Volume 18, issue 1 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Burnside's Problem, spanning trees and tilings

Brandon Seward

Geometry & Topology 18 (2014) 179–210
Bibliography
1 I Benjamini, O Schramm, Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997) 403 MR1466332
2 B Bollobás, Modern graph theory, Graduate Texts in Mathematics 184, Springer (1998) MR1633290
3 N Brady, Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. London Math. Soc. 60 (1999) 461 MR1724853
4 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999) MR1744486
5 C Chou, Elementary amenable groups, Illinois Journal Math. 24 (1980) 396 MR573475
6 S Gao, S Jackson, B Seward, Group colorings and Bernoulli subflows arXiv:1201.0513
7 E S Golod, I R Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964) 261 MR0161852
8 P de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press (2000) MR1786869
9 A J Ol’šanskiĭ, On the question of the existence of an invariant mean on a group, Uspekhi Mat. Nauk 35 (1980) 199 MR586204
10 I Pak, R Radoičić, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501 MR2548568
11 P Papasoglu, Homogeneous trees are bi-Lipschitz equivalent, Geom. Dedicata 54 (1995) 301 MR1326733
12 J P Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag (2003) MR1954121
13 B Weiss, Monotileable amenable groups, from: "Topology, ergodic theory, real algebraic geometry" (editors V Turaev, A Vershik), Amer. Math. Soc. Transl. Ser. 2 202, Amer. Math. Soc. (2001) 257 MR1819193
14 K Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture, Duke Math. J. 99 (1999) 93 MR1700742