Volume 17, issue 2 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Betti numbers of finite volume orbifolds

Iddo Samet

Geometry & Topology 17 (2013) 1113–1147
Abstract

We prove that the Betti numbers of a negatively curved orbifold are linearly bounded by its volume, generalizing a theorem of Gromov that establishes this bound for manifolds. An immediate corollary is that Betti numbers of a lattice in a rank-one Lie group are linearly bounded by its co-volume.

Keywords
orbifolds, homology, Betti numbers, negative curvature
Mathematical Subject Classification 2010
Primary: 53C20
References
Publication
Received: 27 September 2011
Accepted: 29 October 2012
Published: 7 May 2013
Proposed: Walter Neumann
Seconded: Dmitri Burago, John Lott
Authors
Iddo Samet
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
Chicago, IL 60607
USA