Volume 17, issue 4 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Other MSP Journals
A variation of McShane's identity for 2–bridge links

Donghi Lee and Makoto Sakuma

Geometry & Topology 17 (2013) 2061–2101
Bibliography
1 W Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980) MR590044
2 H Akiyoshi, H Miyachi, M Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 21 MR2145054
3 H Akiyoshi, H Miyachi, M Sakuma, Variations of McShane's identity for punctured surface groups, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 151 MR2258748
4 H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups. I, Lecture Notes in Mathematics 1909, Springer (2007) MR2330319
5 B H Bowditch, A proof of McShane's identity via Markoff triples, Bull. London Math. Soc. 28 (1996) 73 MR1356829
6 B H Bowditch, A variation of McShane's identity for once-punctured torus bundles, Topology 36 (1997) 325 MR1415591
7 B H Bowditch, Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. 77 (1998) 697 MR1643429
8 W Dicks, M Sakuma, On hyperbolic once-punctured-torus bundles. III. Comparing two tessellations of the complex plane, Topology Appl. 157 (2010) 1873 MR2646422
9 D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67 MR918457
10 F Guéritaud, Géométrie hyperbolique effective et triangulations idéales canoniques en dimension trois, PhD thesis, Université Paris Sud – Paris XI (2006)
11 F Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239 MR2255497
12 D Lee, M Sakuma, Simple loops on 2–bridge spheres in 2–bridge link complements, Electron. Res. Announc. Math. Sci. 18 (2011) 97 MR2832095
13 D Lee, M Sakuma, Epimorphisms between 2–bridge link groups: homotopically trivial simple loops on 2–bridge spheres, Proc. Lond. Math. Soc. 104 (2012) 359 MR2880244
14 D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (I), to appear in Geom. Dedicata arXiv:1010.2232
15 D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (II), to appear in Geom. Dedicata arXiv:1103.0856
16 D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (III), to appear in Geom. Dedicata arXiv:1111.3562
17 K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford University Press (1998) MR1638795
18 G McShane, A remarkable identity for lengths of curves, PhD thesis, University of Warwick (1991)
19 G McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998) 607 MR1625712
20 M Mirzakhani, Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007) 179 MR2264808
21 T Nakanishi, A series associated to generating pairs of a once punctured torus group and a proof of McShane's identity, Hiroshima Math. J. 41 (2011) 11 MR2809045
22 T Ohtsuki, R Riley, M Sakuma, Epimorphisms between 2–bridge link groups, from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr. 14 (2008) 417 MR2484712
23 M Sakuma, Variations of McShane's identity for the Riley slice and 2–bridge links, Sūrikaisekikenkyūsho Kōkyūroku 1104 (1999) 103 MR1744474
24 M Sakuma, Epimorphisms between 2–bridge knot groups from the view point of Markoff maps, from: "Intelligence of low dimensional topology 2006" (editors J S Carter, S Kamada, L H Kauffman, A Kawauchi, T Kohno), Ser. Knots Everything 40, World Sci. Publ., Hackensack, NJ (2007) 279 MR2371736
25 M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. 21 (1995) 393 MR1364387
26 H Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956) 133 MR0082104
27 M Sheingorn, Characterization of simple closed geodesics on Fricke surfaces, Duke Math. J. 52 (1985) 535 MR792188
28 S P Tan, Y L Wong, Y Zhang, The $\mathrm{SL}(2,\mathbb C)$ character variety of a one-holed torus, Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 103 MR2191691
29 S P Tan, Y L Wong, Y Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces, J. Differential Geom. 72 (2006) 73 MR2215456
30 S P Tan, Y L Wong, Y Zhang, Necessary and sufficient conditions for McShane's identity and variations, Geom. Dedicata 119 (2006) 199 MR2247658
31 S P Tan, Y L Wong, Y Zhang, End invariants for $\mathrm{SL}(2,\mathbb C)$ characters of the one-holed torus, Amer. J. Math. 130 (2008) 385 MR2405161
32 S P Tan, Y L Wong, Y Zhang, Generalized Markoff maps and McShane's identity, Adv. Math. 217 (2008) 761 MR2370281
33 S P Tan, Y L Wong, Y Zhang, McShane's identity for classical Schottky groups, Pacific J. Math. 237 (2008) 183 MR2415214
34 W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
35 M Wada, OPTi
36 J Weeks, SnapPea
37 J R Weeks, Convex hulls and isometries of cusped hyperbolic $3$–manifolds, Topology Appl. 52 (1993) 127 MR1241189
38 Y Yamashita, calc.py (2012)