W"(ao ). It follows that the contribution to dc;;
from Case 3, up to sign and homology coefficients, is

Z air (PR)i

k<i

We next consider the homology coefficients and signs of these trees. For homology,
note that 1" is a horizontal line that lies just below ¢ = 7, where Fgo (c) sits, but just
above W'(a;1), where a flow line to a;; can split off. Thus none of the trees pass A’;
a tree that splits off a flow to a; intersects fo(k) once positively, and a tree that does
not split off such a flow intersects fo( jy once positively.

In order to compute the sign we first note that the sign contribution from the flow line
splitting off to a;j, is positive: d; is the vector of the boundary orientation as well as
v*"(a;1). Second, we consider sign contributions from trees in the braiding region.
At a positive twist the induced normal is —ds, which corresponds to a vector splitting
of the normal d; along the incoming edge and the sign at the corresponding trivalent
vertex of the tree of B is +1. Ata negative twist the induced normal is still —dy,
which now corresponds to a splitting of the normal —d; along the incoming edge and
the sign at the trivalent vertex of the tree of B equals —1. Thus also in the case of a
negative twist the total sign contribution is (—1) = 1, which shows that all multiscale
flow trees from ['go(c) have sign +1.

In sum, we find that the total contribution to dc;; from Case 3 is

o) @R)ij + D ik ta) (@R
k<i

Case 4 Bigtree I'g1(c).

As in Case 3, we find that either one or zero flow lines split off along Fgf (¢). Again

Fgl intersects the braiding region in tail points and is oriented isotopic to W"(ag;).
An argument similar to Case 3 shows that the contribution to dc;; from Case 4 is

@Ry + Z air (OR) 5,
k>i

where the difference from the previous case arises because the 1—jet lift of 'y (c) is
disjoint from 4.
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When we combine the contributions of Cases 3 and 4 to dc;;, we obtain precisely the
(i, j) entry of the matrix A - <1>§. The lemma follows. O

4.4.3 Multiscale flow trees of type MT, with positive puncture at ¢;; of type L,
To complete the computation of the Legendrian homology of A g, we need to compute
the differentials of the ¢;; Reeb chords. These have contributions from two types of
multiscale rigid flow trees: trees of type MTq and trees of type MT; . In this subsection,
we compute the first type; the second type is computed in the following subsection,
Section 4.4.4.

There are two rigid flow trees with positive puncture at e and negative puncture at c,
corresponding to £y and E, in the language of Section 3.2. Denote their 1—jet lifts
by Ty(e;c), o €{0,1}. We decompose ['y(c) as follows:

Tg(e;c) = Th(e;c) UTR(es ),

where TH(e; ¢) consists of head-points and I'%?(e; ¢) of tail-points; see Figure 21.

braiding region aj; and b;;
t — e
2r
- c” (e o) P F(I)H(EQ 9] g
ol Iie(e;c) et T(eso)
0 o s

2
Figure 21: The I—jet lifts of flow trees with positive puncture at e and

negative puncture at ¢

Writing the contribution to de;; from trees of type MTy as dge;; and using the matrix
notation of Theorem 1.1, we have the following result.

Lemma 4.8 With capping operator of ¢ so that Theorem 4.6 holds and with orientation
choices as in (3-14) and (3-15), there is a choice of capping operator for e so that the
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following equation holds:

WE=—dL.C.- 14 ~l.C.(@f)~.

Proof First consider the contributions from Tg(e,c): T§'(e: ) is disjoint from the
braiding region and from all W"(a;;). Consequently, no flow tree can split off from
['i'(e:c). Also, if T'j'(e: c) is lifted to S; then it intersects )Jy(l-) once negatively if
S; is leading and not at all otherwise. The curve of head-points Fge (e; c), oriented as
in Figure 21, is isotopic without crossing the cycle u’ to the oriented lift of the flow
line W"(a;o) of the stabilized braid B which lies in the sheet S;. As in the proof of
Lemma 4.7 we conclude that the trees that split off along I' correspond to the trees
which split off from W"(ag;). As with ['go(c) (Case 3) in the proof of Lemma 4.7,
we find that the sign contribution from the split-off trees agrees with the sign of ¢p.
Thus the contribution from I'y(e, ¢) to dokE is

e(To(e;e)@L-C- 1.

Choose the capping operator of e so that €(I'g(e; ¢)) =—1, and note that by Theorem 4.5
this implies €(T"y(e; c)) = +1.

Next consider the contributions from I'y (e, ¢): F?e (e; ¢) is disjoint from the braiding
region and from all W*"(a;;). Consequently, no flow tree can split off from F{le (e;c).
Also, if F?e(e; ¢) is lifted to S; then it intersects k;,(i) once with negative intersection
number if S; is leading and not at all otherwise. The tail-points curve Ii(eic) is
isotopic to the lift of the flow line W"(a;q) of the stabilized braid B with orientation
reversed. Switching the roles of e and ¢ in the Morse—Bott perturbation we would get
the following contribution to d;C from this disk:

‘E- ok

where 86 denotes the analogue of dy with the alternative Morse—Bott perturbation, by
a repetition of the argument above for I'g(e;c).

Observing that the multiscale flow trees we are interested in are exactly the same as
those for the alternative Morse—Bott perturbation except for the big disk having the
opposite orientation, we can view the equation above as a linear system of equations
with coefficients in .Ag and invert it to get the contribution to dglE. Thus we find that
the contribution from I'; (e, ¢) is

e(To(esc)) ~'-C-(@p)~' = ~'-C-(op) !

and the lemma holds. O
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4.4.4 Multiscale flow trees of type MT; with positive puncture at ¢;; Finally, we
enumerate multiscale flow trees of type MT; . Recalling Lemma 3.2 and Remark 3.4,
we see there are four constrained rigid flow trees with positive puncture at e and no
negative punctures that are constrained to pass through some b;;. We denote their
1jet lifts T'yg(e), a, B € {0, 1}; see Figures 22 and 23. We note that each constrained
tree is a deformation of a broken tree, with I'yg(c) as defined in Section 4.4.2 and
Ty (e; c) as defined in Section 4.4.3:

Loo(e) >~ Ty (esc) #Toolc),
[1o(e) = Ti(e;c) #To(c),
Fo1(e) = Ty(e;c) # o1 (c),
Fii(e) =Ti(e; o) #T4(c).

braiding region
— e +

N

h F01 (e)

Y
[}

 Toole)

et

Figure 22: 1-jet lifts of constrained flow trees with positive puncture at e
that are disjoint from the braiding region

Writing the contribution to de;; from trees of type MT; as 0;e;; and using the matrix
notation of Theorem 1.1, we have the following result.

Lemma 4.9 With capping operators and orientation data as in Lemma 4.8, the follow-
ing equation holds:

WE=B- (@51 +B. ~L
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braiding region

— €+
® bij
Ti1(e)
-
°
I1o(e)
Qbij
ot

Figure 23: 1—jet lifts of constrained flow trees with positive puncture at e
that intersect the braiding region. As with I'4g(c), the horizontal segments in
the middle of T'jo(e) and T';;(e) are at t = /2 and ¢ = 37/2, respectively.

Proof Consider first the contributions of the big trees ['gg(e) and I'g;(c). Note that
these trees do not intersect the braiding region and that because of the lexicographic
order, exactly as in the proof of Lemma 4.7, a disk that is constrained at b;; cannot split
off flow lines to any a;; . Thus there is exactly one multiscale flow tree contributing
to dje;; that arises from I'gg(e) or I'g;(e) if i # j (from Ipg(e) if i > j or I'g;(e)
if i < j), and it begins at e™ on sheet i, jumps at bij to sheet j, and remains there
until e~ . (If i = j, then there is no such multiscale tree.) Up to sign and homology
classes, we conclude that I'gg(e) and I'g; (c) combined contribute the term b;; (or 0
if i = j)to de;j.

As for homology classes, the 1—jet lift of this multiscale tree is disjoint from all
A" cycles, with the exception of Ag ;) (one negative intersection) if j is leading;
furthermore, it is disjoint from all u’ cycles, with the exception of fo( j) (one positive
intersection) if 7 > j. Next we determine the signs. The sign of the endpoints of the
moduli spaces of T'gg(e) and T'gq (e) listed above are both 41 by our choice of capping
operators. Thus the orienting vector field v of the moduli space at b;; satisfies v = d
in both cases. Furthermore, v*"(Iyo(e)) equals d; at bij, 1> j,and vk (T (e))
equals —d; at b;j, i < j. This shows that the signs are positive. Collecting homology
classes and signs, we conclude that the big trees T'oo(e) and T'g; (¢) contribute B ~!
to 01 (recall that the (7, j) entry of B is b;ju; if i > j, 0if i = j, and b;; if
i<j).
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Next consider the contributions to de;; from big trees I'jg(e) and I';jj(e). The 1-
jet lifts of the multiscale flow trees corresponding to these big trees begin at e™ on
sheet i, switch to sheet k& for some k < i (for I'1g(e)) or k > i (for I';1(e)) at the
constraint b;j, and then pass through the braiding region and end at e~ on sheet ;.

The (horizontal) portion passing through the braiding region is located at t = 7 or
t = 37” and is thus isotopic to F;a(e; ¢) (which is at # = ) in the complement of all

the unstable manifolds W"(a;;) (which are below ¢ = 5 or above ¢ = 37”) and the

cycles u' (which is below ¢ = 7). Thus repeating the computation in Lemma 4.8, we
find that T"1g(e) and T';;(e) combined give a contribution to d{E of

B- (0%~

Here we find that the sign of this term is +1 after observing that the sign of the
underlying restricted rigid disk is again +1 by repeating the calculation above. The
lemma follows. a

4.4.5 Proof of Theorem 1.1 By Theorem 4.3, the differential for the Legendrian
DGA LA(Ak) can be computed in terms of multiscale flow trees determined by A g
and A. The contribution from multiscale flow trees of types MTg, MTy and MT;
are calculated in Lemma 3.21, 4.7, 4.8 and 4.9. O

5 Multiscale flow trees and holomorphic disks

The main purpose of this section is to establish Theorem 4.3. The proof has several
steps. In Section 5.1 we establish the connection between holomorphic disks and flow
trees for Ay following [10]. In Section 5.2 we discuss the slightly stronger disk/flow
tree correspondence needed here. Finally, in Sections 5.3 and 5.4 we establish the
correspondence between holomorphic disks of Ag in J!(S?) and multiscale flow
trees, ie, holomorphic disks with boundary on Ay with flow trees of Ag C J(Ay)
attached along its boundary.

5.1 Basic results on constrained flow trees and disks

In this subsection we give a slight modification of results from [10] in the case of a
Legendrian surface A in the 1—jet space of a surface S, A C J1(S). We will apply
these results in two cases relevant to this paper; namely when A = Ay and S = S2,
and A=Ag and S = Ay.

For the notion of a flow tree of A we refer to Section 2.4 and for a more thorough
account [10, Section 2.2]. As explained in [10, Section 3.1], associated to each flow
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tree ' is its formal dimension dim(I"), see (2-3), which is the dimension of the
manifold of nearby flow trees for sufficiently generic A. The main result of [10]
is concerned with the relation between rigid holomorphic disks and rigid flow trees.
Here we will need a slight generalization. To this end we introduce constrained rigid
holomorphic disks and constrained flow trees. If pq,..., p, are distinct points in A
then a holomorphic disk constrained by p;, ..., p; is a holomorphic disk with r extra
boundary punctures at which the evaluation map hits py,..., p,. Similarly, a flow
tree of A constrained by py, ..., p, is a flow tree with 1—jet lift with r extra marked
points where the evaluation map hits pq,..., p,. If T/ is a flow tree (or holomorphic
disk) constrained by pi,..., p, € A and if T" is that flow tree (or holomorphic disk)
with the constraining conditions forgotten then the formal dimension of the constrained
flow tree (or holomorphic disk) I/ satisfies

dim(T"’) = dim(T") —r,

where dim(I") is the formal dimension of I'. We say that a flow tree (or holomorphic
disk) is constrained rigid if its formal dimension equals 0 and it is transversely cut out
by its defining equations.

For 0 < 0 <1 consider the map
sa: J1(S) = J(S),  s0(q.p.2) = (q,0p,02)
where ¢ € S, p € TS and z € R and write
Ag =56 (N).

Notice that since s, preserves the contact structure, A, is still Legendrian and clearly
Legendrian isotopic to A. In order to state the correspondence theorem relating
constrained rigid disks and trees we recall the following notation: D;, denotes the
unit disk with m boundary punctures and IT: J!(S) — T*S denotes the Lagrangian
projection.

Theorem 5.1 Given A C J!(S) as above there is a small perturbation of A so that for
a generic metric g on S there exist oy > 0, almost complex structures J,, 0 < 0 < 0y,
and perturbations A, of Ay with the following properties.

e The Legendrian submanifold Ao is obtained from A by a C°—deformation
supported near the cusp edges of A .

e The constrained rigid flow trees defined by Ay have well-defined limits as
o—0.
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e The (constrained) rigid J, —holomorphic disks with boundary on KU with one
positive puncture are in one-to-one correspondence with the (constrained) rigid
flow trees of Ao with one positive puncture. In particular, the following holds
for all sufficiently small 6 > 0: if ug: Dy, — T*S is a (constrained) rigid J5—
holomorphic disk then there exists a (constrained) rigid flow tree I of Ao such
that 1, (dD,,) lies in an O(o log(o~ ")) neighborhood of the Lagrangian lift T
of I"'. Moreover, outside O (o log(o~!))—neighborhoods of the Y, Y; —vertices
and switches of T, the curve u,(dD,,) lies at C!—distance O(o log(c™1))
from T".

Proof The proof is an adaption of results from [10], where Theorems 1.2 and 1.3 give
a version of Theorem 5.1 for unconstrained rigid disks and trees. (See the proof of
Theorem 1.3 and Lemma 5.13 in [10] for the O(c log(o~!))—estimate). We briefly
recall the construction in order to adapt it to the constrained rigid case.

The first step is to fix a Riemannian metric on S such that there are only a finite
number of (constrained) flow trees of formal dimension 0 determined by A and such
that all such flow trees are transversely cut out. A straightforward modification of the
unconstrained case, [10, Proposition 3.14], shows that the set of such metrics is open
and dense.

The second step is to change the metric to g, to introduce almost complex structures
Jo, and to isotope the Legendrian A, to a new Legendrian Ao . The main features
of these objects are the following. The rigid flow trees determined by g and Ag are
in one-to-one correspondence with the rigid flow trees of A and corresponding trees
lie very close to each other; see [10, Lemma 4.4]. The submanifold XU is rounded
near its cusps and changed accordingly near its swallowtails. The metric g is flat in a
neighborhood of any rigid flow tree and H(KG) is affine in this neighborhood outside
a finite number of regions of diameter O(o) where it is curved in only one direction;
see [10, Subsection 4.2] and Remark 5.2 below for details. The almost complex
structure J, agrees with the almost complex structure Jg induced by the metric in a
neighborhood of all rigid flow trees and swallowtails and outside a neighborhood of
the caustic (the locus of fiber tangencies) of H(KJ). Near the points in the caustic
outside a neighborhood of the swallowtails, J, is constructed so that both J, itself
and the Lagrangian boundary condition given by IT(A) splits as products with one
direction along the cusp edge and one perpendicular to it; see [10, Section 4.2.3].

In fact, H(Ka) = ! (Zg) where Zg is a totally real immersed submanifold and where
®, is a diffeomorphism with dco(Pg,id) = O(0o) and with dc1(Ps,id) arbitrarily
small (but finite), which is supported in a small neighborhood of the caustic of H(Kg)
and which is equal to the identity in a neighborhood of all rigid flow trees of Ay. We
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use the almost complex structure J, = d®y 0 J o dCD_l on T*S, where J is the
almost complex structure induced by a metric on S. Then J, —holomorphlc disks with
boundary on Aa correspond to J—holomorphic disks with boundary on Lg

We modify the deformations of the metric and of the Legendrian discussed above, in
order to deal also with constrained rigid trees. In the presence of point conditions,
repeat the construction in [10, Section 4.2], deforming the metric to g and constructing
Zg in the exact same way as along rigid flow trees. Furthermore, this should be done
in such a way that no constraining point is an edge point; see [10, Section 4.2.H]. Then
take Jo =d®dgs0J oa’CID(j1 , and let 7\0 be such that @U(Hxa) = Zo, where J is the
almost complex structure on 7*S induced by the special metric. We use the notation
from [10, Remark 3.8] for vertices of (constrained) rigid flow trees.

After the modifications of the constructions in [10, Section 4] (first and second steps)
described above, the theorem follows from [10, Theorem 1.2, Theorem 1.3] with the
following additions. Theorem 1.2 shows that any rigid holomorphic disk with one
positive puncture converges to a flow tree. Since the condition that the boundary
of a disk passes through a constraining point is closed, it follows that constrained
disks converge to constrained trees. In Theorem 1.3, rigid J,—holomorphic disks with
boundary on ia near any rigid flow tree are constructed and proved to be unique.
The corresponding construction and uniqueness proof in the case of constrained rigid
flow trees is completely analogous after the following alteration. If I" is a constrained
rigid flow tree with constraining point m then take the }greimage of m (which is not
an edge point) to be a marked point in the domain A m (I, 0) of the approximately
holomorphic disks; see [10, Section 6.2.A], and let Vg (m) =0 instead of Vo (m) ~ R,
and see [10, Section 6.3.B, Definition 6.15]. m|

Remark 5.2 Below we will use the following special features of the metric g and the
Legendrian submanifold A, in Theorem 5.1. (For the construction of the metric and
A4 with these properties we refer to [10, Section 4].)

(1) There exists a neighborhood X C S that contains all (constrained) rigid flow
trees in which the metric g on § is flat. We write Xf\g C l'[l_,1 (X)NAg.

(2) The image of any flow segment in a (constrained) rigid flow tree is a geodesic
of the metric g.

(3) The two sheets of the Lagrangian projection H(Xa) near each double point
consist of two transverse affine Lagrangian subspaces. The Lagrangian projection
H(Kg) is parallel to the O—section (ie the graph of a polynomial function in flat
local coordinates of degree at most 1) in neighborhoods of the following points:
trivalent vertices of any (constrained) rigid flow tree, and intersection points of
any (constrained) rigid flow tree.
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(4) In Fermi coordinates along any edge the Lagrangian is parallel to the 0—section
in the coordinate perpendicular to the edge (ie the Lagrangian is the differential
of the graph of a function of the form f(x;) 4+ cx,, where x; is the coordinate
along the edge, x, perpendicular to it, and ¢ a constant).

(5) Outside O(o)—neighborhoods of a finite number of edge points in each (con-
strained) rigid flow tree the Lagrangian projection H(KG) is affine (ie the
function f in (4) has the form f(x;) = alez + ay1x1 + ag). For our study
of multiscale flow trees below we will also assume that the edge point regions
are disjoint from the junction points (ie, the points where, using the notation of
Definition 4.1, small trees are attached to the big tree).

(6) We will also assume that the following extra condition is met: at a finite number
of fixed extra points the Lagrangian projection has the form mentioned in (3).
(These extra points are the junction points mentioned above and points where
two distinct rigid multiscale flow trees intersect or one such tree self-intersects
transversely.)

5.2 Refined results on constrained flow trees and disks

Recall that Theorem 4.3 relates holomorphic disks to multiscale flow trees. This relation
is the result of a double degeneration: first the conormal lift of the unknot is pushed
to the O—section in J!(S?) and then the conormal lift of a more general closed braid
is pushed toward the almost degenerate conormal lift of the unknot. To deal with this
we will stop the first degeneration close to the limit where actual holomorphic disks
on the almost degenerate conormal lift of the unknot are close to flow trees. Then we
degenerate the conormal lift of a general braid toward the almost degenerate conormal
lift of the unknot and show that holomorphic disks near the limit admit a description
in terms of quantum flow trees, ie, holomorphic disks with flow trees attached along
their boundaries. Since both quantum flow trees and multiscale trees are defined as
intersection loci of evaluation maps of holomorphic disks and flow trees, respectively,
we need to show that the disks and the flow trees are arbitrarily C!—close in order to get
the desired relation between quantum flow trees and multiscale flow trees. However the
relation between quantum trees and holomorphic disks holds only for almost complex
structures with special properties near IT(Ay). In this section we show that there exist
almost complex structures with these special properties for which the holomorphic
disks are still close to flow trees.

5.2.1 Definition of quantum flow trees As already mentioned quantum flow trees
will be central to establishing the relation between multiscale flow trees and holomorphic
disks. We define them as follows. Consider A g C J!(Ay) as above. A quantum flow
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tree E of Ag is a holomorphic disk u: D,, — T*S? with boundary on IT(Ay) and a
collection I" of partial flow trees ' = {I'y, ..., I';;} with one special positive puncture
on the lift #: dD,, — Ay of the boundary of u. Note that I'; could be a constant
flow tree at a Reeb chord of A g. Then the positive special punctures subdivide the
boundary of Dy, into arcs and we require that there is a lift of these arcs to A g which
together with the 1—jet lifts of the trees in I' from a closed curve when projected to
T*S?. As for multiscale flow trees we call the points where flow trees are attached to
U junction points.

5.2.2 Modifying the almost complex structure — metric around flow trees Con-
sider the degeneration 0 — 0 in Theorem 5.1. Fix a small o0 = oy > 0 so that the
boundaries of all (constrained) rigid holomorphic disks are close to the cotangent lifts
of their corresponding (constrained) rigid flow trees. More precisely, we take oy so
that the boundaries of all (constrained) rigid Js,—holomorphic disks lie well inside
the finite neighborhood X of the tree where the metric is flat and where 1~\ao is as
described in Remark 5.2. For simpler notation we write

A =Re, = Ay,

where U is the unknot. We continue to use the subscript o in J4, from Theorem 5.1
since we will modify the almost complex structure some more.

Consider an arbitrary closed braid K C R? lying in a tubular neighborhood of U . If
K is sufficiently close to U then Ak lies in a tubular neighborhood of A = Ay that
is symplectomorphic to J!(A). Furthermore, the front projection Hf,: Ag — Ais
an immersion. Since these properties are preserved under the global scaling by o we
consider Agx C N C J!(A), where the neighborhood N of the O—section in J!(A)
is identified with a neighborhood of A in J1(S?).

When we compute the Legendrian homology of A g, we will use an almost complex
structure J (to be defined after Lemma 5.3 for small 7 > 0) on 7*S?2, which differs
from J4,. In particular, to relate holomorphic disks with boundary on Ag with
quantum flow trees of A g, it will be important that J;, agrees with the almost complex
structure induced by a metric on A in a neighborhood N, of TI(A) C T*S?2. Here Ny
is the image under a symplectic immersion of a small neighborhood of the 0—section in
T*A that extends IT| . Lemma 5.3, below, establishes the existence of such a metric
on A. Specifically, the metric induces an almost complex structure on Ny, which (has
a push-forward under an immersion which) agrees up to first order with Jg, in the fixed
size neighborhood TT1(Xs) C TI(A) of the union of all boundaries of constrained rigid
flow trees in A . Our desired almost complex structure J; will interpolate between this
push-forward and Jy, .
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Recall the special form of IT(A) near its double points; see Remark 5.2(3). Choose
ametric g on A flat near its Reeb chord endpoints. Let J, be the almost complex
structure induced by g. Note that for such a metric we can find an immersion ¢
defined on the cotangent bundle of the neighborhood of the Reeb chord endpoint that is
(Jg, Jo,) holomorphic. In particular, if ¢: T*A — T*S 2 is an immersion that extends
IT| 5o and that has these properties near Reeb chord endpoints, then the push-forward of
Jg, ¢« Jg, is well-defined. Furthermore, we assume that (g, ¢) satisfies this (Jg, Jo,)—
holomorphicity condition also near the other points mentioned in Remark 5.2(3) and
(6), where we take the extra points to be the junction points of the multiscale trees.
We call the points in (3) and the extra points the distinguished points. We call a pair
consisting of a metric and a symplectic immersion (g, ¢) with properties as above
adapted to A .

Lemma 5.3 There exists a neighborhood N of the 0—section in T*A and a pair
(g. ), consisting of a metric g and an immersion ¢: N — T*S? that extends TI1|p,
that is adapted to A and such that the following hold on ¢(N').

(1) Jo, and ¢« Jg agree along TI(A).

(2) Js, and ¢« Jg agree in neighborhoods of distinguished points.
(3) Jo, and ¢« Jg agree to first order in I1(Xp).

Proof It is straightforward to check that statement (1) can be achieved and statement
(2) follows by the definition of adapted pair (where the fact that the metric is flat and
the Lagrangian affine near distinguished points readily implies existence).

We turn our attention to statement (3). Let p be a point on the 1—jet lift of a rigid
flow tree. Pick normal coordinates x = (x1,x,) on A around p with the 1-jet lift
corresponding to {x, = 0}. Since the metric on S? is flat we can identify it locally
with C? with coordinates (11, vy, t2, v2) and we can choose these coordinates so that
the flow tree under consideration lies along {u, = 0}.

Since II(A) is a product of a curve in the u|—direction and a line segment parallel
to the O—section in the u,—direction we have the following local parametrization of
I1(A):

S(x1,x2) = (x1, f(x1), X2, ¢2).

Let y = (y1, y2) denote the fiber coordinate. Defining the local immersion

V(x,y) = fx1,x2) + y1(=f'(x1)dx, + 3y,) + ¥20y,
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we find that condition (1) holds and that the Taylor expansion of ¥ *J (ie, the complex
structure of the flat metric on S? that corresponds to the standard complex structure in
u + iv—coordinates pulled back by ) with respect to y is

(WD) (x.p) = Jo+ B(x)y1 + 0(2),

where Jj is the standard complex structure on C? with x 4iy—coordinates which is the
complex structure induced by the flat metric on A. Here B(x{)Jo+ JoB(x1) =0, and
B(x1)dx, = 0. A straightforward calculation shows that if we change the immersion
¥ by pre-composing with a diffeomorphism @ with the Taylor expansion

®(x, y) = (x.y) + 3(B1(x1)dx,) 7.

then the almost complex structures agree to first order, ie, if ¢ = 1 o ® then ¢* J5,
and Jy agree to first order along {y; = y, = 0}. a

Remark 5.4 For a general ambient almost complex structure J it is not possible to
make the push forward agree up to first order. The Taylor expansion above with respect
to (y1, y») for a general J is

(Y Joo)(x,¥) = Jo + B1(x)y1 + B2(x) y2 + O(2),

where B; anti-commutes with Jo. One would then look for a map with Taylor
expansion of the form

D(x,y) = (x,») + 3(B10x,) ¥7 + 2(B20x,)y3 + Cy1 12

However, in order for the almost complex structures to agree up to first order one needs
both C = B0y, and C = B0y, . In general B;0x, # B30y, so no solution ® exists.

Let (g,¢) be as in Lemma 5.3. For small n > 0, write N, for the image under ¢
of an n—neighborhood of the O—section in 7*A and let E, denote the image of an
n—-neighborhood of T* X, . Theorem 5.1 implies that (for oy small enough) every
(constrained) rigid J4,—holomorphic disk intersects a neighborhood of IT(A) inside
E, for some 1" > 0. Write M, for a n-neighborhood of all (constrained) rigid
holomorphic disks. Let J,, denote an almost complex structure on 7*S 2 that equals
¢« Jg on Ny, equals Jy, outside N;,, and that interpolates between the two in the
remaining region in such a way that the following hold:

(5-1) |Joo — Iylco = 0asn—0

(5-2) |Joo — JInlct = 0in By, U My, as n — 0, for fixed no > 0
(5-3) |Joy — Inlc2 < K1 in By, U My, for fixed o, K1, and n < 19
(5-4) |Joo — JInlct = K3, for fixed ng, K2, and for n < ng
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We make two remarks. As a consequence of the fact that in general Js, and ¢« Jg do
not agree up to first order outside X we typically have |J5, — Jy|c2 — 00 as n — 0.
As shown in the C°—convergence portion of the proof of Lemma 5.5 below, we may
assume that for sufficiently small 7, any rigid J;—holomorphic disk lies in M, .

We next show that rigid J,—holomorphic disks are C'! —close to rigid J, ~holomorphic
disks. Note that it follows from Theorem 5.1 that (for gy sufficiently small) the almost
complex structure Jg, is regular in the sense that all (constrained) J4,—holomorphic
disks in 7*S? with boundary on IT(A) of formal dimension at most 0 are transversely
cut out.

LemmaS.5 Letuy,: Dy — T*S?, n — 0 be a sequence of (constrained) rigid Jn—
holomorphic disks with boundary on A . Then some subsequence of u, C ' _converges
on compact subsets of Dy, to a (constrained) rigid J4,—holomorphic disk. Moreover,
for all n > 0 small enough there is a unique (constrained) rigid J,—holomorphic disk
in a neighborhood of each (constrained) rigid J5,—holomorphic disk.

Proof For the first statement we use Gromov compactness (for |J, — J5,|co — 0)
to conclude that either |Duy| is uniformly bounded or there is bubbling in the limit,
see eg Sikorav [32], and the fact that point constraints are closed. The case that u;
is a sequence of rigid disks bubbling is not possible: all bubbles of the limit have
dimension at least 0, since J, is regular. This implies dim(u,) > 0 in contradiction
to uy being (constrained) rigid. We conclude thus that | Du,)| is uniformly bounded;
thus u; converges uniformly to a (constrained) rigid J4,—holomorphic disk u. We
must show that it converges with one derivative as well.

Consider a point z € D and its image u(z) under u. Since u,(z) — u(z) and since
| Duy| and | Du| are bounded we can find a coordinate neighborhood W C My, of u(z)
and a small disk £ around z in D so that u,(E) C W forall n> 0 and u(E) C W.

We pick C2—coordinates on W so that TT(A) corresponds to the totally real R? C C2.
The neighborhood FE is either a disk or a half disk, with complex structure j. We find
as in [32, Section 2.3] that in local coordinates u and u, satisfy the equations

(5-5) u+qdu=0,

(5-6) Aty + ¢y duty =0,

where

(5-7) q(2) = (i + Joo )™ (i = Joo (),
(5-8) qn(2) = (i + Jy(un)) ™ (0 = Ty (uy)).
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Letting u — uy = hy; we conclude that
(5-9) Ohy + qy Ohy = (g — qy)du.

By scaling we may take |qp|c2 < € < 1; see [32]. Moreover, by C 0_convergence Uy
lies in M, an therefore |¢ —qp|c1 — 0. A standard bootstrap argument for /1, now
shows that |/i,|c1 — 0 as n — 0.

Uniqueness of u; near uq, for small n follows from transversality at u, and the
C! —convergence (5-3) of complex structures near uq, . O

Remark 5.6 A general sequence of J,—holomorphic disks that does not blow up
would C%—converge to a J5,~holomorphic disk but not necessarily C!—converge.

5.2.3 Metric and perturbations —metric near flow trees of Ax Note that the
metric g in Lemma 5.3 has arbitrary form outside a small neighborhood of the 1-—
jet lifts of constrained rigid flow trees of A and that furthermore it is flat near all
distinguished points. In this section we will impose further conditions on g outside
this region in order to adapt it to the (partial) flow trees of Ag C J!(A) that are parts
of rigid multiscale flow trees of A g . Furthermore, we will also deform A g itself in
a way analogous to how A, was deformed into Ao . The construction is completely
analogous to the construction in [10, Section 4], although it is simpler in the present
situation since A g has no front singularities. The construction in Section 5.2.2 gives
a metric in A, which is flat in a neighborhood of the 1—jet lifts of all (constrained)
rigid flow trees whose IT—projections contain the boundaries of all (constrained) rigid
holomorphic disks. Furthermore, we take the distinguished points to include all junction
points as well as points where multiscale flow trees intersect constrained rigid disks.
We next extend the region where the metric is flat to contain all rigid flow trees of
Ak C JY(A) as well as all partial flow trees of A g that are parts of rigid generalized
disks. Note that these regions include the projection of any Reeb chord of Ax C J!(A).
We next deform A g slightly so that it has the form described in Remark 5.2 over all
the flow trees just mentioned; see [10, Section 4.2]. (Here we treat junction points
corresponding to positive punctures of special trees like the 3—valent vertices of flow
trees in [10] and treat the other junction points like the 2—valent punctures in [10].) In
particular, A g is affine at Reeb chord endpoints, lifts of flow trees are geodesics in
the flat metric, and the sheets of A g near a junction point that is a special Reeb chord
will be parallel to the O—section in J(A) (which in turn is parallel to the O—section in
J1(5?) over a subset U C S? where the metric on S? is flat). Similarly, the metric
on S?2 is flat near junction points that are Reeb chords, where the sheet of A is parallel
to the 0 section, and where the sheets of A g are affine (and almost parallel to the
O—section).
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Let 0 <7 =<1 and define Ak, = s,(Ag) to be the image under fiber scaling by 7 in
J1(A). Then as above, along 1—jet lifts of flow lines that are part of rigid generalized
disks, the Lagrangian I1(Ag.y) is a product of a horizontal line segment and a curve
over the distinguished curve. Thus, as in [10] and [13], the regions where this curve is
not affine have diameters O(n) as n — 0. With this metric we construct the almost
complex structure J; of Lemma 5.5 for some sufficiently small but fixed n > 0. Note
that J; then agrees with the complex structure induced by the metric on A in a
neighborhood of IT(A) that is the image under an immersion of a small neighborhood
of the O—section in T*A.

5.3 From disks to quantum flow trees

Now that we have finished modifying our almost complex structures to achieve J
with the desired properties from the previous subsection, we simplify notation and let

J:JT]'

The main result of this section is that any sequence of rigid J—holomorphic disks with
boundary on A g , = sy(A ) has a subsequence that converges to a rigid quantum flow
tree of Ag and A. In Section 5.3.2 we characterize certain subsets of the domains of
any sequence of J—holomorphic disks with boundary on A g , such that the restrictions
of the maps to these subsets converge to a (partial) flow tree of Ax C J!(A). In
particular, in case these subsets constitute the whole domains of the members in the
sequence we find that the J—holomorphic disks converge to a flow tree. In Section 5.3.3
we show that there can be at most one disk bubbling off in the limit of a sequence of
rigid J—holomorphic disks with boundary on Ak ; as n — 0 and that by adding a
puncture in the domain near the point where the bubble forms we ensure that the maps
in the sequence satisfy a uniform derivative bound. In Section 5.3.4 we prove the main
result of the section. After the previous subsections there are two main points that must
be demonstrated. First, we show that the limit has only one holomorphic disk part,
which must be a (constrained) rigid disk. Second, we show that our analysis of the two
separate parts (the flow tree- and the disk part) gives a complete description of the limit
objects.

5.3.1 Notation Consider Ax C N C J!(A) where N is a neighborhood of the
0—section that is identified with a neighborhood of A C J'(S?). In particular, if
0<n<1andsy: JI(A) — J1(A) denotes the fiber scaling then s,(N) C N and
hence Ak 5 is a Legendrian submanifold in N that is Legendrian isotopic to Ag .

Consider the Reeb chords of A ;. Recall that these are of two types: short and long
chords. We will use the notation for chords introduced in Remark 3.8. The action a(c)
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of a Reeb chord c is the positive difference of the z—coordinates of its two endpoints.
Stokes’ Theorem implies the area of a holomorphic disk is the signed sum of the actions
of the Reeb chords at its punctures; see [15, Lemma 2.1], for example. Recall the two
Reeb chords e and ¢ of A = Ay introduced in Section 3.1. Chords of Ak, satisfy
the following: chords of type L, lie close to ¢ and have action a(e) + O(1), chords
of type L lie close to ¢ and have action a(c) + O(n), and chords of types Sg and S;
have action O(n).

For the fixed almost complex structure J = J,, Lemma 5.5 holds and J has properties
as in Section 5.2.3. Then, in particular, boundaries of (constrained) rigid disks of A
lie C!—close to 1-jet lifts of its corresponding (constrained) rigid trees. It follows, in
particular, that there is a natural one-to-one correspondence between rigid quantum
trees of Ag and rigid generalized trees of A g . Furthermore, in a neighborhood of
IT(A) the almost complex structure J agrees with the one induced by the metric on A
by Lemma 5.3.

Below we will discuss J—holomorphic disks in 7*S? with boundary punctures.
Throughout we will think of these as maps u: A, — T*S?, where the source is
a standard domain. For details on standard domains we refer to [10, Section 2.2.1];
here we give a brief description. Consider R”~2 with coordinates 7 = (1, ..., Tu_2).
Lett €R acton R”™2 by t-7 = (t; +1,..., T +1). The orbit space of this action
is the space of conformal structures of the disk with m boundary punctures, one of
which is distinguished, C,, ~ R"~3 . Define a standard domain A,,(t) as the subset of
R x [0, m] obtained by removing m — 2 horizontal slits of width €, 0 < € < 1, starting
at (tj,j), j =1,...,m—2 and going to +oo. All slits have the same shape, ending
in a half-circle; see Figure 24. The points (tj, j) are called the boundary minima.

y

A

Y

71 %) 3 X

Figure 24: The standard domain As(ty, 12, t3) with three boundary minima
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In the case that u# has less than two negative punctures we add marked points at
intersections with a small circle around the positive Reeb chord endpoint and puncture
the domain there, so that it admits a description as a standard domain. We will often
write A,, dropping the precise information about the conformal structure from the
notation.

Consider a standard domain A, C C. Let Vg = {x +iy : x = }. A connected
component of the closure of Vg N (Ap—0Ay,) in Ay, will be called a vertical segment
in Ay

5.3.2 Flow tree convergence Consider a sequence uy: A, — T*S? of rigid J -
holomorphic disks with boundary on Ag.,, n— 0. As n — 0, the actions of Reeb
chords of Ak, of type S satisfy a O(n7) bound. Hence, by Stokes’ Theorem and the
dimension formula for holomorphic disks, if 7 > 0 is sufficiently small then a moduli
space of J—holomorphic disks with one positive puncture, with boundary on Ag ,
and of formal dimension 0 can be non-empty only if it contains disks with punctures
of the following types:

(QTg) The positive puncture is of type S; and all negative punctures are type Sy .
(QTy) The positive puncture is of type L and all negative punctures are of type Sq.

(QT,) The positive puncture is of type L;, one negative puncture is of type L;, and
all other negative punctures are of type Sy.

(QT,) The positive puncture is of type L, one negative puncture is of type S;, and
all other negative punctures are of type Sg.

Lemma 5.7 If u,: A,y —> T*S 2 js a sequence of J—holomorphic disks of type
(QTy) then uy has a subsequence that converges to a flow tree of Ax C N C J'(A)
asn—0.

Proof The actions of Reeb chords in S; are O(7n). Thus the area of u, is O(n) as well.
Monotonicity then implies that u,(A,,) must stay inside an O(n'/?)-neighborhood
of TI(A). Since J agrees with the complex structure coming from the metric on A in
a finite neighborhood of TI(A) and since disks lift to the symplectization of J1(S?)
where A xR is embedded, the lemma follows from [10, Theorem 1.2]. O

We next show that for any sequence of J—holomorphic disks up,: Ay — T*S 2 there
are neighborhoods of each negative puncture of type S, where the disk converges to
a flow tree (which may be constant). The key to establishing this convergence is an
O(n) derivative bound on neighborhoods of the punctures. Consider the inclusion
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Agg, CNCJ I(A) and let z denote a coordinate in the R—direction of J1(A) ~
T*AxR.If y isacurve in 7*S? then let £(y) denote the length of y in the metric
induced by w and J. Fix M > 0 larger than the maximum of the function |z| on
Ak = Ak:1. A vertical segment /, ~ [0, 1] in the domain A, of u; such that

(5-10) Euy(ly)) = M,
(5-11) |2 (s, (1)) = 2 (g, (0)| = M,
will be called an n—short vertical segment.

By elementary Fourier analysis, near punctures, holomorphic disks u; have expansions
of the form

(5-12) up(t+it) = e!0o(m) Z cnedMEHD 14 i €0, 00) x [0, 1],
n>0

(see [14, Section 6], and Robbin and Salamon [31]), where 8(n) = O(n) is the angle
between two sheets of the double point. This implies that there exist n—short vertical
segments in a neighborhood of each puncture of u; of type S. Note that a vertical
segment /, subdivides A, into two components: A,, = A} (l;,) U A, (I,), where
A*(l) contains the positive puncture of uy. For d > 0, let Ai(ln, d) denote the
subset of points in Ai(ln) that are at a distance at least d from /.

Lemma 5.8 For all sufficiently small n > 0 the following derivative bound holds: if
I is an n—short vertical segment in the domain of uy: A, — T*S? then

ldun(z)| = Om), ze A (. 1).

Proof Let by,...,b, denote the negative punctures of u, that lie in A,,(/;). Then
the area A;, of un(A™(ly)) satisfies

0=<4, = / pdq
un(OA= (1))

=/ ‘ )pdq+(Z(unlln(l))—Z(unlzn(o)))—zﬁ(bj) = 0.

j=1

We conclude by monotonicity that u,(A™(/;)) must lie in an (9(771/ 2)—neighborhood
of A (in particular all chords b; are of type S). Since J agrees with the almost complex
structure induced by the metric on A in such a neighborhood, [10, Lemma 5.4] shows
that the function |p|?, where p is the fiber coordinate in 7*A, composed with Uy
is subharmonic on A™(/;) and therefore attains its maximum on the boundary. The
lemma then follows from [10, Lemma 5.6]. O
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The derivative bound of Lemma 5.8 leads to flow tree convergence on A~ (/). Consider
a sequence of n—short vertical segments /; such that each domain A™(/;) contains a
puncture mapping to a Reeb chord n-b of Ag., for some Reeb chord b of A g with
I[k)eN.

Corollary 5.9 There exists a constant C > 0 such that the sequence of restrictions
Unla=(,,Cr0g(n—1)) has a subsequence that converges to a flow tree of Ag C JI(A).
(Note that the flow tree in the limit may be constant.)

Proof By Lemma 5.8, the image under u, of any region in A,,(/;,1) of diameter
log(n™!) lies inside a disk of radius O(nlog(n~')). Furthermore, along any strip
region in A~ (/;,log(n™!)) outside an O(log(n~!))-neighborhood of the boundary
minima in A™(/5), the map converges to a flow tree by the proof of [10, Theorem 1.2];
see in particular Lemmas 5.12, 5.16 and 5.17 in [10]. O

Remark 5.10 If the limiting flow tree in Corollary 5.9 is constant then it lies at I1(b) €
N, where b is the Reeb chord of A above. To see this note that A, (/,, C log(n™!))
always contains a half infinite strip that is a neighborhood of the puncture mapping
to b. If the vertical segment bounding this strip does not converge to I1(c) for some
Reeb chord c, then the limiting tree would be non-constant. Thus, each such segment
converges to the projection of the Reeb chord and since I1(b) is in the image we find
that the whole tree must lie at I1(5).

5.3.3 Blow-up analysis We next show that the limit of any sequence of J—holomor-
phic disks uy: Ay, — T*S 2 with boundary on A K;n can contain at most one bubble.
We also show how to add one puncture consistently to each domain so that this forming
bubble corresponds to some coordinate of the domains of u,, which give points in the
space of conformal structures on the disk with 7 boundary punctures, one distinguished,
Cm ~ R™3  approaching oo (rather than the derivative of u, blowing up).

Lemma 5.11 Ifu,: Ay - T*S 2 is a sequence of J —holomorphic disks with bound-
ary on Ak, and with one positive puncture such that sup,, |duy| is unbounded as
n — 0 then, after adding one puncture in the domains Ay, of uy, we get an induced
sequence uy: Ay — T*S? for which |duy| is uniformly bounded from above.

Proof The proof uses standard blow-up arguments; see eg [32]. Assume that M; =
supp,, |duy| is not bounded as 7 — 0. Using asymptotic properties of J-holomorphic
disks near the punctures of u, see (5-12), we find that for n > 0 there exist points
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Py € Ap such that |duy(py)| = My. View A, as a subset of C and consider the
sequence of maps

gn(2) = u,,(p,, + Min) defined on U = {z €eC:py+ Min € Am},
where A, refers to the domain of u,. Note that the derivative |dgy| of g5 is uniformly
bounded as n — 0. We can thus extract a convergent subsequence, which in the limit
n = 0 gives a non-constant holomorphic disk v: H — T*S?, where H is the upper
half plane, with boundary on A, with a positive puncture at infinity, and no other
puncture. (There may be other bubble disks in the limiting bubble tree, but since there
are no bubbles forming near punctures and since the total topology of the domain
is recoverable from the limit, at least one of them has a single puncture. Note also
that in the limit, only the chords of type L exist.) Fix an arc 4 in A that intersects
v(0H) transversely at a point far from all Reeb chord endpoints. It follows from
the convergence g, — v that there exists a point ¢, in the domain A, for u, with
|py —qn| — 0 as n — 0 such that u,(q,) € II(A). Adding a puncture at g, in the
domain Ay, of u, gives a new sequence of maps u,17: A1 — T*S?. Assume now
that supyp, ., |d u,17| is unbounded. Repeating the blow up argument sketched above,
we would again find a bubble disk v!: H — T*S? in the limit with one positive
puncture and no other punctures.

Since the area contributions of u,17 in a neighborhood of the added puncture ¢, are
uniformly bounded from below and since this neighborhood can be taken to map to
a region far from all Reeb chords, it follows that there are at least two non-constant
disks in the limit, both with one positive puncture and no other punctures. The sum of
the areas of these two disks is bounded from below by 2a(c) + O(n), where c¢ is the
shorter of the two Reeb chords of A. This however contradicts u; having one positive
puncture since the lengths of Reeb chords then imply Area(uy) < a(e) + O(n) and
2a(c) > a(e). The lemma follows. O

5.3.4 Quantum flow tree convergence Consider a sequence uy: A, — T*S 2 of
rigid J —holomorphic disks with boundary on A g ;. Assume, without loss of generality
(see Lemma 5.11), that |duy| is uniformly bounded.

Lemma 5.12 If each of the disks uy has a positive puncture at a Reeb chord of type
L then supy, |duy| is uniformly bounded from below.

Proof Consider the neighborhood N of TI(A) where J is induced by the metric on

A . Since u, maps dA,, to an O(n)-neighborhood of TT(A) there exists € > 0 such
that if |duy| < € then u,(A,;;) C N for all sufficiently small n > 0. [10, Lemma 5.4]
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then shows that the function |p o u,,|2 is subharmonic and, consequently, that the
sequence u, has a subsequence u, that converges to a flow tree; see [10, Lemma 5.6].
In particular the area of u,/ is O(n’). But since u, has a positive puncture of type L,
there is a uniform bound from below on the area of u, restricted to a neighborhood of
this puncture. See the proof of [14, Lemma 9.3], for example. a

Lemma 5.12 leads to a description of the J—holomorphic components in the limit of
the sequence u;, with positive puncture at a chord of type L as follows. Consider a
sequence of points p, in the domains A, of uy such that |du,(py)| = € > 0 for
all n > 0. After passing to a subsequence, we may assume that u,(p,) converges in
T*S2. Consider coordinates 7 +i¢ on C and represent the domain A, C C of uy
by letting the T—coordinate of p; equal 0. Then as n — 0 in the sequence of domains
of uy, some boundary minima of A,, stay at finite distance from p;, and others do
not. After passing to a subsequence we may assume that every sequence of boundary
minima on a fixed height has a limit, which may be finite or infinite, and we find a
limiting conformal structure on a domain Ay, that contains po = limy, py. It follows
in a straightforward way that u, converges (uniformly on compacts) to a non-constant
J—holomorphic disk v: Apyy — T*S 2 with boundary on A. We say that such a disk
is a non-constant J —holomorphic component of the limit.

We next consider the role of the choice of py,. If the sequence of domains A, converges
and if they contain some point g, such that |du,(q,)| = 6 > 0 and if | p; —qy| — o0
as n — 0 then, repeating the above argument, we extract another non-constant J—
holomorphic component v" containing go = lim,—¢ ¢y of the limit, which is distinct
from the component v that contains po. Furthermore, if the t—coordinate of ¢
approaches oo in coordinates where the T—coordinate of p; equals 0 and if a is the
Reeb chord at the positive puncture of v’ then a is also the negative puncture of some
non-constant J—holomorphic component in the limit. Arguing by action it is easy to
see that the number of non-constant components in the limiting configuration is finite.
And since A has only two Reeb chords of almost equal actions the number of such
components is at most two.

We next show that the flow trees in Lemma 5.8 fit together with the non-constant
components to form a quantum flow tree. Consider a puncture {, at 400 in the
domains Ay, of u, that maps to a Reeb chord r of Ag.,. By asymptotic properties
of holomorphic disks at punctures there are n—short vertical segments that separate
¢, from the positive puncture {4 at —oo of A,,. In particular, there is an n—short
vertical segment /() of minimal t—coordinate that separates ¢, from {4 ; we call
it the extremal n—small vertical segment of ¢,. If v: A,y — T*S? is a non-constant
J —holomorphic component in the limit configuration then we write dv = v(dA,) for
the image of v restricted to the boundary.
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Lemma 5.13 If {, is any puncture at +o0 in the domains A, of uy that maps to a
Reeb chord r and if [;) is the extremal n—small vertical segment of { then there exists
a non-constant component v of the limit such that u,([;) converges to a point in 0v.

Proof We prove this lemma by contradiction: if the statement of the lemma does
not hold, then the area difference between a limit disk and the disks before the limit
violates an O(n) area bound. In this proof we let Area refer to area defined by the
Riemannian metrics w(Jy,0), n> 0.

Assume the lemma does not hold. Then there exists € > 0 such that for any sequence of
[ which satisfies the inequalities (5-10) and (5-11), some point on /;, maps a distance
at least € > 0 from dv. Consider a strip region between two slits, [—d, d] %[0, 1] C A,
for which some point converges to a point at distance § from dv, where § <4 < 5.
Let supi_4 41x[0,1] |dun| = K. Then K is not bounded by Mn for any M > 0.
Since the difference between the sum of areas of the non-constant components in
the limit and that of u; is O(n), it follows that |du,| = O(n'/?) (by monotonicity
and a standard bootstrap estimate). Thus K = O(n!/2). Consider next the scaling
of the target by K1 at the image of (0,0) € [—d,d] x [0, 1]. We get a sequence
of maps i, from [—d,d] x [0, 1] with bounded derivative. Note moreover that the
scaled boundary condition is (’)(nl/ 2) from the O0—section. Changing coordinates to
the standard (C”, R") respecting the complex structure at the limit point, we find that
there are maps fy: [—d, d] x [0, 1] - C" with the following properties:

* SUP_q.aixo,1] |1 DX Syl = O('/?), k=0,1,
e Uy + fy satisfies R” boundary conditions, and

° 56‘\11 + fn) = 0(771/2)-

It follows that i1, + f, converges to a holomorphic map with boundary on R”, which
takes 0 to 0 and which has derivative of magnitude 1 at 0. Using solvability of the
5—equation in combination with L?—estimates in terms of area we find that the area of
ily must be uniformly bounded from below by a constant C. The area contribution to
the original disks near the limit is thus at least K*>C'. Since the image of [—d, d]x [0, 1]
in TT(A) has diameter at most 2Kd , we may repeat the argument with many disjoint
finite strips with maximal derivatives K; and with the sum of diameters bounded below
by 155 We find that the area contribution is bounded from below by C sz. Since
the length contribution is bounded below, we get:

€
s> -
ZdE K; 100"
Now,
CE K? > Cinf{K; E K; > C'inf{K;}.
j j{ j} J j{ ]}
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For any M > 0, inf; {K;} > Mn. To see this assume that it does not hold true. Then
there is a sequence of vertical segments /,, such that |du,| < 2Mn with the property
that the distance between u(/;)) and dv is at most %6. This however contradicts our
hypothesis. Consequently, the area contribution from the remaining part of the disk is
not O(n).

Consider now the limit disk v. (For simplicity we explain how to deal with the case
of one extremal vertical segment, the case of many is completely analogous.) On its
boundary there is a point p such that for all n sufficiently small there are points on the
boundary of uy, lying on different sheets of IT(Ak.;,) near v(p), such that both limit
to p, and which in the boundary of the domain of u, separate the positive puncture
from the strips considered above. Fix a small sphere of radius of order of magnitude
Tn around p, where T is a large constant. Then for generic spheres there is an arc yy,
in the intersection of this sphere and the image of u,, that connects the two sheets of
(A pg.,). Write Ey and I; for the two components of the complement of u;l (¥n)
in the domain of u,, where I; contains the positive puncture.

By the above area estimate we have

Areaun(Ep) = [ pdg -0
Yn
by Stokes’ Theorem, since u;, is J;—holomorphic. Now consider the shortest geodesic
arc y,? in the sphere connecting the two endpoints of y;,. Then there is a 2—chain in
the sphere with boundary y,(]) Uy of area O(n?), and clearly | fy}?) pdq| = O(n).

We next construct a 2—chain A with boundary on IT(Ag.y) as follows. The first piece
is the union of u,(/;) and the above 2—chain in the sphere. The resulting chain has
area such that

n_l (Area(uy,) — Area(A4)) > n_l (Area(Ey) +O(n)) = o0 as n— 0.

Now connect p to the start point of the flow tree corresponding to the extremal n—small
vertical segments (that converge to a point at distance € from p). Take the chain that
has boundary the cotangent lift of this curve and that consists of vertical fiber segments.
This chain has area O(1). Finally, consider the analogous chain associated to the flow
tree starting at the end point of this arc. We interpolate between these chains and have
constructed a 2—chain A" with boundary homotopic to the boundary of u, and such
that
Area(A") < Area(uy).

This, however, contradicts the fact that holomorphic curves minimize area in their
homology class. The lemma follows. a
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As a consequence of the preceding lemmas, we get the following result.

Corollary 5.14 Any sequence of rigid holomorphic disks uy with boundary on Ay
has a subsequence that converges to a quantum flow tree. The quantum flow trees that
arise as limits of rigid disks are of the following types:

(QT) No non-constant J —holomorphic components (ie, flow trees), positive punc-
ture of type S and negative punctures of type Sy .

(QTy) Rigid non-constant J —holomorphic component, positive puncture of type L
and negative punctures of type Sy .

(QTf)) Rigid non-constant J —holomorphic component, positive puncture of type L,,
one negative puncture is of type Ly and all other negative punctures are of

type So .

(QT,) Constrained rigid non-constant J —holomorphic component, positive puncture
of type L, , one negative puncture of type S| and remaining negative punctures
of type Sy .

Proof Consider (QTg): if the positive puncture of u; is of type S;, flow tree
convergence was established in Lemma 5.7. For (QTy) and (QT;), assume that the
positive puncture has type L. Convergence to a quantum flow tree follows from the
above: Lemma 5.12 implies that there is some non-constant component in the limit and
the discussion following that lemma shows that the non-constant component is a broken
disk with at most two levels, and Lemma 5.13 then implies that the flow tree pieces of
Corollary 5.9 are attached to the non-constant components. If the positive puncture is of
type L; then by the dimension formula there can be only one non-constant component
in the limit, and this component must be rigid. Since no rigid disk passes through any
chord of type S and since flow trees with negative punctures at chords of type S; are
constant we conclude that (QT) holds in this case. A similar argument shows that
(QT{) holds also when the positive puncture is of type L, and there is a negative
puncture of type L. In the case that the positive puncture is of type L, and all negative
punctures are of type S it follows from the dimension formula that exactly one negative
puncture maps to a chord b of type S;. Since all flow trees with a negative puncture at
b are constant it follows that some non-constant component in the limit passes I1(b).
Since no rigid disk passes through T1(b) it follows that the non-constant component is
un-broken and hence constrained rigid. We conclude that (QT;) holds in this case. O

Remark 5.15 Asin [10], the proof of Corollary 5.14 allows us to control the conformal

structures of the sources of a sequence of rigid disks u,: Ay — T*S 2 with boundary
on Ak, in the following way. The distance from a boundary minimum that maps
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near a trivalent puncture of the tree to its nearest boundary minimum equals c¢n~! +
O(log(n~1)), where c is a constant determined by the quantum flow tree. The distance
between other boundary minima equals ¢’ + o(1), where ¢’ depends only on the disk
component (and its marked points) of the quantum limit tree. Thus, the conformal
structure of the big disk part converges to that of the limiting disk and the conformal
structures (represented as truncated standard domains) of the flow tree parts converge

after rescaling by n~!.

5.4 From quantum flow trees to disks

In this section we construct rigid J—holomorphic disks near any rigid quantum flow
tree. Technical results needed for this were already developed in [10] and [13]. Here
we will thus present the main steps together with detailed references to these two
papers. The construction follows the standard gluing scheme often used in Floer theory:
we associate an approximately holomorphic disk to each rigid quantum flow tree and
use Floer’s Picard Lemma to show that near each such disk there is a unique actual
holomorphic disk. We begin with the following observations.

5.4.1 Properties of rigid quantum flow trees We start by recalling some of the
properties of rigid quantum flow trees of Ax C N C T*(S?) that will be used below.
We will write (1, I') for a quantum flow tree where u: A,, — T*S? is the holomorphic
disk with boundary on A part of the quantum flow tree and where I denotes the flow
tree part.

e Rigid quantum flow trees (u, ") of Ag are of two main types: those with u
constant and those with # non-constant.

e If (u,T) is arigid quantum flow tree with u non-constant then u is either rigid
or constrained rigid.

e If (u,I') is a rigid quantum flow tree then it consists of a (constrained) rigid
disk with a finite number of partial flow trees I" attached along its boundary at
junction points. In the case that u is constrained rigid then the constraint is at
the image in TT(A) of a Reeb chord of type S;. The partial flow trees attached
to the holomorphic disk have trivalent Yy—vertices, 1—valent vertices at critical
points of index 1, and no other vertices.

Rigid quantum flow trees (u, I') with u constant are rigid flow trees of Ag,, C J L(A)
in the sense of [10]. By Lemma 5.7, holomorphic disks with positive puncture at a
Reeb chord of type S lie in an O(n)-neighborhood of IT(A). Consequently existence
and uniqueness of rigid holomorphic disks near each local rigid quantum flow tree
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follows from [10, Theorem 1.2]. (In fact, the convergence rate is O(nlog(n~!)); see
[10].) Because of this we will mainly focus on quantum flow trees with non-constant
u below.

Consider a rigid quantum flow tree (u#, ') and let T'” denote one of the partial flow
trees attached to u at the junction point p, which is then also the special puncture of
I'". Recall that we choose a metric g on A and an almost complex structure on 7*S?
that agrees with that in a neighborhood of TT(A) and that has the following additional
properties:

e The metric is flat in a neighborhood of T".

e TI(Ak;) C T*A is affine outside neighborhoods of a finite number of edge
points, which are points on the edges of I', at least one on each edge. We call
these neighborhoods edge point regions. Furthermore, along any edge IT(Ag ;)
is a product of a curve in the direction of the edge and horizontal line segments
perpendicular to it.

 Near each trivalent vertex IT(Ag.,) C T*A is parallel to the O—section, and
near each critical point IT(Ag.,) C T*A is affine.

5.4.2 Local solutions The approximately holomorphic disks near the rigid quantum
flow tree (u, I") will be constructed by patching local solutions. The local solutions
are as follows:

o The map u: A,, — T*S?. Here the standard domain has punctures mapping
to double points of TT(A) as well as to each junction point and constraining
critical points. See [13, Equations (6.9) and (6.10)] for explicit forms of u near
junction points and double points. The normal form at a constraining puncture
is the same as that at a junction point; see [13, Section 6.5.1 (gd.2)].

e Along each part of an edge between edge points where IT(Ag) is affine we
have a local solution s: [T, T2] %[0, 1] = T*S 2 which is a holomorphic strip
with image in the strip region that consists of straight line segments in the fibers
connecting the two sheets of the tree. See [10, Section 6.1.1] for details.

e Ateach 1-valent puncture we choose coordinates (x1, x;) along IT(A) with
the critical point at 0 and corresponding holomorphic coordinates (z1, z;) =
(x1 +1iy1,x3 +1y;) so that the flow line of the tree lies along the x;—direction.
The local solution sy: [0, 00) x [0, 1] is then

sp(t+it) = (nicy + cye D o),

where 1 — 60y, is the largest complex (Kihler) angle of the intersection point and
where ¢, is chosen so that the distance from s, (04-i¢) to the nearest edge point
is O(n). See [10, Section 6.1.2] for details.
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At each trivalent vertex we chose C2—coordinates as above with the three sheets
corresponding to constant sections with values iv;, j = 1,2, 3, where a flow
line of v; — v, breaks into flow lines of v; —v3 and v3 —v,. Let pq, pa, p3
denote the punctures of a standard domain Ajz. Consider the biholomorphic
maps

Uit As =R x[0,1], j=2,3,

with Uy (p1) = —00, Ua(p3) =1, Ua(p2) =00, Us(p1) = —00, Us(p2) =0
and Us(p3) = 0o. Let aj: R x[0,1] - C?, j = 2,3 be the maps ay(z) =
(v3 —v2)z +ivy, az(z) = (v1 —vz)z. Then sy is a restriction to a subdomain
of Aj cut off by vertical segments of the map

E’? = T](Clonz +as OU3)

such that the vertical segments lie at distance O(nlog(n~')) from an e—sphere
around 0. See [10, Section 6.1.5] for details.

At each junction point we choose C2—coordinates so that the two sheets of
IT(A ;) correspond to R?, and to the section (i1, 0), respectively. We take

wj,,un(z) =(z,0)+ che”“, cn € R2,
n

where the latter sum agrees with the Fourier expansion of « in the strip neigh-
borhood of the junction point.

5.4.3 The domain of a rigid quantum flow tree and approximately holomorphic
disks Consider a rigid flow tree (u,I"). The local solutions discussed above are
associated with domains that are determined by requiring that their vertical boundary
segments map close to edge points. There are in particular finite strip regions of length
bounded below by ¢n~! and above by Cn~! associated to each segment of an edge
between edge points, finite neighborhoods of the boundary minimum in Ajz of the
same size around each trivalent vertex, as well as half-infinite strips associated to
critical points. These regions are patched together over uniformly finite size rectangles
corresponding to the edge points where we also interpolate between local solutions.
We thus get a domain A pm(I’,n) for each tree TV in T'. We construct the domains
Apm(u,I',n) by gluing the tree domains to the disk domain in the strip regions
corresponding to the junction points; see Figure 25.

In this way we obtain the desired domain with a map wy: Ay, (u, I, n) — T*S 2
obtained by patching local solutions, which is approximately holomorphic in a sense
that we will next make precise.
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Junction region

/ 1-\;

e

Figure 25: The domain A ,,(u,I',n) for a quantum flow tree. The light
shaded region is the domain for the disk A with boundary on A, while the
regions I'] and I"}, are domains for two gradient flow trees that are glued to
the disk T".

In order to prove existence and uniqueness of holomorphic disks near rigid flow trees
we need an appropriate functional analytic setting for Fredholm theory. Here one cannot
use standard Sobolev spaces because the domains are degenerating near the limit and
derivatives of maps go to 0 accordingly. For this reason we use weighted Sobolev
spaces. The norms of the natural vector fields associated to shifting the local solutions
are then unbounded as n — 0. To correct this we use instead a subspace of the Sobolev
space determined by a vanishing condition at a marked point in the middle of each
strip region between edge points and add a finite-dimensional space of shifts endowed
with the supremum norm. The total configuration space is then obtained by adding
conformal variations of the target, which corresponds to moving boundary minima and
the marked points of the above mentioned vanishing conditions. More precisely, the
functional analytic spaces are constructed as follows:

e The domain A, ,, of u is cut off as described in [13, Section 6.5.1], at vertical
segments corresponding to junction points and to punctures. In the finite strip
regions near the cut-offs corresponding to junction points of the form [0, dn~!]x
[0, 1] we use an exponential weight peaked in the middle of this strip; see [13,
Equation (6.12)].

e For each flow tree I in T we take the domain A, (I, n) associated to
a partial flow tree as in [10, Section 6.4.1], cut off at a vertical segment cor-
responding to the edge point closest to its special puncture, with the weight
function constructed there. We attach these domains at the vertical segments of
the corresponding junction points. Note that the weight functions match.
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We denote the resulting standard domain A} ,, and the weight function /: Ap ,, —
[1,00). Associated to the junction points are spaces of cut off local solutions. We
denote the direct sum of these spaces with the supremum norm

Vjun

sol *

See [13, Section 6.5.1, page 66]. Associated to each partial flow tree there is a space of
cut off solutions; we denote the sum of these spaces with the supremum norm

VF

sol*

See [10, Section 5.4.1, page 1209]. Furthermore, conformal variations corresponding
to moving boundary minima in the domain of u give conformal variations of Ap ;;
we denote the sum of these spaces with the supremum norm

Vu

con*

See [10, Sections 6.2.3 and 6.3.5]. Finally there are also conformal variations in the
domains of the trees corresponding to moving boundary minima and marked points.
They form a space Veon(I'', 7) and we denote the sum over all trees in T’

Vl"

con*

Finally, we denote the space of vector fields that vanish at the marked points in AZ, m and
that satisfy Lagrangian boundary conditions and are holomorphic along the boundary,
and that have two derivatives in L? weighted by /

%2,5?

where § denotes the small positive exponential weight that controls the size of /.
Then, as in [13], we view the d—operator on function in a neighborhood of a tree as a
Fredholm map

5J: HZ,S ® Vsol ® Veon — HI,S’

where H; s is the Sobolev space of vector fields with one derivative in L? weighted by
h. We denote the norm in H; s by || |1 s and thatin H; s @ Vot ® Veon by ||+ [l2.5-

The proof now follows the same steps as in [13]. First we estimate the approximate
solution:

Lemma 5.16 The function wy, satisfies

185 wyll1.s = O * P 1og(n™h).

Geometry & Topology, Volume 17 (2013)



1080 Tobias Ekholm, John Etnyre, Lenhard Ng and Michael Sullivan

Proof The restriction of 97 wy to the part of the domain corresponding to flow trees
is controlled by [10, Remark 6.16]. The proof is then a repetition of the proof of [13,
Lemma 6.20]. O

Second we show that the differential of 9 J is invertible.

Lemma 5.17 The differential
Lgl 7‘[2,5 @ Vol © Veon — H1,5

is uniformly invertible.

Proof After replacing the vector field v;'* in the proof of [13, Lemma 6.21] with
a sum v™ = gl 4+ b where o is a vector field in H, s supported in the part

of the domain corresponding to T and T € VJ;I ® VI, and using the inductive

procedure for obtaining estimates in rigid flow trees from corresponding flow subtrees
[10, Proposition 6.20, pages 1211-1213] to control v™°, the proof is a word by word
repetition of the proof of [13, Lemma 6.21]. |

Third we establish a quadratic estimate for the d7 —map. We let wy, correspond to
0e 7‘[2,3 @ Vsol @ Veon-

Lemma 5.18 There exists a constant C so that
3y () =037(0)+ Ly (v) + N(v),

where
[N (1) = N@2)ll2,s = C(lvill2,s + llv2ll2,8)[vr —v2ll2s.

Proof See [13, Lemma 6.22]. |

With these results established we get the following result as a consequence of Floer’s
Picard Lemma:

Corollary 5.19 For all sufficiently small n > 0 there exists a unique rigid holomorphic
disk in a finite || - || s —neighborhood of wy,.

The last lemma needed to show the correspondence is the following.

Lemma 5.20 For sufficiently small n > 0, if a holomorphic disk lies in a sufficiently
small C°-neighborhood of wy, then it lies in a om'? |- | 2,5 —neighborhood of it.

Proof See [13, Lemma 6.24]. m|
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5.5 Proof of Theorem 4.3

Consider a rigid holomorphic disk with boundary on Ag,,. By Corollary 5.14, for all
sufficiently small n, u; lies in a neighborhood of a rigid quantum flow tree and we map
uy to that tree. Consider next a rigid quantum flow tree. By Corollary 5.19, there exists
a holomorphic disk u in a small functional analytic neighborhood of its approximately
holomorphic map w; and we map the quantum flow tree to u, . Composing these maps
starting with a quantum tree it is clear that we get the identity. Composing them starting
with a holomorphic disk we also get the identity, by Lemma 5.20: the disk being
C%—close to the approximate solution wy , which follows by definition, in fact implies
that it is also close functional analytically, and therefore unique by Corollary 5.19.

Finally, applying the correspondence between (constrained) rigid flow trees and holo-
morphic disks for the conormal of the unknot in Theorem 5.1 we get a one-to-one
correspondence between rigid quantum flow trees and rigid multiscale trees. |

6 Orientations

The main purpose of this section is to prove Theorems 4.5 and 4.6. To this end we
first give an overview of the general orientation scheme constructed in [16] and then
interpret this scheme in geometric terms for rigid holomorphic disks near quantum flow
trees of Ag.

6.1 The general orientation scheme

We first give a rough outline of the orientation scheme that we will employ below. For
simplicity we restrict attention to closed orientable Legendrian surfaces A inside the
1—jet space J!(S) of some orientable surface S. Let 9 be the operator on functions
v: D — C", where D is the unit disk in C, such that v(e’?) € L(6), where L(6)
is a trivialized Lagrangian boundary condition. The starting point for constructing
orientations of moduli spaces of holomorphic disks with boundary on A is the fact that
the index bundle of 9 is orientable, and that a choice of orientation on C and on R”
determines an orientation on this index bundle. We call this induced orientation the
canonical orientation; see [20, Proposition 8.1.4] (or [16, Section 3.3]).

Consider now a holomorphic disk u: A,, — T*S with boundary on A. In order to
parameterize the moduli space of holomorphic disks near u, we look at the 3 y —operator
as a section of the bundle of complex anti-linear maps over the configuration space
with local chart at u given by H & Cy,, where H is a Sobolev space of vector fields
along u and where C,, denotes the space of conformal structures on the source A,
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of u. In this setting the tangent space of the moduli space can be identified with the
kernel of the linearized operator Ldy acting on H @ Cy,. In order to orient the moduli
space we choose capping operators at all Reeb chords of # with oriented determinant
bundles. Then closing up the boundary condition of u by these capping operators gives
a Lagrangian boundary condition on the closed disk and, provided the Lagrangian
boundary conditions are compatibly trivialized, we may use the canonical orientation
to orient the determinant of the resulting operator. The orientation of the glued problem
and orientations on all capping operators induce an orientation of the determinant
of the original linearized problem. For Legendrian homology in general, the exact
sequence which relates all the orientations of the different operators was introduced in
[16, Equation 3.17]. Together with an orientation of the space of conformal structures
this then gives an orientation on the tangent space to the moduli spaces, as described in
[16, Remark 3.18].

Appropriate trivializations on the boundary condition of # can be defined provided A is
spin. In order to have the above scheme compatible with disk breaking at the boundary
of the compactified moduli space one must choose oriented capping operators at Reeb
chords as positive and negative punctures that add to the trivialized boundary condition
with the canonical orientation. We note also that when discussing orientations we can
stabilize the operator and add oriented finite-dimensional spaces to the source or target
of an operator or take direct sums with other oriented Fredholm problems as long as
we keep track of the orientations that these extra directions carry.

6.2 Basic choices for the canonical orientation

As mentioned in Section 6.1 the orientation scheme that we use derives from orientation
properties of the index bundle over trivialized Lagrangian boundary conditions on the
disk. In this section we study some of the details of this construction. Let L be an

n-dimensional Lagrangian boundary condition on the unit disk D C C, which is
trivialized. Consider the B—Operator acting on vector fields v: D — C” that satisfy the
boundary condition given by L, v(e’?) € L(e'?). Denote this operator 7. Then 9y,
is a Fredholm operator of index

index(d) =n + u(L),

where p is the Maslov index. Since the boundary condition is trivialized, the mon-
odromy of L is orientation-preserving and p(L) is even.

As mentioned above, an orientation of R” together with a choice of complex orientation
in C induces a canonical orientation on the determinant of the operator d7,. This
canonical orientation is obtained by trivializing the complex bundle over almost all
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of D, splitting off a complex vector bundle over CP! at the center of the disk in the
limit. The split problem in the limit consists of the operator dg» on D, where R”
denotes the constant trivialized Lagrangian boundary condition given by R” C C”
with the standard basis, and the 5—operator on a complex vector bundle over CP!.
The determinant of the latter operator is a wedge product of complex vector spaces
and hence has an orientation induced from the choice of complex orientation on C.
The former operator has trivial cokernel and kernel spanned by constant sections with
values in R”; hence, the orientation of R” gives an orientation on its determinant.
For operators near the split limit the kernel and cokernel are isomorphic to the sum of
kernel and cokernels of the split problem and we get an induced canonical orientation of
the determinant of the original problem by transporting this orientation along the path
of the deformation. We call the choice of orientation of R” and C basic orientation
choices.

Remark 6.1 Changing the choice of basic orientation on R” clearly changes the
canonical orientation of det(dy) for every L. Changing the choice of basic orientation
of C preserves the canonical orientation of det(dz) for all L with index(dz) —n =

w(L) divisible by 4 and reverses the canonical orientation of det(dz) for all L with
index(gL) —n = (L) not divisible by 4.

In our calculations below the orientation on R” above will correspond to the choice of
an orientation on the conormal lift of the unknot, which we take as fixed once and for
all. We will denote the chosen basic orientation on C by oc .

Furthermore, the trivialization of the boundary conditions of the linearized operators
at holomorphic disks with boundary on A g are induced from a trivialization of the
tangent bundle 7'A g . Note that the orientation above depends only on the trivialization
modulo 2, ie, on the corresponding spin structure. In the calculations below we will
fix a spin structure on the conormal lift A of the unknot and pull it back to A ¢ under
the natural projection in the 1—jet neighborhood of A.

6.3 Capping operators and orientation data at Reeb chords

As mentioned in Section 6.1 orientations of moduli spaces are constructed using
capping operators at Reeb chords. In this section we discuss capping operators and their
orientations for the conormal lift A g of a closed braid K by applying [16, Section 3.3]
to Ag.

6.3.1 Auxiliary directions Before we start this discussion we note that the construc-
tion of coherent orientations in [16] uses auxiliary directions. More precisely, the
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boundary condition of a punctured disk with boundary on A is stabilized, ie, multiplied
by boundary conditions for vector fields in C? with boundary conditions close to
constant R2 boundary conditions; see [16, Section 3.4.2]. The resulting problem
is split and the operator in the auxiliary direction is an isomorphism. The reason
for introducing these auxiliary directions is that they enable a continuous choice of
capping operators for varying Legendrian submanifolds and thereby simplify the proof
of invariance. When studying kernels and cokernels of linearized operators below we
need not consider the auxiliary directions. We do include the auxiliary directions in
order to use the capping operators in [16], which we discuss next.

We first describe capping operators of the Reeb chords of A g and then connect the
operators to geometry. In Tables 2—5 below we represent the Legendrian submanifold
near its Reeb chords. For detailed properties of the capping operators, we refer to [16,
Section 3.3.6]. The actual Legendrian A g C J!(S?) is stabilized and appears as the
restriction of an embedding A g x (—¢, €)> = J1(S? x (=€, €)?) to (0,0) € (—e¢, €)?.
Reeb chords are generic and hence locally their fronts are determined by the Hessian
for the function difference of the local sheets of Reeb chord endpoints. In [16], the
stabilization is constructed in such a way that the two eigenvalues of the Hessian
of smallest norm are positive and lie in the auxiliary direction. Here we take these
eigenvalues to be of largest norm for simpler combinatorics; see Remark 6.2. In Tables
2-5 the corresponding eigendirections are denoted Aux;, j = 1,2, the two remaining
eigendirections are denoted Real;, j = 1,2, and we will use the following notation:

e §,68,68", 8y are numbers such that 0 < §’ < §” < § < 8y, and such that §’, §”,
and ¢ all approach 0 as the conormal lift of the link approaches the 0—section.

e If A= (A1,...,Am) is acollection of paths of Lagrangian subspaces such that
the endpoint of A; is transverse to the start point of A;4; then fi(1) denotes
the Maslov index of the loop of Lagrangian subspaces obtained by closing up
the collection of paths by rotating the incoming subspace to the outgoing one
in the negative direction. Thus 7 + /i(}) is the index of the d—operator on the
(m 4+ 1)—punctured disk with boundary conditions given by A, where 7 is the
dimension of the Lagrangian subspaces.

e The expressions “Coker, const” and “Ker, const” indicate that the cokernel and
the kernel of some operator can be represented by constant functions, ie, the
actual kernel or cokernel functions are approximately constant in the sense that
they converge to constant functions on any compact subset as the conormal of
the link approaches the 0—section.

Remark 6.2 As mentioned above, our choice of eigenvalues in the auxiliary directions
differs from that in [16] and therefore the capping operators differ as well. It is easy to
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see that this does not affect the DGA: there is a DGA isomorphism relating the two
choices that take each Reeb chord generator ¢ of the algebra to ¢, where the sign
depends on the choice of orientation of the capping operator. In fact, the same argument
shows that any capping operator would do as long as the negative and positive capping
operators glue to an operator with the canonical orientation. Our particular choice of
auxiliary directions here was made in order to allow for a uniform treatment of all
kernel and cokernel elements in the auxiliary directions; see Remark 6.3.

Remark 6.3 As mentioned above, after the capping operators have been defined, we
may disregard the auxiliary directions when studying orientations. The reason for this
is that the stabilized boundary conditions of the linearized operator split into real and
auxiliary directions. Here the boundary conditions in the auxiliary directions give an
operator that is an isomorphism over any disk with one positive puncture and boundary
on A, the capping operators in the auxiliary directions at all negative punctures are
isomorphisms as well, and the capping operator in the auxiliary directions at the positive
puncture is independent of the particular puncture and has index —2 and trivial kernel.
Thus using the canonical orientation for the isomorphisms and fixing an oriented basis
in the cokernel in the auxiliary directions of the capping operators at positive punctures
we get induced orientations of moduli spaces of holomorphic disks with boundary on
Ak . If the orientation of the cokernel of the positive capping operator is changed then
the orientations of moduli spaces change by an overall sign. Thus, auxiliary directions
affect the differential in the Legendrian contact homology algebra of A g only by an
overall sign. We therefore suppress auxiliary directions in our calculations below.

6.3.2 Details for the orientation data at a chord of type S; As indicated in Corol-
lary 5.14 a Reeb chord b of Ak of type S; can appear as a positive puncture for
a disk of type (QT) and a negative puncture for a disk of type (QT;). Let 5b+
(respectively, 9p—) denote the capping operator associated to the Reeb chord b of Ak
when it appears as a positive (respectively, negative) puncture of the J;—holomorphic
(see (5-1)) disk u,). Although as Lemma 3.7 indicates, there are many such chords of
type S1, each is a parallel translate of the other; thus, we can consider their capping
operators simultaneously.

At a Reeb chord b of Ag of type Sy, 51,— splits into two 1—dimensional problems.
Recall that auxiliary directions are disregarded. Because the grading of b is odd, the
conventions set in [16, Section 3.3.6] imply one 1-dimensional problem has index 1
with 1-dimensional kernel and the other has index —1 with 1—dimensional cokernel.
This is indicated in the two left “Real” columns at the bottom row of Table 2.

Consider first the index 1 component. This operator is an operator on a Sobolev space
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Aux; Aux, Real, Real,
Front @ @
Lagrangian X X
Lo oo

Complex angle,
positive puncture

T—38

JT_S//

Complex angle,
negative puncture

:
|

5/

=3
N

Closing rotation,
positive puncture

AR
AR [

;
;

—(r=9)

—(r=9)

-5

|
(o)
I

Closing rotation,
negative puncture

|
\

—(mr—§")

—(r—8")

Capping operator,
positive puncture

i

e—i(2n—5)s
p=—2

index = —1

Coker, const

ih
x
x

e—i (2x—6)s
p=—2
index = —1
Coker, const

e—i&’ s
p=-1
index =0
Isomorphism

Y7
e i8"s

n=-1
index =0

Capping operator,
negative puncture

;
;
:

e—18s

n=-1
index =0

e—z&s

i=-1
index =0

Isomorphism Isomorphism

eiS’ s
p=0
index =1
Ker, const

z
=
5
%e
=.
2

e—i(2n—8”)s

Table 2: Capping operator at a chord of type S;. The direction corresponding
to the angle &’ is along the flow line in the direction of the unknot parameter.
The direction corresponding to the angle §” is the direction of the fiber of the
conormal bundle.
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Aux; Aux, Real, Real,
Front X @
Lagrangian X X
e

Complex angle,

negative puncture T8 s

i
|

Closing rotation,
negative puncture

RN
LR

_8/ _(n _ 8//)
e
Capping operator, e~ e~ ios e~i¥'s ei8’s
negative puncture n=-1 n=-1 n=-1 a=0
index = 0 index =0 index =0 index =1

Isomorphism Isomorphism Isomorphism  Ker, const

Table 3: Local data at a chord of type Sg

of complex-valued functions on the disk with one boundary puncture. As the parameter
8’ — 0 in Table 2 we continue the operator family continuously to the limit by intro-
ducing a small negative exponential weight in a strip neighborhood of the puncture. In
the limit, the kernel is spanned by a constant real-valued function. By continuity, it
follows that solutions near the limit are close to constant functions, and in particular,
the L2—pairing with a kernel function is close to the L2—pairing of the corresponding
constant function in the limit. We thus fix an orientation of the kernel of the index 1
component of the capping operator at b by fixing a vector

vk (b) € Tp A

parallel to the direction of the knot. To see that v*"(b) should be chosen parallel to
the knot, note that the direction of the knot is the direction of the Bott manifold of
Reeb chords of Ay and hence corresponds to the smaller of the two eigenvalues of the
Hessian.

Similarly, elements in the cokernel of the index —1 component are solutions to a
dual boundary value problem for the d—operator. The cokernel functions converge to
constant real valued functions as §” — 0 and we fix an orientation in the cokernel by
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Auxq

Aux,

Reall

Realz

Front

Lagrangian

;

Complex angle,
positive puncture

;

KNG

HERA N

) 8 T —do
— —
Complex angle, Q\/ Q\/ X
negative puncture T—8 T—6 5
- - —_— s —
Clo.s1.ng rotation, sl i
positive puncture —(r —6) —( —§) —(r—8) —8
Closing rotation, ~ ——=<"] =] =] \/Q
negative puncture 5 _§ _g — (7 —8o)
—
T T TS T
Capping operator, e iQn—0)s e~ i@n—8)s e i(m—0")s e~ idos
positive puncture n=-2 n=-2 n=-1 n=-1
index =—1  index = —1 index =0 index =0
Coker, const Coker, const Isomorphism Isomorphism
T T
R S
Capping operator, e~ ids e~ ids e~ +8)s eidos
negative puncture n=-1 n=-1 w=-2 a=0
index =0 index =0 index = —1 index =1
Isomorphism Isomorphism Coker, const  Ker, const

Table 4: Capping operator at a chord of type L; . The direction corresponding
to &' is along the equator (along the parameter of the unknot). The direction
corresponding to g is perpendicular to the equator (along the fiber).

fixing a vector

perpendicular to the direction of the knot, which is the direction corresponding to the
positive eigenvalue of the Hessian along the Bott manifold of Reeb chords of Ay and
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Auxq Aux, Real; Real,

o s

Lagrangian e
Complex angle, KZ KZ \% Q
-8 T — 8o

positive puncture

Closing rotation, / K -y \/L

positive puncture —(r—§) —(r—8) _s

Capping operator, —1(271 8)s —1(211 8)s —lSs —l(n+80)s

positive puncture w=-2 w=-2 w=-1 n=-2
index = —1 index = —1 index=0  index = —1

Coker, const Coker, const Isomorphism Coker, const

Table 5: Capping operator at a chord of type L;. The direction of 4§’ is along
the equator. The direction of §y perpendicular to it.

hence corresponds to the largest eigenvalue after perturbation. The basis
(UCOker(b), vker(b))

determines the orientation of the operator 9p—, and constant functions with values in
the lines spanned by the basis vectors are approximate solutions.

When b appears as a negative puncture, we see from its parity and the conventions of
[16, Section 3.3.6] that both the kernel and cokernel are trivial.

6.3.3 Orientation data at a chord of type Sy,L; or L, The discussion for the
other types of chords is similar to that of chords of type S; in Section 6.3.2, so we
discuss them only briefly here. Recall that while a chord of type L; can appear as a
positive or negative puncture, chords of the other two types only occur as punctures of
one sign.

A Reeb chord a of Ag of type Sy has even parity and only appears as a negative
puncture. Thus, as indicated in Table 3, the capping operator . splits into two
1-dimensional problems, one of index 0, which is an isomorphism and one of index
1 with 1-dimensional kernel. As in Section 6.3.2 the kernel functions of the index 1
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component are approximately constant and we fix an orientation of the capping operator
by fixing a vector

V(@) € Ty A

perpendicular to the direction of the knot. We can assume v*"(a) is perpendicular to
the knot because the second real coordinate (the last column in Table 3) represents the
unstable manifold of a, thought of as a braid saddle point. Constant functions with
values in the line spanned by this vector are approximate solutions of 0.

Noting the parity of the grading of a chord ¢ of type L; and a chord e of type L,, the
conventions of [16, Section 3.3.6] imply the two capping operators each split into two
1-dimensional problems with kernels and cokernels as indicated in Tables 4 and 5. As
above, we fix orientations on these problems by fixing vectors v*"(c), v°°**"(¢) and
vcoker ( e) .

6.4 Signs in the unknot differential — proof of Theorem 4.6

Fix the Lie group spin structure on A. The corresponding trivialization of TA is
then the canonical trivialization of the tangent bundle of the 2—torus coming from the
identification T2 = R?/Z?. Here, we take coordinates on A as described in Section 4.

Recall for the unknot there are four rigid flow trees In, Is, Yy and Yg with one
puncture, which is at ¢, that contribute to dc, and there are two rigid strips with positive
puncture at e and negative puncture at ¢c. Consequently, by Theorem 5.1, for o > 0
sufficiently small there are four corresponding rigid holomorphic disks with positive
puncture at ¢ and two corresponding rigid holomorphic strips £; and E, connecting
e to c. We next compute their signs.

Theorem 6.4 For any choice of basic orientations there is a choice of capping operator
at ¢ such that the signs of the rigid disks satisty

e(Is)=€e(Iy)=€(Ys) =€(Yn) =1,
€(E1) = —€(E2).

Proof We first show that €(/s) = €(I). To this end consider a geodesic arc in S?2
that passes through IT(c) and that contains both poles. Let x; be a coordinate along
this arc with IT(c) corresponding to 0 and let x, be a coordinate perpendicular to the
arc. Then {x = (x1,x2) : |x1]| < 7 + 8§, |x2| < §} parametrizes a disk D in S? and
we find a complex trivialization of the tangent bundle of 7(7*S?) over D by noting
that the metric is flat and using coordinates (x +iy).
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Let . denote the positive capping operator at ¢, let 9 denote the linearized boundary
condition of any one of the four disks with positive puncture at ¢, and let I denote the
problem on the closed disk obtained by gluing these two. Then the following gluing
sequence is used to orient moduli spaces:

0 — ker(d7) — ker(d;) — 0

See [16, Equation (3.17)] and Table 4. Note first that the trivialized boundary conditions
of Iy and I g agree. The signs of the disks are then obtained by comparing the oriented
kernel of 3; with the orientation induced by conformal automorphism. Note furthermore
that if u: A; > T*S? isa parametrization of I then —u parametrizes [g, where
—(x +1iy) = (—x —iy) in the coordinates discussed above. Since the automorphism
group of Ay is 2—dimensional the signs of the two disks agree, e(Iy) = €(lg). An
identical argument shows that €(Yy) = €(Ys).

After noting that the orientation of the capping operator at ¢ determines the sign in the
orienting isomorphism above, it remains only to show that €(/y) = €(Yxn) to complete
the proof of the first equation. To this end we compare the boundary conditions of
7, and dy, . Note that the boundary conditions of the disks are arbitrarily close to
the boundary conditions of the corresponding trees and that the trees I and Yy are
identical except near the north pole, (x1, x;) = (7, 0). Using the trivialization (over
the disk D above) of the (x + iy)—coordinates around the north pole, the Lie group
spin of the torus A is (ds, d¢) and induces the trivialized boundary condition

(cost dx, +sint dy,, —sint dy, +cost dy,)
on the Ip —disk and
(cost dx, —sint dx,,sint d,, +cost dy,)
on the Y —disk.

Now, the homotopy of Lagrangian boundary conditions that are given by acting by the

complex matrix
1 0
0 ele ) 0 S 9 S T,

takes one trivialization to the other and we conclude that multiplication by the matrix
at § = & takes the positively oriented kernel of 511\, to that of 5YN' Comparing
this orientation to the orientation induced by source isomorphisms, for example by
evaluation at a point where the disks agree, we find that the signs of the two disks
agree.
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The argument for finding the signs of the two disks E; and E, is similar to the
above arguments: both disks come from flow lines and their boundary conditions are
identical. Again the disks are related by multiplication by —1 in suitable coordinates.
Here however, the kernel of the linearized operator and the automorphism group are
both 1-dimensional and it follows that multiplication by —1 reverses orientation. The
lemma follows. a

In our computations of the signs for the differential in the Legendrian algebra of Ag
we will use the capping operators of chords of type L, and L, which correspond to
the capping operators of e and c, respectively, for which Theorem 6.4 holds.

6.5 Conformal structures

Conformal parameters for flow trees are best represented as moving boundary minima
in standard domains; see Section 5.3.1. In the general orientation scheme of [16] the
space of conformal structures was represented as the location of boundary punctures
on the unit disk in the complex plane. The main purpose of this section is to relate
these two representations in order to allow for the representation best adapted to trees
to be used in computations.

Consider first the representation of conformal structures Cp,, used in [16], on the (unit)
disk Dy, in C with m > 3 boundary punctures py, ..., pm—1. Recall punctures are
ordered counter-clockwise. Fix the (distinguished) puncture po at 1, p; at i, and
Pm—1 at —i. Then the locations of the remaining punctures in the boundary arc between
i and —i determine the conformal structure uniquely. Thus the space Cp, of conformal
structures on the disk with m boundary punctures, one of which is distinguished, is an
(m — 3)—dimensional simplex. We write b; for the tangent vector that corresponds to
moving the j® puncture p ; in the positive direction and keeping all other punctures
fixed. Then b,,...,b;— is abasis in TCpy,.

Consider second the representation of C;, using standard domains A,,. Recall that a
standard domain is a strip with slits of fixed width, that a standard domain determines
a conformal structure on the disk with m boundary punctures, and that two standard
domains determine the same conformal structure if and only if they differ by an overall
translation. Assume that m > 3 and let ¢; € T'Cy, denote the tangent vector that is the
first order variation that corresponds to moving the ;™ boundary minimum toward
—oo and keeping all other boundary minima fixed.

Lemma 6.5 Let m > 3. Then

i m—2
= Ebg+ > nibg € TCo.
k=2 k=j+1
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where &, >0, k=2,...,j and np <0, k = j+1,...,m—2. In particular, we
can represent T Cy, as the vector space generated by tq,...,t,—, divided by the 1-
dimensional subspace generated by the vector

h+ir+-+ip2,

and the orientation given by the basis b,, . . ., by, agrees with that induced by t, ..., ty.

Proof Consider the map which takes a neighborhood of 4 o0 in an infinite strip to a
neighborhood of the origin in the upper half plane:

w=—e "*
Under such a change of coordinates the vector field 1 on the w—plane corresponds to
the vector field 7~ !e™? on the strip since

Let H_s.x denote the Sobolev space of vector fields along Ay, that are tangent to A,
along the boundary and with a small negative weight at each puncture, ie, a weight
function of the form e %! in a strip region, v 4+ it € [0,00) x[0,1] or T + it €
(=00, 0] x [0, 1], and with k derivatives in L2. The d—operator 0: H_s:k = H_s:k—1
has index

I=(m—=2)=—(m=3),

where 1 = dim(R) and —(m — 2) is the Maslov index of the boundary condition with
a negative half turn at each boundary minimum. The exact degree of regularity of the
vector fields we use will be of no importance and will be dropped from the notation.
Let bj’. denote cut-off versions of the vector fields e™* supported in the j™ strip end.
Then we can think of 7°C,, as the quotient space

O H_s ® (b, ..., bl _))/0(H_s).

In this setting, we can interpret #; as follows; see [10, Section 2.1.1]. Consider Ay, CC
and let z = x + iy be the standard complex coordinate on C. Let 7; denote a vector
field on C supported in a small ball B, centered at the j™ boundary minimum and
equal to —dy in B,/ and tangent to the boundary of Ay, in B, — B, ;. The conformal
variation #; is then represented by 97} € H_s. (To see this, linearize the comparison of
conformal structures k and d¢p~ 'k d¢, where ¢: A, — A,y is a small diffeomorphism
associated to the vector field 7}, To first order, dop Vkdo ~« +K§Tj .) Because {gb;C e
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spans the cokernel of the operator 9,

m—2
0T = Y ay(0by) + v,
k=2
for some v € H_gs and real constants «5,...,0,—y. We first show that o # 0,

k =2,...,m—2. Define the vector field w: A,; - C as w = T; —Zkockb;{—v.
Then w satisfies a Lagrangian boundary condition of Maslov index —(m — 3) and
lies in a Sobolev space with exponential weights as follows. The weight is —§ in the
strip-like end around the puncture at —oo, at the first and last punctures at +o00, and at
all punctures for which oy = 0. It is —z — 4§ at punctures where ay # 0. If the number
of punctures with oy = 0 is N then the index of the 5—0perator on the Sobolev space
with Lagrangian boundary condition and weights as just explained equals

index(d) =1 —(m—3)+(m—3—N)=1—N.

Note that w # 0 since 7; is not tangent at the boundary while v + Z;c";zz Otkb]/C is
tangent. Since Jw = 0 and w # 0, it follows by automatic transversality in dimension
1 (ie, the argument principle) that N = 0, ie, oy 5~ 0, for all k.

To determine the signs in the expression for #;, consider the limit as the shift of the
boundary minimum goes to —oo. In this limit the disk A,; splits into three components:
a three punctured disk containing the puncture at —oo and two punctures at 0o where
two standard domains A, and A,,~ are attached. We choose notation so that the
punctures in A, at 400 below the moving slit end up in A, and those above in A, .
From the point of view of the representations of conformal structures via boundary
punctures on the closed disk, the punctures in A, collide at i and those in A, collide

at —i. As the coefficients ay, k = 2,...,m — 2 are non-zero for the infinitesimal
deformation #; at each instance of this total deformation, it follows that oz > 0 for
k< jand ap <0 for k> j. o

Remark 6.6 Lemma 6.5 also has an intuitive justification using harmonic measure.
Suppose the conformal structure changes by slightly decreasing the j™ boundary
minimum. Then the harmonic measure of the j" slit (the probability of a Brownian
motion particle first hitting the boundary of A, at that slit) increases while the measures
of all other boundary components decrease. Harmonic measure is preserved under a
conformal map from A, to Dy,. Thus, the corresponding changes in measures of the
boundary arcs of D,, can only occur if puncture p; moves in the negative direction
for i =2,...,j and the positive direction for i = j +1,...,m —2.
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6.6 Signs of rigid quantum flow trees — proof of Theorem 4.6

In this subsection we compute the signs of rigid quantum flow trees determined by
Ak C J'(S?) and thereby prove Theorem 4.6. Recall from Corollary 5.14 that there
are four types of rigid quantum flow trees: (QTg), (QTy), (QT;) and (QT;). We will
consider each case separately.

Let A denote the Lagrangian boundary condition, suppressing auxiliary directions, on
the domain A, of the linearized 5—problem corresponding to the J;—holomorphic
disk uy. Recall that we think of n > 0 as small; see (5-1). As in [14, Section 6], we
must close up the boundary conditions at each puncture using a “negative J—twist.”
This is illustrated in Tables 2—5 under the “Closing rotation” row(s). Note that this may
contribute to the index of 3. Let 4 denote the linearized problem with this boundary.
Let A denote the boundary condition after adding the appropriate capping operators.
Define 9 4 similarly. For each of the four cases above, we must compute the exact
sequence [16, Equation 3.17].

6.6.1 The sign of a quantum flow tree of type (QT4) A rigid holomorphic disk
near the limit in a neighborhood of a quantum flow tree of type (QT) lies in a small
neighborhood of a rigid flow tree in A C J1(S?) determined by Ag. Let I' be
such a rigid flow tree with positive puncture b and negative punctures ap, ..., d;—1 .
Recall that, since the front of Ax C J'(A) has no singularities, all vertices of such
a rigid tree are trivalent Yy—vertices except for 1—valent vertices at Reeb chords.
Let #q,...,t,—> denote the trivalent vertices of I'. Note that each trivalent vertex
corresponds to a boundary minimum in the domain A, of the holomorphic disks u;,
which corresponds to I' for small 1. We number the trivalent vertices according to the
order of the corresponding boundary minima in the vertical direction of the complex
plane. We write 7; for the boundary minimum corresponding to the trivalent vertex ;.

Lemma 6.7 There exists a choice of basic complex orientation oc such thatif n >0
is sufficiently small and if u,, is a rigid holomorphic disk in a neighborhood of the rigid
flow tree I" then the sign of uy is given by

E(Lln) =e(l) = O'pos(F)U(n’ r),

where n = v°°%"(b) ; see Section 3.4.4 for notation.

Proof Since 7 is small, uy, lies close to I'. Using the trivialization of 7'(7T*S?) in a
neighborhood of A induced by the trivialization of 7'(T*A), the boundary condition
A is very close to constant R? boundary conditions (for C?—valued vector fields) on
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Ay, . For such disks with m punctures, using closing rotation angles from Tables 2
and 3, we compute

index(94) = (A)+2=(m—1)x (=) + 1 x04+2 = —(m—3).

Adding capping operators at the punctures to 4 — see Table 2 for the positive puncture
and Table 3 for the negative punctures — we get a boundary condition A on the closed
disk, which also has boundary conditions very close to constant. It follows that ker(g 4)
is 2—dimensional with kernel spanned by almost constant sections, and that coker(d 4)
is 0—dimensional. By definition of the canonical orientation, see Section 6.2, the
positive orientation of the determinant of 97 is represented by a basis of its kernel,
which converges to constant solutions that form a positively oriented basis of TA (and
a positive sign on its 0—dimensional cokernel).

Consider first the case m1 = 2. In this case the tree is simply a flow line, and the
operator d4 has index 1 and a 1—dimensional kernel spanned by an almost constant
solution that converges to v°"(I") as n — 0; see Section 3.4.4 for notation. The exact
gluing sequence that determines the orientation is then (see [16, Equation (3.17)]):

0— ker(gg) — ker(gal_) @ ker(d4) — 0

Here ker(gal_) is spanned by an approximately constant section that converges to
v’ (@), which is perpendicular to I'; see Table 3. It follows that the sign of the
disk agrees with the orientation sign of the basis (v**'(a;), v1°V(I")) of TA, where
v1°%(T") is the vector field induced by the automorphism of the strip, times the sign
of the determinant of the capping operator of a positive puncture at b, which is an
isomorphism.

Gluing the positive and negative capping operators 5b+ and dp_ at b gives an operator
dpo of index 0 with dim(ker dpo) = dim(coker(dpo)) = 1. Here the kernel is spanned
by the constant solution v**"(b) and the cokernel by the constant solution v°°%"(h) of
the dual problem. Note that the canonical orientation of det(gbo) changes with oc.
Choose oc so that v*"(h) A v°keT(b) represents the positive orientation of det(dp) if
(voker(b), vk (b)) is a positively oriented basis of T'A. Then the sign of the disk can
be expressed as

sign (V"(T), V5" (b)) - (V" (@), v (b)) = opos(T)o (2. T)
as claimed.

Consider the case m > 3. Here the exact gluing sequence that gives the orientation is

(6-1) 0 — ker(d 7 S ker(9_) E) coker(d4) — 0,
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where we write:

Since uy) is arigid disk and index(gA) =—(m—3), we get that dim(coker(&)) =m-3,
and that coker(d4) is spanned by linearized conformal variations which we represent
as motion of the boundary minima in the domain; see Lemma 6.5. Here ker(g 7)) 1s
endowed with the canonical orientation and ker(d_) with the orientation from capping
operators. The sequence then induces an orientation on coker(d4), which gives a sign
when compared to the orientation induced from the space of conformal variations, as
indicated in [16, Remark 3.18].

Applying Lemma 3.1 and Remark 3.3 of [16], the map « is defined as follows. An
element in ker(aa _) is a solution of the B—equatlon with boundary condition given
by the negative capping operator at @; . This solution is cut off and thereby defines an
element in the space of sections over the closed disk. In this way, we identify ker(9_)
with an (m — 1)—dimensional subspace of the domain of the operator 94. The map
« is then given by L2—projection of ker(d 4) to this subspace. Likewise, we identify
coker(d,4) with a subspace of the target space of 94 by cutting off solutions of the
dual problem and define the map B as 94 followed by L2—projection.

The boundary condition of u; is very close to constant R? boundary conditions and
the complex (K#hler) angles at the punctures are close to either 0 or . Thus there
is a deformation of 3, that takes the boundary conditions to constant R? boundary
conditions and that introduces a small negative exponential weight where the complex
angle is close to 0 and a small positive exponential weight where it is close to m,
which is sufficiently small so that the kernel and cokernel of 94 undergoes a continuous
deformation (in particular dimensions of kernel and cokernel do not change). The
capping operators can be deformed accordingly. We will use these deformed operators
to determine the sign in the gluing sequence above. For simplicity, we will keep the
notation d4 and 9 7 for the deformed operators.

We next introduce notation for parts of the tree I" as well as for corresponding parts of
the domain A,,. See Figure 26.

We write E;; for the edge connecting the i ™ trivalent vertex #; to the j, tj, and
R;j for the (finite) strip region in A, corresponding to E;;, where we think of the
boundary of R;; as vertical line segments located to the right of the i™ boundary
minimum 7; and to the left of the ", 7j. We write E( for the edge ending at the
positive puncture and we take R to be the half strip with a slit in A, with boundary
given by the two vertical segments bounding Rj; and R;;/, where 7; is the minimal
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Ry
T/ R3
Ry %
R>
T; R1
Figure 26: The graph I' and domain A,
boundary minimum. We write E;, [/ = 1,...,m — 1 for edges that end at negative

punctures and R; for the corresponding half infinite strip which is a neighborhood of
the /™ negative puncture in A,,.

Then
— ( U R; U U Rik)
E;CcTl E;.Cl,i<k
is a disjoint union
U
1<i<m—2,i#]

where V; is a neighborhood of ;. Consider the vertical segment / through 7;. The
boundary d/ of / lies in the boundary of A,,; if the boundary segment containing
the lower endpoint of / lies in the lower boundary on A, we define i_ = 0 and if it
lies on a boundary segment containing t; we define i = k. Likewise, if the upper
endpoint lies in the upper boundary segment of A, then we define i =m — 1 and if
it lies in a boundary segment containing 7z, we define iy = k’. Note that i— <i <i4.

In order to deal with coker(gA) we introduce below the space V.o, of conformal
variations of A,,. Write 77" for the conformal variation supported in V;. Then
94 (/") = du,,(a(a,)) Where 3. is a cut-off of the constant vector field d; supported
in V;. See Section 6.5. Thus, as 7 — 0, d4 (v;/°") is supported in three rectangular
regions Ri s =0, 1, 2, containing the vertical segments in the boundary dV; and lying
in the strip regions corresponding to the incoming edge Ej ! and the outgoing edges £ d
and E}, respectively, at #;. Thenin R, s =0,1,2, 04 (D"‘O“) approaches BT’ where
5Ti is a cut-off constant vector field tangent to E s=0,1,2, drrected towards the
positive puncture For the purpose of calculating signs we thus replace v;°" with v;/",
where 4 v = a(T Ly T} Iy T’) and think of V., as the vector space spanned by
the m — 3 conformal variations v;°", i # j.

Let H4 and H'y (respectively H 4 and H';) denote the spaces of vector fields on the
closed disk D (respectively the punctured disk A,,), which are the domain and target,
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respectively, of 5,4 (respectively of Fl 7 Recall that
5AI Hag D Veon — 7‘[1/4

is an isomorphism because ker(d 4) is trivial and coker(gA_) is mapped onto by 94 (Veon).
Viewing A, as a subset of D, we define 9 ;(v;") = d4(v;*") for v;*" € Veon and
write

— ) ,
a,,:Ik,con' HZ@ VCO“ - H/’f

for the operator with extended domain. Then F] 1 con 18 an operator of index 2+ (m—3)
which has a (m — 1)—dimensional kernel.

We will define a map : Veon — ker(g_) such that Bovr: Veon — coker(gA) (see (6-1))
is an isomorphism that induces the same orientation on coker(d,) as the isomorphism
94: Veon — coker(d ). It then follows that the sign of the disk uy equals the sign of
the determinant of the isomorphism

ker(d T con) X ker(d ) @ Veon ﬂ) ker(9_)

between oriented vector spaces, where « is as in (6-1). To finish the proof we must
thus first define { and then compute o and the resulting determinant.

We introduce certain vector fields on A, that are supported in neighborhoods of the
strip regions of the form R; or Ry; in A, associated to edges in I' as explained
above. We will call these vector fields edge solutions. More precisely, we take n (1) and
ng to be constant sections supported in Ry, cut off in a neighborhood of its boundary
where n(l) is tangent to the second outgoing edge at #; and n% tangent to the first; see
Figure 27.

Along edges E;; (respectively E;) we define two cut-off constant vector fields: v;x
(respectively w; ) perpendicular to the edge and ;. (respectively ;) tangent to the edge.
Here ;5 (respectively ;) has support in a neighborhood of R;j (respectively R;),
whereas v;; (respectively w; ) has support in a neighborhood of R; U V;; see Figure 28.
We call vj, i and §; interior edge solutions and w; exterior edge solutions.

Furthermore, we assume that the elements v;*" € V¢oq are chosen in such a way that
the following holds: in any component C of the support of d4v;°" lying in an edge
region Rj; or R; the corresponding edge solution ;5 (or {;) satisfies the matching

11 i con — con
condition 9,48, = d4v;°" (or 948 = d4v;°").
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.
Tj

supp(ng),k =1,2

I’

I

Figure 27: Vector fields supported in R

We can now say that the (m 4 1)—dimensional kernel of 8 7 copn 18 spanned by m + 1
linearly independent sections

kg =ng+ (Wi +--+wj) +E},

kg =ng+ Wjt1 + -+ +wm) +E7,
i = (—(Wi_1+---+wi) + (Wi +---+wiy))
—an(l)’rl(z,-)v,?‘)“-i—Ei, 1<i<j-—1,
ki = (—(wi_41+-+w) + Wipr +--- +wiy))
=02 p2 )07 + B, jH1=i=m—1,

where I'! and I"? are the partial flow trees obtained by cutting I" at the first and second
outgoing edge at #;, respectively, and where o, - is as in (3-10). Here E', i # j (resp.
E;?‘, o =1, 2) are some linear combinations of interior edge solutions and conformal
variations, respectively, that are supported in the component of A, —s, where s the
vertical segment through 7; (resp. 7;), that contains punctures at +o00; see Figure 29.
(The matching conditions for edge solutions imply that linear combinations E; and
E;?‘, o = 1,2, exists so that the sections indeed lie in ker(d T con)”

,con

Using these equations we define the map ¥ as follows:

V(i) = oy rs () (—(Wi_g1 4+ wi) + (Wigr + -+ wiy ) + Ep),
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T

Tk
Pal
/
supp(§ik)

P supp(w;)
K

Figure 28: Supports of edge solutions

P supp(Ex)

e
g

Tk

Ik

—_
Ej supported here

Figure 29: Support of additional interior edge solutions

1101

where s =11if i <j and s =2 if i > j. Since i =0 we have, by construction of
ki, 9y (v;) = dv;. By definition, the orientation on coker(d,4) induced by conformal
variations is given by L2—projection of d4(Veon) (With orientation on Vo, as in

Section 6.5). Thus B o v induces the correct orientation on coker(d4).
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In order to compute the sign we first note that the projection of the subspace spanned
by K1,...Kj—1,Kj4+1,...,Km—3 t0 Veoq is an isomorphism and that the map from its
complement spanned by Ké , Kg given by evaluation at the positive puncture gives an
isomorphism to ker(d7), which consists of constant solutions. It follows that the sign
of the rigid disk uy is given by

e(u,,) = 8515253,

where s, kK = 1,2, 3 are as follows. First, s; equals the sign of the orientation given
by

Eg NESNEL A NE_1 NEjp1 Nm—
on ker(3d_) where

£y =wi+-+wj,

£ =wjp1 4+ Wi,

§1=—wr + (w2 +---+wry),

Er = —(wa_41+w2)+ (w3 +---+wayy),

Ei—1=—(wg—n_41+-+wj—1) +wj,

Eir1=—(wj+1) + (Wjt2+--+wiit1),),

Em—1 = _(w(m—Z)_—H + W) + Wy
Second, s, equals the sign of the orientation on V., given by

(O—n(l),l"l (tl)vlcon) ANARA (O—n(l),l"1 ([j_l)vjcgnl
con

A(O2 02 (G4 DV Ao A (02 02 (lm=2) V")
Third, s3 equals the sign of the orientation on ker(d 7) given by
g AT,

where 72 is a constant solution agreeing with ng in the region where nj is constant,
s=1,2.
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‘We have

Eg NEGNEL N NE_1 AEjr1 Am—
= (=) EINE A A NEEAEj 1 A2
= (=D wi A Awpey
) m—1
= (=177 TT (ws. v (@) V" (@r) A+ AV (@m—1),
s=1

and thus
m—1
51 = (—1)/ 7! l_[ (ws, V™ (ay)).
s=1
Next,

VI A AV AVj 1 A  AUm—a = (1) T 9g, A A Dy,

by Lemma 6.5, where dg4; A -+ A dg,, is the standard orientation of Cp, corresponding
to moving the last m — 3 punctures counter clockwise along the boundary of the disk,
and thus

j—1 m—1
j—1
s2= (7 [Tou @) [T o2 r2).
s=1 s=j+1

Finally, recall that oc was chosen so that v°°%"(h) A V*°"(b) represents the positive
orientation on TA. Since v*'(b) is parallel to the vector v<°(z;) related to the
conformal variation at 7;, we find that

=1 , =2 1 2 1 2
nyAng = (ny+ng) A(=ny+ng)

= ((n} +n3), v (b)) (—nd + nd), VX (b)) v (b) A VFT(B)
= ((ng +ng), v (B)a (1) (vp™, v (b)) v () A V(D).

Thus, if n(l) and n(z) are the vector splittings of v°°**(b) then s3 = o'(Z;), and

515283 = Opos(I)o(n, T). a

6.6.2 The sign of a quantum flow tree of type (QT()) Let E be a quantum flow
tree whose big disk part is a rigid strip ©®. Assume that 5 has m punctures. Let
e denote its positive puncture (a Reeb chord of type L,), let ¢ denote its negative
puncture (of type L) and denote the remaining punctures by aq,...,a;—; (all of
type Sp). It then follows that ® is a strip with positive puncture at a Reeb chord of A
close to e and negative puncture at a Reeb chord of A close to c¢. Let #q,...,t;—1
denote the junction points (ie, the points on the boundary of ® where trees are attached)
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and the trivalent vertices in the trees attached. Then each ¢; corresponds to a unique
boundary minimum 7; in the domain A, of a holomorphic disk u; corresponding to
n and we number the points #; according to the vertical coordinate of the boundary
minima 7; in A, . We write Z for the set of junction points of E and for 7; € 7 we
write I'; for the tree attached at 7; and n; for the vector at #; that is tangent to the
boundary of ® and points toward the positive puncture e.

Lemma 6.8 The sign of the rigid disk uy corresponding to & is given by

€(un) = €(E) = €(0) | | o(nj,Tj);
tj (SYA
see Sections 3.4.4 and 4.3 for notation.

Proof Consider first the case m = 2, ie, when there are no flow trees attached to the
disk. In this case the linearized operator 94 as well as the capping operators are small
deformations of the linearized operator and capping operators of the corresponding
disk with boundary on A. It follows that the signs of the two disks agree and hence
€(up) = €(®) as claimed.

In order to prepare for the case m > 2 we write down the gluing sequence for m = 2,
see [16, Equation (3.17)], that gives the sign explicitly. Using Tables 3, 4 (as a negative
puncture) and 5 we have

0 — ker(d.—) @ ker(d,) i coker(de4) ® coker(de_) — 0,

where we use the fact that the glued operator F] 7 1s an isomorphism. (To see this note
that 9 ; splits into a direct sum of two 1-dimensional operators both of index 0.)

Noting that the boundary conditions of 94 are close to R? conditions we deform them
to constant R? boundary conditions inserting weights as determined by the complex
angles, exactly as in the proof of Lemma 6.7. The solutions in the above sequence
can then be thought of as cut-off constant solutions (which may be extended on a
sufficiently large domain so that the supports of v*"(¢c—) and v°°**'(e+) overlap in
order for the sequence to be exact) and the sign is given by

G(Lln) — E(F) — (vker(c)’ vcoker(e)) (UﬁOW(F), vcoker(c))‘

Consider next the case m > 2. As above we use the associated weighted problem
corresponding to A with constant boundary conditions and exponential weights. Again
d 7 is an isomorphism and the gluing sequence which determines the sign is

0 — ker(d_) @ ker(d.—) — coker(de) @ coker(d._) @ coker(d4) — 0,
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where ker(d_) = &b I :_12 ker(d, ;—) is spanned by cut off (constant) solutions of the cap-
ping operators at the negative punctures day, ..., d;—», where ker(d.—) and coker(de+ )
are as above, where the orientation of ker(d_) @ ker(d._) is induced by the order of
the punctures, and where coker(gA) is equipped with the orientation induced by the
space of conformal variations of A, .

As in the proof of Lemma 6.7 we stabilize the operator En by adding the finite-
dimensional space V.o, spanned by conformal variations supported near all boundary
minima except 7, , where we take 7, to be the boundary minimum corresponding to
the junction point ¢, immediately following the negative puncture c¢, or if there is
no junction point after ¢, the junction point ¢, immediately preceding ¢. Here the
conformal variation v;°" near a boundary minimum t; such that 7; ¢ 7 is defined
exactly as the elements of Vo, in the proof of Lemma 6.7. Conformal variations
supported near boundary minima 7; with #; € Z have the form 94 (v = dun(g(gr)),
where 5t is a cut-off of the vector field d7 in the domain of the holomorphic disk part
of I that is tangent to the boundary and directed towards the positive puncture and
continued constantly into the domain corresponding to the tree attached; see Figure 30.

lj /Ej

®

con)

sgpp(vj
I’

Figure 30: Support of conformal variation at junction point

As n—0, 94 '17]‘30“ converges to a 971o% in the part of the domain corresponding to the
holomorphic disk part of T", where 7° is a cut-off of the constant vector field vV
pointing toward the positive puncture, and to 7; in the part of the domain corresponding
to the tree (near the junction point), where 7; is a cut-off of the constant vector field 7; .
In analogy with vjc"rl for t; ¢ 7, we define v;/*" for the deformed boundary conditions
so that d4v;°" agrees with the operator acting on these cut off constant vector fields in
the two components of its support. This gives the stabilized operator

— L ,
aicon. HAGBI/C(,“—)HIZ
and the new sequence

0 — ker(d T eon) ker(9_) @ ker(d.—) — coker(dp4) ® coker(dc_) — 0,
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which by an argument similar to that used for the stabilized sequence in Lemma 6.7
gives the correct sign.

In addition to conformal variations we also introduce internal and external edge so-
lutions corresponding to edges of the flow trees I'j, #; € 7 attached exactly as in
Lemma 6.7, where we start the construction for the tree I'; with the vector n; at
tj € Z. We also introduce an extra cut-off solution, which compensates for the lack
of conformal variation at 7, : let v*° = v1°% 4+ v, where vV is the constant vector
field along ® cut off near each junction point and near ¢, and where v, is a conformal
variation of the usual type supported near t, ; see Figure 31.

Dl

e supp(v*®) C) c

E o~

Figure 31: The support of v*°'. Here I'; is the first partial tree to follow the
puncture ¢ in the positive direction of the boundary of the domain.

As in the proof of Lemma 6.7 we assume that cut-off tangential edge solutions and
v*°! agree with conformal variations on intersections of supports of their derivatives.

Define Vi as the 1—dimensional space spanned by v*°' and stabilize the operator one
more time:

5/’[ . H(Zf 7 Vcon @ Vsol - H;’l‘

,con,sol’

Noting that the projection of dv*°' to coker(d._) equals the corresponding projection
of Jv°% to coker(d.—) for the disk ® we can determine the sign in the exact sequence
for the stabilized operator d 7 ., which reads

0— ker(gg consol) — ker(9_) @ ker(d.—) — coker(de4) — 0,

in combination with the sign of (v*°, veoker(c—)).

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1107

In analogy with the sign calculation in Lemma 6.7, we find a basis in the (m —2)—
dimensional kernel of 9 ; con.so1 2lVEN bY K1, ... km—2, where

ki =—(Wimg1 + -+ W)+ (Wig1 + ... Wit) = Ony Iy DVF" + B if 17 ¢ 7,
ki =Wj_41+-+wj)—v;"+E; iftjeZandj#r,

i = (Wr_41+ -+ wy) —v*° — Z v +Ej,

j#r
where I'y(;) is the attached flow tree in which #; € Z lies, and where E; denotes linear
combinations of interior edge solutions of edges below ¢;, exactly as in the proof of
Lemma 6.7.

It follows that €(u;) = 515253, where the signs s;, j = 1,2, 3 are as follows. First,
s1 equals the orientation on ker(d—) given by

(_1)}’—1 (1_[ Uns(i),I‘s(i)(ti))gl /\ér—l /\Sr-i-l AREN /\Sm—l,
ti €1
where
Ei=—(Wi—g1 +- -+ wj) + W1+ wig) if 4 €7,
& =wj_41+---+w;) ift; el
Second, up to a positive factor,

5y = <vsol’ vcoker(c_)> — (Ur + vﬁow’ vcoker(c_)) — (vﬂow’ vcoker(c_».

Third, s3 = (—1)" "1 {v*"(c), v°°*"(¢)), by the orientation conventions for sequences;
see [16, Section 3.2.1]. We conclude that, with notation as in Theorem 4.6,

€(uy) = €(E) = €(0) ]_[;=1 o(nj,T)). O

6.6.3 The sign of a quantum flow tree of type (QT,) Let E be a quantum flow
tree with holomorphic component ®, a rigid disk with one puncture. Assume that
& has m punctures. Let ¢ denote its positive puncture (a Reeb chord of type L)
and aq,...,a,—; denote its negative punctures (all Reeb chords of type Sg). We use
notation as in Section 6.6.2 for junction points and trivalent vertices of E.

We mark two points g, and go on the boundary of the rigid disk ® right after the
positive puncture using two parallel oriented hypersurfaces near the positive puncture.
Let 91°% denote the holomorphic vector field along the disk that vanishes at the
positive puncture and at the second marked point, and that is directed toward the
positive puncture along the boundary. At each junction point #; € Z, let n; denote the
value of 1oV at t.
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Lemma 6.9 The sign of the rigid disk uy corresponding to & is given by:

/
€(uy) =€(B) =€(®) [ [ o(n;.T))

j=1

See Sections 3.4.4 and 4.3 for notation.

Proof Let 04 denote the linearized operator corresponding to the rigid disk ® with
domain thought of as a strip with punctures at the positive puncture and at go. Then
the linearized operator

5A3 Hag —>/H1/4

with m — 1 = 0 negative punctures has index 1. The 1-dimensional kernel for an
appropriate choice of orientation of the hypersurface makes v1°% give the positive
orientation to the moduli space. The proof then follows from an argument similar to

the proof of Lemma 6.8 so we just sketch the details.

Assume that u, has m punctures. Adding capping operators we get an operator 94
on the closed disk of index 2 with two-dimensional kernel corresponding to linearized
conformal automorphism. Adding the vanishing condition at the marked point g¢ for
the vector fields in H 4 we get a new operator 9 4+ with domain a codimension-one
subspace H 3. C H ;. The restriction of the operator gives an operator

82*:7{2*—)7'[12

of index 1 with 1—dimensional kernel. We then consider the stabilized problem

. /
a1:1\>",c0n' /Hffl\* ® Veon — H,:[
which has index (m — 1) and find that the sign of u,, is given by the sign of the map

0— ker(gg* con) — ker(9—) — 0,

where ker(d—) = ;”z_ll ker(3g, ;—) is the sum of cut off kernel functions of the capping

operators at all the negative punctures of u;. The equation

/
€(un) = €(©) l_[ o(nj,Ij)

j=1

then follows from a slightly simpler version of the analogous calculation in the proof
of Lemma 6.9. a
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6.6.4 The sign of quantum flow tree of type (QT;) Consider a quantum flow tree
& with m punctures and with big disk part a once punctured constrained rigid disk
® that is constrained to pass through IT(b) where b is a Reeb chord of type S;. Let
the positive puncture of E be e (a Reeb chord of type L, ), let the negative punctures
be b (a Reeb chord of type S1), and aq,...,a,—» (Reeb chords of type Sp). We
use notation for trivalent vertices and junction points of E as in Section 6.6.2. Let
v1°% denote the holomorphic vector field along © that vanishes at e and b and that
is directed toward the positive puncture e along the boundary. Let n; be the value of
viov at 1 € T.

Lemma 6.10 The sign of the rigid disk uy corresponding to E is given by

/
(uy) =€(E) =€(®) [ [ o(n;.T)).
j=1
See Sections 3.4.4 and 4.3 for notation.

Proof The proof follows along the lines of previous lemmas in the section and detailed
calculations will be omitted. We use notation as before. Start with the case of no negative
punctures. Consider first the orientation sequence for the moduli space containing
the 1—dimensional disk. We write 0 for the corresponding operator. Then 9 has
3—dimensional kernel whereas the capped off operator F] 7 has 2-dimensional kernel
corresponding to linearized automorphism of the disk with one puncture and we get
the gluing sequence

0 — ker(d z) — ker(d g) — coker(de4) — 0,

thus coker(de ) together with conformal automorphisms orient the moduli space and
we can identify coker(d.+ ) with the vector field v that is the positively oriented tangent
vector of the 1-dimensional moduli space; see Section 4.3.

Consider first the case m = 2. The operator 9 4 1s an isomorphism and the gluing
sequence is

0 — ker(d,_) @ ker(d4) — coker(de4) ® coker(dp_) — 0
and we find that
e(uy) = (v, 05 ()) (V(T), v (b)) = ()
as claimed. In the case m > 2 the gluing sequence is

0 — ker(d_) & ker(dp_) — coker(d,_) @ coker(de+) @ coker(d,4) — 0.
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As in Lemma 6.8 we stabilize to an operator

5;{ 'HA‘EBVcon@Vsol_)/H;l\

,con, sol”

of index m — 2, where V.o, is spanned by conformal variations and where Vi, is a
1-dimensional space spanned by v*°', which is a sum of an extra conformal variation at
the fixed boundary minimum and a cut-off 71°% of v°", and which maps non-trivially
to v°°ker(p). The resulting map which determines the sign is then

0 — ker(d 5 ) — ker(9_) @ ker(dp_) — coker(de4) — 0,

A, con, sol

and the lemma follows from computation similar to those in the proof of Lemma 6.7. O
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