Volume 17, issue 5 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Coupled equations for Kähler metrics and Yang–Mills connections

Luis Álvarez-Cónsul, Mario García-Fernández and Oscar García-Prada

Geometry & Topology 17 (2013) 2731–2812
Bibliography
1 M C Abbati, R Cirelli, A Manià, P Michor, The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6 (1989) 215 MR1040392
2 L Álvarez-Cónsul, M García-Fernández, O García-Prada, Gravitating vortices, in preparation
3 B Anchouche, I Biswas, Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001) 207 MR1828221
4 M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 MR702806
5 T Aubin, Some nonlinear problems in Riemannian geometry, Springer (1998) MR1636569
6 A L Besse, Einstein manifolds, 10, Springer (1987) MR867684
7 J P Bourguignon, Invariants intégraux fonctionnels pour des équations aux dérivées partielles d’origine géométrique, from: "Partial differential equations, Part 1, 2" (editors B Bojarski, W Zajączkowski, B Ziemian), Banach Center Publ. 27, Polish Acad. Sci. (1992) 65 MR1205812
8 E Calabi, Extremal Kähler metrics, from: "Seminar on Differential Geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 259 MR645743
9 L Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994) 589 MR1254134
10 X X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 MR1863016
11 X X Chen, Space of Kähler metrics, III : On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009) 453 MR2471594
12 X X Chen, S K Donaldson, S Sun, Kähler–Einstein metrics and stability arXiv:1210.7494
13 X X Chen, G Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. (2008) 1 MR2434691
14 S K Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983) 269 MR710055
15 S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 MR765366
16 S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231 MR885784
17 S K Donaldson, Remarks on gauge theory, complex geometry and 4–manifold topology, from: "Fields Medallists’ lectures" (editors M F Atiyah, D Iagolnitzer), World Sci. Ser. 20th Century Math. 5, World Sci. Publ. (1997) 384 MR1622931
18 S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 MR1736211
19 S K Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001) 479 MR1916953
20 S K Donaldson, P B Kronheimer, The geometry of four-manifolds, The Clarendon Press (1990) MR1079726
21 A Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions 5 (1992) 173 MR1207204
22 A Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983) 437 MR718940
23 A Futaki, Asymptotic Chow semi-stability and integral invariants, Internat. J. Math. 15 (2004) 967 MR2106156
24 A Futaki, H Ono, Einstein metrics and GIT stability, Sūgaku 60 (2008) 175 MR2422701
25 M García-Fernández, Coupled equations for Kähler metrics and Yang–Mills connections, PhD thesis, Instituto de Ciencias Matemáticas, Madrid (2009) arXiv:1102.0985
26 M García-Fernández, C Tipler, Deformation of complex structures and the coupled Kähler–Yang–Mills equations arXiv:1301.4480
27 D Gieseker, I Morrison, Hilbert stability of rank-two bundles on curves, J. Differential Geom. 19 (1984) 1 MR739780
28 M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
29 Y J Hong, Constant Hermitian scalar curvature equations on ruled manifolds, J. Differential Geom. 53 (1999) 465 MR1806068
30 Y J Hong, Stability and existence of critical Kaehler metrics on ruled manifolds, J. Math. Soc. Japan 60 (2008) 265 MR2392011
31 L Huang, On joint moduli spaces, Math. Ann. 302 (1995) 61 MR1329447
32 J Keller, C W Tønnesen-Friedman, Nontrivial examples of coupled equations for Kähler metrics and Yang–Mills connections, Cent. Eur. J. Math. 10 (2012) 1673 MR2949645
33 G Kempf, L Ness, The length of vectors in representation spaces, from: "Algebraic geometry" (editor K Lønsted), Lecture Notes in Math. 732, Springer (1979) 233 MR555701
34 S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) MR909698
35 S Kobayashi, K Nomizu, Foundations of differential geometry, Vol. I, John Wiley (1963) MR0152974
36 S Kobayashi, K Nomizu, Foundations of differential geometry, Vol. II, 15, John Wiley (1969) MR0238225
37 C LeBrun, The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 17 MR2681684
38 C LeBrun, S R Simanca, On the Kähler classes of extremal metrics, from: "Geometry and global analysis" (editors T Kotake, S Nishikawa, R Schoen), Tohoku Univ. (1993) 255 MR1361191
39 C LeBrun, S R Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994) 298 MR1274118
40 J Li, S T Yau, The existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005) 143 MR2192064
41 T Mabuchi, K–energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575 MR867064
42 T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227 MR909015
43 J E Marsden, G Misiołek, J P Ortega, M Perlmutter, T S Ratiu, Hamiltonian reduction by stages, 1913, Springer (2007) MR2337886
44 M Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978) 557 MR509499
45 D McDuff, D Salamon, Introduction to symplectic topology, The Clarendon Press (1998) MR1698616
46 R Pandharipande, A compactification over Mg of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996) 425 MR1308406
47 A Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 129 MR0369747
48 A Ramanathan, S Subramanian, Einstein–Hermitian connections on principal bundles and stability, J. Reine Angew. Math. 390 (1988) 21 MR953674
49 I Mundet i Riera, A Hitchin–Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math. 528 (2000) 41 MR1801657
50 G Schumacher, M Toma, Moduli of Kähler manifolds equipped with Hermite–Einstein vector bundles, Rev. Roumaine Math. Pures Appl. 38 (1993) 703 MR1263214
51 S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 MR1165352
52 I M Singer, The geometric interpretation of a special connection, Pacific J. Math. 9 (1959) 585 MR0111062
53 J Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009) 663 MR2581360
54 A Teleman, Symplectic stability, analytic stability in non-algebraic complex geometry, Internat. J. Math. 15 (2004) 183 MR2055369
55 G Tian, K–stability and Kähler–Einstein metrics arXiv:1211.4669
56 G Tian, Canonical metrics in Kähler geometry, Birkhäuser (2000) MR1787650
57 G Tian, S T Yau, Kähler–Einstein metrics on complex surfaces with C1 > 0, Comm. Math. Phys. 112 (1987) 175 MR904143
58 K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) MR861491
59 X Wang, Moment map, Futaki invariant and stability of projective manifolds, Comm. Anal. Geom. 12 (2004) 1009 MR2103309
60 Y S Yang, Prescribing topological defects for the coupled Einstein and abelian Higgs equations, Comm. Math. Phys. 170 (1995) 541 MR1337133
61 S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 MR480350