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A variation of McShane’s
identity for 2–bridge links
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We give a variation of McShane’s identity, which describes the cusp shape of a
hyperbolic 2–bridge link in terms of the complex translation lengths of simple loops
on the bridge sphere. We also explicitly determine the set of end invariants of
SL.2;C/–characters of the once-punctured torus corresponding to the holonomy
representations of the complete hyperbolic structures of 2–bridge link complements.
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1 Introduction

In his Ph D thesis [18], McShane proved the following remarkable identity concerning
the lengths of simple closed geodesics on a once-punctured torus with a complete
hyperbolic structure of finite area (see also Bowditch [5] and Nakanishi [21]):

(1-1)
X
ˇ2C

1

1C el.ˇ/
D

1

2
:

Here C denotes the set of all simple closed geodesics on a hyperbolic once-punctured
torus, and l.ˇ/ denotes the length of a closed geodesic ˇ . This identity has been
generalized to cusped hyperbolic surfaces by McShane himself [19], to hyperbolic
surfaces with cusps and geodesic boundary by Mirzakhani [20], and to hyperbolic
surfaces with cusps, geodesic boundary and conical singularities by Tan, Wong and
Zhang [29]. A wonderful application to the Weil–Petersson volume of the moduli
space of bordered hyperbolic surfaces was found by Mirzakhani [20]. Bowditch [7]
showed that the identity (1-1) is also valid for all quasifuchsian punctured torus groups,
where l.ˇ/ is regarded as the complex translation length of the hyperbolic isometry
corresponding to the closed geodesic ˇ . Moreover, he gave a nice variation of the
identity for hyperbolic once-punctured torus bundles, which describes the cusp shape
in terms of the complex translation lengths of simple loops on the fiber torus [6]. Other
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3–dimensional variations have been obtained by Akiyoshi, Miyachi and the second
author [2; 3] and Tan, Wong and Zhang [28; 29; 30; 32; 31; 33].

The main purpose of this paper is to prove yet another 3–dimensional variation of
McShane’s identity, which describes the cusp shape of a hyperbolic 2–bridge link
in terms of the complex translation lengths of essential simple loops on the bridge
sphere (Theorems 2.2 and 2.3). This proves a conjecture proposed by the second author
in [23]. The proof of the main results is applied to the study of the end invariants
of SL.2;C/–characters of the once-punctured torus introduced by Bowditch [7] and
Tan, Wong and Zhang [28]. In fact, we explicitly determine the sets of end invariants
of SL.2;C/–characters of the once-punctured torus corresponding to the holonomy
representations of the complete hyperbolic structures of 2–bridge link complements
(Theorems 8.4 and 8.5).

This paper is organized as follows. In Section 2, we give an explicit statement of the
main result. In Section 3, we recall basic facts concerning the orbifold fundamental
group of the .2; 2; 2;1/–orbifold, which connects the once-punctured torus and the
4–punctured sphere. In Section 4, we recall basic facts concerning the type-preserving
PSL.2;C/–representations of the orbifold fundamental group. In Section 5, we de-
scribe a certain natural triangulation of the cusps of hyperbolic 2–bridge complements,
following Guéritaud [11] and Weeks and the second author [25]. In Section 6, we give
a proof of the main result. In Section 7, we give an explicit homological description of
the longitudes of 2–bridge links in the definition of the cusp shapes in Theorems 2.2
and 2.3. In Section 8, we apply the proof of the main results to the study of the set of
end invariants. In Section 9, we explain another approach to the main results pursued
by Hirotaka Akiyoshi and the second author. In the appendix, we give numerical
calculations concerning McShane’s identity and its variation.

2 Statement of the main result

Let T , S and O , respectively, be the once-punctured torus, the 4–times punctured
sphere and the .2; 2; 2;1/–orbifold (ie the orbifold with underlying space a once-
punctured sphere and with three cone points of cone angle � ). They have R2�Z2 as
a common covering space. To be precise, let H and zH , respectively, be the groups of
transformations on R2�Z2 generated by � –rotations about points in Z2 and .1

2
Z/2 .

Then T D .R2�Z2/=Z2 , S D .R2�Z2/=H and O D .R2�Z2/= zH . In particular,
there are a Z2 –covering T !O and a Z2˚Z2 –covering S !O : the pair of these
coverings is called the Fricke diagram and each of T , S and O is called a Fricke
surface (see Sheingorn [27]).
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A simple loop in a Fricke surface is said to be essential if it does not bound a disk, a
disk with one puncture, or a disk with one cone point. Similarly, a simple arc in a Fricke
surface joining punctures is said to be essential if it does not cut off a “monogon”, ie a
disk minus a point on the boundary. Then the isotopy classes of essential simple loops
(essential simple arcs with one end in a given puncture, respectively) in a Fricke surface
are in one-to-one correspondence with yQ WDQ[f1=0g: a representative of the isotopy
class corresponding to r 2 yQ is the projection of a line in R2 (the line being disjoint
from Z2 for the loop case, and intersecting Z2 for the arc case). The element r 2 yQ
associated to a loop or an arc is called its slope. An essential simple loop of slope r in
T or O is denoted by ˇr , while that in S is denoted by ˛r . The notation reflects the
following fact: after an isotopy, the restriction of the projection T !O to ˇr (� T )
gives a homeomorphism from ˇr (� T ) to ˇr (� O ), while the restriction of the
projection S !O to ˛r gives a two-fold covering from ˛r (� S ) to ˇr (�O ).

Now we recall the definition of a 2–bridge link. To this end, set .S 2;P /D .R2;Z2/=H

and call it the Conway sphere. Then S 2 is homeomorphic to the 2–sphere, P consists
of four points in S 2 , and S 2 �P is the 4–punctured sphere S . We also call S

the Conway sphere. A trivial tangle is a pair .B3; t/, where B3 is a 3–ball and t

is a union of two arcs properly embedded in B3 which is parallel to a union of two
mutually disjoint arcs in @B3 . By a rational tangle, we mean a trivial tangle .B3; t/

which is endowed with a homeomorphism from @.B3; t/ to .S 2;P /. Through the
homeomorphism we identify the boundary of a rational tangle with the Conway sphere.
Thus the slope of an essential simple loop in @B3� t is defined. We define the slope of
a rational tangle to be the slope of an essential loop on @B3� t which bounds a disk in
B3 separating the components of t . (Such a loop is unique up to isotopy on @B3� t

and so the slope of a rational tangle is well-defined.)

For each r 2 yQ, the 2–bridge link K.r/ of slope r is defined to be the sum of the
rational tangles of slopes 1 and r , namely, .S3;K.r// is obtained from .B3; t.1//

and .B3; t.r// by identifying their boundaries through the identity map on the Conway
sphere .S 2;P /. (Recall that the boundaries of rational tangles are identified with
the Conway sphere.) K.r/ has one or two components according to whether the
denominator of r is odd or even. We call .B3; t.1// and .B3; t.r//, respectively, the
upper tangle and lower tangle of the 2–bridge link.

The topology of 2–bridge links is nicely described by using the Farey tessellation D ,
the tessellation of the hyperbolic plane H2 obtained from the ideal triangle h0; 1;1i
by successive reflection along its edges. The vertex set of the Farey tessellation is equal
to yQ WDQ[f1=0g � @H2 and so identified with the set of isotopy classes of essential
simple loops on a Fricke surface, via the correspondence s 7! ˛s or ˇs . Schubert’s
Classification Theorem of 2–bridge links [26] shows that two 2–bridge links K.r/
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and K.r 0/ are equivalent (ie there is a self-homeomorphism of S3 carrying one to
the other) if and only if there is an automorphism of D which maps the set f1; rg to
f1; r 0g.

1=2

1

1

0

1=4

2=7D Œ3; 2�

5=17D Œ3; 2; 2�
3=10D Œ3; 3�

1=3

Figure 1: A fundamental domain of y�r in the Farey tessellation (the shaded
domain) for r D 5=17D Œ3; 2; 2�

For each r 2 yQ, let �r be the group of automorphisms of D generated by reflections
along the edges of D with an endpoint r , and let y�r be the group generated by �r and
�1 . Then the region, R, bounded by a pair of Farey edges with an endpoint 1 and a
pair of Farey edges with an endpoint r forms a fundamental domain of the action of
y�r on H2 (see Figure 1). Let I1.r/ and I2.r/ be the closed intervals in yR obtained
as the intersection with yR of the closure of R. Suppose that r is a rational number
with 0< r < 1. (We may always assume this except when we treat the trivial knot and
the trivial 2–component link.) Write

r D
1

a1C
1

a2C : : : C
1

an

DW Œa1; a2; : : : ; an�;

where n� 1, .a1; : : : ; an/ 2 .ZC/n and an � 2. Then the above intervals are given by
I1.r/D Œ0; r1� and I2.r/D Œr2; 1�, where

r1 D

�
Œa1; a2; : : : ; an�1� if n is odd,
Œa1; a2; : : : ; an�1; an� 1� if n is even,

r2 D

�
Œa1; a2; : : : ; an�1; an� 1� if n is odd,
Œa1; a2; : : : ; an�1� if n is even.

The following theorem was established in [22] and [13].
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Theorem 2.1 (1) [22, Proposition 4.6] If two elements s and s0 of yQ belong to the
same orbit y�r –orbit, then the unoriented loops ˛s and ˛s0 are homotopic in S3�K.r/.

(2) [13, Lemma 7.1] For any given s 2 yQ, there is a unique rational number s0 in
I1.r/[ I2.r/[f1; rg such that s is contained in the y�r –orbit of s0 . In particular, ˛s

is homotopic to ˛s0
in S3�K.r/. Thus if s0 2 f1; rg, then ˛s is null-homotopic in

S3�K.r/.

(3) [13, Main Theorem 2.3] The loop ˛s is null-homotopic in S3�K.r/ if and only
if s belongs to the y�r –orbit of 1 or r . In particular, if s 2 I1.r/[ I2.r/, then ˛s is
not null-homotopic in S3�K.r/.

Moreover, it is proved by the authors in [14; 15; 16] that generically two simple loops
˛s and ˛s0 with s; s0 2 I1.r/[I2.r/ are homotopic in the link complement only when
s D s0 (see Theorem 6.3).

Now assume r D q=p , where p and q are relatively prime positive integers such that
q 6� ˙1 .mod p/. This is equivalent to the condition that K.r/ is hyperbolic, namely
the link complement S3�K.r/ admits a complete hyperbolic structure of finite volume.
Let �r be the PSL.2;C/–representation of �1.S / obtained as the composition

�1.S / �! �1.S /=hh˛1; ˛r ii Š �1.S
3
�K.r// �! IsomC.H3/Š PSL.2;C/;

where the last homomorphism is the holonomy representation of the complete hyper-
bolic structure of S3 �K.r/. Since �.S3 �K.r// is generated by two meridians,
�r .�1.S // is generated by two parabolic transformations. Hence the hyperbolic
manifold S3�K.r/ admits an isometric Z=2Z˚Z=2Z–action (see [34, Section 5.4]
and Figure 2), and so the PSL.2;C/–representation �r of �1.S / extends to that of
�1.O/. Moreover, this extension is unique (see [4, Proposition 2.2]). So we obtain, in
a unique way, a PSL.2;C/–representation of �1.T / by restriction. We continue to
denote it by �r .

Note that each cusp of the hyperbolic manifold S3�K.r/ carries a Euclidean structure,
well-defined up to similarity, and hence it is identified with the quotient of C (with
the natural Euclidean metric) by the lattice Z˚ Z�, generated by the translations
Œ� 7! �C 1� and Œ� 7! �C �� corresponding to the meridian and a (suitably chosen)
longitude, respectively. This � does not depend on the choice of the cusp, because when
K.r/ is a two-component 2–bridge link there is an orientation-preserving isometry
of S3�K.r/ interchanging the two cusps (see Figure 2). We call � the modulus of
the cusp and denote it by �.K.r//. In this paper, we prove the following variation of
McShane’s identity which describes the modulus �.K.r// in terms of the complex
translation lengths of the images by �r of essential simple loops on T .
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Figure 2: The symmetries of S3�K.r/

Theorem 2.2 For a hyperbolic 2–bridge link K.r/, the following identity holds:

2
X

s2 yQ\intI1.r/

1

1C el�r .ˇs/
C 2

X
s2 yQ\intI2.r/

1

1C el�r .ˇs/
C

X
s2@I1.r/[@I2.r/

1

1C el�r .ˇs/
D�1;

where l�r
.ˇs/ denotes the complex translation length of the hyperbolic isometry �r .ˇs/.

Furthermore, the modulus �.K.r// of the cusp torus of the cusped hyperbolic manifold
S3 �K.r/ with respect to a suitable choice of a longitude is given by the following
formula:

�.K.r//D
4

jK.r/j

8<:2
X

s2 yQ\intI1.r/

1

1C el�r .ˇs/
C

X
s2@I1.r/

1

1C el�r .ˇs/

9=;
D
�4

jK.r/j

8<:2
X

s2 yQ\intI2.r/

1

1C el�r .ˇs/
C

X
s2@I2.r/

1

1C el�r .ˇs/
C 1

9=; ;
where jK.r/j denotes the number of components of K.r/.

We note that the additional term s 2 @I1.r/[ @I2.r/ in the first identity in the above
theorem consists of four summands (because @I1.r/D f0; r1g and @I2.r/D fr2; 1g).

In the above theorem and in the remainder of this paper, we abuse notation to use
the symbol ˇs to denote an element of �1.T / represented by the simple loop ˇs

with an arbitrary orientation. Though such an element of �1.T / is determined only
up to conjugacy and inverse, the complex translation length of �r .ˇs/ is uniquely
determined by the slope s . Here the complex translation length of an orientation-
preserving isometry of H3 is an element of C=2� iZ whose real part is the translation
length along the axis of the isometry and whose imaginal part is the rotation angle
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around the axis. If �r .ˇs/ is represented by a matrix A 2 SL.2;C/, then the complex
translation length l�r

.ˇs/ is determined by the formula trAD 2 cosh.l�r
.ˇs/=2/ and

the condition that the real translation length L.�r .˛s// WD <.l�r
.ˇs// is nonnegative.

At the end of this section, we restate the above theorem in terms of the hyperbolic 3–
orbifold O.r/ WDS3�K.r/=.Z=2Z˚Z=2Z/, the quotient of the hyperbolic manifold
S3�K.r/ by the isometric Z=2Z˚Z=2Z–action. To this end, note that the action
extends to an action on .S3;K.r// satisfying the following conditions (see Figure 2):

(1) If we regard S3 as the one-point compactification of R3 , then the action on S3

consists of the � –rotations around the three coordinate axes. In particular, the
singular set, F , is the union of the three axes and the point at infinity.

(2) If K.r/ is a knot, then both of the Z=2Z–factors act on K.r/ as reflections,
and so K.r/ intersects F in 4–points. Each of the four subintervals of K.r/

divided by K.r/\F forms a fundamental domain of the restriction of the action
to K.r/.

(3) If K.r/ has two components, then one of the Z=2Z–factors interchanges the
components of K.r/ and the other factor preserves both components of K.r/

and acts on each component as a reflection. In particular, each component of
K.r/ intersects F in two points, and each of the four subintervals of K.r/

divided by K.r/\F forms a fundamental domain of the restriction of the action
to K.r/.

Hence the orbifold O.r/ has a single cusp, which forms a Euclidean orbifold of type
.2; 2; 2; 2/, ie the orbifold with underlying space S2 and with four cone points of cone
angle � . Recall that the cusp torus of S3 �K.r/ is identified with the quotient of
C by the lattice Z˚Z�, generated by the translations Œ� 7! �C 1� and Œ� 7! �C ��

corresponding to the meridian and a (suitably chosen) longitude, respectively. By the
above description of the Z=2Z˚Z=2Z–action, we see that the cusp of O.r/ is the
quotient of C by the group generated by � –rotations around the origin 0, the point
1
2

and the point 1
4
jK.r/j�. It should be noted that the line segment in C joining 0

and 1
4
jK.r/j� projects homeomorphically onto a simple arc joining two cone points

in @O.r/, whose inverse image in S3�K.r/ forms a longitude if K.r/ is a knot; it
forms a union of longitudes of the two components if K.r/ is a 2–component link.
We call the simple arc in @O.r/ a longitude. We set

�.O.r// WD

jK.r/j
4

�

1
2

D
jK.r/j

2
�;

and call it the modulus of the cusp of O.r/ with respect to the longitude. Then
Theorem 2.2 is paraphrased as follows.
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Theorem 2.3 For a hyperbolic 2–bridge link K.r/, the modulus of the cusp of the
quotient orbifold O.r/ with respect to a suitable choice of a longitude is given by the
following formula:

1

2
�.O.r//D 2

X
s2 yQ\intI1.r/

1

1C el�r .ˇs/
C

X
s2@I1.r/

1

1C el�r .ˇs/

D�2
X

s2 yQ\intI2.r/

1

1C el�r .ˇs/
�

X
s2@I2.r/

1

1C el�r .ˇs/
� 1:

An explicit description of the longitude in Theorems 2.2 and 2.3 is in Proposition 7.1.

3 The orbifold fundamental group �1.O/

The orbifold fundamental group of O has the presentation

(3-1) �1.O/D hA;B;C jA2
D B2

D C 2
D 1i;

where D WD .ABC /�1 is represented by the puncture of O . We call D the distin-
guished element. Since T and S are finite regular coverings of the orbifold O , the
fundamental groups of T and S are regarded as normal subgroups of �1.O/ of indices
2 and 4, respectively.

By picking a complete hyperbolic structure of O (and hence of T ), we identify the
universal covering space zO D zT with (the upper half-space model of) the hyperbolic
plane H2 D fz 2 C j =.z/ > 0g, and identify �1.O/ with a Fuchsian group (see
Figure 3). We assume that D is identified with the following parabolic transformation
having the ideal point 1 of H2 as the parabolic fixed point:

D.z/D zC 1:

Then the points A.1/, B.1/ and C.1/ lie on R from left to right in this order.
After a coordinate change, we may assume that the images of the three geodesics
joining 1 with these three points, in the universal abelian cover R2�Z2 of T , are
open arcs of slopes 0, 1 and 1, joining the puncture .0; 0/ with .1; 0/, .1; 1/ and
.0; 1/, respectively. Thus the images of these three geodesics in T are mutually disjoint
arcs properly embedded in T , which divide T into two ideal triangles, and thus they
determine an ideal triangulation of T .

We now recall the well-known correspondence between the ideal triangulations of T

and the Farey triangles, ie a triangle in the Farey tessellation D . The vertex set of D is
equal to yQ WDQ[f1=0g � @H2 and each vertex s determines a properly embedded
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D

A B C VD.A/

VB.C /

A.1/ B.1/ C.1/ DA.1/

Figure 3: The Fuchsian group hA;B;C i . The symbols A , B , C , VD.A/
and VB.C / are situated near the fixed points in H2 of the involutions they
denote.

arc ıs in T of slope s , ie the arc in T obtained as the image of the straight arc of
slope r in R2�Z2 joining punctures. If � D hs0; s1; s2i is a Farey triangle, then the
arcs ıs0

, ıs1
and ıs2

are mutually disjoint and they determine an ideal triangulation
of T . In the following we assume that the orientation of � D hs0; s1; s2i is coherent
with the orientation of the Farey triangle h0; 1;1i, where the orientation is determined
by the order of the vertices. Then the oriented simple loop in T around the puncture
representing D2 meets the edges of the ideal triangulation trg.�/ of slopes s0; s1; s2

in this cyclic order, for every Farey triangle � D hs0; s1; s2i.

By using the above notation, the generators A, B and C in (3-1) are described as
follows. Consider the ideal triangulation trg.�/ of T determined by the Farey triangle
� Dh0; 1;1i. It lifts to a �1.O/–invariant tessellation of the universal cover zT DH2 .
Let fej gj2Z be the edges of the tessellation emanating from the ideal vertex 1, lying
in H2 from left to right in this order. For each ej , there is a unique order 2 element,
Pj , in �1.O/ which inverts ej . We may assume after a shift of indices that e3j ,
e3jC1 and e3jC2 project to the arcs in T of slopes 0, 1 and 1, respectively, for
every j 2 Z. Then any triple of consecutive elements .P3j ;P3jC1;P3jC2/ serves as
.A;B;C /. Throughout this paper, .A;B;C / represents the triple of specific elements
of �1.O/ obtained in this way. We call fPj gj2Z the sequence of elliptic generators
associated with the Farey triangle � .

The above construction works for every Farey triangle �Dhs0; s1; s2i, and the sequence
of elliptic generators associated with it is defined. (Here we use the assumption that
the orientation of hs0; s1; s2i is coherent with the orientation of h0; 1;1i.) Any triple
of three consecutive elements in a sequence of elliptic generators is called an elliptic
generator triple. A member, P , of an elliptic generator triple is called an elliptic
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generator, and its slope s.P / 2 yQ is defined to be the slope of the arc in T obtained
as the image of the geodesic h1;P .1/i. (Here it should be noted that 1 is the
parabolic fixed point of the distinguished element D .) For example, we have

.s.A/; s.B/; s.C //D .0; 1;1/:

When we say that fPj gj2Z is the sequence of elliptic generators associated with a
Farey triangle � D hs0; s1; s2i, we always assume that

.s.P3m/; s.P3mC1/; s.P3mC2//D .s0; s1; s2/:

Thus the index j is well defined modulo a shift by a multiple of 3. We summarize the
properties of elliptic generators (cf [4, Section 2.1]), by using the following nonstandard
notation which was introduced in [8]:

(3-2) For elements X , Y of a group G , VX .Y / denotes XYX�1 .

We view VX as an element of the automorphism group of G .

Proposition 3.1 (1) Let fPj gj2Z be the sequence of elliptic generators associated
with a Farey triangle � . Then the following hold for every j 2 Z:

(i) �1.O/Š hPj ;PjC1;PjC2 j P
2
j D P2

jC1
D P2

jC2
D 1i.

(ii) PjC2PjC1Pj is equal to the distinguished element D of �1.O/.

(iii) With the notation of (3-2), PjC3m D
VDm.Pj / for every m 2 Z.

(iv) hs.Pj /; s.PjC1/; s.PjC2/i is a Farey triangle and its orientation is coherent with
h0; 1;1i.

(2) Let P and P 0 be elliptic generators of the same slope. Then P 0 D VDm.P / for
some m 2 Z. Let � D hs0; s1; s2i and � 0 D hs0

0
; s0

1
; s0

2
i be Farey triangles sharing

the edge hs0; s1i D hs
0
0
; s0

2
i, and let fPj g and fP 0j g, respectively, be the sequences of

elliptic generators associated with � and � 0 . Then the following identity holds after a
shift of indices by a multiple of 3 (see Figure 4):

.P 03j ;P
0
3jC1;P

0
3jC2/D .P3j ; VP3jC1.P3jC2/;P3jC1/:

The above proposition motivates us to introduce the following definition, which is used
in the description of a cusp triangulation of the 2–bridge link complement.

Definition 3.2 (Chain) By a chain of Farey triangles, we mean a (nonempty) finite
sequence † D .�1; : : : ; �m/ of mutually distinct Farey triangles such that �iC1 is
adjacent to �i for each i (1� i �m� 1).
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P 0
0

P 0
1

P 0
2

P 0
3

P 0
4

P0

D

P2
D

P3

D

P5

D

P1 P4

	

˚

	

s1

s02

s0
0

s0

D

s0
2

s2

D

	

	

Figure 4: Adjacent sequences of elliptic generators. The symbol 	 (˚ ,
respectively) indicates a triangle in which coherent reading of the vertices is
counterclockwise (clockwise, respectively).

Definition 3.3 (Elliptic generator complex) Let † D .�1; : : : ; �m/ be a chain of
Farey triangles.

(1) L.†/ (or L.�1; : : : ; �m/) denotes the simplicial complex constructed as follows,
and we call it the elliptic generator complex associated with the chain †:

(i) The vertex set L.†/.0/ is identified with the set of elliptic generators whose
slope is contained in †.0/ .

(ii) The edge set L.†/.1/ is identified with the set of the ordered pairs .P;Q/ of
elliptic generators, which appears (successively in this order) in a sequence of
elliptic generators associated with a triangle of †.

(iii) The set L.†/.2/ of the 2–simplices is identified with the set of the elliptic
generator triples .P;Q;R/ such that .P;Q/, .Q;R/ and .P;R/ are edges of
L.†/.

(2) The self-map P 7! VD.P / on L.†/.0/ induces a simplicial automorphism on
L.†/, and we denote it by the symbol D .

(3) L.†/=hDi and L.†/=hD2i, respectively, denote the abstract cell complex ob-
tained as the quotient of L.†/ by the group hDi and hD2i.

The 1–skeleton of L.†/ is obtained as the union of the 1–dimensional simplicial
complex L.�i/ (�i 2 †

.2/ ), which is obtained by joining the vertices fPj g, the
sequence of elliptic generators associated with �i , successively by edges.

4 Markoff maps and type-preserving representations

In this section, we recall basic facts concerning type-preserving PSL.2;C/–representa-
tions of �1.O/, and explain a key proposition, Proposition 4.4, which was established

Geometry & Topology, Volume 17 (2013)



2072 Donghi Lee and Makoto Sakuma

by Bowditch [7] and generalized by Akiyoshi, Hirotaka and the second author [2] and
Tan, Wong and Zhang [30].

A PSL.2;C/–representation of �1.T / or �1.O/ is type-preserving if it is irreducible
(equivalently, it does not have a common fixed point in @H3 ) and sends peripheral
elements to parabolic transformations. When we mention a type-preserving representa-
tion �W �1.O/! PSL.2;C/, we always assume that the image of the distinguished
element D is given by

(4-1) �.D/D

�
1 1

0 1

�
:

Since �1.T / is a free group, any type-preserving representation �W �1.T /!PSL.2;C/
lifts to a presentation z�W �1.T /! SL.2;C/, which is type-preserving, in the sense
that it is irreducible and sends peripheral elements to parabolic transformations. For
a type-preserving SL.2;C/–representation z�W �1.T /! SL.2;C/, let � D �z� be the
map from D.0/D yQ to C defined by �.s/D tr.z�.ˇs//. Then it is a nontrivial Markoff
map in the sense of [7], that is:

(i) For any Farey triangle hs0; s1; s2i, the triple .�.s0/; �.s1/; �.s2// is a nontrivial
Markoff triple, that is, it is a nontrivial solution of the Markoff equation

x2
Cy2

C z2
D xyz:

Here, being nontrivial means .x;y; z/¤ .0; 0; 0/.

(ii) For any pair of triangles hs0; s1; s2i and hs1; s2; s3i of D sharing a common
edge hs1; s2i, we have

�.s0/C�.s3/D �.s1/�.s2/:

Lemma 4.1 Let �W �1.O/! PSL.2;C/ be a type-preserving representation satis-
fying the normalization condition (4-1), and let � be a Markoff map induced by a
type-preserving representation z�W �1.T /! SL.2;C/ which is a lift of the restriction
of � to �1.T /.

(1) Let P be an elliptic generator of slope s .

(i) If �.s/ ¤ 0, then �.P / is the � –rotation about the geodesic with endpoints
c.�.P //˙ i=�.s/, where c.�.P //D �.P /.1/ 2C .

(ii) If �.s/D 0, then �.P / is the � –rotation about a vertical geodesic, ie a geodesic
in the upper half-space model of the hyperbolic space which has 1 as an
endpoint.
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(2) Let fPj g be the sequence of elliptic generators associated with a Farey triangle
� D hs0; s1; s2i.

(i) If �.s1/�.s2/¤ 0, then

c.�.P2//� c.�.P1//D
�.s0/

�.s1/�.s2/
:

(ii) If �.s0/�.s1/�.s2/¤ 0, then fc.�.Pj //g is a sequence of points in C such that
c.�.Pj //C 1D c.�.PjC3//.

(iii) If �.s0/ D 0, then �.s1/�.s2/ ¤ 0 and c.�.P1C3k// D c.�.P2C3k// and
�.P3k/ is a � –rotation about a vertical geodesic, where the end point of its axis in
C is the midpoint between c.�.P�2C3k//D c.�.P�1C3k// and c.�.P1C3k//D

c.�.P2C3k//.

(iv) Suppose �.s0
0
/D0, where s0

0
is the vertex of D opposite to s0 with respect to the

edge hs1; s2i. Then �.s0/�.s1/�.s2/¤ 0 and c.�.P�1C3k//D c.�.P1C3k//.

Proof The assertions of the lemma, except for (2–iv), are contained in [4, Propo-
sition 2.2.4]. To prove (2–iv), note that the assumption �.s0

0
/ D 0 implies that

�.s2/ D ˙i�.s1/ and �.s0/ D ˙i�.s1/
2 . Since .�.s0

0
/; �.s1/; �.s2// is nontrivial,

this implies that �.s1/¤ 0 and so none of �.sj / .j 2 f0; 1; 2g) is 0.

The following definition is used in a description of cusp triangulations of hyperbolic
2–bridge link complements.

Definition 4.2 Let �W �1.O/! PSL.2;C/ be a type-preserving representation satis-
fying the normalization condition (4-1).

(1) Let � D hs0; s1; s2i be a Farey triangle such that �.s0/�.s1/�.s2/ ¤ 0. Then
L.�; �/ denotes the (possibly singular) biinfinite zigzag line in C which is obtained
by successively joining the points fc.�.Pj //g, where fPj g is the sequence of elliptic
generators associated with � . We note that L.�; �/ is invariant by the transformation
z 7! zC 1.

(2) We say that L.�; �/ is simple, if the underlying space jL.�; �/j is homeomorphic
to the real line R and fc.�.Pj //g sits on it in the order of the suffix j 2 Z.

(3) We say that L.�; �/ is simply folded at the vertex c.�.Pj //, if c.�.Pj�1// D

c.�.PjC1// and the horizontal line, L, passing through this point does not contain
c.�.Pj //. In this case, the underling space jL.�; �/j is the union of L and the “spikes”
joining c.�.PjC3k// and c.�.Pj�1C3k//D c.�.PjC1C3k// 2L, where k runs over
all integers. We call L the horizontal line determined by L.�; �/. If s is the slope of
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the elliptic generator Pj , we also say that L.�; �/ is simply folded at the slope s . We
say that L.�; �/ is simply folded if it is simply folded at some slope (which is a vertex
of � ).

(4) Let †D .�1; �2; : : : ; �m/ be a chain of Farey triangles such that ��1.0/\†.0/D

∅. Then L.�;†/ denotes the union of the biinfinite zigzag lines fL.�; �i/g in C .

Remark 4.3 By Lemma 4.1(2), L.�; �/ is simply folded at the slope s only when
�.s0/ D 0, where s0 is the vertex of D opposite to s with respect to the edge of �
which does not contain s .

Let T be a binary tree (a countably infinite simplicial tree all of whose vertices have
degree 3) properly embedded in H2 dual to D . A directed edge, Ee , of T can be
thought of an ordered pair of adjacent vertices of T , referred to as the head and tail of
Ee . Following [7], we use the notation Ee$ .s1; s2I s0; s3/ to mean that s0 , s1 , s2 and
s3 are the ideal vertices of D such that

(i) the Farey edge hs1; s2i is the dual to Ee , and

(ii) the Farey triangle hs0; s1; s2i (hs1; s2; s3i, respectively) is dual to the head (tail,
respectively) of Ee , if Ee$ .s1; s2I s0; s3/.

If �.s1/�.s2/¤ 0, then we set

 .Ee/ WD
�.s0/

�.s1/�.s2/
:

Then Lemma 4.1(2–i) is rephrased as follows:

(4-2) c.�.P2//� c.�.P1//D  .Ee/:

We regard  D  � as a map from the set of oriented edges Ee $ .s1; s2I s0; s3/ of
T such that �.s1/�.s2/¤ 0, and we call it the complex probability map associated
with the Markoff map � . We note that this map is determined by the type-preserving
representation �W �1.T /! PSL.2;C/ obtained from the type-preserving SL.2;C/–
representation of �1.T / inducing the Markoff map � . So we also call  the complex
probability map associated with � .

By a complementary region of T , we mean the closure of a connected component of
H2 � T . Let � be the set of complementary regions of T . Then there is a natural
bijection from � to yQ. In the following we identify � with yQ. Let Ee$ .s1; s2I s0; s3/

be a directed edge of T . If we remove the interior of e from T , we are left with
two disjoint subset, which we denote by T ˙.Ee/, so that e\ T C.Ee/ is the head of Ee
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and e \ T �.Ee/ is its tail. Let �˙.Ee/ � � be the set of regions whose boundaries
lie in †˙.Ee/, and set �0.e/D fs1; s2g. We see that � can be written as the disjoint
union: �D�0.e/[�C.Ee/[��.Ee/. Set �0�.Ee/D�0.e/[��.Ee/ and �0C.Ee/D

�0.e/[�C.Ee/. We quote the following key result from [2, Proposition 5.2] which is
a slight extension of [7, Proposition 3.13] (see [30] for further extension).

Proposition 4.4 Let � be a Markoff map and Ee a directed edge of T satisfying the
following conditions:

(i) The set fs 2��.Ee/ j j�.s/j � 2g is finite.

(ii) �0�.Ee/\��1.�2; 2/D∅.

Then

 .Ee/D
X

s2�0.e/

h.�.s//C 2
X

s2��.Ee/

h.�.s//:

Moreover, the above sum converges absolutely.

Here, hW C� Œ�2; 2�!C is defined by h.x/D 1
2
.1�

p
1� 4=x2 /, where we adopt

the convention that the real part of a square root is always nonnegative. For each
s 2�D yQ, let l.�.ˇs// be the complex translation length of the isometry �.ˇs/ of
H3 , where we abuse notation to denote by ˇs an element of �1.T / represented by
the simple loop ˇs of slope s . Then we have the following (see [7, page 721]):

h.�.s//D
1

1C el.�.ˇs//
:

At the end of this section, we give a necessary and sufficient condition for a type-
preserving PSL.2;C/–representation to descend to a representation of the 2–bridge
link group �1.S

3�K.r//.

Lemma 4.5 Let � be a nontrivial Markoff map, and let �W �1.O/! PSL.2;C/ be
a type-preserving representation induced by � . Then the restriction of � to �1.S /

descends to a representation of the 2–bridge link group �1.S
3�K.r// if and only if

�.1/D �.r/D 0.
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Proof Though this is proved in [24, Proof of Proposition 4.1], we give a proof for
completeness. Since �1.S

3�K.r//D�1.S /=hh˛1; ˛r ii, a representation � descends
to a representation of the link group if and only if �.˛1/D �.˛r /D 1. Since ˛s D ˇ

2
s ,

this condition is equivalent to the condition that either �.ˇs/ is the identity or an elliptic
transformation of order 2 for each s D 1 and r . However, since � is irreducible
by the assumption, we have �.ˇs/ ¤ 1 for any s 2 yQ. Thus the above condition is
equivalent to the condition that both �.ˇ1/ and �.ˇr / are elliptic of order 2, which
in turn is equivalent to the condition �.1/D �.r/D 0.

5 The canonical decomposition of S 3�K.r/ and the induced
cusp triangulation

In this section, we describe the canonical decompositions of hyperbolic 2–bridge link
complements and the induced cusp triangulations, following [11] and [25]. Let K.r/

be a hyperbolic 2–bridge link. Then we may assume r D q=p , where p and q are
relatively prime integers such that 2� q < p=2, and so r has the continued fraction
expansion Œa1; a2; : : : ; an�, where .a1; : : : ; an/ 2 .ZC/n , a1 � 2, an � 2 and n � 2.
Set cD

Pn
iD1ai , and let †.r/D .�1; �2; : : : ; �c/ be the chain of Farey triangles which

intersect the hyperbolic geodesic joining 1 with r in this order (see Figure 5).

1=0
�1 �2

�c
r

Figure 5: The chain †.r/ of Farey triangles

Just as with the once-punctured torus T , each Farey triangle �Dhs0; s1; s2i determines
a (topological) ideal triangulation of the 4–times punctured sphere S D .R2�Z2/=H .
To be precise, the union of the lines in R2 � Z2 passing through the punctures of
slopes fs0; s1; s2g determines an H –invariant ideal triangulation of R2�Z2 , and this
descends to an ideal triangulation of S . The 1–skeleton of this ideal triangulation
consists of three pairs of edges corresponding to the three vertices fs0; s1; s2g of � . In
the remainder of this paper, we abuse notation and use the symbol trg.�/ to denote
this ideal triangulation of S .

If � and � 0 are adjacent Farey triangles, then trg.� 0/ is obtained from trg.�/ by a
“diagonal exchange”, ie deleting a pair of edges of slope s and adding a pair of edges
of slope s0 , where s (s0 , respectively) is the vertex of � (� 0 , respectively) which is
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not contained in � 0 (� , respectively). As illustrated in Figure 6, trg.�/ and trg.� 0/
can be regarded as the bottom and top faces of an immersed pair of topological ideal
tetrahedra in S �R, which we denote by trg.�; � 0/.

trg.�/

exchange diagonals

trg.� 0/

trg.�; � 0/

Figure 6: A diagonal exchange of an ideal triangulation of S determines an
immersed pair of ideal tetrahedra in S �R

The immersed topological pairs of ideal tetrahedra ftrg.�i ; �iC1/g1�i�c�1 can be
stacked up to form a topological ideal triangulation, yD.r/, of S�Œ�1; 1�. The restriction
of yD.r/ to S � f�1g (S � fC1g, respectively) is trg.�1/ (trg.�c/, respectively), and
each trg.�i/ can be regarded as (a triangulation of) a pleated surface in S � Œ�1; 1�. Let
D.r/ be the topological ideal simplicial complex obtained from yD.r/ by collapsing
each edge of slope 1 and r into an ideal vertex. To be precise, D.r/ is constructed as
follows. Since each edge of slope 1 is collapsed into an ideal vertex, the subcomplex
trg.�1/ of yD.r/ is collapsed into a single ideal edge, and trg.�2/ is folded along the
pair of edges of slope 1=2 to a pair ideal triangles as illustrated in Figure 7. (Note
that the slope 1=2 is the vertex of �2 which is not contained in �1 .) Similarly, since
each edge of slope r is collapsed into an ideal vertex, the subcomplex trg.�c/ of
yD.r/ is collapsed into a single ideal edge, and trg.�c�1/ is folded along the pair of
edges of slope Œa1; : : : ; an � 2� into a pair of ideal triangles. (Note that the slope
Œa1; : : : ; an � 2� is the vertex of �c�1 which is not contained in �c .) In other words,
D.r/ is obtained from the subcomplex yD0.r/ WD ftrg.�i ; �iC1/g2�i�c�2 of yD.r/ by
folding the bottom surface trg.�2/ in the pair of edges of slope 1=2 and by folding
the top surface trg.�c�1/ in the pair of edges of slope Œa1; : : : ; an� 2�, as described in
[25, page 408]. Hence D.r/ gives a topological ideal triangulation of S3�K.r/ by
[25, Theorem II.2.4].

It should be noted that the edges of trg.�2/ of slopes 0=1 and 1=1 are identified into a
single edge in D.r/, which forms the “core tunnel” of the rational tangle .B3; t.1//
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trg.�1/

collapse vertical edges

trg.�2/

Figure 7: The effect of the collapsing of the edges of slope 1 in the ideal
triangulation yD.r/ of S � Œ�1; 1�: The subcomplex trg.�1/ is collapsed into
a single ideal edge, and the subcomplex trg.�2/ is folded along the edges of
slope 1=2 into a pair of ideal triangles.

in .S3;K.r// (see [25, Figure II.2.7] and [11, Figure 17]). Similarly, the edges of
trg.�c�1/ of slopes Œa1; : : : ; an�1� and Œa1; : : : ; an�1� are identified into a single edge
in D.r/, which forms the core tunnel of the rational tangle .B3; t.r// in .S3;K.r//.

Now we describe the triangulation of the peripheral torus of S3 �K.r/ induced by
D.r/. To this end, we identify the underlying space of the subcomplex yD0.r/ of yD.r/
with S � Œ�1; 1�, and we first describe the triangulation of the peripheral annuli of
S � Œ�1; 1� induced by yD0.r/. Since the combinatorics of the four peripheral annuli
are identical, let us focus on a single peripheral annulus, A. Since trg.�i/ is an ideal
triangulation of a level 4–punctured sphere, it induces a triangulation, C.�i/, of a core
circle in A. The triangulation C.�i/ consists of 3 vertices and 3 edges. By recalling the
definition of the slopes of elliptic generators, we may identify C.�i/ with the quotient
complex L.�i/=hDi (see Definition 3.3(3)). The region in A bounded by C.�i/ and
C.�iC1/ consists of 2 triangles as illustrated in Figure 8, and the triangulation of
the region can be identified with L.�i ; �iC1/=hDi (compare Figure 8 with Figure 4).
The family fC.�i/g2�i�c�1 forms the 1–skeleton of the triangulation of A, which is
identified with L.†0.r//=hDi, where †0.r/ WD .�2; : : : ; �c�1/.

Next, we explain the effect, to the triangulation L.†0.r//=hDi of the peripheral
annulus A, of the folding of the pleated surfaces trg.�2/ and trg.�c�1/. To this end,
let fPj g be the sequence of elliptic generators associated with �2 D h0=1; 1=2; 1=1i

such that .s.P0/; s.P1/; s.P2//D .0=1; 1=2; 1=1/. Since the edges of slope 0=1 and
1=1 in yD.r/ are identified into a single edges by the folding of trg.�2/ along the edges
of slope 1=2, the vertices ŒP0� and ŒP2� of L.†0.r//=hDi are identified. In the infinite
cyclic cover L.†0.r//, the boundary line L.�1/ is deformed into a zigzag line which
has a “hairpin curve” at the vertices P1C3k , where the vertices P3k and P2C3k are
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a
b

c

a b c

D

�i

�iC1

AC.�i/

BC.�iC1/

Figure 8: Local picture of the triangulation of the peripheral annuli of S �

Œ�1; 1� . In the infinite cyclic cover of the peripheral annulus A , the inverse
images of C.�i/ and C.�iC1/ form periodic zigzag lines, and the triangles
bounded by them project to the two triangles in A .

identified into a single vertex for each k 2 Z (see Figure 9). Furthermore, since the
folding joins the punctures of S � Œ�1; 1�, the resulting triangulation of the peripheral
annulus A is joined to the corresponding triangulation of another peripheral annuls
as illustrated in Figure 9 (see [11, Figure 19]). Similarly, the folding of the pleated
surface trg.�c�1/ causes a similar effect on the other side of A.

Figure 9: The effect of the folding in the cusp triangulation, viewed in the
infinite cyclic cover

In [11], Futer applied Guéritaud’s technique based on angled structures to prove that
the topological ideal triangulation D.r/ is geometric, namely, D.r/ is homeomorphic
to a geometric ideal triangulation of the complete hyperbolic manifold S3 �K.r/.
(Moreover, Guéritaud [10] proved that D.r/ is homeomorphic to the canonical decom-
position of S3�K.r/ in the sense of [9] and [37], proving the conjecture in [25]. In
the second author’s joint work with Akiyoshi, Wada and Yamashita [4], an approach
using cone manifold deformation toward the same conclusion was announced.) The
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geometric ideal triangulation D.r/ induces a geometric triangulation of each cusp
torus of S3�K.r/. Since D.r/ is preserved by the Z=2Z˚Z=2Z–action described
in Section 2 (see Figure 2), this triangulation does not depend on a choice of a cusp,
and we call it the triangulation of the cusp of S3 �K.r/ induced by the geometric
ideal triangulation D.r/, or simply the cusp triangulation induced by D.r/. The
cusp triangulation is preserved by the Z=2Z˚Z=2Z–action on S3 �K.r/, and so
it induces a “triangulation” of the cusp of the quotient orbifold O.r/. We also call
it the triangulation of the cusp of O.r/ induced by the geometric ideal triangulation
D.r/, or simply the cusp triangulation induced by D.r/. The following proposition
describes the geometric structure of the cusp triangulation. (See Figure 10 for the actual
geometric picture of the cusp triangulation, which is produced by SnapPea [36]. See
also Figure 11 which illustrates the periodic zigzag lines L.�r ; �i/ in the proposition.)

l

m

Figure 10: The actual cusp triangulation of S3 � K.Œ3; 2; 2�/ . The ori-
ented zigzag line segment represent that obtained by joining the points
c.�r .P0//; c.�r .P1//; : : : ; c.�r .Pd // in the proof of Proposition 6.1.

Figure 11: The periodic zigzag lines fL.�r ; �i/g in the cusp triangulation
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Proposition 5.1 Let K.r/ be a hyperbolic 2–bridge link and �r W �1.O/!PSL.2;C/
be a type-preserving representation induced by the holonomy representation of the
complete hyperbolic structure of S3 �K.r/ satisfying the normalization condition
(4-1). Then the following hold:

(1) We have ��1
r .0/\†.r/.0/ D f1; rg, where †.r/.0/ is the vertex set of †.r/

and �r is the Markoff map induced by a lift of the restriction of �r to �1.T / to an
SL.2;C/–representation.

(2) The zigzag line L.�r ; �2/ is simply folded at the slope 1=2; L.�r ; �c�2/ is simply
folded at the slope Œa1; a2; : : : ; an� 2�.

(3) Let L� and LC be the horizontal lines determined by the simply folded zigzag
lines L.�r ; �2/ and L.�r ; �c�2/, respectively. Then L.�r ; †0.r// forms a 1–skeleton
of a triangulation of the strip, zA, in C bounded by L� and LC . This triangulation
descends to the triangulation of the cusp of O.r/ induced by D.r/. To be precise, the
following hold:

(i) Let P� and PC be elliptic generators of slope 1 and r , respectively. Then
�r .P�/ (�r .PC/, respectively) acts on C as the � –rotation about the center
of an edge of L.�r ; �2/ (L.�r ; �c�2/, respectively) contained in L� (LC ,
respectively). In particular, zA forms a fundamental domain of the action on C
of the infinite dihedral group generated by �r .P�/ and �r .PC/.

(ii) The orbifold fundamental group, �1.@O.r//, of the cusp of O.r/ is identified
with the group h�r .D/; �r .P�/; �r .PC/i. Moreover, �r .D/ corresponds to
a meridian of K.r/, whereas �r ..PCP�/

2/ or �r .PCP�/ corresponds to a
longitude of K.r/ according to whether K.r/ has one or two components.

(iii) The images of the triangulation L.�r ; †0.r// of zA by the infinite dihedral group
h�r .P�/; �r .PC/i form a �1.@O.r//–invariant triangulation of C , which proj-
ects to the triangulation of the cusp of O.r/ induced by D.r/.

Proof (1) By Lemma 4.5, we have �r .1/D �r .r/D 0. Let s be a vertex of †0.r/.
Since a simple arc of slope s in S is realized as a geodesic edge in the geometric
triangulation D.r/ of the hyperbolic manifold S3 �K.r/, it follows that if P is an
elliptic generator of slope s then �r .P /.1/¤1. By Lemma 4.1(2), this implies that
�.s/¤ 0. Hence we have ��1

r .0/\†.r/.0/ D f1; rg.

(2) This follows from the fact that �r .1/ D �r .r/ D 0 and Lemma 4.1(2–iv)
(cf Remark 4.3).

(3) By the preceding description of the combinatorial structure of the cusp triangulation
and the fact that D.r/ is geometric, we see that L.�r ; †0.r// forms a 1–skeleton of a
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triangulation of the strip, zA, in C bounded by L� and LC . Since �r .1/D�r .r/D 0,
we see by Lemma 4.1(2–iii) that �r .P�/ (�r .PC/, respectively) acts on C as the � –
rotation about the center of an edge of L.�r ; �2/ (L.�r ; �c�1/, respectively) contained
in L� (LC , respectively). It is obvious that zA forms a fundamental domain of the
infinite dihedral group h�r .P�/; �r .PC/i, and so we have (i). Since zA projects to
one of the four peripheral annuli of S � Œ�1; 1� and since the Z=2Z˚Z=2Z–action
on S3�K.r/ lifts to a Z=2Z˚Z=2Z–action on S � Œ�1; 1� which acts transitively
on the set of the four peripheral annuli, we see that zA is a fundamental domain
of the action of �1.@O.r// modulo the action of the meridian �r .D/. Since zA
is a fundamental domain of the infinite dihedral group h�r .P�/; �r .PC/i, we have
�1.@O.r//Dh�r .D/; �r .P�/; �r .PC/i. Thus we obtain the first assertion of (ii). The
remaining assertion of (ii) follows from the description of the Z=2Z˚Z=2Z–action
on K.r/ given at the end of Section 2. Assertion (iii) follows from (i), (ii) and the
description of the combinatorial structure of the cusp triangulation, together with the
fact that D.r/ is geometric.

6 Proof of Theorems 2.2 and 2.3

Throughout this section and in the remainder of this paper, K.r/ denotes a hyperbolic
link, �r W �1.O/! PSL.2;C/ denotes the type-preserving representation induced by
the holonomy representation of the complete hyperbolic structure of S3�K.r/, �r

denotes a Markoff map determined by a lift z�r W �1.T /! SL.2;C/ of the restriction
of �r to �1.T /, and  r denotes the complex probability map determined by �r .

EE2.r/

1=0
1=1

Ee�

EeC

s0
=0=1 s1 s2 sd�1 sd

r

Ee1 Ee2 Eed

EE1.r/

Figure 12: Dual oriented edges

Let T0.r/ be the subtree of T dual to the chain †0.r/, and let EE.r/ be the set of the
oriented edges of T �T0.r/ whose head is contained in T0.r/. For each interval Ij .r/
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(j D 1; 2), we consider the following set of oriented edges:

EEj .r/D fEe 2 EE.r/ j�
0�.Ee/� Ij .r/g:

It should be noted that EE.r/D EE1.r/t EE2.r/t fEe�; EeCg, where Ee� and EeC are the
elements of EE.r/ with tails dual to �1 and �c , respectively (see Figure 12).

Proposition 6.1 (1) The following identity holds:X
Ee2 EE1.r/

 r .Ee/C
X
Ee2 EE2.r/

 r .Ee/D�1:

(2) The cusp shape �.O.r// with respect to a suitable choice of a longitude is given
by the following formula:

1

2
�.O.r//D

X
Ee2 EE1.r/

 r .Ee/D�1�
X
Ee2 EE2.r/

 r .Ee/:

Proof (1) By Proposition 5.1(1),  r .Ee/ is defined for all Ee 2 EE.r/. Hence, we have
the following identity by [5, Lemma 1]:X

Ee2 EE.r/

 r .Ee/D 1:

On the other hand, since �r .1/D �r .r/D 0, we have  r .Ee�/D r .EeC/D 1. Hence,
by using the fact that EE.r/D EE1.r/t EE2.r/tfEe�; EeCg, we obtain the desired identity.

(2) Let Ee1; Ee2; : : : ; Eed be the members of EE1.r/ whose heads lie in T0.r/ in this
order, and let s0; s1; : : : ; sd be the vertices of †0.r/ such that Eei is dual to the Farey
edge hsi�1; sii. Let P0;P1; : : : ;Pd be elliptic generators satisfying the following
conditions:

(i) The slope of Pi is si for each i 2 f0; 1; : : : ; dg.

(ii) For each i 2 f1; 2; : : : ; dg, the two elliptic generators Pi�1 and Pi appear
successively in the sequence of elliptic generators associated with the Farey
triangle in †0.r/ which contains hsi�1; sii.

Then the zigzag line segment in C obtained by joining the points

c.�r .P0//; c.�r .P1//; : : : ; c.�r .Pd //

is an edge path in the triangulation of the strip zA in C bounded by the horizon-
tal lines L� and LC in Proposition 5.1(3) (see Figure 10). Moreover, since the
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slopes s0 D s.P0/ and sd D s.Pd / are vertices of the Farey triangles �2 and �c�2 ,
respectively, we see by Proposition 5.1(2) that the initial point c.�r .P0// and the
terminal point c.�r .Pd // lie in the horizontal lines L� and LC , respectively. Hence
the zigzag line segment projects to a longitude of the orbifold O.r/. In particular,
c.�r .Pd //� c.�r .P0// is equal to the complex number 1

4
jK.r/j� introduced at the

end of Section 2. Hence the modulus of the cusp of O.r/ with respect to the longitude
is given by the following formula:

1

2
�.O.r//D

jK.r/j

4
�D c.�r .Pd //� c.�r .P0//

D

dX
iD1

.c.�r .Pi///� c.�r .Pi�1//D

dX
iD1

 .ei/:

Here, the last equality follows from formula (4-2) in Section 4. Thus we have proved
the first identity in (2). The second identity follows from (1).

By the above proposition, the proof of Theorems 2.2 and 2.3 is reduced to the following
key lemma.

Key Lemma 6.2 Every member Ee of EE1.r/ [ EE2.r/ satisfies the conditions of
Proposition 4.4, namely, it satisfies the following conditions:

(1) The set fs 2��.Ee/ j j�r .s/j � 2g is finite.

(2) �0�.Ee/\��1
r .�2; 2/D∅.

Proof of Theorems 2.2 and 2.3 assuming Key Lemma 6.2 By Proposition 4.4 and
Key Lemma 6.2, we have the following identity for each j D 1; 2:X

Ee2 EEj .r/

 r .Ee/D
X
Ee2 EEj .r/

( X
s2�0.e/

h.�r .s//C 2
X

s2��.Ee/

h.�.s//

)

D 2
X

s2 yQ\intIj .r/

1

1C el�r .ˇs/
C

X
s2@Ij .r/

1

1C el�r .ˇs/
:

By applying this identity to the identities in Proposition 6.1, we obtain the desired
results.

Key Lemma 6.2 is proved by using the results obtained in the series of our papers [13;
14; 15; 16] (see also the announcement [12]), which gives a complete answer to the
following questions concerning the simple loops in 2–bridge sphere S of a 2–bridge
link K.r/:
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(1) Which simple loop on S is null-homotopic or peripheral on S3�K.r/?

(2) For given two simple loops on S , when are they homotopic?

In particular, we have the following theorem.

Theorem 6.3 For a hyperbolic 2–bridge link K.r/, the following hold:

(1) For any rational number s in I1.r/[I2.r/, ˛s is not null-homotopic in S3�K.r/.

(2) There are at most two rational numbers s in I1.r/ [ I2.r/ such that ˛s is
peripheral.

(3) Except for at most two pairs of rational numbers in I1.r/[ I2.r/, the simple
loops f˛s j s 2 I1.r/[ I2.r/g are not mutually homotopic in S3�K.r/.

Proof of Key Lemma 6.2 Since �0�.Ee/� I1.r/[I2.r/ for any Ee 2 EE1.r/[ EE2.r/,
the lemma is reduced to the following assertions:

(i) The set fs 2 I1.r/[ I2.r/ j j�r .s/j � 2g is finite.

(ii) .I1.r/[ I2.r//\�
�1
r .�2; 2/D∅.

We first prove (ii). Let s be a rational number contained in I1.r/[ I2.r/. Then, by
Theorem 6.3(1), ˛s determines a nontrivial element of �1.S

3 �K.r//. Since �r

is induced by the holonomy representation of the complete hyperbolic structure of
S3�K.r/, we see that �r .˛s/D �r .ˇ

2
s / is neither trivial nor elliptic. Thus �r .ˇs/ is

not elliptic, and so �r .s/D tr.z�r .ˇs// is not contained in .�2; 2/. Hence we obtain (ii).

Next we prove (i). Suppose on the contrary that the set fs 2 I1.r/[I2.r/ j j�r .s/j � 2g

contains infinitely many elements fsj gj2Z . By Theorem 6.3(1) and (2), we may assume
that �.˛sj / is neither trivial nor parabolic, and hence, the simple loop ˛sj is homotopic
to a closed geodesic in the hyperbolic manifold S3�K.r/. By Theorem 6.3(3), we
may also assume that f˛sj g are not mutually homotopic in S3 �K.r/ and so the
corresponding closed geodesics are mutually distinct. On the other hand, the condition
j�.sj /j � 2 implies that the real length L.�.˛sj // D 2L.�.ˇsj // is bounded from
above. This contradicts the discreteness of marked length spectrum of geometrically
finite hyperbolic 3–manifolds (see Lemma 6.4 below). Hence we obtain (i). This
completes the proof of Key Lemma 6.2.

Since we could not find a proof of Lemma 6.4 below in a literature, we give a proof,
for completeness, imitating the argument in [1, Proof of Theorem 1 on page 73], and
we refer to [17] for terminologies for Kleinian groups.
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Lemma 6.4 Let M be a geometrically finite complete hyperbolic 3–manifold. Then
the marked length spectrum of M is discrete, namely, for any positive real number L,
there are only finitely many closed geodesics in M with length at most L.

Proof Suppose on the contrary that there is an infinite sequence f
j g of mutually
distinct closed geodesics in a geometrically finite complete hyperbolic 3–manifold
M DH3=�1.M / such that the lengths L.
j / are bounded above by a positive constant
L. Pick a base point b in the convex core, C.M /, of M and pick a lift zb of b in the
universal cover H3 . Let bj a point in 
j such that d.b; bj /Dd.b; 
j /, where d denotes
the hyperbolic distance. Let zbj 2H3 be the lift of bj such that d.zb; zbj /D d.b; bj /,
and let z
j be the geodesic in H3 passing through zbj which projects to 
j . We abuse
notation to continue to denote by 
j the element of �1.M / (� Isom.H3/) represented
by the closed geodesic 
j whose axis is z
j . Then

d.zb; 
j .zb//� 2d.b; bj /CL.
j /� 2d.b; bj /CL:

So we have
d.b; bj /�

1
2
.d.zb; 
j .zb//�L/:

Since �1.M / acts discontinuously on H3 , we see d.zb; 
j .zb//!1, and hence the
sequence fbj g in C.M / diverges. Since M is geometrically finite, the convex core
C.M / is a union of a compact submanifold and a finite union of cusp neighborhoods.
So, we may assume, after taking a subsequence, that fbj g converges to a cusp of
C . Let U be a neighborhood of the cusp in M , obtained as the image of a horoball
H . Then the stabilizer of H is a parabolic subgroup, PU , of �1.M / and H is
precisely invariant by .�1.M /;PU /. Since fbj g converges to the cusp, we can find,
for a sufficiently large j , a lift zb0j 2H of bj such that d.zb0j ; @H / >L. Let 
 0j be the
element of �1.M / represented by the closed geodesic 
j whose axis passes through
zb0j . Then d.zb0j ; 


0
j .
zb0j //D l.
j /�L, and therefore the point 
 0j .zb

0
j / is also contained

in H . Since 
j 2 �1.M / is not parabolic (and therefore it does not belong to PU ),
this contradicts the assumption that H is precisely invariant by .�1.M /;PU /.

7 Homological description of the longitude in Theorem 2.2

In this section, we give an explicit homological description of the longitude of K.r/

in Theorem 2.2. To this end, we fix an arbitrary orientation of K.r/, and employ the
following notation.

(1) If K.r/ is a knot, then `0 and m denote the preferred longitude and the meridian
of K.r/, namely, `0 and m are oriented essential simple loops on a peripheral
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torus, satisfying the following conditions: `0 is homologous to K.r/ in a regular
neighborhood, N.K.r//, of K.r/ and lk.`0;K.r//D 0; m bounds a disk in
N.K.r// and lk.m;K.r//D 1. The symbol ` denotes the longitude of K.r/ in
Theorem 2.2, which is oriented so that it is homologous to K.r/ in N.K.r//.

(2) If K.r/ consists of two components, K1 and K2 , then `i;0 and mi denote the
preferred longitude and the meridian of Ki for i D 1; 2. The symbol `i denotes
the longitude of Ki in Theorem 2.2, which is oriented so that it is homologous
to Ki in N.Ki/ for i D 1; 2. We denote by ` the union `1[ `2 , and call it the
longitude of K.r/ in Theorem 2.2.

B0

B1

B2

B3

B4

B5

B0

B1

B2

B3

B4

Figure 13: The decomposition fBkg
nC1
kD0

of .S3;K.r//

We express ` in terms of `0 and m when K.r/ is a knot, and express `i in terms of
`i;0 and mi when K.r/ is a two-component link. To this end, we use the alternating
diagram of K.r/ associated with the continued fraction expansion described at the
beginning of Section 5, and consider the decomposition of .S3;K.r// into nC 2

blocks, fBkg
nC1
kD0

, as illustrated in Figure 13. The first block B0 and the last block
BnC1 are upper and lower bridges, respectively, and a middle block Bk (1� k � n)
is a 4–braid, where the second and the third strings form ak right-hand half-twists
when k is odd; the first and the second strings form ak left-hand half-twists when k
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is even. For each middle block Bk , we define ık to be 0 or 1 according to whether
the orientations of the strings forming the half-twists in Bk are parallel or not (see
Figure 18). Then the longitude ` in Theorem 2.2 is given by the following proposition.

Proposition 7.1 Under the above notation, the linking number lk.`;K.r//, for the
longitude ` in Theorem 2.2, is given by the following formula:

lk.`;K.r//D

8̂̂<̂
:̂

2
� nP

kD1

ık.�1/k�1ak

�
if n is odd,

2
�
1C

nP
kD1

ık.�1/k�1ak

�
if n is even.

From this linking number, ` is determined by the following formula:

(1) If K.r/ is a knot, then

Œ`�D Œ`0�C lk.`;K.r//Œm� 2H1.@N.K.r///:

(2) If K.r/ is a link, then for i D 1; 2,

Œ`i �D Œ`i;0�C
1
2
.lk.`;K.r//� 2 lk.K1;K2//Œmi � 2H1.@N.Ki//:

Remark 7.2 If every ai is even and n is even, then K.r/ is a knot and the longitude
` is given by the following simple formula:

Œ`�D Œ`0�C 2Œm�:

Our task is to draw the longitude ` on the boundary of the link exterior E.K.r// WD

S3� int N.K.r//. To this end, let f LBkg
nC1
kD0

be the decomposition of the knot exterior
E.K.r// induced by the decomposition fBkg

nC1
kD0

of .S3;K.r//. We denote by @p LBk

the intersection of @E.K.r// with @ LBk . Then @p LBk is a disjoint union of four or two
annuli according to whether k 2 f1; 2; : : : ; ng or k 2 f0; nC 1g.

Set c0 D 0, ck D
Pk

iD1ai and �i
.k/ D �ck�1Ci (1 � i � ak/. Then the k th middle

block Bk (1� k � n) corresponds to the subchain

†.k/.r/ WD .�
.k/
1
; �
.k/
2
; : : : ; � .k/ak

/

of †.r/. The subchain †.k/.r/ contains a unique pivot, s�
.k/ , ie a vertex of †.r/

which is shared by at least three triangles in †.r/. We denote the remaining vertices of
†.k/.r/ by s0

.k/; s1
.k/; : : : ; sak

.k/ , where they sit in †.k/.r/ in this order. The Farey
triangle �i

.k/ is spanned by the vertices fs�.k/; si�1
.k/; si

.k/g. By the description of
D.r/ as a quotient of yD.r/ in Section 5, we may regard yD.r/ as a decomposition of
the middle part

Sk
iD1
LBk into truncated ideal tetrahedra: the collapsing of the edges
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of slopes 1 and r has the effect of adding the first and the last blocks LB0 and LBnC1 .
To be precise, the following hold:

(1) For each k 2 f1; 2; : : : ; ng, the pair of edges of the pivot slope s�
.k/ are repre-

sented by the pair of straight horizontal arcs in the upper boundary of the k th

middle block LBk as illustrated in Figure 14. They are isotopic to the straight
horizontal arcs in the lower boundary of LBk as illustrated in Figure 14. An
isotopy between these two representatives determines four mutually disjoint arcs,
�k , properly embedded in @p LBk . (To be precise, �k is the intersection with
@p LBk of two properly embedded disks in LBk realizing the isotopy.)

(2) For each k 2 f1; 2; : : : ; ng and i 2 f0; 1; : : : ; akg, the pair of edges of slope
si
.k/ are represented by the pair of straight horizontal arcs which sit in the level

sphere between the i th and .i C 1/st crossings in Bk , as illustrated in Figure 14.
Each of the four corners of the ideal triangles in trg.�i

.k// bounded by an edge
of slope si�1

.k/ and an edge of slope si
.k/ determines an arc in @p LBk joining an

end point of an edge of slope si�1
.k/ and an end point of an edge of slope si

.k/ .
The union of these arcs, where �i

.k/ runs over the Farey triangles of †.k/.r/,
forms four properly embedded arcs in @p LBk , which is disjoint from �k . We
denote by �k the union of these four arcs in @p LBk .

(3) In the top block LB0 , each of the two edges of slope 1 in LB0\
LB1 shrinks to a

point, and the two edges of slope 0 in LB0\
LB1 are isotopic to the upper tunnel.

Let �0 be the pair of arcs properly embedded in @p LB0 determined by the isotopy
(see Figure 15).

(4) In the bottom block LBnC1 , each of the two edges of slope r in LBn \
LBnC1

shrinks to a point, and the two edges of slope Œa1; a2; : : : ; an�1� in LBn\
LBnC1

are isotopic to the lower tunnel. Let �nC1 be the pair of arcs properly embedded
in @p LBk determined by the isotopy.

To be more precise, the (actual) cusp torus is identified with a quotient of the “model”
torus

SnC1
kD0@p

LBk , where each arc component of �k (k D 0; : : : ; nC 1) shrinks to a
point.

Lemma 7.3 Suppose that n is an odd integer 2n0C 1. Then under the above identifi-
cation of the cusp torus with a quotient of the model torus

SnC1
kD0@p

LBk , the longitude `
is equal to (the image of) the union of the following arcs (see Figure 16):

�0[ �1; �2; �3; �4; : : : ; �2n0�1; �2n0
; �2n0C1[ �2n0C2:
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s� s0 s� s0 s�

s1 s1

s2 s2

s� s3 s� s3 s�

s0 s� s0 s� s0

s1 s1 s1

s2 s2 s2

s3 s� s3 s� s3

s0 s1 s2 s3

s�

(a)

s�

s0 s1 s2 s3

(b)

�k �k�k �k

Figure 14: The middle block LBk (a) when k is odd, and (b) when k is even.
The labels s� and sj for the straight horizontal arcs are the slopes of the
edges, where s� and sj are abbreviations for s�

.k/ and sj
.k/ , respectively.

The set �k consists of four vertical arcs joining the endpoints of the edges of
slope s�

.k/ in the upper boundary of LBk and the endpoints of the edges of
slope s�

.k/ in the lower boundary of LBk . The set �k consists of four vertical
arcs joining the endpoints of the edges of slope s0

.k/ in the upper boundary
of LBk and the endpoints of the edges of slope sak

.k/ in the lower boundary of
LBk , passing through the endpoints of the edges of slope si

.k/ (0< i < ak ).

0 1 0 1 0

�0

Figure 15: The top block LB0 . The set �0 is the union of the two arcs on
@p LB0 joining the endpoints of the edges of slope 0 in the lower boundary
LB0\

LB1 of LB0 .

Proof Let s0; s1; : : : ; sd be the slopes in the proof of Proposition 6.1. Recall that
the longitude of @O.r/ is obtained as the image of the zigzag line in C spanned by
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c.�r .P0//; c.�r .P1//; : : : ; c.�r .Pd //, where Pi is an elliptic generator with s.Pi/Dsi

as in the proof of Proposition 6.1. We note that the following hold:

(1) The set fs0; s1; : : : ; sdg consists of the vertices of a subchain †.2k/.r/ different
from the pivot s�

.2k/ , where 2k runs over the set f2; 4; : : : ; 2n0g.

(2) The first slope s0 is equal the pivot s�
.1/ of the subchain †.1/.r/.

(3) The last vertex sd is equal the pivot s�
.n/ of the subchain †.n/.r/.

In particular, the first .a2C 1/ vertices s0; s1; : : : ; sa2
are equal to the vertices s0

.2/ ,
s1
.2/ , : : : , sa2

.2/ of the subchain †.2/.r/ different from the pivot s�
.2/ . Thus the

subzigzag line in C spanned by

c.�r .P0//; c.�r .P1//; : : : ; c.�r .Pa1
//

corresponds to (a component of) �2 � @p LB2 . Similarly, for each even integer 2k 2

f2; 4; : : : ; 2n0g, the subzigzag line in C spanned by the c.�r .Pi//, where s.Pi/ runs
over the vertices of the subchain †.2k/.r/ different from the pivot s�

.2k/ , corresponds
to (a component of) �2k � @p LB2k .

For each 2k 2 f2; 4; : : : ; 2n0� 2g, the final slope sa2k

.2k/ of the subchain †.2k/.r/ is
equal to the first slope s0

.2kC2/ of the subchain †.2kC2/.r/, and they are equal to the
pivot s�

.2kC1/ of the subchain †.2kC1/.r/. Thus each edge of slope sa2k

.2k/ , which
lies in the lower boundary of @p LB2k , is isotopic in LB2kC1 to an edge of slope s0

.2kC2/ ,
which lies in the upper boundary of the block LB2kC2 . So, in order to describe the
longitude in the model torus

SnC1
kD0 @p

LBk , the end points of �2k in the lower boundary
of @p LB2k should be joined with the end points of �2kC2 in the upper boundary of
@p LB2kC2 by the trace, �2kC1 � @p LB2kC1 , of the isotopy (see Figure 16).

The first slope s0
.2/ of the subchain †.2/.r/ is equal to the pivot s�

.1/ of the subchain
†.1/.r/. Thus the edges of slope s0

.2/ , which lie in the upper boundary of the block
LB2 , are equal to the edges of slope s�

.1/ which lie in the lower boundary of the block
LB1 . The latter edges are isotopic in LB1 to the edges of slope s�

.1/ which lie in the upper
boundary of LB1 . These in turn are isotopic in LB0 to the upper bridges. So, the endpoints
of �2 in the upper boundary are joined each other by the trace, �0[�1 � @p LB0[@p LB1 ,
of the isotopy (see Figure 16). Similarly, the end points of �2n0

in the lower boundary
of @p LB2n0

should be joined by the trace,

�2n0C1[ �2n0C2 � @p LB2n0C1[ @p LB2n0C2;

of the isotopy. Hence, the longitude ` is as described in the lemma.
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0=1 0=1 0=1

1=1 1=1

0=1 1=2 0=1 1=2 0=1

1=3 1=3 1=3

2=5 1=2 2=5 1=2 2=5

3=7 3=7

2=5 2=5 2=5

1=0 1=1 1=2 3=7 5=12

0=1 1=3 2=5

Figure 16: The whole picture of the longitude ` when nD 3 . In this case, `
is the union of �0[ �1 , �2 and �4[ �4 .

In order to treat the case when n is an even integer 2n0 , we need to introduce the
following notation (see Figure 17):

(1) By the symbol �0n , we denote the subarcs of �n bounded by the end points
of �n in the upper boundary of @p LBn and the endpoints of the edges of slope
r 0 WD Œa1; a2; : : : ; an�1; an� 1�.

(2) The edges of slope r 0 in LBn is isotopic in LBn[
LBnC1 to the lower tunnel. The

symbol � 0
nC1

denotes the arcs in @p LBn[ @p LBnC1 obtained from the isotopy.

By the proof of Lemma 7.3, we obtain the following lemma.

Lemma 7.4 Suppose that n is an even integer 2n0 . Then under the identification of
the cusp torus with a quotient of the model torus

SnC1
kD0 @p

LBk , the longitude ` is equal
to (the image of) the union of the arcs

�0[ �1; �2; �3; �4; : : : ; �2n0�1; �
0
2n0
; � 02n0C1:

Geometry & Topology, Volume 17 (2013)



A variation of McShane’s identity for 2–bridge links 2093

…

s0 s� s0 s� s0

s1 s1 s1

s2 s2Dr 0 s2Dr 0

s�

s0 s1 s2

=

r 0

s3

=

r

�0n

� 0
nC1

Figure 17: LBn[
LBnC1 when n is even

Proof of Proposition 7.1 We evaluate the linking number lk.`;K.r// by counting
the number of crossings with sign where ` runs below K.r/. Then the formula for the
linking number follows from the following observations:

(i) If 2� k � n� 1, then we can easily check that the contribution of the crossings
in Bk is equal to 2ık.�1/k�1ak (see Figure 18).

(ii) The contribution of the crossings in B0 [B1 is equal to 2ık.�1/k�1ak with
k D 1.

(iii) The contribution of the crossings in Bn [BnC1 is equal to 2ın.�1/n�1an or
2.ın.�1/n�1anC 1/ according to whether n is odd or even.

The formula for the longitude is obvious if K.r/ is a knot. Suppose K.r/DK1[K2 .
Then by using the symmetry, we have the following identity for fi; j g D f1; 2g:

lk.`;K.r//D lk.`1[ `2;K1[K2/D 2 lk.`i ;Ki/C 2 lk.`i ;Kj /

D 2 lk.`i ;Ki/C 2 lk.K1;K2/:

Hence we obtain the desired formula for `i .

8 Application to end invariants of SL.2 ;C/–characters

Bowditch [7] introduced the notion of the end invariants of a type-preserving SL.2;C/–
representation of �1.T / by extending the concept of a geometrically infinite end of
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ık D 1 ık D 0

k: odd

k: even

Figure 18: If ık D 1 , then the contribution of each of the crossings in Bk

to the linking number is equal to 2 or �2 according as k is odd or even. If
ık D 0 , then there is no contribution.

a Kleinian group. Tan, Wong and Zhang [28; 31] extended this notion (with slight
modification) to an arbitrary SL.2;C/–representation of �1.T /.

To recall the definition of end invariants, let C be the set of free homotopy classes of
essential simple loops on T . Then as described in Section 2, C is identified with yQ,
the vertex set of the Farey tessellation D by the rule s 7! ˇs . The projective lamination
space PL of T is then identified with yR WD R[ f1g and contains C as the dense
subset of rational points.

Definition 8.1 Let � be an SL.2;C/–representation of �1.T /.

(1) An element X 2 PL is an end invariant of � if there exists a sequence of distinct
elements Xn 2 C such that

(i) Xn!X , and

(ii) fjtr�.Xn/jgn is bounded from above.

(2) E.�/ denotes the set of end invariants of � .

Note that E.�/ is actually determined by the PSL.2;C/–representation induced by � ,
because jtr�.Xn/j is determined by the PSL.2;C/–representation. Note also that the
condition that fjtr�.Xn/jgn is bounded from above is equivalent to the condition that
the (real) hyperbolic translation lengths of the isometries �.Xn/ of H3 are bounded
from above.

Tan, Wong and Zhang [28; 31] showed that E.�/ is a closed subset of PL and proved
various interesting properties of E.�/, including a characterization of those represen-
tations � with E.�/D∅ or PL, generalizing corresponding results of Bowditch [7]
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for type-preserving representations. They also proposed an interesting conjecture [31,
Conjecture 1.8] concerning possible homeomorphism types of E.�/. The following is
a modified version of the conjecture which Tan informed the authors of.

Conjecture 8.2 Suppose E.�/ has at least two accumulation points. Then E.�/ is
either a Cantor set of PL or all of PL.

They constructed a family of representations � which have Cantor sets as E.�/, and
proved the following supporting evidence of the conjecture (see [31, Theorem 1.7]).

Theorem 8.3 Let the representation �W �1.T /! SL.2;C/ be discrete in the sense
that the set ftr.�.X // jX 2 Cg is discrete in C . Then if E.�/ has at least three elements,
then E.�/ is either a Cantor set of PL or all of PL.

The above theorem together with Lemma 6.4 implies that E.�r / of the representation
�r induced by the holonomy representation of a hyperbolic 2–bridge link K.r/ is
a Cantor set. But it does not give us the exact description of E.�r /. By using the
proof of the main results in Section 6, we can explicitly determine the end invariants
E.�r /. To state the theorem, recall that the limit set ƒ.y�r / of the group y�r is the set
of accumulation points in the closure of H2 of the y�r –orbit of a point in H2 .

Theorem 8.4 For a hyperbolic 2–bridge link K.r/, the set of end invariants E.�r / of
the holonomy representation �r is equal to the limit set ƒ.y�r / of the group y�r .

Proof Since �r .1/ D �r .r/ D 0, we see that both 1 and r belong to E.�r /

(cf [31, Lemma 3.5(b)]). By Theorem 2.1(1), E.�r / is invariant by y�r , and so it
is a y�r –invariant closed set. Thus E.�r / contains the closure of the E.�r /–orbit
of 1 and r . Since ƒ.y�r / is the smallest nonempty y�r –invariant closed set, E.�r /

must contain ƒ.y�r /. On the other hand, Key Lemma 6.2 says that �r satisfies the
extended BQ–condition on I1.r/[ I2.r/ in the sense of [31, Section 4]. Hence E.�r /

is disjoint from I1.r/[I2.r/ by [31, Propositions 4.1 and 4.3]. Since I1.r/[I2.r/ is a
fundamental domain of the action of ƒ.y�r / on the domain of discontinuity, yR�ƒ.y�r /,
and since E.�r / is a y�r –invariant, we see that E.�r / is disjoint from the yR�ƒ.y�r /,
ie E.�r /�ƒ.y�r /. Hence we have E.�r /Dƒ.y�r /.

In Bowditch’s original definition of the “set of end invariants” [7, page 729], the
accidental parabolics are also regarded as an end invariant. (He denotes the set by the
symbol L.�/, where � is a Markoff map.) By using the classification of the essential
simple loops in the 2–bridge sphere which are peripheral in hyperbolic 2–bridge links
complements (see [15; 16] and [12, Theorem 2.6(1)]), we have the following theorem
for Bowdich’s set of end invariants L.�r / WDL.�r /.
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Theorem 8.5 For a hyperbolic 2–bridge link K.r/ with 0 < r < 1=2, Bowditch’s
set of end invariants L.�r / of the holonomy representation �r is equal to the limit set
ƒ.y�r / of the group y�r , except in the following cases:

(1) If r D 2=5, then L.�r /Dƒ.y�r /[ y�r f1=5; 3=5g.

(2) If r D n=.2nC1/ for some n� 3, then L.�r /Dƒ.y�r /[ y�r f.nC1/=.2nC1/g.

(3) If r D 2=.2nC 1/ for some n� 3, then L.�r /Dƒ.y�r /[ y�r f1=.2nC 1/g.

In the exceptional cases, L.�r / is the union of the Cantor set ƒ.y�r / and infinitely
many isolated points.

At the end of this section, we would like to propose the following conjecture, which is
a variation of a special case of [7, Question D] and [31, Conjecture 1.9].

Conjecture 8.6 Let �W �1.T /! PSL.2;C/ be a type-preserving representation such
that E.�/ D ƒ.y�r /. Then � is conjugate to the representation �r induced by the
holonomy representation of a hyperbolic 2–bridge link K.r/.

9 Further discussion

As noted in Section 5, in the second author’s joint work with Akiyoshi, Wada and
Yamashita [4], it is announced that there is a continuous family of hyperbolic cone
manifolds fM.r I ��; �C/g0��˙�� satisfying the following conditions (see [4, Preface,
in particular Figures 0.22–0.26] and the demonstration in Wada’s software OPTi [35]):

(1) The underlying space of M.r I ��; �C/ is S3�K.r/.

(2) The cone axis of M.r I ��; �C/ consists of the core tunnel of .B3; t.1// and
that of .B3; t.r//, where the cone angles are 2�� and 2�C , respectively. In
particular, M.r I�; �/ is the complete hyperbolic manifold S3�K.r/.

(3) If 0<�˙<� , then the combinatorial dual of the “Ford domain” of M.r I ��; �C/

is homeomorphic to yD.r/. If �� D �C D � , the combinatorial dual of the Ford
domain of M.r I�; �/D S3�K.r/ is homeomorphic to D.r/, ie the canonical
decomposition of S3�K.r/ is homeomorphic to D.r/.

Thus the announcement in [4] says that the collapsing of the edges of slopes 1 and r

in yD.r/ is realized geometrically by a continuous family of hyperbolic cone manifolds.

Akiyoshi and the second author tried to prove the main results in this paper, by estab-
lishing the following natural generalization of Theorem 8.4.
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Conjecture 9.1 Let � D �.r I��;�C/W �1.O/ ! PSL.2;C/ be the type-preserving
PSL.2;C/–representation induced by the holonomy representation of the hyperbolic
cone manifold M.r I ��; �C/ with 0� �˙ � � . Then the set E.�/ is disjoint from the
fundamental intervals I1.r/[ I2.r/.

Consider the subset, J , of Œ0; ��� Œ0; �� consisting of those points .��; �C/ for which
the conjecture is valid. It is obvious that .0; 0/ belongs to J and so J is nonempty.
Tan pointed out that [28] implies that the set J is open. So what we need to show is
that J is closed. Though computer experiments seem to support the conjecture, it is
still open.

Appendix A: Explicit numerical calculations

Here we include explicit numerical calculations concerning the Key Proposition 4.4,
which is essentially due to Bowditch [7].

Example 1 Let � be the integral Markoff map determined by

.�.s0/; �.s1/; �.s2//D .3; 3; 3/;

and let Ee $ .s1; s2I s0; s3/ be as in Section 4. Then � satisfies the condition in
Proposition 4.4, and so we haveX

s2�0.e/

h.�.s//C 2
X

s2��.Ee/

h.�.s//D  .Ee/D
1

3
:

We numerically calculate the partial finite sums of the series according to the “depths” of
the regions. Here the depth of a region (corresponding to a rational number) s 2�0�.Ee/

is defined as follows. If s 2 fs1; s2; ssg, then the depth of s is 0. Otherwise, the depth
of s is the length d of the shortest oriented edge path Ee1; Ee2; : : : ; Eed in the tree T such
that the tail of Ee1 corresponds to s and the head of sd is the tail of Ee . For each integer
d � 0, let �0�

d
.Ee/ be the subset of �0�.Ee/ consisting of those regions with depth

� d , and let Hd .�; Ee/ be the finite subseries of the above infinite series corresponding
to the finite subset �0�

d
.Ee/, which has cardinality 3C 2C 22C � � �C 2d D 1C 2dC1 .

Then, by numerical calculation using Mathematica, we obtain the following, which
shows that the sequence converges very rapidly:

H0.�; Ee/+ 0:311835;

H3.�; Ee/+ 0:333267;

H6.�; Ee/+ 0:333333:
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Example 2 Let � be the Markoff map determined by

.�.1=0/; �.0=1/; �.1=1//D .0; !; i!/; ! D

p
3C i

2
:

Then � corresponds to the holonomy representation of the complete hyperbolic structure
of the complement of the figure-eight knot, K.2=5/. The oriented edge

Ee$ .s1; s2I s0; s3/ WD .1=1; 1=2I 0=1; 2=3/

is the unique element of the edge set EE2.2=5/ in Figure 12. Hence, Key Lemma 6.2
impliesX

s2�0.e/

h.�.s//C 2
X

s2��.Ee/

h.�.s//D  .Ee/D
�1C

p
3i

2
+ �0:5C 0:866025i:

By numerical calculation using Mathematica, we obtain the following:

H0.�; Ee/+ �0:903348C 0:77871i;

H3.�; Ee/+ �0:232475C 0:806591i;

H6.�; Ee/+ �0:33507C 0:852655i;

H9.�; Ee/+ �0:388262C 0:863634i;

H12.�; Ee/+ �0:416476C 0:865674i:

Thus the convergence is very slow in this case. This reflects the fact that the values
of � diverge relatively slowly, as shown in Figure 19. In particular, since �.3=5/D 2

(cf Theorem 8.5), the values of � at the regions around the region 3=5 diverge only
linearly (see [31, Lemma 3.5]).

102 582 1299 507 507 1299 582 102

39 87 87 39

15 15

6

3 Ee 3

3

p
39
p

97
p

133
p

112
p

61
p

31
p

21
p

13

4 5
p

13
p

7

p
7 2

p
3

1 Ee 1

1

Figure 19: The absolute values of the Markoff maps in Example 1 (left) and
Example 2 (right)
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Late addition Makoto Tamura and Yasushi Yamashita made further numerical calcu-
lation for Example 2. The following result was obtained by using a computer program
written by Yamashita [38].

H100.�; Ee/+ �0:490000C 0:866025i;

H10000.�; Ee/+ �0:499900C 0:866025i:

The authors thank them for this nice calculation.
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