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Motivic Brown–Peterson invariants
of the rationals

KYLE M ORMSBY

PAUL ARNE ØSTVÆR

Let BPhni , 0 � n � 1 , denote the family of motivic truncated Brown–Peterson
spectra over Q . We employ a “local-to-global” philosophy in order to compute the
bigraded homotopy groups of BPhni . Along the way, we produce a computation
of the homotopy groups of BPhni over Q2 , prove a motivic Hasse principle for the
spectra BPhni , and reprove several classical and recent theorems about the K–theory
of particular fields in a streamlined fashion. We also compute the bigraded homotopy
groups of the 2–complete algebraic cobordism spectrum MGL over Q .

55T15; 19D50, 19E15

1 Introduction

In [14], Morel and Voevodsky initiated a new approach to studying arithmetic questions
by homotopy-theoretic means. This involved defining, for any field k , an entire
homotopy theory called “motivic homotopy theory over k ”. As part of the apparatus
of homotopy theory, one is entitled to a category of objects stabilized by inverting
the operation of smashing with a fixed object (such as S1 , in the classical case). In
the motivic case, the most arithmetically interesting choice, of several available, is
to localize by inverting smashing with the projective line P1 . The outcome of this
procedure is Voevodsky’s stable motivic homotopy category, SH.k/ [29]; we call its
objects motivic spectra. Many important arithmetic and algebro-geometric cohomology
theories are represented by motivic spectra, including motivic cohomology and motivic
Steenrod operations, algebraic K–theory, and algebraic cobordism. Working in SH.k/

allows us to apply numerous techniques from computational algebraic topology to these
invariants. Primary among these examples is the resolution of the Milnor conjecture
on Galois cohomology (Voevodsky [30]). There has been a recent flurry of concrete
computations in stable motivic homotopy theory, led by the efforts of Hu, Kriz and
Ormsby [9], Dugger and Isaksen [2] and Hill [3].
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Each motivic spectrum E has bigraded homotopy groups

�?ED
M

m;n2Z

�mCn˛E;

where �mCn˛E consists of stable homotopy classes of maps SmCn˛ ! E. Here
SmCn˛ D .S1/^m ^ .A1 X 0/^n .

For judicious choices of E, these bigraded groups carry important information about the
base field. For instance, if ED KGL is the motivic algebraic K–theory spectrum, then
�mC0˛KGL D Km.k/, the mth algebraic K–theory group of k . If E D MGL is the
algebraic cobordism spectrum, then the groups ��.1C˛/MGLD

L
k2Z �k.1C˛/MGL

form a ring which corepresents one-dimensional commutative formal groups laws (the
Lazard ring).

Let BP D BPk denote the motivic Brown–Peterson spectrum at the prime 2 over
a characteristic 0 base field k . (NB: We will often drop the subscript k from our
motivic spectrum notation if it is clear that only one field is in play, but we will put the
subscript back in whenever the base field needs to be clarified.) The spectrum BP was
constructed by Po Hu and Igor Kriz [7] and Gabriele Vezzosi [28] on the model of Dan
Quillen’s idempotent construction in topology [21] and serves as the universal 2–typical
component of MGL. The motivic truncated Brown–Peterson spectra BPhni D BPhnik ,
0� n�1, comprise a tower of BP–modules

BPD BPh1i! � � � ! BPhni ! BPhn� 1i ! � � � ! BPh0i:

Here, BPh0i D MZ.2/ is the 2–local motivic Eilenberg–Mac Lane spectrum by a
theorem of Hopkins and Morel, while BPh1i is the 2–local connective K–theory
spectrum and BP is the universal 2–typical algebraically oriented spectrum. (See
Lemma 2.9 for the precise way in which BPh1i is related to KGL.) As such, for n> 1

we can view the groups �?BPhni as higher height generalizations of the algebraic
K–theory of the base field that are constructed from algebraic cobordism.

Our central result is a computation of the bigraded homotopy groups of 2–complete
BPhni over the base field Q via the motivic Adams spectral sequence. The nD 1 and
nD1 case are of special interest. In the nD 1 case, we garner a new computation of
the 2–complete algebraic K–theory of Q originally arrived at by Rognes and Weibel
via the Bloch–Lichtenbaum spectral sequence [23]. Our computation of �?BP is a
first step in a program for computing the motivic stable homotopy groups of the sphere
spectrum over Q via the motivic Adams–Novikov spectral sequence.

In topology, Milnor and Novikov showed independently that complex cobordism splits
as a wedge of suspensions of the Brown–Peterson spectrum. Via the motivic Adams
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spectral sequence, we show in Theorem 2.10 that whenever the 2–cohomological
dimension of k.

p
�1/ is finite, MGLk is the expected wedge of suspensions of BPk ’s.

(Our condition on cd2 k.
p
�1/ ensures that the motivic Adams spectral sequence

converges.) As such, Theorem 5.13 also produces a computation of the bigraded
coefficients of MGLQ . This greatly extends the work of Naumann, Spitzweck and
Østvær [17], which computes

�mC0˛MGL˝QD

�
Q if mD 0 or m> 0 and 4 jm� 1;

0 otherwise:

For the topological BPhni the Adams spectral sequence collapses at the E2 –page, and
its homotopy is

��BPhni D Z.2/Œv1; : : : ; vn�; jvi j D 2iC1
� 2:

Over Q the motivic Adams spectral sequence for BPhni does not collapse at some finite
page. We display an elaborate pattern of differentials governed by a Hasse principle
in motivic homotopy theory, which is reminiscent of the “local-to-global” methods
employed with much success in class field theory and the study of quadratic forms.

Indeed, for each real or p–adic completion Qv of the rationals Q there is a canonical
map

�?BPhniQ! �?BPhniQv

to which a map of motivic Adams spectral sequences converges (cf Proposition 4.6).
In Theorem 5.1 we prove that the product of these maps is an injection. The theorem
depends on a partial analysis of the motivic Adams spectral sequence for BPhniQ and
then permits a full computation of the spectral sequence (Theorems 5.8 and 5.13).

A more thorough outline of our method is as follows. First, for each real or p–adic
completion of Q and for Q itself, we run a Bockstein spectral sequence that converges
to the E2 –term of the motivic Adams spectral sequence (MASS) for BPhni. (These
Bockstein spectral sequences are based on filtering the dual Steenrod algebra by powers
of � , the class of �1 in Milnor K–theory.) We then run the MASS for each real or
p–adic completion. (These computations are already known for R and Qp , p > 2,
while our method in this paper is the first to produce a BPhni computation over Q2

for any n> 0.) Finally, all these computations are combined and analyzed with respect
to a global-to-local map that allows us to compute the MASS for BPhni over Q.1

1An alternate title for this paper is How to compute the motivic Brown–Peterson homology of Q in
1C .2C 5 �1/ �1 easy steps. We leave it as an exercise to the reader to derive this joke by computing
the number of spectral sequence pages with nontrivial differentials used in our argument.
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Naturally, the results of these computations are quite complicated and are hard to
understand without a thorough familiarity with the spectral sequences. We have made
a significant effort to present these computations in as digestible a format as possible.
The reader can find diagrams for the �–BSS and MASS for BPh3iQ in Figures 4, 5
and 6. Enough of the patterns present in such computations figure in the nD 3 case
that the reader — with enough diligence and patience — should be able to produce such
diagrams for arbitrary n. The reader is warned that these are not standard spectral
sequence charts (homological degree is suppressed and only certain vi –multiplications
are drawn explicitly) but the graphical calculus is explained in Remarks 3.6 and 5.9.

A closed form for these groups (for arbitrary n) is presented in Theorem 5.13 but some
qualitative remarks are in order here; we focus on the mC 0˛ , m� 2, component of
the bigraded homotopy groups just to give a flavor of the answers (see Section 2 for an
explanation of our grading conventions). First, when m is even these groups contain an
infinitely generated direct sum of cyclic 2–groups of unbounded order. This summand
depends on m but is independent of n. Depending on m and n, a certain finite number
of Z=2–summands may also appear. If m � 1 .4/, then �mBPhni contains a Z2

summand, and this describes all of the non-torsion; an m; n–dependent finite number
of Z=2–summands may also appear in these degrees. Finally, if m� 3 .4/ we find an
m; n–dependent finite 2–torsion group.

There is a tantalizing connection between the groups calculated in Theorem 5.13 and
the standard localization sequence_

p

KFp!KZ!KQ

in algebraic K–theory. In fact, in the n D 1 case our computation naturally splits
into components abstractly accounting for the contribution of

W
p KFp and KZ to

KQ. There is a similar abstract splitting for n> 1 in which case there are no classical
localization theorems for BPhni (or associated spectra like motivic E.n/). This leads
us to speculate that the motivic spectra BPhni, 0� n�1, should satisfy some sort
of localization property (although there are technical details that make the precise
statement of such a conjecture nontrivial). We explore these ideas in Remark 5.15; they
should provide the basis for continued research on the BPhni spectra.

We now indicate the precise outline of our paper:

In Section 2 we review the motivic Adams spectral sequence (denoted by MASS), the
construction of BPhni, and the comodule structure of the motivic homology of BPhni

over the dual Steenrod algebra. We recall that the MASS converges for BPhni over
fields of finite virtual mod 2 étale cohomological dimension, a condition that holds for
Q and all of its completions.

Geometry & Topology, Volume 17 (2013)



Motivic Brown–Peterson invariants of the rationals 1675

In Section 3 we review known MASS computations for BPhni over the real numbers
and the p–adic rationals, p> 2, along with a number of applications. We then compute
the groups �?BPhniQ2

. The usefulness of these computations will be evident in the
last part of the paper.

In Section 4 we use base change functors to construct “rational models” for motivic
spectra. We apply this to truncated Brown–Peterson spectra. The unit of a base change
adjunction allows us to construct the “Hasse map” that compares spectra defined over
global and local number fields.

Finally, in Section 5, we combine the Hasse map with the p–adic and real MASS
computations to prove the Hasse principle for BPhni over Q, and determine its coeffi-
cients.
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2 MASS for BPhni

2.1 MASS

For E a motivic spectrum let �?ED E? denote the bi-graded coefficientsM
m;n2Z

�mCn˛ED
M

m;n2Z

ŒSmCn˛;E�;

where SmCn˛ D .S1/^m ^ .A1 X 0/^n .

Let MZ be the integral motivic Eilenberg–Mac Lane spectrum. Its mod 2 version
MZ=2 is defined as the smash product of MZ with the mod 2 motivic Moore spectrum
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1=2. The bigraded homotopy groups of MZ=2^MZ=2 in the motivic stable homotopy
category over any field of characteristic zero identify with the dual motivic Steenrod
algebra (Voevodsky [31]).

Proposition 2.1 Over fields of characteristic zero the dual Steenrod algebra A? at the
prime 2 is isomorphic to MZ=2?MZ=2.

We refer to [2, Proposition 7.2] for a short proof of this result, which is based on the
identification of Voevodsky’s big category of motives with MZ–modules (Röndigs and
Østvær [24; 25]), and the description of proper Tate motives in Voevodsky [32]. For
algebraically closed fields, an alternate proof is given in [9, Theorem 4]. (The proofs
in [2] and [9] carry over verbatim to odd primes.)

In the rest of the paper we let M denote MZ=2. Let kM
� denote the mod 2 Milnor

K–theory of the base field and recall that M? Š kM
� Œ� �, where jkM

n j D �n˛ and
j� j D 1�˛ .

Next we recall the structure of the dual Steenrod algebra A? at 2 as a Hopf algebroid
over the ground ring M? [30; 31]. Throughout we use the standard grading convention

M? DM�?:

To begin with,

A? D .M?;M?Œ�1; : : : � Œ�0; : : : �=.�
2
i � �.�iC1� �0�iC1/� ��iC1//:

The left unit in the Hopf algebroid structure is the canonical inclusion, while the right
unit is determined by

�R.�/D �; �R.�/D � C ��0

for the canonical classes � 2 M1�˛ Š �2.k/ and � 2 M�˛ Š k�=.k�/2 . The mod
2 Bockstein on � equals � . We note that M?M is a commutative free M?–algebra.
Moreover, the polynomial generators have bidegrees

j�i j D .2
i
� 1/.1C˛/; j�i j D 1C .2i

� 1/.1C˛/

and coproducts given by

��i D

iX
jD0

�2j

i�j ˝ �j ; ��i D �i ˝ 1C

iX
jD0

�2j

i�j ˝ �j :

These are the same formulae as in topology (Milnor [10], Ravenel [22, Theorem 3.1.1]).
While � is not primitive in general, the graded mod 2 Milnor K–theory ring kM

� �M?
of the base field is comprised of primitive elements.
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Remark 2.2 Details on the odd-primary dual motivic Steenrod algebra in [31] will
not be recounted here since all of our computations occur with p D 2.

Suppose E is a motivic homotopy ring spectrum, ie, a ring object in the motivic stable
homotopy category. The homotopy fiber sequence

M! 1!M

gives rise to the Adams resolution

(1)

� � � // EsC1
// Es

//

��

Es�1
// � � �

M^M^.s/ ^E

where
Es DM^.s/ ^E:

The Künneth isomorphism for motivic cohomology [2, Proposition 7.5] and standard
arguments, cf [2; 9], show that the homotopy spectral sequence associated to (1) is a
conditionally convergent spectral sequence

(2) E
s;mCn˛
2

D Exts;mCn˛
A?

.M?;M?E/H) �m�sCn˛Ey:

The target graded group is the motivic homotopy �?Eyof the nilpotent M–completion
of E. This is a tri-graded spectral sequence, where s is the homological degree of the
Ext group (the Adams filtration), mC n˛ is the internal motivic bigrading coming
from the bigrading on A? and M? .

The problem of strong convergence of (2) is discussed in Hu, Kriz and Ormsby [8].
Recall that E is of finite type if EmCn˛ D 0 for m� 0. In all of the examples in this
paper, the coefficient ring vanishes for m< 0.

Theorem 2.3 Suppose E is cellular and of finite type and cd2.k.
p
�1// <1. Then

the M based Adams spectral sequence (2) is strongly convergent to the homotopy
groups of the Bousfield localization of E at 1=2.

Example 2.4 The assumptions in Theorem 2.3 hold when k DQ, R and Qp and E

is one of the following motivic spectra.

� The sphere spectrum 1. It follows by results in Morel [13] that �mCn˛1D 0

for m< 0; cf Morel [12].

� Algebraic cobordism MGL. We have MGLmCn˛ D 0 for m< 0 and MGL�n˛ D

KM
n (Milnor K–groups of the base field) for n� 0 [29].

Geometry & Topology, Volume 17 (2013)
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� The algebraic Brown–Peterson spectrum BP. See [7; 28] for constructions. The
coefficient ring vanishes for m< 0 according to the previous example.

� The motivic truncated Brown–Peterson spectra BPhni.2 Again the coefficients
vanish for m< 0 by the previous example.

2.2 BPhni

We use the MASS to determine the coefficients of the truncated motivic Brown–Peterson
spectra BPhni. Here we review the definition and homology of BPhni, and specify
how we use the latter to compute the E2 –page of the MASS. We also recall the
identifications of BPh0i and BPh1i in terms of familiar motivic spectra.

Let BP D BPh1i denote the motivic Brown–Peterson spectrum constructed from
2–local algebraic cobordism MGL.2/ via the Quillen idempotent [7; 28]. Inside
MGL.2/? and BP? there are the usual classes vi of degree .2i � 1/.1 C ˛/. The
elements vnC1; vnC2; : : : comprise a regular sequence. Following the script in topol-
ogy, the motivic BPhni is the BP–module formed by killing off the regular sequence
vnC1; vnC2; : : : in BP? .

In order to understand the homology of BPhni as a comodule over A? we introduce
auxiliary Hopf algebroids E.n/ from Hill [3].

Definition 2.5 Let E.n/ denote the quotient Hopf algebroid

E.n/ WD .M?;A=.�1; �2; : : : /C .�nC1; �nC2; : : : //

D .M?;M?Œ�0; : : : ; �n�=.�
2
i � ��iC1; �

2
n //:

We permit nD1, in which case

E.1/ WD .M?;A=.�1; �2; : : : //

D .M?;M?Œ�0; �1; : : : �=.�
2
i � ��iC1//:

In [19], the first author determines the homology of BPhni as a comodule over A? .

Theorem 2.6 For 0� n�1, there is an isomorphism of Hopf algebroids

M?BPhni DA�E.n/M?:

By change-of-rings we can rewrite the E2 –term of the MASS for BPhni.

2In a few instances, BPhni will refer to the topological truncated BP ; this will always be clear from
context.
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Theorem 2.7 For 0� n�1, the E2 –term of the MASS for BPhni is isomorphic to

ExtE.n/.M?;M?/:

Theorem 2.7 provides computational control over the E2 –term of the MASS, and
in the next section we will review how the �–Bockstein spectral sequence produces
explicit calculations over particular fields.

Currently, we make precise the connections between BPh0i and BPh1i and more well-
known motivic spectra. These provide motivation for thinking of the BPhni, n � 2,
as higher chromatic level spectra in the motivic context (in a sense which we will not
make precise in this paper). Throughout our computations we will use the connection
between BPh0i and MZ to initiate calculations, and for each of our n� 1 results we
will comment on the algebraic K–theory implications of the nD 1 case.

The following result follows from announced work of Hopkins and Morel. A detailed
proof is given by Hoyois in [4].

Theorem 2.8 The motivic spectra BPh0i and MZ.p/ are isomorphic over any field of
characteristic zero.

The 2–local connective algebraic K–theory spectrum kgl.2/ is precisely BPh1i by
definition. (At odd primes, BPh1i is an Adams summand of localized connective
algebraic K–theory [15, Section 4].)

Lemma 2.9 Suppose S is a separated Noetherian scheme of finite Krull dimension.
There exists a connective algebraic K–theory motivic spectrum kgl such that the natural
map kgl! KGL to algebraic K–theory becomes a weak equivalence after inverting the
Bott map. In particular, if S D Spec k we have

�mv
�1
1 BPh1ik ŠKm.k/;

where K�.k/ denotes 2–complete algebraic K–theory of k .

Proof Recall that KGL is the motivic Landweber exact spectrum associated to the
MU�–algebra

x�1
1 MU�=.x2;x3; : : : /MU� Š ZŒx1;x

�1
1 �

classifying the multiplicative formal group law xC y�x1xy ; cf Naumann, Spitzweck
and Østvær [16; 17]. Here we employ a fixed isomorphism

MU� Š ZŒx1;x2;x3; : : : �

Geometry & Topology, Volume 17 (2013)
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of graded rings where jxi j D i (that is, half of the usual topological grading). The
canonical map MU�!MGL�.1C˛/ affords forming the quotient

kglDMGL=.x2;x3; : : : /

by taking iterated cofibers of the multiplication by xi 2MGLi.1C˛/ map in the homotopy
category of MGL–modules. The orientation map for KGL sends xi to 0 2 KGLi.1C˛/

for i � 2. Hence there exists a naturally induced map kgl! KGL. In order to show
this map becomes a weak equivalence when inverting the Bott map, ie,

x�1
1 kglŠ KGL;

it suffices, by passing to the colimit, to show that

x�1
1 MGL=.x2;x3; : : : ;xn/

is the motivic Landweber exact spectrum associated to the MU�–module

x�1
1 MU�=.x2;x3; : : : ;xn/

for every n� 2. This can be verified inductively; cf Spitzweck [26, Theorem 5.2].

Later, we will use Lemma 2.9 and computations of �?BPh1i to prove statements
about classical algebraic K–theory. One simply inverts v1 and reads off the weight 0
component to determine the algebraic K–theory of the base field.

We conclude this section by identifying the algebraic cobordism spectrum MGL with a
wedge of suspensions of BP.

Theorem 2.10 Suppose k is a field with finite virtual cohomological dimension at
2. Let xi , i � 1 denote the standard Lazard ring polynomial generators in degree
i.1C˛/. Let BPD BPk and MGLDMGLk denote the 2–complete Brown–Peterson
and algebraic cobordism spectra over k . Let S denote the set of monomials xI in the
xi where no factor is of the form x2j�1 , j � 1. Then there is an equivalence

(3)
_

xI2S

†jxI jBP!MGL:

Proof The xi exist because MGL is the universal algebraically oriented spectrum.
The maps in (3) are given by multiplication by xI . The motivic homology of BP

and MGL is known by Theorem 2.6 and Borghesi [1, Proposition 6]. Applying the
MASS to (3) we get an isomorphism on E2 –terms. The MASS converges to homotopy
groups of 2–completions because of our hypotheses on k [8]. It follows that (3) is an
isomorphism on homotopy groups. Since MGL and BP are cellular, we get that (3) is
an equivalence.
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3 Computations over completions of Q

In this section we review known MASS computations of BPhniy2? over C , R and
Qp , p > 2, and present a new calculation of BPhniy2? over Q2 . Here . /y2 denotes
Bousfield localization at the motivic mod 2 Moore spectrum. The differential dr

takes the form E
s;mCn˛
r !E

sCr;mCr�1Cn˛
r . When depicting MASS we shall employ

“Adams grading” by placing elements of E
s;mCn˛
r in tri-degree .m� sC n˛; s/, with

˛ along the vertical axis. Thus, in Adams grading, the r th differential has tri-degree
.�1C 0˛; r/. The same convention applies to Bockstein spectral sequences.

Notice In the rest of the paper we elide the 2–completion symbol . /y2 for legibility. In
other words, we proceed to work in the 2–complete stable motivic homotopy category.

The results over C are due to Hu, Kriz and Ormsby [9], over R Mike Hill [3] and
over Qp Ormsby [19]. We recall the differentials here because we will need them in
Section 5 to carry out computations over Q.

3.1 The complex place

We begin by discussing the base field C , the complex numbers. These results are not
integral to the rest of the paper, but they serve as a nice warm-up case to familiarize
the reader with our methods. For C the motivic Hopf algebra E.n/ (left and right
units agree) is the base change of the topological Hopf algebra E.n/> to the mod 2

cohomology ring F2Œ� � of a point. Here j� j D 1� ˛ . Thus the following result is
immediate; cf [22, Theorem 3.1.16].

Proposition 3.1 Over C there is an algebra isomorphism

Ext�E.n/.M?;M?/DM?Œv0; : : : ; vn�D F2Œ�; v0; : : : ; vn�;

where j� j D .1�˛; 0/ and jvi j D ..2
i � 1/.1C˛/; 1/ in Adams tri-grading.

The generator vi is represented by the class of �i in the cobar complex.

Theorem 3.2 The motivic Adams spectral sequence for BPhni collapses at E2 and

BPhni? D .MZ2/?Œv1; : : : ; vn�D Z2Œ�; v1; : : : ; vn�;

where j� j D 1� ˛; jvi j D .2
i � 1/.1C ˛/. The polynomial generator v1 is the Bott

periodicity operator for kglD BPh1i.

Geometry & Topology, Volume 17 (2013)
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Proof The collapse of the spectral sequence at its E2 –page follows for tri-degree
reasons from Proposition 3.1. The fact that v0 detects multiplication by 2 in �0BPhniD

Z2 resolves all multiplicative extension problems [3, Lemma 5.4].

In the nD 1 case we can deduce an important fact about the algebraic K–theory of C
due to Suslin [27].

Lemma 3.3 Let E.n/> denote the variant of E.n/ from topology. The complex
topological realization functor induces a map between the Adams spectral sequences
for BPhniC

Exts;mCn˛
E.n/ .M?;M?/H) �m�sCn˛BPhniC

and the topological BPhni spectrum

Exts;tE.n/>.HZ=2�;HZ=2�/H) �t�sBPhni:

It sends � to 1 and vi to vi for i D 0; � � � ; n, and the induced map in weight zero

�mC0˛BPhniC! �mBPhni

is an isomorphism for all m 2 Z.

Remark 3.4 The isomorphism K�.C/ Š ��ku was shown by Suslin in [27] using
entirely different methods. This is the nD 1 case of Lemma 3.3. The results in this
section generalize to any algebraically closed field of characteristic zero.

3.2 The real place

For the real numbers R, M? D F2Œ�; �� as algebras, where j� j D 1�˛ , j�j D �˛ . In
order to determine the Ext–groups over E.n/, we can run the �–Bockstein spectral
sequence for �W †˛M! M. It is an example of the filtration spectral sequence in
[22, Theorem A 1.3.9]. This work has been carried out by Hill in [3, Theorem 3.1],
who also carefully spells out the properties of the �–BSS. By comparison with C , the
E1 –term of the �–BSS takes the form

F2Œ�; �; v0; : : : ; vn�:

Proposition 3.5 Over R, the differentials

d2iC1�1�
2i

D �2iC1�1vi ; 0� i � n;

determine the �–Bockstein spectral sequence computing ExtE.n/ .
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As an algebra,

Ext?;�E.n/.M?;M?/D F2Œ�; �
2nC1

; vi.j / j 0� i � n; 0� j �=.�2iC1�1vi.j //

subject to the additional relations

vi.j /vk.`/D vi.j C 2k�i`/vk.0/

when i � k and
vi.j /D �

2nC1

vi.j � 2n�i/

when j � 2n�i . Here vi.j / is represented on E1 by �2iC1jvi , and has degree

.2i.2j C 1/� 1� .2i.2j � 1/C 1/˛; 1/:

In Section 5 it will be useful to have a thorough understanding of the combinatorics
of this spectral sequence. It is difficult to visualize the computation when n > 1

using standard conventions because the pictures become far too dense. We introduce a
graphical calculus below that eliminates this difficulty. We analyze the case of E.3/ in
detail.

Remark 3.6 Figure 1 is a graphical presentation of the spectral sequence in Proposition
3.5 when nD 3. We have drawn the pictures of this quad-graded spectral sequence in
only two dimensions. Recall that each element of the Er page of the �–BSS has a
homological grading .s;mC n˛/ and also its �–power filtration. We draw such an
element in degree m� sCn˛ , where m� s is plotted on the horizontal axis while n˛

goes on the vertical axis. As such, these pictures represent the “total Adams degree”
of the elements in question. (If they survive the Adams spectral sequence, this is the
degree to which they abut.) The authors prefer to think of the degree s as secretly
recorded on a third axis coming out of the page, while �–filtration should be kept track
of privately as an extra decoration on each element. In this grading, differentials on the
Er –page of the �–BSS point one to the left (with no vertical component) and out of
the page one unit as well; they increase the decoration by �–filtration by r .

Note that this is not the “standard” Adams grading, which might draw m � s C n

on the horizontal axis and s on the vertical axis, with weight n˛ and �–filtration
suppressed. We find our pictures more convenient and useful for two reasons. First,
weight information is often useful in limiting which differentials are possibly nonzero
in �–Bockstein and motivic Adams spectral sequences. Second, these pictures do a
better job of capturing the sort of connectivity that the motivic spectra we study enjoy.
In “standard” Adams grading, the copy of mod 2 Milnor K–theory in M? takes up
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the entire negative horizontal axis. Since we like to think of kM
� as “dimension 0”

information in motivic homotopy, it feels better to place it along the vertical axis.

The reader can now interpret the figure via the following key and comments:

ı F2Œv0; v1; v2; v3�

� F2Œv0; v1; v2; v3�=v0

} v0F2Œv0; v1; v2; v3�

�X F2Œv0; v1; v2; v3�=v0; v1

�XX F2Œv0; v1; v2; v3�=v0; v1; v2

�XXX F2Œv0; v1; v2; v3�=v0; v1; v2; v3

j �–multiplication

The authors find it convenient to think of each backslash as “killing off” (or “blocking”)
a vi –multiplication.

Note, though, that in Figure 1 we do not draw the vi –multiplications in the diagram
unless a vi –multiple is the target of a differential. In general, a copy of F2Œv0; v1; v2; v3�

lies in a plane perpendicular to the horizontal and vertical axes, which intersects our
pictures in a line of slope 1. (Within this perpendicular plane, v0 –multiplication is
vertical and vi –multiplication has slope 1=.2i � 1/.) If a vi –multiple is the target of a
differential, we draw the appropriate line segment of slope 1 and draw our differentials
hitting these classes; otherwise, vi –multiplication is only encoded by our system of
circles, dots and dots with slashes. We do this so that the pictures do not become
unmanageably cluttered.

In certain places there are vi –multiples, i > 0, which are divisible by v0 . This occurs
on the classes v0.j / when j is even, and there they are represented by dashed lines of
slope 1 (possibly curved to avoid overlap). For example, v1v0.4/D v1.2/v0 so there is
a dashed line joining v0.4/ and v1.2/. Similarly, there is a dashed line joining v0.4/

and v2.1/ because v2v0.4/D v2.1/v0 .

All labels in these pictures refer to the lowest cohomological degree element in that
Adams bi-grading. So while the “target” of the differential on � on the E1 –page
is labeled � , the differential in fact hits �v0 . The necessary number of v0 ’s can be
deduced from the cohomological degree of the source and the page number of the
spectral sequence.

To extend these pictures to larger n, the reader simply needs to reinterpret ı as
F2Œv0; : : : ; vn� and � with k slashes as F2Œv0; : : : ; vn�=v0; : : : ; vk . If n> 3, then �16
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will support a differential and there will be a yet more elaborate pattern on �16 in the
E1 page. Similar statements hold for �32; �64 , etc.

Recall from [3, Theorem 5.3, Corollary 5.7] the collapse of the MASS for BPhni over
R. Combined with the real truncated Brown–Peterson spectra computations due to Hu
in [6], appropriately amended, we arrive at the following result.

Theorem 3.7 The motivic Adams spectral sequence for BPhni over R collapses at
E2 and the homotopy BPhni? is given additively by

Z2Œ�; �
2nC1

; vi.j / j 0� i � n; 0� j �

subject to the relations v0.0/D 2, �2iC1�1vi.j /, vi.j /vk.`/D vi.j C 2k�i`/vk.0/

when i � k and vi.j /D �
2nC1

vi.j � 2n�i/ when j � 2n�i . The degree of vi.j / is
.2i � 1/.1C˛/C 2iC1j .1�˛/. (If nD1 one should read the expression as lacking
a � –power generator and having vi.j / generators for 0� i <1; 0� j .)

Remark 3.8 While his methods are quite different, it should also be noted that Nobuaki
Yagita produced similar computations for the homotopy of BP=2 over R via the Atiyah–
Hirzebruch spectral sequence; cf [33].

For the inclusion i W R�C recall the identity map on BPhniC induces a comparison
map

BPhniR! i�BPhniC:

(See Section 4 if the above technology is unfamiliar.) Applying the complex topological
realization functor to BPhniR yields the comparison with the topological truncated
Brown–Peterson spectrum BPhni.

On homotopy groups, see also Proposition 4.3, the first comparison map is determined
by the following result.

Lemma 3.9 The comparison map for i W R�C induces a map between the motivic
Adams spectral sequences for BPhniR

Exts;mCn˛
E.n/ .M�;M�/H) �m�sCn˛BPhniR

and for BPhniC

Exts;mCn˛
E.n/ .M�;M�/H) �m�sCn˛BPhniC:

It sends � to 0, �2nC1

to �2nC1

and vi.j / to �2iC1jvi for 0� i � n.
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Figure 1: The �–BSS for ExtE.3/ over R
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Remark 3.10 Comparing v0 –towers for the spectral sequences in Lemma 3.9 implies
the map Km.R/!Km.C/ is an isomorphism when m� 0 mod 8, the multiplication
by 2 map on Z2 when m� 4 mod 8 and trivial otherwise.

Lemma 3.11 The complex topological realization functor induces a map between the
motivic Adams spectral sequences for BPhniR

Exts;mCn˛
E.n/ .M�;M�/H) �m�sCn˛BPhniR

and the topological BPhni spectrum

Exts;tE.n/>.HZ=2�;HZ=2�/H) �t�sBPhni:

It sends � to 0, �2nC1

to 1 and vi.j / to vi for 0� i � n.

Remark 3.12 The real topological realization functor takes kglR to a trivial spectrum.

We can identify the weight zero subalgebra of �?BPh1iR with the coefficient ring of
2–completed connective real topological K–theory.

Lemma 3.13 The subalgebra ��C0˛BPh1iR is isomorphic to ��ko.

Proof Recall the ring isomorphism

��koŠ Z2Œ�; ˛; ˇ�=.2�; �
3; �˛; ˛2

� 4ˇ/;

where j�j D 1, j˛j D 4 and jˇj D 8; cf [22, Theorem 3.1.26]. We have

�?BPh1iR D Z2Œ�; �
4; v0.1/; v1�=.2�; �

3v1; v0.1/
2
� 4�4/:

The assertion follows by mapping ��ko into �?BPh1iR by sending � to �v1 , ˛ to
v0.1/v

2
1

and ˇ to �4v4
1

.

Remark 3.14 The isomorphism K�.R/Š ��ko was shown by Suslin in [27] using
entirely different methods. The results in this section generalizes to all real closed
fields, eg, the field Q\R of real algebraic numbers.

Remark 3.15 Following the reasoning after the proof of Lemma 5.4 in [3], we can
explain Lemma 3.13 by considering the realification functor t from P1 –spectra over
R to Z=2–equivariant spectra. It should be the case that t.BPhniR/D BPRhni, where
the spectrum BPRhni is the real truncated Brown–Peterson spectrum of Po Hu [6].
This then induces a map

��C0˛BPhniR! ��C0�BPRhni;
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where � is the sign representation of Z=2 and we are working with RO.Z=2/–graded
homotopy groups. Now the target of this map is easily identified with ��BPRhniZ=2

and Hu shows in [6] that BPRh1iZ=2 ' ko. Hence the above map induces the isomor-
phism of Lemma 3.13

3.3 Non-Archimedean places

Let p be an odd prime number. In [19], the first author determines the behavior of
the �–Bockstein and motivic Adams spectral sequences for BPhni over Qp . The
differentials observed are quite similar to those for BPhni over R, but the �–BSS
always collapses at E2 and there are (infinitely many) nontrivial differentials in the
MASS.

Recall that

kM
� .Qp/D

�
F2Œu;p�=.u

2;p2/ if p � 1 .4/;

F2Œu;p�=.u
2;p.u�p// if p � 3 .4/;

where u is a nonsquare in the Teichmüller lift F�p � Q�p , and p is the class of the
uniformizer p . If p � 3 .4/ we choose u to be the class of � , the class of �1, while
�D 0 when p � 1 .4/. Recall that M? D kM

� Œ� �.

The following is the main result of [19, Section 4].

Theorem 3.16 If p � 1 .4/ then the �–BSS for ExtE.n/ over Qp collapses and

ExtE.n/.M?;M?/DM?Œv0; : : : ; vn�:

If p � 3 .4/ then the �–BSS for ExtE.n/ is determined by the differential

d1� D �v0

and

ExtE.n/.M?;M?/D kM
� Œ�

2; v0; : : : ; vn�=�v0˚ ��kM
� Œ�

2; v0; : : : ; vn�:

Let ".p/D �2.p�1/ and �.p/D �2.p
2�1/, where �2 is the 2–adic valuation. Then

[19, Section 5] shows that the MASS for BPhni over Qp takes the following form.

Theorem 3.17 If p � 1 .4/, then the MASS for BPhni over Qp is determined by
differentials

d".p/Ci�
2i

D u�2i�1v
".p/Ci
0

:

If p � 3 .4/, then the MASS for BPhni over Qp is determined by

d�.p/�1Ci�
2i

D ��2i�1v
�.p/�1Ci
0

:
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Figure 2: The MASS for BPhni over Qp , p > 2

For a description of the E1 term, see [19, Theorem 5.7].

Set k D ".p/ if p� 1 .4/ and set k D �.p/ if p� 3 .4/. The MASS for BPhni over
Qp is depicted graphically in Figure 2 using the same conventions as Figure 1 (see
Remark 3.6) with the addition that ı=vr

0
D F2Œv0; : : : ; vn�=v

r
0

and that Adams spectral
sequences no longer have a �–filtration grading. (That said, the Ek page is actually
the �–BSS if k D 1.)
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We now turn our attention to the field Q2 . The first mod 2 Milnor K–theory of Q2 is
generated by the classes of �1, 2 and 5, which we denote � , x and y , respectively.
Then

kM
� .Q2/D F2Œ�;x;y�=.�

3;x2;y2; �2
Cxy; �x; �y/:

Theorem 3.18 The �–BSS for ExtE.n/ over Q2 is determined by the differential

d1� D �v0:

Proof We compute d1� as �L.�/� �R.�/ D �v0 . Further differentials follow the
pattern of Proposition 3.5, but �3 D 0 in kM

� .Q2/ so the spectral sequence collapses
at E2 .

Theorem 3.19 The MASS for BPhni over Q2 is determined by the differentials

d2Ci�
2i

D x�2i�1v2Ci
0

for 1� i:

Proof We first treat the case n D 0 in which we utilize a comparison with étale
cohomology. Applying the universal coefficient theorem and results in Neukirch,
Schmidt and Wingberg [18, Chapter VII] yields

.MZ2/mCn˛ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Z2 if mD nD 0;

Z˚2
2
˚Z=2 if mD 0; nD�1;

Z=2 if mD 0; nD�2;

Z2˚Z=2 if nD�.mC 1/ < �1; m even;
Z2˚Z=22C�2.mC1/ if nD�.mC 1/ < �1; m odd;
Z=2 if nD�.mC 2/ < �2; m even;
Z=22C�2.mC1/ if nD�.mC 2/ < �2; m odd;
0 otherwise:

In order to have the correct 2–torsion in degrees of the form m�.mC1/˛ we must have
d2Ci�

2i

D z�2i�1v2Ci
0

for z a nonzero linear combination of x and y . In Lemma 5.7
we show that z D x . (The proof is deferred because it relies on the Hasse map defined
in the next section.)

For n > 0 consider the linearization map BPhni ! BPh0i and the induced map of
spectral sequences. By tri-degree considerations we can identify the spectral sequence
for BPhni as E�.BPh0i/Œv1; : : : ; vn� where the v>0 are permanent cycles. This con-
cludes the proof.

The behavior of the spectral sequence is pictured in Figure 3 using the same conventions
as Figure 2. In the dimensional range pictured E5 DE1 .

Corollary 3.20 Over Q2 we have BPhni? D .MZ2/?Œv1; : : : ; vn�.
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Figure 3: The �–BSS and MASS for BPhni over Q2

4 The Hasse map

Our goal now is to use the local data from the previous section to produce global
computations. To this end, we need a method for comparing the local and global
variants of BPhni. In this section we construct a Hasse map, which serves this purpose.

For any scheme map f W S ! T there is a base change functor

f �W Sp.T /! Sp.S/
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from T –spectra to S –spectra admitting a right adjoint

f�W Sp.S/! Sp.T /:

Let BPhniS denote the truncated Brown–Peterson spectrum in S –spectra. Recall that
BPhniS is constructed from MGLS by p–localizing, taking the iterated colimit of
the Quillen idempotent (producing BPS ) and then killing off vi , i > n. Recall the
isomorphism MGLS Š f

�MGLT for f as above.

Proposition 4.1 The truncated Brown–Peterson spectra BPhni satisfy

BPhniS Š f
�BPhniT :

Proof Localization at p , inverting the Quillen idempotent and killing vi are all colimit
constructions; f � commutes with colimits because it is a left adjoint.

For v a real or p–adic place of Q we denote by ivW Spec Qv! Spec Q the map of
Zariski spectra induced by the field extension Qv=Q.

Consider a family of motivic spectra (over different base fields) ED fEk D ESpec k 2

SH.k/ j k DQ or Qvg. In the following we assume that this family satisfies EQv
Š

i�v EQ for all non-complex places v of Q.

Definition 4.2 The rational model of EQv
is defined as

EQ
Qv
WD iv�EQv

Š iv�i
�
v EQ:

The terminology is justified by the following proposition.

Proposition 4.3 The bigraded homotopy groups of EQ
Qv

(computed in SH.Q/, the
stable motivic homotopy category over Q) are isomorphic to those of EQv

in SH.Qv/.

Proof By adjunction isomorphisms and the fact that i�v 1Q D 1Qv
we have

�Q
? EQ

Qv
D Œ1Q;E

Q
Qv
�Q? D Œ1Q; iv�EQv

�Q? D Œi
�
v 1Q;EQv

�
Qv
? D Œ1Qv

;EQv
�
Qv
? :

This is by definition the homotopy groups �Qv
? EQv

of EQv
in SH.Qv/.

Since EQ
Qv
Š iv�i

�
v EQ the .i�v ; iv�/ adjunction unit induces a map

�vW EQ! EQ
Qv
:
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Definition 4.4 For E as above, the motivic Hasse map is given by

HE WD

Y
�?�vW �?EQ!

Y
�?E

Q
Qv
;

where the product runs over real and p–adic places v .

Definition 4.5 The family of spectra E satisfies the motivic Hasse principle if the
motivic Hasse map HE is monic.

Proposition 4.6 The Hasse map takes the form

HEW �
Q
? EQ!

Y
�

Qv
? EQv

:

Proof This is a consequence of Proposition 4.3. Note that the target cannot be pared
down to a direct sum. For instance, if we take E D 1 we find that � has nontrivial
image in infinitely many of the groups �Qv

�˛ 1Qv
.

The Hasse maps of interest in this paper are the ones for BPhni, 0 � n � 1. Let
E
�;?
� .k/ denote the MASS for BPhnik . Then the Hasse map induces a map of MASS’s

(4) E
�;?
� .Q/!

Y
v

E
�;?
� .Qv/:

5 Computations over Q and the motivic Hasse principle

This section proves the main theorem of this paper.

Theorem 5.1 The truncated Brown–Peterson spectra BPhni satisfy the motivic Hasse
principle.

Corollary 5.2 There are no hidden multiplicative extensions in the motivic Adams
spectral sequence for BPhni over Q and v0 –multiplication represents multiplication
by 2.

Proof The computations with local fields in Section 3 show the result holds for all
completions of Q. Thus our claim follows from Theorem 5.1. (Note that, in general,
v0 D 2C ��, but �D 0 in �˛BPhni.)
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Our proof of Theorem 5.1 follows from an analysis of (4). Carrying that analysis a few
steps further we also get a computation of �?BPhni over Q, 0 � n �1, which is
stated in Theorem 5.8 below.

To get these computations off the ground we need a detailed understanding of kM
� .Q/

and the Hasse map

kM
� .Q/!

Y
v

kM
� .Qv/:

The following proposition consists of basic facts easily deduced from, eg, [11, Example
1.8 and Appendix].

Proposition 5.3 The mod 2 Milnor K-theory of Q has the following structure:

kM
0 .Q/D Z=2;

kM
1 .Q/D Z=2f�g˚

M
p�2

Z=2fŒp�g;

kM
2 .Q/D Z=2f�2

g˚

M
p�3

Z=2fapg;

kM
n .Q/D Z=2f�n

g if n� 3:

Multiplication follows the rule

Œ`� � Œq�D .`; q/2�
2
C

X
p�3

.`; q/pap;

where ` and q are primes or �1, . � ; � /p is the Hilbert symbol if p � 3, and . � ; � /2 is
the 2–adic Steinberg symbol.

The Hasse map takes pure symbols to their obvious images in
Q

kM
1
.Qv/ and takes

ap to the unique nonzero class in kM
2
.Qp/ and to 0 in kM

2
.Q`/, `¤ p .

It will be convenient to understand the �–module structure of kM
� .Q/.

Proposition 5.4 The �–module structure of kM
� .Q/ is such that � is not nilpotent and

� � Œp�D 0 if p � 1 .4/;

� � Œp�D �2
C ap if p � 3 .4/;

� � Œ2�D 0:
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Proof The class � is non-nilpotent because Q has a real embedding. (Note that
Propositions 5.3 and 5.4 omit a few multiplicative relations in kM

� .Q/ that are not
important in any of our calculations.)

The relations follow from computations of Hilbert and 2–adic Steinberg symbols. Recall
that for aD 2˛u, b D 2ˇv for u; v odd we have

.a; b/2 D .�1/..u�1/=2/..v�1/=2/C˛.v2�1/=8Cˇ.u2�1/=8:

Hence

.�1;p/2 D .�1/�.p�1/=2
D

�
1 if p � 1 .4/;

�1 if p � 3 .4/;

for p odd while .�1; 2/2 D 1.

To compute the `–adic Hilbert symbol for ` odd, write aD `˛u, b D `ˇv for p−u; v .
Then

.a; b/` D .�1/˛ˇ.`�1/=2
�

u

`

�ˇ� v
`

�˛
;

where
�
�
�

denotes the Legendre symbol. Hence for p odd

.�1;p/p D
�
�1

p

�
D

�
1 if p � 1 .4/;

�1 if p � 3 .4/;

by the first supplement to quadratic reciprocity. We also have .�1; 2/p D 1. This is
enough to check the relations by Proposition 5.3.

Following the usual pattern, we begin our motivic computations with the �–BSS
computing ExtE.n/ .

Theorem 5.5 The �–BSS for ExtE.n/ over Q is determined by the differentials

d2iC1�1�
2i

D �2iC1�1vi

for 0� i � n. In addition to the obvious differentials that are also present in the �–BSS
over R, d1� D �v0 induces differentials

d1Œp�� D 0 if p � 1 .4/ or p D 2;

d1Œp�� D .�
2
C ap/v0 if p � 3 .4/.

Most of this spectral sequence looks exactly like the �–BSS for ExtE.n/ over R, and
the portion pertaining to classes involving p� 3 .4/ is depicted graphically in the first
part of Figure 4.
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Proof This follows from the arguments of [3, Theorem 3.2] and Proposition 5.4.

Corollary 5.6 On E2 –terms, the Hasse map (4) of motivic Adams spectral sequences
for BPhni is injective.

Proof It is clear that the Hasse map is injective on E1 –terms of �–Bockstein spectral
sequences. To show that injectivity is preserved by the spectral sequences, we must
show that every local boundary which is in the image of the Hasse map is in fact
the Hasse image of a global boundary. This is obvious by inspection of the spectral
sequences in question.

Before moving on to the proof of Theorem 5.1 we use (4) and our computation of the
E2 –term of the MASS for BPhni over Q to tie up a loose end from Section 3. Note
that thus far none of the results in this section have depended on the following lemma.

Lemma 5.7 In the MASS for BPhni over Q2 , the differentials take the form

d2Ci�
2i

D z�2i�1v2Ci
0

with z D x 2 kM
1 .Q2/:

Proof Assume for contradiction that zD �xCy with �D 0 or 1. Recall that xD Œ2�

and y D Œ5�. We claim that �2i

v0 survives to the E2Ci page of the MASS for BPhni

over Q. Let H Qv denote the projection of HBPhni onto the Qv factor in the image of
the Hasse map. Then

H Q5d
Q
2Ci

�2i

v0 D d
Q5

2Ci
�2i

v0 D .�Œ2�C Œ5�/�
2i

v3Ci
0

:

From Theorem 3.17, though, we know that this differential actually hits Œ2��2i

v3Ci
0

,
producing a contradiction. (Note that 2 generates the Teichmüller lift in Q5 .)

It remains to show that �2i

v0 survives to the E2Ci –page when working over Q.
Suppose not. For tri-degree reasons, �2i

v0 would have to support a differential (rather
than being the target), and it cannot support any lower differentials because they would
be detected locally yet no such local differentials exist.

We now aim to prove Theorem 5.1 via analysis of (4).

Proof of Theorem 5.1 As in the proof of Corollary 5.6 we must show that on each
page of the MASS every local boundary in the image of HBPhni is in fact the Hasse
image of a global boundary. For induction, suppose that we have proven injectivity
on the Er –page for some r � 2. Suppose that dr .x/D y DH.zy/ in

Q
v E
�;?
r . We

must verify that there is a global differential dr .zx/D zy .
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We first go about constructing zx as an element of E2 of the global MASS. Note that
the MASS over R collapses and differentials over Qp take the form

(5) d
Qp

r �2i jvK
D u0�2i j�1vr

0v
K

or

(6) d
Qp

r Œp�0�2i jvK
D a0p�

2i j�1vr
0v

K :

Here vK is a monomial in the vi , u0 generates the Teichmüller lift (unless p D 2

when u0 D x D Œ2�), Œp�0 D Œp� (unless p D 2 when Œ2�0 D y D Œ5�), and a0p D ap

(unless pD 2 when a0p D �
2D xy ). Recall that dr .x/ 2

Q
v E
�;?
r has one coordinate

for each place of Q. The coordinates of dr .x/D y are either all of the form (5) or
all of the form (6). In case (5) we define zx D �2i jvK , a well-defined element of
E2 . In case (6), we know that y has at most finitely many nonzero coordinates since
H W kM

2
.Q/!

L
p�2 kM

2
.Qp/ is an isomorphism and y D H.zy/. In this case we

define zx to be the sum of the elements Œp�0�2i jvK for which the associated coordinate
of y is nonzero.

As long as zx survives to Er we are guaranteed that dr .zx/ D zy by the inductive
hypothesis. A consideration of tri-degrees quickly verifies that zx is not a boundary in
any of the Er 0<r –pages of the MASS. Hence we only need to show that dr 0 zx D 0 for
each r 0 < r . By the form of E2 , we know that zx D s� tvi.j / for some Milnor symbol
s . Given the structure of the local MASS E2 , we may assume zx is in fact of the formP
Œp��2i

, for some p � 1 .4/, or vi.j / for 0� i � n, 0� j .

In the first case, all potential targets for
P
Œp��2i

are either kM
2
.Q/ � vr 0

0
–multiples of

�2i�1 or are �3 � v>0 –divisible. (This is easy to see by looking at Figure 1 and adding
in kM

� .Qp/ classes.) The differentials in the latter class would be witnessed by the
MASS over R, which collapses, a contradiction. For the first class, if r 0 < r then the
Hasse map will send the differential to a local dr 0 –differential on x , a contradiction.

In the second case, all potential targets for vi.j / are either kM
1
.Q/ �vr 0

0
vi.0/–multiples

of �2iC1�1 or are �3 � v>0 –divisible. The same arguments go through, proving the
injectivity of (4).

Theorem 5.8 Let ".p/D �2.p � 1/, the 2–adic valuation of p � 1, and let �.p/D
�2.p

2� 1/. The MASS for BPhni over Q is determined by

d�.p/Ci�1Œp��
2i

D ap�
2i�1v

�.p/Ci�1
0

if p � 3 .4/, i � 1,

d".p/Ci Œp��
2i

D ap�
2i�1v

".p/Ci
0

if p � 1 .4/, i � 0,

d3CiC�2.j/vi.j /D Œ2��
2iC1j�1v

3CiC�2.j/
0

vi.0/ if i � 0, j � 1.
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Before proving the theorem we make several comments.

Remark 5.9 The behavior of the above spectral sequence (and that of Theorem 5.5)
is depicted in the Figures 4, 5 and 6 in the nD 3 case. They employ the same graphical
calculus employed in the pictures of the �–Bockstein spectral sequence over R, and
we strongly recommend the reader review Remark 3.6 before attempting to digest
these diagrams. (Note that MASS pictures no longer have an additional decoration by
�–filtration, but the rest of the grading is the same.) We have split the action of the
spectral sequence into three digestible chunks: differentials involving primes congruent
to 3 mod 4 (Figure 4), those for primes congruent to 1 mod 4 (Figure 5), and those
present involving the prime 2 and the real place (Figure 6).

We have further compressed the diagrams by displaying all MASS differentials simul-
taneously. An arrow labeled by r is a dr differential.

Finally, Figures 4 and 5 should really be viewed as products of diagrams over primes
congruent to 3 mod 4 and 1 mod 4, respectively, and � and " refer to �.p/D �2.p

2�1/

and ".p/ D �2.p � 1/, respectively. The classes in degree �˛ represent Œp� and in
degree �2˛ we have ap . The strings of elements extending with slope �1 represent
� –multiplication. The notation ı

vr
0

represents the algebra F2Œv0; : : : ; vn�=v
r
0

.

Remark 5.10 As the reader will note, the most interesting action in the computation
takes place when the real and 2–adic places intermingle. Note that a dr differential on
a v0.j / class produces vrC1

0
–torsion in the target. This happens because v0.j / is in

Adams filtration 1, not 0.

Consider, though, what happens to a class like Œ2��3 and its vi.j /–multiples. (Note
that Œ2��3 can be located in degree 3� 4˛ in the MASS portion of Figure 6.) We
have a differential d4.v0.2// D Œ2��

3v5
0

, making Œ2��3 a v5
0

–torsion class. We also
have d4.v1.1//D Œ2��

3v4
0
v1 , so Œ2��3v1 is a v4

0
–torsion class. In this fashion, we see

a v1 –multiple of a v5
0

–torsion class that is killed by v4
0

.

The above scenrio is a specific case of a general phenomenon in our computations:
differentials supported by vi>0.j /’s (those classes at the end of dashed lines in our
MASS picture) will produce v3CiC�2.j/

0
–torsion on Œ2��2iC1j�1vi while Œ2��2iC1j�1

is v4CiC�2.j/
0

–torsion.

Remark 5.11 In the dimensional range pictured, the E1–pages of Figures 4, 5 and
6 almost depict E1 for �?BPQ . The only difference is that the v6

0
–torsion class in

degree 15� 16˛ becomes a v7
0

–torsion class. This is because the class �16 dies in the
�–BSS for BPhni when n� 4 so it is v0.8/ at height 1 that supports a d6 –differential
killing Œ2��15v7

0
while Œ2��15v6

0
survives.
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Figure 4: Portions of the �–BSS and MASS for BPh3iQ involving p � 3 .4/

Remark 5.12 The very careful reader will note that the target of Œp�� in the �–BSS is
.�2Cap/v0 when p� 3 .4/, so the �–BSS portion of Figure 4 is slightly misleading.
Since �v0 dies on the E2 –page, no harm is done.

Proof of Theorem 5.8 These differentials follow from a “least energy principle”
guaranteed by the Hasse principle:

For x 2 E2 of the global MASS for BPhni let r be the smallest r 0

such that some H Qv .x/ supports a dr 0 –differential. Then dr x D y

for y a unique lift of dr HBPhni.x/.
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Figure 5: Portions of the MASS for BPh3iQ involving p � 1 .4/
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Figure 6: Portions of the MASS for BPh3iQ involving 2–adic and real places

We call this a least energy principle since the global MASS has nonzero differential on
x as soon as its Hasse image supports differentials, and it is a straightforward corollary
of injectivity in (4).

The differentials in the theorem follow by applying this principle to the global E2 –term
determined in Theorem 5.5 and the local computations of Section 3.

We now set some notation so that we can express a closed form for the additive structure
of �?BPhni. For p � 3 .4/ let Ap be the bigraded Abelian group with

.Ap/�˛ D Z2;

.Ap/�2˛C2r.1�˛/ D Z=2 for r � 0;

.Ap/1�3˛C2r.1�˛/ D Z=2�.p/�1C�2.2rC2/ for r � 0;

.Ap/kC`˛ D 0 otherwise.

Define AD
L

p�3.4/Ap and let

A.n/DAŒv1; : : : ; vn�:

For p � 1 .4/ let Bp be the bigraded Abelian group with

.Bp/�˛ D Z2;

.Bp/�2˛Cr.1�˛/ D Z=2".p/C�2.rC1/ for r � 0;

.Bp/kC`˛ D 0 otherwise.
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Define B D
L

p�1.4/Bp and let

B.n/D BŒv1; : : : ; vn�:

Now define

C 0.n/D Z2Œ�; �
2nC1

; v1; : : : ; vn; wi.j / j 1� i � n; 0� j �

subject to the relations

�vi D wi.0/;

�2iC1�1vi D 0;

�2iC1�2wi.j /D 0;

wi.j /wk.`/D wi.j C 2k�i`/wk.0/ if i � k;

wi.j /D �
2nC1

wi.j � 2n�i/ if j � 2n�1:

(Note that the class wi.j / is represented by ��2iC1jvi in the MASS for BPhni.) Also
define C 00.n/ to be the bigraded Abelian group with

C 00.n/�˛C2r.1�˛/ D Z2;

C 00.n/1�2˛C2r.1�˛/ D Z=23C�2.2rC2/ for r � 0 and 2nC1−2r C 2;

C 00.n/1�2˛C2r.1�˛/ D Z=22C�2.2rC2/ for r � 0 and 2nC1
j 2r C 2:

Let tj denote the generator of C 00.n/ in degree �˛C j .1�˛/ and define

C 000.n/D C 00.n/Œv1; : : : ; vn�=.2
2C�2.jC1/tjvi j j � 3 .4/; 1� i � �2.j C 1/� 1/:

We define
C.n/D C 0.n/˚C 000.n/:

Note that A.n/, B.n/ and C.n/ capture precisely the information on the E1 pages
presented in Figures 4, 5 and 6, respectively, once v0 D 2 is taken into account. The
following result is now a direct consequence of Theorem 5.8.

Theorem 5.13 The coefficients of BPhni over Q take the form

�?BPhni DA.n/˚B.n/˚C.n/

additively.

Remark 5.14 By Lemma 2.9 in the nD 1 case we can recover the Rognes–Weibel
[23] computation of the 2–complete algebraic K–theory of Q by inverting v1 and
looking at the weight 0 piece of the coefficients.
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Remark 5.15 Recall Quillen’s localization fiber sequence for 2–complete algebraic
K–theory spectra _

p

KFp!KZ!KQ:

The associated long exact sequence on homotopy groups splits into isomorphisms
K2iZŠK2iQ and split short exact sequences

0!K2iC1Z!K2iC1Q!
M

p

K2iFp! 0

for i � 1. In the n D 1 case, after inverting v1 we see that the decomposition in
Theorem 5.13 respects the localization decomposition of K�Q in the following sense:

v�1
1 A.1/m˚ v

�1
1 B.1/m Š

M
p

Km�1Fp;

v�1
1 C.1/m ŠKmZ;

abstractly for m� 2.

Let E.n/ D v�1
n BPhni denote the motivic Johnson–Wilson spectrum. (Note that

E.1/D KGL in the 2–complete category.) We can ask then whether there are integral
models of the rational and Fp truncated Brown–Peterson and Johnson–Wilson spectra
so that there are localization fiber sequences_

p

BPhniZFp
! BPhniZ! BPhniZQ;_

p

E.n/ZFp
! E.n/Z! E.n/ZQ;

in the category of motivic spectra over Spec Z. Joseph Ayoub has informed us that
these sorts of localization sequences should be related to Quillen purity theorems for
BPhni and E.n/. Such results should follow from purity for algebraic K–theory in
the nD 1 case but n> 1 is terra incognita.

On the basis of our MASS computations over Q, we might wildly speculate that
the MASS for BPhniZ would match portion of the MASS for BPhniQ presented in
Figure 6 and the MASS for BPhniFp

would match the portion of the MASS for BPhniQ
presented in Figures 4 or 5 (depending on whether p� 3 or 1 .4/, respectively). That
said, essentially nothing is known about the structure of A? or convergence of the
MASS over Z.

By working in the stable motivic homotopy category over Fp , the authors have currently
verified that the MASS for BPhniFp

, p > 2, does indeed behave this way [20]. (Work
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of Mark Hoyois, Sean Kelly and the second author [5] identifies the dual motivic
Steenrod algebra at 2 over Fp for p > 2, which then permits methods similar to those
in Section 3 of this paper to be applied.) The MASS for BPhniF2

remains mysterious.
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