Volume 17, issue 4 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24, 1 issue

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds

Aditi Kar and Graham A Niblo

Geometry & Topology 17 (2013) 2203–2221
Bibliography
1 A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631 MR2993750
2 R Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London (1976) MR0466344
3 K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) MR672956
4 S E Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69 MR0438359
5 M W Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series 32, Princeton Univ. Press (2008) MR2360474
6 W Dicks, M J Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, Cambridge Univ. Press (1989) MR1001965
7 J D Dixon, B Mortimer, Permutation groups, Graduate Texts in Mathematics 163, Springer (1996) MR1409812
8 M J Dunwoody, M E Sageev, JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25 MR1664694
9 M J Dunwoody, E L Swenson, The algebraic torus theorem, Invent. Math. 140 (2000) 605 MR1760752
10 S Eilenberg, T Ganea, On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. 65 (1957) 517 MR0085510
11 J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 MR2912704
12 P H Kropholler, A group-theoretic proof of the torus theorem, from: "Geometric group theory, Vol. 1" (editors G A Niblo, M Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 138 MR1238522
13 P H Kropholler, M A Roller, Splittings of Poincaré duality groups III, J. London Math. Soc. 39 (1989) 271 MR991661
14 J F Lafont, R Roy, A note on the characteristic classes of non-positively curved manifolds, Expo. Math. 25 (2007) 21 MR2286832
15 N Mok, Y T Siu, S K Yeung, Geometric superrigidity, Invent. Math. 113 (1993) 57 MR1223224
16 G A Niblo, The singularity obstruction for group splittings, Topology Appl. 119 (2002) 17 MR1881707
17 G Niblo, L Reeves, Groups acting on $\mathrm{CAT}(0)$ cube complexes, Geom. Topol. 1 (1997) 1 MR1432323
18 C D Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1 MR0090053
19 A W Reid, A non–Haken hyperbolic 3–manifold covered by a surface bundle, Pacific J. Math. 167 (1995) 163 MR1318168
20 M Sageev, Codimension 1 subgroups and splittings of groups, J. Algebra 189 (1997) 377 MR1438181
21 P Scott, Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179 MR487104
22 P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003) MR2032389
23 R Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977) 317 MR0457588
24 F Waldhausen, On the determination of some bounded 3–manifolds by their fundamental groups alone, from: "Proc. Internat. Sympos. on Topology and its Applications" (editor D R Kurepa) (1969) 331