Volume 17, issue 5 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A geometric transition from hyperbolic to anti-de Sitter geometry

Jeffrey Danciger

Geometry & Topology 17 (2013) 3077–3134
Abstract

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti-de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the “other side” of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We demonstrate these methods in the case when the manifold is the unit tangent bundle of the (2,m,m) triangle orbifold for m 5.

Keywords
geometric transition, hyperbolic, AdS, cone manifold, tachyon, projective structure, transitional geometry, half-pipe geometry
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 53C15, 53B30, 20H10, 53C30
References
Publication
Received: 25 February 2013
Accepted: 26 June 2013
Published: 17 October 2013
Proposed: Danny Calegari
Seconded: Benson Farb, Jean-Pierre Otal
Authors
Jeffrey Danciger
Department of Mathematics
University of Texas – Austin
1 University Station C1200
Austin, TX 78712-0257
USA
http://www.ma.utexas.edu/users/jdanciger/