
msp
Geometry & Topology 18 (2014) 521–614

Distortion elements for
surface homeomorphisms

EMMANUEL MILITON

Let S be a compact orientable surface and f be an element of the group Homeo0.S/

of homeomorphisms of S isotopic to the identity. Denote by zf a lift of f to the
universal cover zS of S . In this article, the following result is proved: If there exists a
fundamental domain D of the covering zS ! S such that

lim
n!C1

1

n
dn log.dn/D 0;

where dn is the diameter of zf n.D/ , then the homeomorphism f is a distortion
element of the group Homeo0.S/ .

37C85

1 Introduction

Given a compact manifold M , we denote by Diffr
0.M / the identity component of

the group of C r–diffeomorphisms of M . A way to understand this group is to try to
describe its subgroups. In other words, given a group G , does there exist an injective
group morphism from the group G to the group Diffr

0.M /? In case the answer is
positive, one can try to describe the group morphisms from the group G to the group
Diffr

0.M / (ideally up to conjugacy, but this is often an unattainable goal).

The concept of distortion element allows one to obtain rigidity results on group mor-
phisms from G to Diffr

0.M /. It will provide some very partial answers to these
questions. Here is the definition. Remember that a group G is finitely generated if there
exists a finite generating set G : any element g in this group is a product of elements
of G and their inverses, g D s

�1

1
s
�2

2
� � � s�n , where the si are elements of G and the �i

are equal to C1 or �1. The smallest integer n in such a decomposition is denoted
by lG.g/. The map lG is invariant under inverses and satisfies the triangle inequality
lG.gh/� lG.g/C lG.h/. Therefore, for any element g in the group G , the sequence
.lG.g

n//n�0 is sub-additive, so the sequence .lG.gn/=n/n converges. When the limit
of this sequence is zero, the element g is said to be distorted or a distortion element
in the group G . Notice that this notion does not depend on the generating set G . In
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522 Emmanuel Militon

other words, this concept is intrinsic to the group G . The notion extends to the case
where the group G is not finitely generated. In this case, an element g of the group G

is distorted if it belongs to a finitely generated subgroup of G in which it is distorted.
The main interest of the notion of distortion is the following rigidity property: for
any group morphism 'W G! H , if an element g is distorted in the group G , then
its image under ' is also distorted. Suppose that the group H does not contain any
distortion element other than the identity element in H and that the group G contains
a distortion element different from the identity. Then such a group morphism cannot
be an embedding: the group G is not a subgroup of H .

Let us give now some simple examples of distortion elements.

(1) In any group G , the torsion elements, ie, those of finite order, are distorted.

(2) In free groups and free abelian groups, the only distorted element is the identity
element.

(3) The simplest examples of groups which contain a distortion element which is
not a torsion element are the Baumslag–Solitar groups. These groups have the
following presentation:

BS.1;p/D ha; b j bab�1
D ap

i

Then, for any integer n, the relation bnab�n D apn

holds. Taking G D fa; bg
as a generating set for this group, we have lG.a

pn

/� 2nC 1: the element a is
distorted in the group BS.1;p/ if jpj � 2.

(4) A group G is said to be nilpotent if the sequence of subgroups .Gn/n�0 of
G defined by G0 D G and GnC1 D ŒGn;G� (this is the subgroup generated
by elements of the form Œgn;g� D gngg�1

n g�1 , where gn 2 Gn and g 2 G )
stabilizes and is equal to f1Gg for a sufficiently large n. A typical example of a
nilpotent group is the Heisenberg group, which is the group of upper triangular
matrices whose diagonal entries are 1 and other entries are integers. In a nilpotent
non-abelian group N , one can always find three distinct elements a, b and c

different from the identity such that Œa; b�D c and the element c commutes with
a and b . In this case, we have cn2

D Œan; bn� so that, in the subgroup generated
by a and b (and also in N ), the element c is distorted: lfa;bg.c

n2

/� 4n.

(5) A general theorem by Lubotzky, Mozes and Raghunathan implies that there
exist distortion elements (and even elements with a logarithmic growth) in some
lattices of higher rank Lie groups, for instance in the group SLn.Z/ for n� 3.
In the case of the group SLn.Z/, one can even find a generating set consisting
of distortion elements.
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(6) In mapping class groups (see Farb, Lubotzky and Minsky [6]) and in the group
of interval exchange transformations (see Novak [22]), any distorted element is
a torsion element.

Let us consider now the case of diffeomorphisms groups. The following theorem has
led to progress on Zimmer’s Conjecture. Let us denote by S a compact surface without
boundary endowed with a probability measure area with full support. Let us denote
by Diff1.S; area/ the group of C 1 –diffeomorphisms of the surface S that preserve
the measure area. Then we have the following statement:

Theorem 1 (Polterovich [23], Franks and Handel [9]) If the genus of the surface S is
greater than one, any distortion element in the group Diff1.S; area/ is a torsion element.

As nilpotent groups and SLn.Z/ have some non-torsion distortion elements, they
are not subgroups of the group Diff1.S; area/. A natural question now is whether
these theorems can be generalized in the case of more general diffeomorphisms or
homeomorphisms groups (with no area-preservation hypothesis). Unfortunately, one
may find lots of distorted elements in those cases. The most striking example of this
phenomenon is the following theorem by Calegari and Freedman concerning the group
of homeomorphisms of the d –dimensional sphere Sd :

Theorem 2 (Calegari and Freedman [5]) For any integer d � 1, every element in the
group Homeo0.S

d / is distorted.

In the case of a higher regularity, Avila proved in [2] that any element in Diff10 .S
1/ for

which arbitrarily large iterates are arbitrarily close to the identity in the C1–topology
(such an element will be said to be recurrent) is distorted in the group Diff10 .S

1/. We
obtained the following result (see Militon [20]):

Theorem 3 For any compact manifold M without boundary, any recurrent element
in Diff10 .M / is distorted in this group.

For instance, irrational rotations of the circle or of the 2–dimensional sphere or transla-
tions of the d –dimensional torus are distorted. More generally, take any manifold that
admits a non-trivial C1 circle action. Then there exist non-trivial distortion elements
in the group of C1–diffeomorphisms of this manifold. Notice that, thanks to the
Anosov–Katok method (see Herman [13], and Fathi and Herman [7]), we can build
recurrent elements in the case of the sphere or of the 2–dimensional torus that are not
conjugate to a rotation.

Anyway, we could not hope for a result analogous to the theorem by Polterovich,
Franks and Handel, at least in the C 1 category. Indeed, we will see that the Baumslag–
Solitar group BS.1; 2/ embeds in the group Diff1

0.M / for any manifold M (this was
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indicated to me by Isabelle Liousse). Identify the circle S1 with R [ f1g. Then
consider the (analytical) circle diffeomorphisms aW x 7! xC 1 and bW x 7! 2x . The
relation bab�1 D a2 is satisfied and, therefore, the two elements a and b define an
action of the group BS.1; 2/ on the circle. By thickening the point at infinity (ie, by
replacing the point at infinity with an interval), we obtain a compactly supported action
of BS.1; 2/ on R. This last action can be made C 1 . Finally, by a radial action, we
have a compactly supported C 1 action of BS.1; 2/ on Rd . By identifying an open
disc of a manifold with Rd , we get an action of the Baumslag–Solitar group on any
manifold. This gives some non-recurrent distortion elements in the group Diff1

0.M /

for any manifold M .

In the case of diffeomorphisms, it is difficult to approach a characterization of distortion
element as there are many obstructions to being a distortion element (for instance, the
differential cannot grow too fast along an orbit, the topological entropy of the diffeo-
morphism must vanish). On the contrary, in the groups of surface homeomorphisms,
there is only one known obstruction to being a distortion element. We will describe it
in the next section.

In this article, we will try to characterize geometrically the set of distortion elements
in the group of homeomorphisms isotopic to the identity of a compact orientable
surface. The theorem we obtain is a consequence of a result that is valid on any
manifold and proved in the fourth section. This last result has a major drawback:
it uses the fragmentation length, which is not well understood except in the case of
spheres. Thus, we will try to connect this fragmentation length to a more geometric
quantity: the diameter of the image of a fundamental domain under a lift of the given
homeomorphism. It is not difficult to prove that the fragmentation length dominates this
last quantity: this will be treated in the third section of this article. However, conversely,
it is more difficult to show that this last quantity dominates the fragmentation length.
In order to prove this, we will make a distinction between the case of surfaces with
boundary (Section 5), which is the easiest, the case of the torus (Section 6) and the
case of higher genus closed surfaces (Section 7). The last section contains examples
of distortion elements in the group of homeomorphisms of the annulus for which the
growth of the diameter of a fundamental domain is “fast”.

2 Notation and results

Let M be a manifold, possibly with boundary. We denote by Homeo0.M / (respec-
tively Homeo0.M; @M /) the identity component of the group of compactly supported
homeomorphisms of M (respectively of the group of homeomorphisms of M that
pointwise fix a neighbourhood of the boundary @M of M ).

Geometry & Topology, Volume 18 (2014)
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Definition 2.1 Given two homeomorphisms f and g of M and a subset A of M ,
an isotopy between f and g relative to A is a continuous path of homeomorphisms
.ft /t2Œ0;1� that pointwise fix A such that f0 D f and f1 D g . An isotopy between f
and g is an isotopy relative to the empty set. For a subset A of M , we denote by VA
its interior and by A its closure.

In what follows, S denotes a compact orientable surface, possibly with boundary,
different from the disc and from the sphere. We denote by …W zS ! S the universal
cover of S . The surface zS is seen as a subset of the Euclidean plane R2 or of the
hyperbolic plane H2 so that the deck transformations are isometries for the Euclidean
metric or the hyperbolic metric. We endow the surface zS with this metric. We identify
the fundamental group �1.S/ of the surface S with the group of deck transformations
of the covering …W zS!S . For any subset A of the hyperbolic plane H2 (respectively
of the Euclidean plane R2 ), we denote by ı.A/ the diameter of A for the hyperbolic
distance (respectively the Euclidean distance).

Definition 2.2 For any homeomorphism f of S , a lift of f is a homeomorphism F

of zS that satisfies
… ıF D f ı…:

For any isotopy .ft /t2Œ0;1� , a lift of .ft /t2Œ0;1� is a continuous path .Ft /t2Œ0;1� of
homeomorphisms of zS such that, for any t , the homeomorphism Ft is a lift of the
homeomorphism ft .

For any homeomorphism f in Homeo0.S/, take an isotopy between the identity and
f . Consider a lift of this isotopy which is equal to the identity for t D 0. We denote
by zf the time 1 of this lift. If moreover the boundary of S is nonempty and the
homeomorphism f belongs to Homeo0.S; @S/, the homeomorphism zf is obtained
by lifting an isotopy relative to the boundary @S . If there exists a disc D2 embedded
in the surface S that contains the support of the homeomorphism f , we require that
the support of zf is contained in …�1.D2/.

Claim Except in the cases of the groups Homeo0.T
2/ and Homeo0.Œ0; 1��S1/, the

homeomorphism zf is unique.

Proof This is a consequence of a theorem by Hamstrom (see [11]): If S is a surface
without boundary of genus greater than 1, then the topological space Homeo0.S/ is
simply connected. Moreover, if S is a surface with nonempty boundary, the topological
space Homeo0.S; @S/ is simply connected. Finally, let us prove the claim in the case
of an element f in Homeo0.S/ for a surface S with nonempty boundary. The double
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DS 0 of a surface S 0 with nonempty boundary is the surface obtained from S 0�f�1; 1g

by identifying @S 0 � f�1g with @S 0 � f1g. Take two lifts F1 and F2 of f to zS as
above. Each homeomorphism Fi canonically induces a homeomorphism, called the
double of Fi , on the double of zS . Observe that the surface D zS is a covering space
of the surface DS . Moreover, the double of F1 and the double of F2 are lifts of the
double of the homeomorphism f . Hence the double of F1 is equal to the double of
F2 by Hamstrom’s Theorem. This proves the claim.

Notice that, for any deck transformation 
 2 �1.S/, and any homeomorphism f in
Homeo0.S/,


 ı zf D zf ı 
:

Indeed, take a lift zft of an isotopy between the identity and a homeomorphism f .
Then, for any 
 2 �1.S/, the path t 7! zft ı 
 ı zf

�1
t is continuous with values in the

discrete space of deck transformations: this path is constant.

Definition 2.3 We call a fundamental domain of zS for the action of �1.S/ any
compact connected subset D of zS that satisfies the following properties:

(1) ….D/D S .

(2) For any deck transformation 
 in �1.S/ different from the identity, the interior
of D is disjoint from the interior of 
 .D/.

The main theorem of the present article is a partial converse to the following property
(observed by Franks and Handel in [9, Lemma 6.1]):

Proposition 2.4 Denote by D a fundamental domain of zS for the action of �1.S/. If
a homeomorphism f in Homeo0.S/ (respectively in Homeo0.S; @S/) is a distortion
element in Homeo0.S/ (respectively in Homeo0.S; @S/), then

lim
n!C1

ı. zf n.D//

n
D 0:

Remark 2.5 In the case where the surface S under consideration is the torus T2 or
the annulus Œ0; 1��S1 , the conclusion of this proposition is equivalent to saying that
the rotation set of f is reduced to a single point (see Misiurewicz and Ziemian [21] for
a definition of the rotation set of a homeomorphism of the torus isotopic to the identity;
the definition is analogous in the case of the annulus). This proposition provides
examples of non-distorted elements. For instance, consider the homeomorphism F of
R2 commuting to integral translations defined by

.x;y/ 7!

�
.x;yCx/ if 0� x � 1

2
;

.x;yC 1�x/ if 1
2
� x � 1;

Geometry & Topology, Volume 18 (2014)
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on the unit square. This homeomorphism is a lift of a homeomorphism f of the
torus T2 . Notice that the point .0; 0/ is fixed under the homeomorphism F whereas
Fn.1

2
; 0/ D .1

2
; n

2
/. Hence the conclusion of the proposition does not hold and the

homeomorphism f is not distorted. Of course, the rotation set of the homeomorphism
f is not reduced to a point: it is equal to Œ0; 1

2
�� f0g.

Proof Let f be a distortion element in Homeo0.S/ (respectively in Homeo0.S; @S/).
Denote by

G D fg1;g2; : : : ;gpg

a finite subset of Homeo0.S/ (respectively of Homeo0.S; @S/) such that:

(1) The homeomorphism f belongs to the group generated by G .

(2) The sequence .lG.f n/=n/n�1 converges to 0.

Then we have a decomposition of the form f nDgi1
ıgi2
ı� � �ıgiln

where lnD lG.f
n/.

This implies the following equality: I ı zf nD zgi1
ızgi2
ı� � �ı zgiln

, where I is an isometry
of zS . Let us take

�D max
1�i�p;zx2 zS

d.zx; zgi.zx//:

For any index i and any deck transformation 
 in �1.S/, 
 ı zgi D zgi ı 
 and the
distance d is invariant under deck transformations. Thus � is finite. Then, for any two
points zx and zy of the fundamental domain D , we have

d. zf n.zx/; zf n.zy//D d.I ı zf n.zx/; I ı zf n.zy//

� d.I ı zf n.zx/; zx/C d.zx; zy/C d.I ı zf n.zy/; zy/

� ln�C ı.D/C ln�:

This implies the proposition, by sublinearity of the sequence .ln/n�0 .

The main theorem of this article is the following:

Theorem 2.6 Let f be a homeomorphism in Homeo0.S/ or Homeo0.S; @S/. If

lim inf
n!C1

ı. zf n.D// log.ı. zf n.D///

n
D 0;

then f is a distortion element in Homeo0.S/ or Homeo0.S; @S/, respectively.
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Remark 2.7 The hypothesis

lim
n!C1

ı. zf n.D// log.ı. zf n.D///

n
D 0

is independent of the chosen fundamental domain D , as we will see in the next section.
Thus, it is invariant under conjugation.

Definition 2.8 Let X and Y be topological spaces. A continuous map f W X ! X

is said to be semi-conjugate to a continuous map gW Y ! Y if there exists an onto
continuous map hW X ! Y such that hf D gh.

Let us give some examples of homeomorphisms of the torus or of the annulus for which
this theorem can be applied.

(1) Of course, the rotations of the annulus and the translations of the torus satisfy
the hypothesis of this theorem. Actually, for any homeomorphism f of the torus
(respectively of the annulus) that is semi-conjugate to a translation (respectively
a rotation), the sequence .ı. zf n.D///n is bounded: the homeomorphism f is
distorted.

(2) The homeomorphisms that are C 0 –recurrent (in the sense that arbitrarily large
powers of these homeomorphisms are arbitrarily close to the identity) satisfy the
hypothesis of this theorem. In particular, the examples given after the statement
of Theorem 3 satisfy the hypothesis of Theorem 2.6. However, we already knew
that these homeomorphisms were distorted by Theorem 3.

(3) Tobias Jäger has built examples of homeomorphisms f in Homeo0.T
2/ that

are not semi-conjugate to a translation, and such that the sequence .ı. zf n.D///n
is bounded (see [14, Proposition 2.1]). His examples are skew-products over a
Denjoy counterexample. By Theorem 2.6, such homeomorphisms are distorted
in Homeo0.T

2/.

(4) In Section 8, for any sequence .vn/n of positive numbers such that

lim
n!C1

vn

n
D 0;

we will construct a simple example of homeomorphism f of the annulus such
that, for any n,

vn � ı. zf
n.D//� vnC 1C ı.D/:

Theorem 2.6 can be applied in the case where limn!C1 vn log.vn/=nD 0.

Geometry & Topology, Volume 18 (2014)
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(5) Recently, Koropecki and Tal built a C1 (area-preserving) diffeomorphism of
the torus T2 such that every orbit is bounded and limn!C1 ı. zf

n.D//=nD 0

but the sequence .ı. zf n.D///n is unbounded (see [17, Theorem 3]). The idea
is to embed an open disc in the torus in a wild way (in particular, any lift of
this disc to R2 is unbounded). Then consider a homeomorphism which is equal
to the identity outside this disc and which is equal, in polar coordinates, to
.r; �/ 7! .r; � C �.r// on the disc, where �W Œ0; 1�! R is a continuous map
which sends 0 and 1 to 0. Of course, �.r/ has to converges sufficiently fast to
0 when r tends to 1 to ensure that the homeomorphism f is well-defined. If
�.r/ converges sufficiently fast to 0 when r tends to 1, one can check that such
a homeomorphism satisfies the hypothesis of Theorem 2.6. In the same article,
with the same kind of construction, Koropecki and Tal built a homeomorphism
g of the torus such that, for Lebesgue almost every point of R2 , its forward and
its backward orbit under zg accumulate in every direction at infinity (see [17,
Theorem 1]). We do not know whether such a homeomorphism is distorted.

The proof of Theorem 2.6 occupies the next five sections. For this proof, we need the
following notion. Let M be a compact d –dimensional manifold. Denote by B.0; 1/

the closed unit ball of Rd . A subset B of M will be called a closed ball if there exists
an embedding eW Rd !M such that e.B.0; 1//D B . Let

H d
D f.x1;x2; : : : ;xd / 2RN ;x1 � 0g:

We will call a closed half-ball of M the image of B.0; 1/\H d under an embedding
eW H d !M such that

e.@H d /D e.H d /\ @M:

Let us fix a finite family U of closed balls or closed half-balls whose interiors cover
M . Then, by the fragmentation lemma (see Bounemoura [4] or Fisher [8]), there exists
a finite family .fi/1�i�n of homeomorphisms in Homeo0.M /, each supported in one
of the sets of U , such that

f D f1 ıf2 ı � � � ıfn:

We denote by FragU .f / the minimal integer n in such a decomposition: it is the
minimal number of factors necessary to write f as a composition of homeomorphisms
that are each supported in one of the balls of U .

Let us come back to the case of a compact surface S and denote by U a finite family of
closed discs or closed half-discs whose interiors cover S . Denote by D a fundamental
domain of zS for the action of �1.S/. We now describe the two steps of the proof of
Theorem 2.6. The first step of the proof consists of checking that the quantity FragU .f /
is almost equal to ı. zf .D//:

Geometry & Topology, Volume 18 (2014)
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Theorem 2.9 There exist two real constants C > 0 and C 0 such that, for any homeo-
morphism f in Homeo0.S/,

1

C
ı. zf .D//�C 0 � FragU .f /� Cı. zf .D//CC 0:

There is a version of this theorem for the groups Homeo0.S; @S/ in case the surface S

has nonempty boundary. Let us denote by S 0 a submanifold of S with the following
properties: the surface S 0 is homeomorphic to S , is contained in the interior of S and
is a deformation retract of S . We denote by U a family of closed balls of S whose
interiors cover S 0 .

Theorem 2.10 There exist two real constants C > 0 and C 0 such that, for any
homeomorphism f in Homeo0.S; @S/ supported in S 0 ,

1

C
ı. zf .D//�C 0 � FragU .f /� Cı. zf .D//CC 0:

It is not difficult to obtain the lower bound of the fragmentation length. This is treated
in the next section. In the same section, we will also see that the quantity FragU is
essentially independent of the chosen cover U . On the other hand, the argument for
the upper bound is much more technical. For this bound, we distinguish three cases:
the case of surfaces with boundary (Section 5), the case of the torus (Section 6) and
the case of higher genus compact surfaces without boundary (Section 7). The proof
seems to depend strongly on the fundamental group of the surface under consideration.
In particular, it is easier in the case of surfaces with boundary whose fundamental
groups are free. In the case of the torus, the proof is a little tricky. In the case of
higher genus closed surfaces, the proof is more complex and uses Dehn’s algorithm for
small-cancellation groups (surface groups in this case).

Let us explain now the second step of the proof. Denote by M a compact manifold
and by U a finite family of closed balls or half-balls whose interiors cover M . In
Section 4, we will prove the following theorem. It asserts that, for a homeomorphism
f in Homeo0.M /, if the sequence FragU .f

n/ does not grow too fast when n!C1,
then the homeomorphism f is a distortion element:

Theorem 2.11 If

lim inf
n!C1

FragU .f
n/ log.FragU .f

n//

n
D 0;

then the homeomorphism f is a distortion element in Homeo0.M /.

Geometry & Topology, Volume 18 (2014)
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Moreover, assume that the manifold M has nonempty boundary. Then, if U denotes
a finite family of closed balls contained in the interior of M whose interiors cover
the support of a homeomorphism f in Homeo0.M; @M /, this last theorem remains
true in the group Homeo0.M; @M /. The proof of this theorem uses a technique due to
Avila (see [2]).

Theorem 2.6 is clearly a consequence of these two theorems.

The following theorem shows that Proposition 2.4 is optimal. It will be proved in the
last section.

Theorem 2.12 Let .vn/n�1 be a sequence of positive real numbers such that

lim
n!C1

vn

n
D 0:

Then there exists a homeomorphism f in Homeo0.R=Z� Œ0; 1�;R=Z� f0; 1g/ such
that:

(1) For any n� 1, ı. zf n.Œ0; 1�� Œ0; 1�//� vn .

(2) The homeomorphism f is a distortion element in

Homeo0.R=Z� Œ0; 1�;R=Z� f0; 1g/:

This theorem means that being a distortion element gives no information on the growth
of the diameter of a fundamental domain other than the sublinearity of this growth.
This theorem remains true for any surface S . To see this, it suffices to embed the
annulus R=Z� Œ0; 1� in the surface S .

3 Quasi-isometries

In this section, we prove the lower bound in Theorems 2.9 and 2.10. More precisely, we
prove these theorems using the following propositions whose proofs will be discussed
in Sections 5, 6 and 7.

Proposition 3.1 There exists a finite cover U of S by closed discs and half-discs as
well as real constants C � 1 and C 0 � 0 such that, for any homeomorphism f in
Homeo0.S/,

FragU .f /� C diamD. zf .D0//CC 0:

Here is a version of the previous proposition in the case of the group Homeo0.S; @S/.

Geometry & Topology, Volume 18 (2014)



532 Emmanuel Militon

Proposition 3.2 Fix a subsurface with boundary S 0 of S that is contained in the
interior of S , is a deformation retract of S and is homeomorphic to S . There exists
a finite cover U of S 0 by closed discs contained in the interior of S as well as real
constants C � 1 and C 0 � 0 such that, for any homeomorphism f in Homeo0.S; @S/

supported in S 0 ,
FragU .f /� C diamD. zf .D0//CC 0:

In order to prove these theorems, we need some notation. As in the last section, let us
denote by S a compact orientable surface.

Definition 3.3 Two maps a; bW Homeo0.S/! R are quasi-isometric if and only if
there exist real constants C � 1 and C 0 � 0 such that

for any f 2 Homeo0.S/;
1

C
a.f /�C 0 � b.f /� Ca.f /CC 0:

More generally, an arbitrary number of maps Homeo0.S/!R are said to be quasi-
isometric if they are pairwise quasi-isometric.

Let us consider a fundamental domain D0 of zS for the action of the group �1.S/,
which satisfies the following properties (see Figure 1):

(1) If the surface S of genus g is closed, the fundamental domain D0 is a closed
disc bounded by a 4g–gone with geodesic edges.

(2) If the surface S has nonempty boundary, the fundamental domain D0 is a closed
disc bounded by a polygon with geodesic edges. We require that any edge of
this polygon that is not contained in @ zS connects two edges contained in @ zS .

D0 D0 D0

@ zS
@ zS

@ zS
@ zS

Case of the torus Case of the torus with one hole Case of the genus 2
closed surface

Figure 1: The fundamental domain D0

Let DD f
 .D0/ j 
 2 �1.S/g. For fundamental domains D and D0 in D , we denote
by dD.D;D

0/C 1 the minimal number of fundamental domains met by a path that
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connects the interior of D to the interior of D0 . The map dD is a distance on D .
We now give an algebraic definition of this quantity. Denote by G the finite set of
deck transformations in �1.S/ that send D0 to a polygon in D adjacent to D0 , ie,
which shares an edge in common with D0 . Then the subset G is symmetric and is a
generating set for �1.S/. Notice that the map

dG W �1.S/��1.S/!R;

.';  / 7! lG.'
�1 /;

is a distance on the group �1.S/. Then, for any pair .';  / of deck transformations
in the group �1.S/, we have lG.'

�1 / D dD.'.D0/;  .D0//. One can see it by
noticing that dD is invariant under the action of the group �1.S/ and by proving by
induction on lG. / that

lG. /D dD.D0;  .D0//:

Given a compact subset A of zS , we call the discrete diameter of A the following
quantity:

diamD.A/DmaxfdD.D;D
0/ jD 2D;D0 2D;D\A¤∅;D0\A¤∅g

For a fundamental domain D1 in D , we call the éloignement of A with respect to D1

the following quantity:

elD1
.A/DmaxfdD.D1;D/ jD 2D;D\A¤∅g

Notice that, in the case where D1\A¤∅, we have

elD1
.A/� diamD.A/� 2 elD1

.A/:

In this section, we prove the following statement, using Proposition 3.1:

Proposition 3.4 Let U be a finite families of closed balls or half-balls whose interiors
cover the surface S . Let D be a fundamental domain of zS for the action of the
fundamental group of S . Then the following maps Homeo0.S/ ! R are quasi-
isometric:

(1) The map FragU
(2) The map f 7! ı. zf .D//

(3) The map f 7! diamD. zf .D0//

Remark 3.5 The proposition implies the following properties. Let U and U 0 be two
finite families of closed balls or half-balls whose interiors cover the surface S . Then
the maps FragU and FragU 0 are quasi-isometric.
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Take two fundamental domains D and D0 of zS for the action of the fundamental
group of S . Then the maps f 7! ı. zf .D// and f 7! ı. zf .D0// are quasi-isometric.

When the boundary of the surface S is nonempty, we have an analogous proposition
in the case of the group Homeo0.S; @S/. As in the last section, let us denote by S 0 a
submanifold with boundary of S that is homeomorphic to S , contained in the interior
of S , and a deformation retract of S , and by U a finite family of closed balls contained
in the interior of S , the union of whose interiors contains S 0 . Finally, let us denote by
GS 0 the group of homeomorphisms in Homeo0.S; @S/ that are supported in S 0 .

Proposition 3.6 Let D be a fundamental domain of zS for the action of the fundamen-
tal group of S . The following maps GS 0 !R are quasi-isometric:

(1) The map FragU

(2) The map f 7! ı. zf .D//

(3) The map f 7! diamD. zf .D0//

The proof of this proposition is similar to the proof of the previous one: that is why we
will not provide it.

These two propositions directly imply Theorems 2.9 and 2.10.

Proof of Proposition 3.4 Let us prove first that, for any two fundamental domains D

and D0 , the maps f 7! ı. zf .D// and f 7! ı. zf .D0// are quasi-isometric. Let

f
1; 
2; : : : ; 
pg D f
 2 �1.S/ jD
0
\ 
 .D/¤∅g:

Notice that D0 �
Sp

iD1

i.D/ and the right-hand side is path-connected. Then

zf .D0/�

p[
iD1

zf .
i.D//:

The lemma below implies that ı. zf .D0//� pı. zf .D//. As the fundamental domains
D and D0 play symmetric roles, this implies that the maps f 7! ı. zf .D// and f 7!
ı. zf .D0// are quasi-isometric.

Lemma 3.7 Let X be a path-connected metric space. Let .Ai/1�i�p be a family of
closed subsets of X such that X D

Sp
iD1

Ai . Then

ı.X /D sup
x2X ;y2X

d.x;y/� p max
1�i�p

ı.Ai/:
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Proof Let x and y be two points in X . By path-connectedness of X , there exists
an integer k between 1 and p , an injection � W f1; : : : ; kg ! f1; : : : ;pg \Z and a
sequence .xi/1�i�kC1 of points in X that satisfy the following properties:

(1) x1 D x and xkC1 D y .

(2) For any index i between 1 and k , the points xi and xiC1 both belong to A�.i/ .

Then:

d.x;y/�

kX
iD1

d.xi ;xiC1/�

kX
iD1

ı.A�.i//� p max
1�i�p

ı.Ai/:

This last inequality implies the lemma.

Let us show now that, for two finite families U and U 0 as in the statement of Proposition
3.4, the maps FragU and FragU 0 are quasi-isometric. The proof of this fact requires
the following lemmas. Recall that we denoted by B.0; 1/ the unit closed ball of Rd .

Lemma 3.8 Let V be a neighbourhood of the identity in Homeo0.B.0; 1/; @B.0; 1//.
There exists an integer N � 0 such that any homeomorphism in

Homeo0.B.0; 1/; @B.0; 1//

can be written as a composition of at most N homeomorphisms in V .

Lemma 3.9 Let M be a compact manifold and fU1;U2; : : : ;Upg be an open cover
of M . There exist a neighbourhood V of the identity in Homeo0.M / (respectively
in Homeo0.M; @M /) and an integer N 0 > 0 such that the following property is satis-
fied. For any homeomorphism f in V , there exist homeomorphisms g1; : : : ;gN 0 in
Homeo0.M / (respectively in Homeo0.M; @M /) such that:

(1) Each homeomorphism gi is supported in one of the Uj .

(2) f D g1 ıg2 ı � � � ıgN 0 .

Lemma 3.8 is a consequence of Béguin, Crovisier, Le Roux and Patou [3, Lemma 5.2]
(notice that the proof works in dimensions higher than 2). Lemma 3.9 is classical. It is
a consequence of the proof of Theorem 1.2.3 in [4]. These two lemmas imply that, for
an open cover of the disc D2 , there exists an integer N such that any homeomorphism
in Homeo0.D

2; @D2/ can be written as a composition of at most N homeomorphisms,
each supported in one of the open sets of the cover. Now, for an element U in U , we
denote by U \U 0 the cover of U given by the intersections of the elements of U 0 with
U . The application of this last result to the ball U with the cover U \U 0 gives us a
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constant NU . Let us denote by N the maximum of the NU , where U varies over U .
We directly obtain that, for any homeomorphism f ,

FragU 0.f /�N FragU .f /:

As the two covers U and U 0 play symmetric roles, the fact is proved. Notice that this
fact is true in any dimension.

Using a quasi-isometry between the metric spaces .�1.S/; dS / and zS , we will prove
the following lemma. It implies that the last two maps in the proposition are quasi-
isometric.

Lemma 3.10 There exist constants C � 1 and C 0 � 0 such that, for any compact
subset A of zS ,

1

C
ı.A/�C 0 � diamD.A/� Cı.A/CC 0:

Proof Let us fix a point x0 in the interior of D0 . The map

qW �1.S/! zS ;


 7! 
 .x0/;

is a quasi-isometry for the distance dG and the distance on zS (this is the Švarc–Milnor
lemma; see de la Harpe [12] p. 87). We notice that, for a compact subset A of zS , the
number diamD.A/ is equal to the diameter of q�1.B/ for the distance dG , where

B D
S
fD jD 2D;D\A¤∅g:

We deduce that there exist constants C1 � 1 and C 0
1
� 0 independent of A such that

1

C1

ı.B/�C 01 � diamD.A/� C1ı.B/CC 01:

The inequalities ı.B/� 2ı.D0/� ı.A/� ı.B/ complete the proof of the lemma.

We now prove that, for any cover U as in the statement of Proposition 3.4, there exist
constants C � 1 and C 0 � 0 such that, for any homeomorphism f in Homeo0.S/,

1

C
diamD. zf .D0//�C 0 � FragU .f /:

Let us fix such a family U . We will need the following lemma, which we will prove
later:

Geometry & Topology, Volume 18 (2014)



Distortion elements for surface homeomorphisms 537

Lemma 3.11 There exists a constant C > 0 such that, for any compact subset A of zS
and any homeomorphism h supported in one of the sets in U ,

diamD.zh.A//� diamD.A/�C:

Take k D FragU .f / and f D g1 ı g2 ı � � � ı gk , where each homeomorphism gi is
supported in one of the elements of U . Then I ı zf D zg1 ı zg2 ı � � � ı zgk , where I is a
deck transformation (and an isometry). Lemma 3.11 and induction on j imply that

for all j 2 Œ1; k�\Z; diamD.zg
�1
j ı � � � ı zg

�1
1 ı

zf .D0//� diamD. zf .D0//� jC;

as the homeomorphisms zgi commute with I . Hence

2D diamD.zg
�1
k ı � � � ı zg

�1
1 ı

zf .D0//� diamD. zf .D0//� kC:

Therefore

FragU .f /�
1

C
diamD. zf .D0//�

2

C
:

We obtain the wanted lower bound.

Proof of Lemma 3.11 For an element U in U , we denote by zU a lift of U , ie, a
connected component of …�1.U /. Let �.U /D diamD. zU /. This quantity does not
depend on the chosen lift zU . We denote by � the maximum of the �.U /, for U in U .

We denote by Uh an element in U which contains the support of h. Let us consider
two fundamental domains D and D0 which meet A and which satisfy the following
relation:

dD.D;D
0/D diamD.A/:

Let us take a point x in D \A and a point x0 in D0 \A. If the point x belongs to
…�1.Uh/, we denote by zUh the lift of Uh which contains x . Then the point zh.x/
belongs to zUh and a fundamental domain yD which contains the point zh.x/ is at distance
at most � from D (for dD ). Hence, in any case, there exists a fundamental domain yD
which contains the point zh.x/ and is at distance at most � from D . Similarly, there
exists a fundamental domain yD0 which contains the point zh.x0/ and is at distance at
most � from D0 . Therefore

dD. yD; yD0/� dD.D;D
0/� 2�:

We deduce that diamD.zh.A//� diamD.A/�2�, which is what we wanted to prove.

Thus, to complete the proof of Proposition 3.4, it suffices to prove Proposition 3.1.

Geometry & Topology, Volume 18 (2014)



538 Emmanuel Militon

It suffices now to find a finite family U for which Proposition 3.1 or 3.2 holds. We
will distinguish the following cases. A section is devoted to each of them.

(1) The surface S has nonempty boundary (Section 5).

(2) The surface S is the torus (Section 6).

(3) The surface S is closed of genus greater than one (Section 7).

The proof of Propositions 3.1 and 3.2, in each of these cases, consists in putting back
the boundary of zf .D0/ close to the boundary of @D0 by using homeomorphisms that
are each supported in the interior of one of the balls of a well-chosen cover U . Most of
the time, after composing with a homeomorphism supported in the interior of one of the
balls of U , the image of the fundamental domain D0 will not meet faces that were not
met before the composition. However, it will not be always possible, which explains
the difficulty of parts of the proof. Then, we will have to ensure that, after composing
by a uniformly bounded number of homeomorphisms supported in interiors of balls of
U , the image of the boundary of D0 will be strictly closer to D0 than before.

4 Distortion and fragmentation on manifolds

In this section, M denotes a compact d –dimensional manifold, possibly with boundary.
Let us fix a finite family U of closed balls or half-balls of M whose interiors cover
M . For any homeomorphism f in Homeo0.M /, we denote by aU .f / the minimum
of the quantities l: log.k/, where there exists a finite set ffi j 1 � i � kg of k

homeomorphisms in Homeo0.M /, each supported in one of the elements of U , and a
map �W f1; : : : ; lg ! f1; : : : ; kg with

f D f�.1/ ıf�.2/ ı � � � ıf�.l/:

The aim of this section is to prove the following proposition:

Proposition 4.1 Let f be a homeomorphism in Homeo0.M /. Then

lim inf
n!C1

aU .f
n/

n
D 0

if and only if the homeomorphism f is a distortion element in Homeo0.M /.

Let us give now an analogous statement in the case of the group Homeo0.M; @M /.
Denote by M 0 a submanifold with boundary that is homeomorphic to M , contained
in the interior of M and which is a deformation retract of M . We denote by U a
family of closed balls of M whose interiors cover M 0 . For any homeomorphism f in
Homeo0.M; @M / supported in M 0 , we define aU .f / in the same way as before.
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Proposition 4.2 Let f be a homeomorphism in Homeo0.M; @M / supported in M 0 .
Then

lim inf
n!C1

aU .f
n/

n
D 0

if and only if the homeomorphism f is a distortion element in Homeo0.M; @M /.

As aU .f /� FragU .f /: log.FragU .f //, these last propositions imply Theorem 2.11.

Proof of the “if” statement in Propositions 4.1 and 4.2 If the homeomorphism f

is a distortion element, we denote by G the finite set that appears in the definition of a
distortion element. Then we write each of the homeomorphisms in G as a product of
homeomorphisms supported in one of the sets of U . We denote by G0 the (finite) set
of homeomorphisms that appear in such a decomposition. Then the homeomorphism
f n is equal to a composition of ln elements of G0 , where ln is less than a constant
independent of n times lG.f

n/. As the element f is distorted, limn!C1 ln=nD 0

and aU .f
n/� log.card.G0//ln . Therefore

lim
n!C1

aU .f
n/

n
D 0:

In the case of Proposition 4.2, there is only one new difficulty: the elements of G are
not necessarily supported in the union of the balls of U . Let us take a homeomorphism
h in Homeo0.M; @M / with the following properties: the homeomorphism h is equal
to the identity on M 0 and sends the union of the supports of elements of G to the
union of the interiors of the balls of U . Then it suffices to consider the finite set hGh�1

instead of G in order to complete the proof.

The full power of Propositions 4.1 and 4.2 will be used only for the proof of Theorem
2.12 (construction of the example). In order to prove Theorem 2.6, we just used
Theorem 2.11, which is weaker.

Remark 4.3 Notice that, if U is the cover of the sphere by two neighbourhoods
of the hemispheres, the map FragU is bounded by 3 on the group Homeo0.S

d / of
homeomorphisms of the n–dimensional sphere isotopic to the identity (see [5]). This
is a consequence of the annulus theorem by Kirby (see [16]) and Quinn (see [24]).
Thus, the following theorem by Calegari and Freedman (see [5]) is a consequence of
Theorem 2.11:

Theorem 4.4 (Calegari and Freedman [5]) Any homeomorphism in Homeo0.S
d / is

a distortion element.
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The proof of Proposition 4.1 is based on the following lemma, whose proof uses a
technique due to Avila (see [2]):

Lemma 4.5 Let .fn/n�1 be a sequence of homeomorphisms of Rd (respectively of
H d ) supported in the open unit ball B.0; 1/ (respectively in B.0; 1/\H d ). There
exists a finite set G of compactly supported homeomorphisms of Rd (respectively of
H d ) such that:

(1) For any natural number n, the homeomorphism fn belongs to the group gener-
ated by G .

(2) lG.fn/� 14: log.n/C 14.

This lemma is not true anymore in case of the C r regularity, for r � 1. It crucially uses
the following fact: given a sequence of homeomorphisms .hn/ supported in the unit
ball B.0; 1/, one can store all the information of this sequence in one homeomorphism.
Let us explain now how to build such a homeomorphism. For any integer n, denote by
gn a homeomorphism that sends the unit ball to a ball Bn such that the balls Bn are
pairwise disjoint and have a diameter that converges to 0. Then it suffices to consider
the homeomorphism

1Y
nD1

gnhng�1
n :

Such a construction is not possible in the case of a higher regularity.

Remark 4.6 There are two main differences between this lemma and the one stated
by Avila:

(1) Avila’s lemma deals with a sequence of diffeomorphisms that converges suf-
ficiently fast (in the C1–topology) to the identity, whereas any sequence of
homeomorphisms is considered here.

(2) The upper bound is logarithmic and not linear.

Remark 4.7 This lemma is optimal in the sense that, if the homeomorphisms fn are
pairwise distinct, the growth of lG.fn/ is at least logarithmic. Indeed, if the generating
set G contains k elements, there are at most .klC1 � 1/=.k � 1/ homeomorphisms
whose length with respect to G is less than or equal to l .

Before proving Lemma 4.5, let us see why this lemma implies Propositions 4.1 and 4.2.
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End of the proof of Propositions 4.1 and 4.2 Suppose that

lim inf
n!C1

aU .f
n/

n
D 0:

Consider an increasing map �W N!N such that

lim
n!C1

aU .f
�.n//

�.n/
D 0:

Let U D fU1;U2; : : : ;Upg. For any integer i between 1 and p , denote by 'i an
embedding of Rd into M that sends the closed ball B.0; 1/ onto Ui if Ui is a closed
ball, or an embedding of H d into M that sends the closed half-ball B.0; 1/\H d

onto Ui if Ui is a closed half-ball. For any natural number n, let ln and kn be two
positive integers such that:

(1) aU .f
�.n//D ln log.kn/.

(2) There exists a sequence of homeomorphisms in Homeo0.M /,

.f1;n; f2;n; : : : ; fkn;n/;

each supported in one of the elements of U , such that f �.n/ is the composition
of ln homeomorphisms of this family.

Let us build an increasing one-to-one function � W N!N that satisfies

for all n 2N;
l�.n/.14 log.

Pn
iD1 k�.i//C 14/

�.�.n//
�

1

n
:

Suppose that, for some m� 0, �.1/; �.2/; : : : ; �.m/ have been built. Then, as

lim
n!C1

ln log.kn/

�.n/
D 0;

we have

lim
n!C1

ln.14 log.
Pm

iD1 k�.i/C kn/C 14/

�.n/
D 0:

Hence, we can find an integer �.mC 1/ > �.m/ such that

l�.mC1/.14 log.
PmC1

iD1 k�.i//C 14/

�.�.mC 1//
�

1

mC 1
:

This completes the construction of the map � . Take a bijective map

 W N! f.i; �.j // 2N �N j i � k�.j/; j 2Ng
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such that, if  .n1/ D .i1; �.j1//,  .n2/ D .i2; �.j2// and �.j1/ < �.j2/, then
n1 < n2 . For instance, take the inverse of the bijective map

f.i; �.j // 2N �N j i � k�.j/; j 2Ng !N;

.i; �.j // 7! i C
X

j 0<j

k�.j 0/:

Then  �1.i; �.j //�
Pj

lD1
k�.l/ . Denote by �i;j an integer between 1 and p such that

supp.fi;j /�U�i;j
. Then apply Lemma 4.5 to the sequence of homeomorphisms '�1

� .n/
ı

f .n/ ı'� .n/ , where the 'i were defined at the beginning of the proof. Let us denote
by G the finite set given by Lemma 4.5. Let Gi be the finite set of homeomorphisms
supported in Ui of the form 'i ı s ı'�1

i , where s is a homeomorphism in G . Let
G0 D

Sp
iD1

Gi . By Lemma 4.5, for all n 2N , lG0.f .n// � C log.n/CC 0 . Now the
homeomorphism f �.�.n// can be decomposed as f �.�.n//Dg1ıg2ı� � �ıgl�.n/ , where
each of the homeomorphisms gi belongs to the set ff1;�.n/; f2;�.n/; : : : ; fk�.n/;�.n/g.
Thus

lG0.f
�.�.n///� l�.n/

�
C log

�
max

1�i�k�.n/

 �1.i; �.n//
�
CC 0

�
:

Therefore
lG0.f

�.�.n///

�.�.n//
�

l�.n/.C log.
Pn

iD1 k�.i//CC 0/

�.�.n//
�

1

n

and the homeomorphism f is a distortion element in Homeo0.M / (respectively in
Homeo0.M; @M /).

Now, let us prove Lemma 4.5. This will require two lemmas.

Let a and b be the generators of the free semigroup L2 on two generators. For two
compactly supported homeomorphisms f and h of Rd , let �f;h be the semigroup
morphism from L2 to the group of homeomorphisms of Rd defined by �f;h.a/D f
and �f;h.b/D h.

Lemma 4.8 There exist compactly supported homeomorphisms s1 and s2 of Rd such
that

for all m 2L2; m0 2L2; m¤m0) �s1;s2
.m/.B.0; 2//\�s1;s2

.m0/.B.0; 2//D∅

and the diameter of �s1;s2
.m/.B.0; 2// converges to 0 when the length of m tends to

infinity.

Let us denote by Homeo0.R
d / the group of compactly supported homeomorphisms

of Rd .
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s2 s1s2 s1 s2 s1 s2 s1

s2
s1 s2 s1

s2
s1

B.0; 2/

Figure 2: Lemma 4.8

Lemma 4.9 Let f be a homeomorphism in Homeo0.R
d /. There exist two home-

omorphisms h1 and h2 in Homeo0.R
d / such that f D Œh1; h2�, where Œh1; h2� D

h1 ı h2 ı h�1
1
ı h�1

2
.

This lemma is classical and seems to appear for the first time in Anderson [1]. Let us
prove it now.

Proof Denote by ' a homeomorphism in Homeo0.R
d / whose restriction to B.0; 2/

is defined by
B.0; 2/!Rd ;

x 7!
x

2
:

For any natural number n, let

An D

n
x 2Rd

ˇ̌̌
1

2nC1
� kxk �

1

2n

o
:

Let f be an element in Homeo0.R
N /. As any element in Homeo0.R

N / is conjugate
to an element supported in the interior of A0 , we may suppose that the homeomorphism
f is supported in the interior of A0 . Then we define h 2 Homeo0.R

d / by:

(1) hD Id outside B.0; 1/

(2) for any natural number i , hjAi
D 'if '�i

(3) h.0/D 0

Then f D Œh; '�.
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A0

A1

A2

'

'

'

Figure 3: Proof of Lemma 4.9: Description of the homeomorphism '

These two lemmas remain true when we replace Rd with H d and B.0; 2/ with
B.0; 2/\H d .

Before proving Lemma 4.8, let us prove Lemma 4.5 with the help of these two lemmas.

Proof of Lemma 4.5 We prove the lemma in the case of homeomorphisms of Rd . In
the case of the half-space, the proof is similar. For an element m in L2 , let l.m/ be
the length of m as a word in a and b . Let

N!L2;

n 7!mn;

be a bijective map that satisfies l.mn/< l.mn0/)n<n0 . This last condition implies that
l.mn/D l, 2l � n< 2lC1 . In particular, for any natural number n, l.mn/� log2.n/.
Let s1 and s2 be the homeomorphisms in Homeo0.R

d / given by Lemma 4.8. Let
s3 be a homeomorphism in Homeo0.R

d / supported in the ball B.0; 2/ that satisfies
s3.B.0; 1//\B.0; 1/D∅. We denote by Bn the closed ball �s1;s2

.mn/.B.0; 1//. By
Lemma 4.9, there exist homeomorphisms hn;1 and hn;2 supported in B.0; 1/ such
that fn D Œhn;1; hn;2�.

Define the homeomorphism s4 by8<:8n 2N; s4jBn
D �s1;s2

.mn/ ı hn;1 ı �s1;s2
.mn/

�1;

s4 D Id on Rd �
S

n2N
Bn;
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and the homeomorphism s5 by8<:8n 2N; s5jBn
D �s1;s2

.mn/ ı hn;2 ı �s1;s2
.mn/

�1;

s5 D Id on Rd �
S

n2N
Bn:

... ...

�s1;s2
.m1/ .B.0; 2//

�s1;s2
.m2/ .B.0; 2//

�s1;s2
.m3/ .B.0; 2//

�s1;s2
.mn/.B.0; 2//

x0

Bn B0n

B0
B00

�n

�s1;s2
.mn/.B.0; 2//

Figure 4: Notation in the proof of Lemma 4.5

Let G D fs�i j i 2 f1; : : : ; 5g and � 2 f�1; 1gg. Let

�n D �s1;s2
.mn/ ı s3 ı �s1;s2

.mn/
�1; B0n D �n.Bn/:

Notice that the balls Bn and B0n are disjoint and contained in �s1;s2
.mn/.B.0; 2//.

Notice also that:

s4 ı�n ı s�1
4 ı�

�1
n jRd�.Bn[B0n/

D Id

s4 ı�n ı s�1
4 ı�

�1
n jBn

D �s1;s2
.mn/ ı hn;1 ı �s1;s2

.mn/
�1

s4 ı�n ı s�1
4 ı�

�1
n jB0n

D �n ı �s1;s2
.mn/ ı h�1

n;1 ı �s1;s2
.mn/

�1
ı��1

n

s5 ı�n ı s�1
5 ı�

�1
n jRd�.Bn[B0n/

D Id

s5 ı�n ı s�1
5 ı�

�1
n jBn

D �s1;s2
.mn/ ı hn;2 ı �s1;s2

.mn/
�1

s5 ı�n ı s�1
5 ı�

�1
n jB0n

D �n ı �s1;s2
.mn/ ı h�1

n;2 ı �s1;s2
.mn/

�1
ı��1

n
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s�1
4 s�1

5 ı�n ı s5s4 ı�
�1
n jRd�.Bn[B0n/

D Id

s�1
4 s�1

5 ı�n ı s5s4 ı�
�1
n jBn

D �s1;s2
.mn/ ı h�1

n;1h�1
n;2 ı �s1;s2

.mn/
�1

s�1
4 s�1

5 ı�n ı s5s4 ı�
�1
n jB0n

D �n ı �s1;s2
.mn/ ı hn;2hn;1 ı �s1;s2

.mn/
�1
ı��1

n

Therefore, the homeomorphism Œs4; �n� Œs5; �n� Œs
�1
4

s�1
5
; �n� is equal to �s1;s2

.mn/ ı

fn ı �s1;s2
.mn/

�1 on Bn and fixes the points outside Bn . Thus

fn D �s1;s2
.mn/

�1Œs4; �n� Œs5; �n� Œs
�1
4 s�1

5 ; �n��s1;s2
.mn/:

Hence the homeomorphism fn belongs to the group generated by G and

lG.fn/� 2lG.�s1;s2
.mn//C 6lG.�n/C 8

� 2lG.�s1;s2
.mn//C 12lG.�s1;s2

.mn//C 14

� 14 log2.n/C 14:

Proof of Lemma 4.8 First, let us prove the lemma in the case of homeomorphisms
of R. By perturbing two given homeomorphisms (as in Ghys [10]), one can find
two compactly supported homeomorphisms ys1 and ys2 of R that satisfy the following
property:

for all m 2L2; m0 2L2; m¤m0) �ys1;ys2
.m/.0/¤ �ys1;ys2

.m0/.0/

Then, in the same way as in Denjoy’s construction (see Katok and Hasselblatt [15]
page 403), replace each point of the orbit of 0 under L2 with an interval with
positive length to obtain the wanted property. Thus, the proof is completed in the
one-dimensional case. In the case of a higher dimension, denote by f and h the two
homeomorphisms of R that we obtained in the one-dimensional case. Let Œ�M;M �

be an interval that contains the support of each of these homeomorphisms.

Let us look now at the case of Rd . The homeomorphism

Rd
!Rd ;

.x1;x2; : : : ;xd / 7! .f .x1/; f .x2/; : : : ; f .xd //;

preserves the cube Œ�M;M �d . Let s1 be a homeomorphism of Rd supported in
Œ�M � 1;M C 1�d that is equal to the above homeomorphism on Œ�M;M �d . Apply
the same construction to the homeomorphism h to obtain a homeomorphism s2 . The
ball centered on 0 in Rd of radius 2 is contained in the cube Œ�2; 2�d and the diameter
of the set

�s1;s2
.m/.Œ�2; 2�d /D .�f;h.m/.Œ�2; 2�//d
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... ...

... ...

... ...

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

h1;1 h2;1 hn�1;1 hn;1 hnC1;1

h�1
1;1 h�1

2;1
h�1

n�1;1 h�1
n;1

h�1
nC1;1

hn;1 h�1
n;1

s4

�ns�1
4 ��1

n

Œs4; �n�

Figure 5a

converges to 0 when the length of the word m tends to infinity. The case of the
half-spaces H d is similar as long as compactly supported homeomorphisms that are
equal to homeomorphisms of the form

RC �Rd�1
!RC �Rd�1;

.t;x1;x2; : : : ;xd�1/ 7! . t
2
; f .x1/; f .x2/; : : : ; f .xd�1//;

in a neighbourhood of 0 are used.

5 Case of surfaces with boundary

Suppose that the boundary of the surface S is nonempty. Let us prove now Proposition
3.2. By considering a cover by half-discs, one can prove, with the same techniques as
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... ...

... ...

... ...

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

�s1;s2
.m1/.B.0; 2//

�s1;s2
.m2/.B.0; 2//

�s1;s2
.mn�1/.B.0; 2//

�s1;s2
.mn/.B.0; 2//

�s1;s2
.mnC1/.B.0; 2//

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

B1
B0

1 B2
B0

2 Bn�1B0
n�1

Bn B0n BnC1
B0

nC1

hn;2 h�1
n;2

h�1
n;1

h�1
n;2 hn;2hn;1

Œhn;1;hn;2�

Œs5; �n�

Œs�1
4 s�1

5 ; �n�

Œs4; �n� Œs5; �n� Œs
�1
4 s�1

5 ; �n�

Figure 5b: The different homeomorphisms appearing in the proof of Lemma 4.5

below, Proposition 3.1 in the case where S has nonempty boundary: this case is left to
the reader.

Recall that, in Section 3, we have chosen a “nice” polygonal fundamental domain D0 .
Let B be the set of edges of the boundary @D0 that are not contained in the boundary
of zS and let

AD f….ˇ/ j ˇ 2 Bg:

For any edge ˛ in A, let us consider a closed disc V˛ with the following properties:

(1) The disc V˛ does not meet the boundary of the surface S .

(2) The interior of V˛ contains ˛\S 0 .
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(3) There exists a homeomorphism '˛W V˛!D2 that sends the set ˛\V˛ to the
horizontal diameter of the unit disc D2 .

Choose sufficiently thin discs V˛ so that they are pairwise disjoint. Let U1 be a closed
disc that contains the union of the discs V˛ . Let U2 be a closed disc of S that satisfies
the three following properties:

(1) The disc U2 does not meet any edge in A, ie, it is contained in the interior of
the fundamental domain D0 .

(2) The surface S 0 is contained in the interior of
S
˛2A V˛ [U2 .

(3) For any edge ˛ in A, the set U2\V˛ is homeomorphic to the disjoint union of
two closed discs.

Let U D fU1;U2g.

U2

V˛1

V˛1

V˛2 V˛2

@ zS

@ zS

@ zS

@ zS

Figure 6: Notation in the case of surfaces with boundary

The proof of the inequality in the case of the group Homeo0.S; @S/ requires the
following lemmas:

Lemma 5.1 Let f be a homeomorphism in Homeo0.S; @S/ supported in the interior
of
S

V˛ [U2 . Suppose that elD0
. zf .D0//� 2. Then there exist homeomorphisms g1 ,

g2 and g3 in Homeo0.S; @S/ supported respectively in the interior of
S

V˛ , U2 andS
V˛ such that the following property is satisfied:

elD0
.zg3 ı zg2 ı zg1 ı

zf .D0//� elD0
. zf .D0//� 1
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Lemma 5.2 Let f be a homeomorphism in Homeo0.S; @S/ supported in the interior
of
S

V˛ [U2 . If elD0
. zf .D0//D 1, then FragU .f /� 6.

End of the proof of Proposition 3.2 Let k D elD0
. zf .D0//. By Lemma 5.1, after

composing the homeomorphism f with 3.k�1/ homeomorphisms, each supported in
one of the discs of U , we obtain a homeomorphism f1 supported in

S
˛2A V˛[U2 with

elD0
. zf1.D0//D1. Then, apply Lemma 5.2 to the homeomorphism f1 : FragU .f1/�6.

Therefore FragU .f /� 3.elD0
. zf .D0//� 1/C 6. However, as D0\

zf .D0/¤∅ (the
homeomorphism f pointwise fixes a neighbourhood of the boundary of S ),

elD0
. zf .D0//� diamD. zf .D0//:

Hence FragU .f /� 3 diamD. zf .D0//C 3.

Notice that we indeed proved the following more precise proposition:

Proposition 5.3 Let f be a homeomorphism in Homeo0.S; @S/ supported in the
interior of

S
˛2A

V˛ [U2 . Then FragU .f /� 3 diamD. zf .D0//C 3.

Proof of Lemma 5.1 Let us give an idea of the action of the homeomorphisms g1 ,
g2 and g3 that we will construct “by hand”. If we look at the pieces of the disc zf .D0/

furthest from D0 , the homeomorphism g1 repulses them back to the open set U2 , the
homeomorphism g2 repulses them outside the open set U2 and the homeomorphism
g3 makes them exit from the fundamental domain of D in which these pieces were
contained (see Figure 7). Let us give the precise construction of these homeomorphisms.

Let g1 be a homeomorphism supported in
S
˛2A V˛ such that:

(1) The homeomorphism g1 pointwise fixes ….@D0/.

(2) For any edge ˛ and any connected component C of V˛\f .….@D0// that does
not meet ….@D0/, g1.C /� VU2 .

One can build such a homeomorphism g1 by taking the time 1 of the flow of a
well-chosen vector field that vanishes on ….@D0/.

Let g2 be a homeomorphism supported in U2 that satisfies the following property: For
any edge ˛ in A and for any connected component C of VU2\g1 ıf .….@D0// both
of whose ends (ie, the points of the closure of C which do not belong to C ) belong
to the same connected component of V˛ �˛ , the set g2.C / is contained in VV˛ . Let
us explain how such a homeomorphism g2 can be built. We will need the following
elementary lemma, which is a consequence of the Schönflies theorem:
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g3

g3

g2

g2

g2

g1

g1

U2

zf .@D0/

@ zS

@ zS

@ zS

@ zS

Figure 7: Illustration of the proof of Lemma 5.1

Lemma 5.4 Let c1W Œ0; 1�!D2 and c2W Œ0; 1�!D2 be two injective curves that are
equal in neighbourhoods of 0 and 1, and such that:

(1) c1.0/D c2.0/ 2 @D
2 and c1.1/D c2.1/ 2 @D

2

(2) c1..0; 1//�D2� @D2 and c2..0; 1//�D2� @D2

Then, there exists a homeomorphism h in Homeo0.D
2; @D2/ such that for all t 2 Œ0; 1�,

h.c1.t//D c2.t/.

Corollary 5.5 Let .ci/1�i�l and .c0i/1�i�l be finite sequences of injective curves
Œ0; 1�!D2 of the closed disc D2 such that:

(1) For any index 1� i � l , the maps ci and c0i are equal in a neighbourhood of 0

and of 1.

(2) The curves ci , as well as the curves c0i , are pairwise disjoint.

(3) For any index i , the points ci.0/ and ci.1/ belong to the boundary of the disc.

(4) For any index i , the sets ci..0; 1// and c0i..0; 1// are contained in D2� @D2 .

Then there exists a homeomorphism h in Homeo0.D
2; @D2/ such that, for any index

1� i � l , for any t 2 Œ0; 1�, h.ci.t//D c0i.t/.
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Proof of the corollary It suffices to use Lemma 5.4 and an induction argument.

First, let us notice that only a finite number of connected components of

VU2\g1 ıf .….@D0//

are not contained in one of the open discs VV˛ . We denote by C the set of such connected
components with both ends in the same connected component of V˛ � ˛ , for some
edge ˛ in A. Let us fix now an edge ˛ in A. Let C be a connected component in C
whose ends both belong to V˛ . We denote by aC W Œ0; 1�! U2 an injective path such
that:

(1) The set aC ..0; 1// is contained in VV˛ \U2 .

(2) The path aC is equal to the path C in a neighbourhood of aC .0/ and of aC .1/.

(3) The path aC does not meet the connected components of g1 ıf .….@D0//\ VU2

that do not belong to C .

The construction is made in such a way that the paths aC are pairwise disjoint. Denote
by � the closure of a connected component of

VU2�

[
C;

where the union is taken over the connected components C of g1 ı f .….@D0//\ VU2

that do not belong to C . By a theorem by Kerekjarto (see Le Calvez and Yoccoz [18,
page 246]), the set � is homeomorphic to a closed disc. Then, for each such disc �,
we apply the last corollary in the disc � to the families of paths .C /C2C;C�� and
.aC /C2C;C�� to build the homeomorphism g2 that we wanted.

Finally, let g3 be a homeomorphism supported in
S
˛2A

V˛ that satisfies, for any edge
˛ in A, the following properties:

(1) For any connected component C of VV˛\g2 ıg1 ıf .….@D0// whose ends both
belong to the same connected component of V˛ �˛ , g3.C /\˛ D∅.

(2) The homeomorphism g3 pointwise fixes any other connected component of
VV˛ \g2 ıg1 ıf .….@D0//.

The construction of the homeomorphism g3 is analogous to the construction of the
homeomorphism g2 . In what follows, we will not give details anymore on this kind of
construction.

We claim that homeomorphisms g1 , g2 and g3 that satisfy the above properties satisfy
also the conclusion of Lemma 5.1. This is a consequence of the two following claims.
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Claim 1 The set of fundamental domains in D which meet zg3 ı zg2 ı zg1 ı
zf .D0/ is

contained in the set of fundamental domains of D which meet zf .D0/.

If h is a homeomorphism in Homeo0.S; @S/, we say that a fundamental domain D

in D is maximal for zh if it meets zh.D0/ and satisfies dD.D;D0/D elD0
.zh.D0//.

Claim 2 The fundamental domains D in D that are maximal for zf do not meet
zg3 ı zg2 ı zg1 ı

zf .D0/.

Let us assume for the moment that these two claims are true and let us prove Lemma 5.1.

Claim 1 implies that

elD0
.zg3 ı zg2 ı zg1 ı

zf .D0//� elD0
. zf .D0//:

Suppose that we have an equality in the above inequality. Then there exists a funda-
mental domain D in D that is maximal for zf and that meets zg3 ı zg2 ı zg1 ı

zf .D0/, a
contradiction to Claim 2. This proves the lemma.

Now, let us prove Claim 1. Notice that, for any homeomorphism h in Homeo0.S; @S/,
the set of fundamental domains in D met by zh.D0/ is equal to the set of fundamental
domains in D met by zh.@D0/. Indeed, the interior of a fundamental domain cannot
contain a fundamental domain.

As the homeomorphisms zg1 and zg2 both pointwise fix
S

D2D @D , the set of elements
of D met by the curve zg2 ı zg1 ı

zf .@D0/ is equal to the set of elements of D met by
zf .@D0/. Therefore, it suffices to prove the following inclusion:

fD 2D j zg3 ı zg2 ı zg1 ı
zf .@D0/\D ¤∅g � fD 2D j zg2 ı zg1 ı

zf .@D0/\D ¤∅g

Let D be a fundamental domain that belongs to the left-hand set in the above inclusion.
Let zx be a point in zg2 ı zg1 ı

zf .@D0/ that satisfies zg3.zx/ 2D . If the point zx belongs
to the fundamental domain D , then the fundamental domain D belongs to

fD0 2D j zg2 ı zg1 ı
zf .@D0/\D0 ¤∅g:

Let us suppose that the point zx does not belong to the fundamental domain D . As
the homeomorphism g3 is supported in

S
ˇ2A Vˇ , there exists an edge ˛ in A such

that the point ….zx/ belongs to the disc V˛ . Let zV˛ be the lift of the disc V˛ that
contains zx . By construction of the homeomorphism zg3 , the point zx belongs to a
connected component zC of

zg2 ı zg1.@D0/\
VzV˛
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whose ends both belong to the interior VD0 of a same fundamental domain D0 in D .
Let us recall that the connected components that are not of this kind are fixed by the
homeomorphism g3 . By the definition of zg3 , we have zg3.zx/ 2 zg3. zC /� VD

0 and, by
hypothesis, zg3.zx/ 2 D . Thus, D0 D D and, as the fundamental domain D0 meets
zC � zg2 ı zg1 ı

zf .@D0/, the fundamental domain D belongs to the set

fD 2D j zg2 ı zg1 ı
zf .@D0/\D ¤∅g:

We now come to the proof of Claim 2. As in Section 3, let

G D fai j i 2 f1; : : : ;Pgg[ fa
�1
i j i 2 f1; : : : ;Pgg

be the generating set for the group �1.S/, which consists of the deck transformations
that send the fundamental domain D0 to a fundamental domain in D adjacent to D0 .
As, in the case under discussion, the surface S has nonempty boundary, the group
�1.S/ is the free group generated by fa1; a2; : : : ; apg. Let Dmax be a fundamental
domain in D that is maximal for zf . By definition,

dD.Dmax;D0/D elD0
. zf .D0//:

Let us denote by 
 the deck transformation that sends D0 to Dmax . The element 

can be uniquely written as a reduced word in elements of G : 
 D s1s2 � � � sn , where the
si belong to the generating set G and nD dD.Dex;D0/. Every fundamental domain
in D adjacent to Dmax is a domain of the form 
 .s.D0//, where s is an element in G .
If the element s is different from s�1

n , then

dD.
 .s.D0//;D0/D lG.
 s/D nC 1> nD elD0
. zf .@D0//:

Thus, the only face adjacent to Dmax that meets zf .@D0/ is 
 ı s�1
n .D0/. We denote

by z̨ the edge that is contained in the fundamental domains 
 ı s�1
n .D0/ and Dmax .

The ends of any connected component of zf .@D0/\Dmax belong to z̨ . Let zVz̨ be the
lift of V….z̨/ that contains z̨ . We claim that

zg1 ı
zf .@D0/\Dmax � zVz̨ [ zU2;

where zU2 is the lift of U2 that is contained in Dmax .

Let us prove this last claim. For a point zx in Dmax\ zf .@D0/\…
�1.Vˇ/� zVz̨ , where

ˇ is an edge in A, the connected component of zf .@D0/\…
�1. VVˇ/ that contains zx

does not meet the set …�1.ˇ/. Hence the point zg1.zx/ belongs to U2 , by construction
of g1 . Moreover, the homeomorphism zg1 preserves the sets

zU2�

�[
ˇ2A

…�1.Vˇ/

�
and zVz̨ :
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The claim is proved.

Notice also that
zg2 ı zg1 ı

zf .@D0/\Dmax �
VzVz̨:

Indeed, the ends of any connected component of zg1 ı
zf .@D0/\

VzU2 belong to zVz̨ .

Let us prove that
zg3 ı zg2 ı zg1 ı

zf .@D0/\Dmax D∅:

Let C be a connected component of zg2 ı zg1 ı
zf .@D0/\

VzVz̨ . As

zg2 ı zg1 ı
zf .@D0/\Dmax �

VzVz̨;

the ends of C do not belong to VDmax \ zVz̨ but to 
 ı s�1
n . VD0/\ zVz̨ , which is the

other connected component of zVz̨ � z̨ (the ends of C do not belong to ˛ because
elD0

. zf .D0//D dD.Dmax;D0/� 2). By construction of the homeomorphism g3 ,

zg3.C /� 
 ı s�1
n . VD0/:

Thus, the set zg3.C / is disjoint from Dmax , which completes the proof of the second
claim.

Proof of Lemma 5.2 For any edge z̨ in B , we denote by Dz̨ the fundamental domain
in D that satisfies D0 \Dz̨ D z̨ . Let us fix an edge z̨ in B . As elD0

. zf .D0//D 1,
the curve zf .z̨/ does not meet fundamental domains in D adjacent to Dz̨ and different
from D0 : these fundamental domains are at distance 2 from D0 . Let us prove that,
if ž is an edge in B different from z̨ , then zf .z̨/\D žD ∅. Otherwise, we would
have zf .Dz̨/\D ž¤∅, for an edge ž different from z̨ . Let us denote by s the deck
transformation which sends D0 to Dz̨ . Then

2D dD.Dz̨;D ž/D dD.D0; s
�1.D ž//:

Moreover zf .s.D0//\D ž ¤ ∅. Hence zf .D0/\ s�1.D ž/ ¤ ∅. It contradicts the
hypothesis elD0

. zf .D0//D 1. Thus, for any edge z̨ in B ,

zf .z̨/� VDz̨ [ VD0[ z̨:

For an edge z̨ in B , we denote by zVz̨ the lift of V….z̨/ which contains the edge z̨ .

We now build homeomorphisms g1 and g2 supported respectively in
S
˛2A

V˛ and in
U2 such that

for any z̨ 2 B; zg2 ı zg1 ı
zf .z̨/�

VzVz̨ [ z̨:
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zU2;0

zg2

˛

zg1

zg2

zg1

zU2;˛

zf .z̨/
zg1

@ zS

@ zS

@ zS

@ zS

Figure 8: Proof of Lemma 5.2: The homeomorphisms g1 and g2

As in the proof of Lemma 5.1, we build homeomorphisms g1 and g2 that satisfy the
following properties:

(1) The homeomorphism g1 is supported in
S
˛2A V˛ and pointwise fixes @D0 .

(2) For any edge ˛ in A and any connected component C of f .….@D0//\ VV˛ that
does not meet ˛ , we have g1.C /� VU2 .

(3) The homeomorphism g2 is supported in U2 .

(4) For any edge ˛ in A and any connected component C of g1 ıf .….@D0//\ VU2

whose ends belong to the same connected component of V˛ �˛ , g2.C /� VV˛ .

Let us denote by zU2;0 the lift of the disc U2 contained in D0 and, for any edge z̨ in
B , zU2;z̨ the lift of the disc U2 contained in Dz̨ . As in the proof of Lemma 5.1, for
any edge z̨ in B ,

zg1 ı
zf .z̨/�

VzU2;0[
zVz̨ [

VzU2;z̨ and zg2 ı zg1 ı
zf .z̨/�

VzVz̨:

We will now build homeomorphisms g3 and g4 of S supported respectively inS
˛2A V˛ and U2 such that, for any edge z̨ in B , the homeomorphism zg4 ı zg3 ı

zg2 ı zg1 ı
zf pointwise fixes @ zVz̨ .

Let g3 be a homeomorphism supported in
S
˛2A

V˛ that satisfies the following properties:
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(1) The homeomorphism g3 pointwise fixes g2 ıg1 ıf .˛/.

(2) For any connected component C of g2 ıg1 ıf .@V˛/\ VV˛ : g3.C /� VU2 .

Then, the set g3 ıg2 ıg1 ıf .@V˛/�@V˛ is contained in VU2 .

We impose that the homeomorphism g4 is supported in U2 and satisfies the following
property: The homeomorphism g4 is equal to .g3 ıg2 ıg1 ı f /

�1 on the closed set
g3 ıg2 ıg1 ıf .@V˛/. Thus, as the homeomorphism g4 ıg3 ıg2 ıg1 ıf pointwise
fixes

S
˛2A @V˛ , the map g5W S ! S , which is equal to g4 ı g3 ı g2 ı g1 ı f onS

˛2A V˛ and to the identity outside this set, is a homeomorphism of S supported inS
˛2A V˛ . Let g6 D .g5 ıg4 ıg3 ıg2 ıg1 ıf /

�1 . Then the homeomorphism g6 is
supported in U2 and we have

f D g�1
1 ıg�1

2 ıg�1
3 ıg�1

4 ıg�1
5 ıg�1

6 :

This implies that FragU .f /� 6.

6 Case of the torus

In this section, we prove Proposition 3.1 in the case of the torus T2 D R2=Z2 . We
set D0 D Œ0; 1�

2 and the covering … is given by the projection R2 ! R2=Z2 . We
denote by A0 (respectively A1 , B0 , B1 ) the closed annulus Œ�1

4
; 1

2
��R=Z � T2

(respectively Œ1
4
; 1��R=Z, R=Z� Œ�1

4
; 1

2
�, R=Z� Œ1

4
; 1�). For any integer i , we denote

by zAi
0

(respectively zAi
1

, zBi
0

, zBi
1

) the band of the plane

Œi� 1
4
; iC 1

2
��R .respectively ŒiC 1

4
; iC1��R; R� Œi� 1

4
; iC 1

2
�; R� ŒiC 1

4
; iC1�/:

Finally, for i 2 Z and j 2 f0; 1g, we denote by z̨i
j (respectively žij ) the curve

fiC j
2
g�R (respectively R�fiC j

2
g). Let U be the cover of the torus T2 defined by

U D fI �J j I;J 2 fŒ�1
4
; 1

2
�; Œ1

4
; 1�gg D fAj \Bj 0 j j ; j

0 2 f0; 1gg:

For a compact subset A of R2 , we set

length.A/D cardf.i; j / 2 Z� f0; 1g j z̨i
j \A¤∅g;

height.A/D cardf.i; j / 2 Z� f0; 1g j žij \A¤∅g:

We claim that, for any compact path-connected subset A of R2 ,

length.A/� 2 diamD.A/ and height.A/� 2 diamD.A/:

Indeed, suppose that the set A meets the curves z̨n0

0
; z̨

n0C1
0

; : : : ; z̨
n0CN�1
0

, for some
n0 2 Z, N 2N . Then there exist fundamental domains D1 and D2 in D such that:
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(1) The fundamental domain D1 lies between the lines z̨n0�1
0

and z̨n0

0
.

(2) The fundamental domain D2 lies between the lines z̨n0CN�1
0

and z̨n0CN
0

.
(3) The sets D1 and D2 meet A.

Then N � dD.D1;D2/ � diamD.A/. Similarly, if the set A meets the curves
z̨

n0

1
; z̨

n0C1
1

; : : : ; z̨
n0CN�1
1

or the curves žn0

j ; ž
n0C1
j ; : : : ; ž

n0CN�1
j for some n0 2Z,

N 2N , j 2 f0; 1g, then N � diamD.A/. This proves the claim.

Let us fix a homeomorphism f in Homeo0.T
2/ and a lift zf of f . Let imax;˛ 2 Z

and jmax;˛ 2 f0; 1g (respectively imax;ˇ and jmax;ˇ ) be the integers that satisfy

imax;˛C
1
2
jmax;˛ Dmaxfi C 1

2
j j zf .D0/\ z̨

i
j ¤∅g

.respectively imax;ˇC
1
2
jmax;ˇ Dmaxfi C 1

2
j j zf .D0/\ ž

i
j ¤∅g/:

Let .i˛; j˛/ (respectively .iˇ; jˇ/) be the pair such that the interior of the band zAi˛
j˛

(respectively zBiˇ
i˛

) contains the curve z̨imax;˛
jmax;˛

D z̨max (respectively žimax;ˇ
jmax;ˇ

D žmax ). See
Figure 9.

. . .

...

zf .@D0/
zA

i˛
j˛

zB
iˇ
jˇ

z̨maxz̨1
1z̨1

0z̨0
1z̨0

0

ž�1
1

ž0
0

žmax

Figure 9: Notation in the case of the torus

Definition 6.1 The connected components of VAj˛ \f .….@D0// can be split into two
classes:

(1) On the one hand, the connected components that are homeomorphic to R will
be called the regular connected components of VAj˛ \f .….@D0//.

(2) On the other hand, there exists at most one connected component homeomorphic
to the union of two transverse straight lines in R2 . This is the connected
component that contains the point f .0; 0/. We will call it the singular connected
component of VAj˛ \f .….@D0//.

The connected components of VBjˇ \f .….@D0// can be analogously split.
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Suppose that either height. zf .D0// > 5 or length. zf .D0// > 5. We claim that one of
the following cases occurs.

First case There exists a connected component zC of …�1. VAj˛ /\
zf .@D0/ such that:

(1) The ends of zC belong to two different connected component of the boundary of
…�1.Aj˛ /.

(2) height. zC /� 5.

(3) …. zC / is a regular connected component of VAj˛ \f .….@D0//.

Second case There exists a connected component zC of …�1. VBjˇ /\
zf .@D0/ such

that:

(1) The ends of zC belong to two different connected components of the boundary
of …�1.Bjˇ /.

(2) length. zC /� 5.

(3) …. zC / is a regular connected component of VBjˇ \f .….@D0//.

Let us prove this claim. Suppose first that the length of zf .D0/ is greater than
5. Then there exists a regular connected component C of VAj˛ \ f .….@D0// whose
ends belong to different boundary components of Aj˛ . Take a lift zC of C contained
in zf .@D0/. If the first case does not occur for zC , the height of zC is greater than
5. Therefore, there exists a connected component zC 0 of …�1. VBjˇ /\

zC whose ends
belong to two different connected components of the boundary of …�1.Bjˇ /. In
this case, the length of the component zC 0 is at most 1: the second case occurs.
Finally, suppose that the length of zf .D0/ is smaller than or equal to 5 and the
height of this component is greater than 5. Take a regular connected component of
VBjˇ \ f .….@D0// whose ends belong to different connected components of @Bjˇ .

Then any lift of this connected component contained in zf .@D0/ satisfies the properties
of the second case.

The next lemmas will allow us to prove Proposition 3.1 in the case of the 2–dimensional
torus.

Lemma 6.2 In the first case above, there exists a homeomorphism h supported in Aj˛

that satisfies the following properties:

(1) If p2W R
2!R denotes the projection on the second coordinate, we have:

sup
x2R2

ˇ̌
p2 ı
zh.x/�p2.x/

ˇ̌
< 4

(2) height.zh ı zf .D0//� height. zf .D0//
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(3) length.zh ı zf .D0//� length. zf .D0//� 1

We have of course a symmetric statement in the second case.

Lemma 6.3 There exists a constant C 0 > 0 such that, for any homeomorphism f in
Homeo0.T

2/ that satisfies the following properties,

length. zf .D0//� 5 and height. zf .D0//� 5;

we have FragU .f /� C 0 .

Proof of Proposition 3.1 in the case of the torus T2 Take any homeomorphism h

supported in one of the Aj (respectively one of the Bj ) with

sup
x2R2

jp2 ı
zh.x/�p2.x/j< 4�

respectively sup
x2R2

jp1 ı
zh.x/�p1.x/j< 4

�
:

Observe that DAj D
zA0
j \ Œ0; 1��R (respectively DBj D

zB0
j \R� Œ0; 1�) is a funda-

mental domain for the covering map zA0
j !Aj (respectively zB0

j ! Bj ). Let

DAj D fDAj C .0; k/ j k 2 Zg and DBj D fDBj C .k; 0/ j k 2 Zg:

Then diamDAj
.zh.DAj //� 7 (respectively diamDBj

.zh.DBj //� 7). Using Proposition
5.3 in the case of the annulus, we see that there exists a constant C > 0 such that, for
any such homeomorphism h, we have

FragU .h/� C:

Using Lemma 6.2, we see that, after composing the homeomorphism f with at most

C.maxfheight. zf .D0//� 5; 0gCmaxflength. zf .D0//� 5; 0g/

homeomorphisms supported in one of the discs of U , we obtain a homeomorphism f1

that satisfies the hypothesis of Lemma 6.3: FragU .f1/� C 0 . Therefore

FragU .f /� 4C diamD. zf .D0//CC 0:

The proposition is proved in the case of the torus T2 .

Now, let us turn to the proof of the two above lemmas.

Proof of Lemma 6.2 Suppose that the first case occurs (the proof in the second case is
symmetric). Let h be a homeomorphism supported in Aj˛ that satisfies the following
properties:
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(1) For any regular connected component C of f .….@D0// \ VAj˛ that meets
….z̨max/ and both of whose ends belong to the same connected component
of @Aj˛ , h.C /\….z̨max/D∅.

(2) The homeomorphism h fixes any regular connected component of f .….@D0//\
VAj˛ whose ends belong to different connected components of @Aj˛ .

(3) The homeomorphism h fixes the projection of any connected component of
zf .@D0/\…

�1. VAj˛ / that does not meet the set …�1.….z̨max//.

(4) For any connected component zC of zf .@D0/\…
�1. VAj˛ /, p2.zh. zC //� p2. zC /.

(5) If the point f .0; 0/ belongs to VAj˛ , we add the following condition. Let C0 be
the singular connected component of f .….@D0//\ VAj˛ . If there exists a lift
zC0 of the component C0 that meets the set zf .@D0/ \ z̨max , we impose the
following condition. Let us denote by C1 , C2 , C3 and C4 the connected
components of C0�ff .0; 0/g. Only three of these connected components admit
a lift contained in zf .D0/ that meets the interior of zAi˛

j˛
: for the last connected

component, the two lifts of this one contained in zf .D0/ are necessarily contained
in the interior of zAi˛ �1

j˛
. We can suppose that these three connected components

are C1 , C2 and C3 . Let zC1 , zC2 and zC3 be respective lifts of C1 , C2 and
C3 contained in zAi˛

j˛
. Then, for any integer i between 1 and 3, we add the

following condition: zh. zCi/\ z̨max D∅.

We claim that such a homeomorphism h satisfies the wanted properties. First, recall
that there exists a connected component zC of …�1. VAj˛ /\

zf .@D0/ whose ends belong
to two different connected components of the boundary of …�1.Aj˛ / and whose height
is less than or equal to 5 (and therefore sup p2. zC /� inf p2. zC /� 3). Recall also that
the homeomorphism h pointwise fixes the projection of this connected component.
Therefore

sup
x2R2

jp2 ı
zh.x/�p2.x/j< 4:

The condition (4) on the second coordinate of the images under h of the connected
components of the set VAj˛ \f .….@D0// implies that

height.zh ı zf .D0//� height. zf .D0//:

Finally, by construction, the set zh ı zf .D0/ does not meet the curve z̨max anymore and
meets only curves of the form z̨i

j already met by the set zf .D0/. Thus

length.zh ı zf .D0//� length. zf .D0//� 1:

Lemma 6.2 is proved.
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Proof of Lemma 6.3 During this proof, we will often use the following result, which
is a direct consequence of Proposition 3.2 in the case of the annulus. There exists a
constant �> 0 such that, for any homeomorphism � in Homeo0.T

2/ supported in VA0

or in VA1 that satisfies height.z�.D0//� 45, we have FragU .�/� �.

First, notice that the inequality length. zf .D0//� 5 implies the inequality

length. zf .z̨0
0//� 3:

Indeed, suppose that length. zf .z̨0
0
// > 3. Note that one of the edges of the square @D0

is contained in z̨0
0

and that the curve zf .z̨1
0
/ meets two curves among the z̨i

j that the
curve zf .z̨0

0
/ does not meet. Therefore,

length. zf .D0//� length. zf .z̨0
0//C 2> 5;

a contradiction. We denote by n. zf .z̨0
0
// the number of connected components ofS

i;j @
zAi
j met by the path zf .z̨0

0
/. As the length of zf .z̨0

0
/ is less than or equal to

3, then n. zf .z̨0
0
//� 7. We now prove that, after composing f with a homeomorphism

whose fragmentation length with respect to U is less than or equal to 7� if necessary,
we can suppose that n. zf .z̨0

0
//D 0.

Suppose that n. zf .z̨0
0
// > 0. Consider .i0; j0/ 2 Z� f0; 1g such that the band zAi0

j0
is

the leftmost band met by the set zf .D0/. Then the set zf .D0/ meets zA i0

j0
but meets

only one connected component of the boundary of zA i0

j0
that we denote by ci0;j0

. Let
zA

i1

j1
be the unique band among the zAi

j whose interior contains the curve ci0;j0
. Then

j1 ¤ j0 .

First case The set zf .D0/ meets the two connected components of the boundary of
zA

j1

i1
. Let h be a homeomorphism in Homeo0.T

2/ supported in the interior of the
annulus Aj0

that satisfies the following properties:

(1) For any connected component zC of zf .z̨0
0
/\…�1.Aj0

/ whose projection is not
contained in the interior of Aj1

, we have h.…. zC //� VAj1
.

(2) The homeomorphism zh pointwise fixes the other connected components of
zf .z̨0

0
/\…�1.Aj0

/.

(3) For any connected component zC of zf .@D0/\…
�1. VAj0

/, p2.zh. zC //� p2. zC /.

(4) sup
x2R2

jp2 ı
zh.x/�p2.x/j< 3.

Notice that this last condition is compatible with the first one. Indeed, as the height of
zf .D0/ is less than or equal to 5, then, for any connected component zC of zf .@D0/\

…�1.Aj0
/, we have height. zC /� 5. Therefore, we can choose h so that the support of

h is contained in a disjoint union of discs whose height is smaller than or equal to five.
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For such a homeomorphism h, the following properties are satisfied:

FragU .h/� �; n.zh ı zf .z̨0
0// < n. zf .z̨0

0//; height.zh ı zf .D0//� height. zf .D0//:

The second one comes from the fact that the set zh ı zf .z̨0
0
/ no longer meets one of the

connected components of the boundary of zAi1

j1
.

Second case Suppose that the set zf .D0/ does not meet both boundary components of
zA

j1

i1
. Likewise, we build a homeomorphism in Homeo0.T

2/ supported in VAj1
such

that the curve zh ı zf .z̨0
0
/ does not meet the band zA i0

j0
anymore and such that

FragU .h/� �; n.zh ı zf .z̨0
0// < n. zf .z̨0

0//; height.zh ı zf .D0//� height. zf .D0//:

Thus, it suffices to prove the following property. There exists a constant C >0 such that,
if f is a homeomorphism in Homeo0.T

2/ with n. zf .z̨0
0
//D0 and height. zf .D0//�5,

then FragU .f /� C . Let us consider such a homeomorphism f .

First case (f .˛0/ª A0 ) Let h be a homeomorphism supported in the annulus A1

that preserves the horizontal foliation such that h.f .˛0//�A0 . The preservation of
this foliation implies that FragU .h/� �. We are led to the second case.

Second case (f .˛0/� A0 ) Let h be a homeomorphism supported in the annulus
A0 that is equal to the homeomorphism f in a neighbourhood of the curve ˛0 . As the
height of zf .D0/ is less than or equal to 5, we can suppose that height.zh.D0// � 5.
Thus FragU .h/� �. Moreover height.zh�1 ı zf .D0//� 15. We have pointwise fixed ˛ ,
which is one of the boundary components of A1 . By an analogous procedure, we can
find a homeomorphism h0 such that h0�1 ı h�1 ı f pointwise fixes a neighbourhood
of the boundary of A1 and such that

FragU .h
0/� � and height.zh0�1

ı zh�1
ı zf .D0//� 45:

We denote by h1 the homeomorphism supported in A1 that is equal to h0�1 ıh�1 ıf

on A1 . The height of zh1.D0/ is less than or equal to 45 and that is why FragU .h1/��.
Moreover, the homeomorphism h2 D h�1

1
ı h0�1 ı h�1 ı f is supported in A0 . The

height of the image of D0 under zh2 is less than or equal to 45: FragU .h2/��. Finally,
FragU .f /� 4� in this case.

7 Case of higher genus closed surfaces

In this section, we prove Proposition 3.1 for a closed surface S of genus g � 2. Let us
begin by describing the cover U that we use in what follows. Let p be the point of S

that is the image under … of a vertex of the polygon @D0 . Let us denote by B the set
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of edges of the polygon @D0 and by A the set of curves that are the images under …
of an edge in B . Let

zAD f
 .z̨/ j z̨ 2 B; 
 2 �1.S/g D…
�1.….B//:

We denote by U0 a closed disc of S whose interior contains the point p and that
satisfies the following property: if zU0 is a lift of U0 and zp is a lift of the point p ,
then the disc zU0 meets only edges in zA for which one end is zp and the boundary @ zU0

meets each of them in exactly one point. For any edge ˛ in A, we denote by V˛ a
closed disc that does not contain the point p such that the following properties are
satisfied:

(1) For any edge ˛ in A, the set V˛ [U0 is a neighbourhood of the edge ˛ .

(2) For any edge ˛ in A, the set V˛ \U0 is the disjoint union of two closed discs.

(3) The discs V˛ are pairwise disjoint.

We denote by U1 a closed disc that contains the union of the V˛ . Finally, we denote
by U2 a closed disc that does not meet any edge in A and that satisfies the following
properties:

(1) For any edge ˛ in A, the closed set U2\V˛ is homeomorphic to the disjoint
union of two closed discs.

(2) VU2[
VU0[

S
˛2A

VV˛ D S .

(3) The closed set .
S
˛ V˛ [U2/\U0 is homeomorphic to an annulus for which

one boundary component is @U0 .

Let U D fU0;U1;U2g.

Proposition 7.1 Let f be a homeomorphism in Homeo0.S/. Suppose that

elD0
. zf .D0//� 4g:

Then there exists a homeomorphism h in Homeo0.S/ that satisfies the following
properties:

(1) FragU .h/� 8gC 3

(2) elD0
.zh ı zf .D0//� elD0

. zf .D0//� 1

Remark 7.2 We did not try to obtain an optimal upper bound of the fragmentation
length of a homeomorphism h with elD0

.zh ı zf .D0//� elD0
. zf .D0//� 1.

Lemma 7.3 There exists a constant C 0 > 0 such that, for any homeomorphism f in
Homeo0.S/ with elD0

. zf .D0//� 4g , we have FragU .f /� C 0 .
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@U2

@
S
˛2A

V˛

@U0

Figure 10: Notation in the case of higher genus closed surfaces

End of the proof of Proposition 3.1: Case of a higher genus closed surface Take
any homeomorphism f 2 Homeo0.S/. A classical result asserts that the homeomor-
phism zf has a fixed point. Indeed, suppose that it is not the case. Then associate to
each point zx of zS the unit tangent vector at zx to the geodesic between the point zx
and the point zf .zx/, oriented from zx to zf .zx/. This vector field on zS gives rise to a
nowhere vanishing vector field on S , a contradiction.

Recall that the homeomorphism zf commutes with the deck transformations. Hence

zf .D0/\D0 ¤∅ and elD0
. zf .D0//� diamD. zf .D0//:

Therefore, the two above lemmas allow us to complete the proof of Proposition 3.1 as
in the case of surfaces with nonempty boundary.

For the proof of Proposition 7.1, we will need some combinatorial lemmas concerning
the group �1.S/, which we state in the following subsection. The proofs of these
lemmas will not be used elsewhere in the text: the reader can skip them if he wants.

7.1 Some combinatorial lemmas

7.1.1 Some definitions Recall that two fundamental domains D1 and D2 in D
are adjacent if the intersection of D1 with D2 is an edge common to the polygons
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@D1 and @D2 . Recall also that G is the generating set for �1.S/ consisting of deck
transformations that send the fundamental domain D0 to a fundamental domain adjacent
to D0 . By abuse of notation, for any word 
 in elements of G , we also denote by 

the corresponding element in the group �1.S/.

Definition 7.4 We call a geodesic word a word 
 in elements of G � �1.S/ such that
the number of letters of the word 
 is equal to lG.
 /.

We now describe a more geometric way to see the words whose letters are elements
of G .

Definition 7.5 We call a path in D of origin D0 any finite sequence .D0;D1; : : : ;Dp/

of fundamental domains in D such that two consecutive fundamental domains in this
sequence are adjacent. Such a path in D is said to be geodesic if for any index i ,
dD.D0;Di/D i .

Remark 7.6 Notice that there is a bijective map between words in the elements of
G and the paths of origin D0 in D : to a word l1 � � � lp , one can associate the path
.D0; l1.D0/; l1l2.D0/; : : : ; l1l2 � � � lp.D0//. This last map is bijective and sends the
geodesic words to geodesic paths in D .

Definition 7.7 For a homeomorphism h in Homeo0.S/, we call a maximal face for
h any fundamental domain in D at distance elD0

.zh.D0// from D0 .

We want to prove that, after composing h with a number independent of h of homeo-
morphisms supported in one of the discs in U , the image of D0 does not meet maximal
faces for h anymore. There will be two different kinds of maximal faces for h. The
first ones, which we call non-exceptional, are not problematic: after composing h with
four homeomorphisms, each of them being supported in one of the discs of U , the
image of the fundamental domain D0 will not meet these faces anymore.

Definition 7.8 A face D is called non-exceptional if it satisfies the following prop-
erty: In the set of faces adjacent to D , there is only one element that is at distance
dD.D;D0/� 1 from D0 . The faces in D that do not satisfy this property are called
exceptional.

In the case of exceptional faces, we will have to understand the relative arrangement of
the nearby fundamental domains in D .

Let us describe more precisely the crucial property used in this proof. Let us denote
by D an exceptional face and by 
 a geodesic word such that 
 .D0/ D D . Let
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.D0;D1; : : : ;DN DD/ be the geodesic path in D corresponding to the geodesic word

 . We will see later (see Lemmas 7.10 and 7.11) that the 2g � 1 last faces in this
sequence share a vertex in common. The crucial property is the following: if 1� k �

2g�2, for any geodesic path of the form .D0; : : : ;DN�k ;D
0
N�kC1

; : : : ;D0
N
/, where

the face D0
N�kC1

is different from the face DN�kC1 , then the faces D0
N�kC1

; : : : ;D0
N

are not exceptional (see Lemma 7.18).

Remark 7.9 By replacing the face D0 with any other fundamental domain D1 in D
and the generating set G with the generating set consisting of deck transformations
that send D1 to a face adjacent to D1 , we can define the notion of exceptional faces
with respect to D1 . All the following statements dealing with exceptional faces (with
respect to D0 ) can be generalized to the case of an exceptional face with respect to
any fundamental domain in D . We implicitly use this remark during the proof of
Lemma 7.20.

7.1.2 The set ƒ Let

G D
˚
a�i j 1� i � g and � 2 f�1; 1g

	
[
˚
b�i j 1� i � g and � 2 f�1; 1g

	
so that

�1.S/D
˝
.ai/1�i�g; .bi/1�i�g j Œa1; b1� � � � Œag; bg�D 1

˛
:

Let us denote by ƒ the set of cyclic permutations of the words Œa1; b1� � � � Œag; bg� and
Œbg; ag� � � � Œb1; a1�. In terms of paths in D , these words correspond to a circle around
one of the vertices of the polygon @D0 :

Lemma 7.10 For any word �1 � � ��4g in ƒ, the faces �1 � � ��i.D0/, for 1� i � 4g ,
share a point in common.

Proof Let us denote by X the set of 4g–tuples .ıi/1�i�4g of elements of D that
satisfy the following properties:

(1) ı4g DD0

(2) There exists a vertex zp of D0 such that the set of elements of D that contain
the point zp is fıi j 1� i � 4gg.

(3) Every counterclockwise oriented circle whose center is zp and whose diameter
is sufficiently small meets successively the fundamental domains ı1; : : : ; ı4g .
In particular, the faces ıi and ıiC1 are adjacent.
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The set X is naturally isomorphic to the set of vertices of the polygon @D0 . An
element a D .ıi/1�i�4g in X is associated to a word '.a/ D � D �1 � � ��4g in ƒ
defined in the following way: The letter �1 is the unique deck transformation in G
that sends D0 to ı1 . The second letter �2 is the unique deck transformation in G
such that �1�2.D0/ D ı2 . Likewise, if we suppose that we have built the letters
�1; : : : ; �i such that �1 � � ��i.D0/ D ıi , the letter �iC1 is defined by the relation
�1 � � ��iC1.D0/D ıiC1 . Finally, �1 � � ��4g.D0/DD0 so the word �1 � � ��4g belongs
to the set ƒ.

Thus, we have built an injective map that, to any vertex zp of D0 , associates a word �
in ƒ such that the fundamental domains �1 � � ��i.D0/, for 1� i � 4g , share the point
zp in common. Notice that the word ��1 also satisfies this property. Moreover, as the
cardinality of the set ƒ is 4g and as the cardinality of the set of vertices of the polygon
@D0 is 2g , we obtain the following property: for a word � in ƒ, the fundamental
domains �1 � � ��i.D0/, for 1� i � 4g , share a point in common.

7.1.3 Geodesic words and exceptional faces The next lemma describes the shape
of the geodesic words that send the face D0 to an exceptional face.

Lemma 7.11 Let D be an exceptional face different from D0 . For any geodesic word

 with 
 .D0/DD , one of the following properties holds:

(1) The 2g last letters of the word 
 form a subword of a word of ƒ.

(2) The 4g�1 last letters of 
 are the concatenation of two subwords �1 and �2 of
words in ƒ with the following properties:

(a) The length of �1 is equal to 2g and the length of �2 is equal to 2g� 1.

(b) If we denote by a the last letter of �1 and by b the first letter of �2 , then
the word ab is not contained in any word of ƒ.

In the second case above, denote by l the letter in G such that the word �2l is contained
in some word in ƒ. Then the word 
 l is not geodesic.

Moreover, there exists a geodesic word 
 such that 
 .D0/DD that satisfies the first
property above. We denote by l1 � � � l2g its 2g last letters, where l1 � � � l4g 2ƒ. Then
the 2g last letters of any geodesic word for which this first property holds are l1 � � � l2g

or l�1
4g
� � � l�1

2gC1
.

In the case g D 2, an example of a geodesic word associated to an exceptional face
with the first property above is Œa1; b1�D Œb2; a2� and an example of a geodesic word
associated to an exceptional face with the second property above is

a�1
2 b�1

2 a1b2
1a�1

1 b�1
1 D a�1

2 b�1
2 a1b1a�1

1 Œa1; b1�D b�1
2 a�1

2 b1Œa1; b1�:
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The first property holds for this last word.

Proof Let us describe Dehn’s algorithm, which we will use. Let m be a reduced word
in elements of G . At each step of the algorithm, we look for a subword f of m with
length greater than 2g that is contained in a word f:�0 of ƒ (such a word f will be
said to be simplifiable) and whose length is maximal among such words (it is said to
be maximal in m). The word �0 will be called the complementary word of f . Then
we replace in m the subword f with the word �0�1 whose length is strictly smaller
(the words in ƒ have length 4g ) and we make if necessary the free group reductions
to obtain a new reduced word. By a theorem by Dehn (see Lyndon and Schupp [19]), a
reduced word represents the trivial element in �1.S/ if and only if, after implementing
a finite number of steps of this algorithm, we obtain the empty word.

Let us give some general facts on the group �1.S/ that are immediate and are used
below.

Fact 1 For any two letters a and b in G , there exists at most one word in ƒ whose
two first letters are given by ab . The other words in ƒ that contain the word ab are a
cyclic permutation of this one.

Fact 2 For any letter a in G , there exist exactly two words in ƒ whose last letter
(respectively first letter) is a. If b and c denote the penultimate letters (respectively
the second letters) of these words, then the word b�1c is not contained in any word
in ƒ.

Fact 3 For any two letters a and b in G such that the word ab is contained in a word
of ƒ, let us denote by m1 the word of ƒ with first letter b , but whose last letter l1 is
different from a, and by m2 the word in ƒ whose last letter is a, but whose first letter
l2 is not b . Then l�1

2
l�1
1

is not contained in any word in ƒ.

We will use Fact 2 in the following situation: If, at a given step of Dehn’s algorithm,
we obtain a reduced word of the form macm0 , where acm0 is a subword of a word in
ƒ, ma is a simplifiable word and mac is not simplifiable, then, after replacing ma by
the inverse of its complementary word, we obtain a word of the form m00cm0 , where
m00c is not contained in any word in ƒ. As for Fact 3, we will use it in the following
situation: Suppose that, at a given step of Dehn’s algorithm, we obtain a word of the
form mabm0 , where ab is a subword of a word in ƒ, and ma and bm0 are simplifiable.
Suppose moreover that the words mab and abm0 are not simplifiable (these are not
subwords of words in ƒ). Then after replacing the words ma and bm0 with the inverse
of their complementary words, we obtain a word of the form nl�1

2
l�1
1

n0 , where the
words nl�1

2
l�1
1

and l�1
2

l�1
1

n0 are not contained in any word in ƒ.
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Let us come back to the proof of the lemma. As D is an exceptional face, there exist
two geodesic words 
1 and 
2 with distinct last letters such that 
i.D0/ D D for
i D 1; 2. We now prove that one of them satisfies necessarily the first property given by
the lemma and both of them satisfy one of the properties stated in the lemma. Moreover,
if both of them satisfy the first property of the lemma, there exists a word l1 � � � l4g

in ƒ such that the 2g last letters of 
1 are l1 � � � l2g and the 2g last letters of 
2 are
l�1
4g
� � � l�1

2gC1
. These two results imply all the claims of the lemma.

Then take two geodesic words 
1 and 
2 with distinct last letters such that 
i.D0/DD

for i D 1; 2. The word 
1

�1
2

is reduced but represents the trivial element in the group
�1.S/. We apply Dehn’s algorithm to this word to prove the lemma. As the words 
1

and 
2 are geodesic, they do not contain simplifiable words. Let �0 be a simplifiable
word that is maximal in 
1


�1
2

. Let �3 be the complementary word of �0 . Then we
have a decomposition of the word �0 , �0 D �1�2 , with


1 D y
1�1; 
2 D y
2�
�1
2 :

By the previous remark, the words �1 and �2 are nonempty. The words y
1 and y
2 are
geodesic. Moreover, as the words 
1 and 
2 are both geodesic, the words �1 and �2

are not simplifiable. Thus, if the length of �0 is 4g , the words �1 and �2 both have
length 2g . We now prove the following fact.

Fact Such a word �0 necessarily has length greater than 4g� 2.

Suppose first that the length of �0 is less than or equal to 4g� 3 (ie, the length of �3

is greater than 2). After the first step of the algorithm, we obtain the word y
1�
�1
3
y
�1
2

,
which is reduced as �0 is maximal. Moreover, the concatenation of the word ��1

3
with

the first letter of the word y
�1
2

is not contained in any word in ƒ, and similarly for
the concatenation of the last letter of the word y
1 with the word ��1

3
: otherwise, by

Fact 1, the word �2y

�1
2

would not be reduced. Suppose by induction that, at a given
step of the algorithm, we obtain a reduced word of the form

z
1�1�2 � � � �k z

�1
2 ;

where k � 1, the words z
1 and z
2 are geodesic and the words �i are each contained
in a word of ƒ, have length smaller than 2g and satisfy the following properties:

(1) The words �1 and �k have length greater than 1 and, if they are both of length
2, then k > 1.

(2) For any index i between 1 and k � 1, the concatenation of the last letter of �i

with the first letter of �iC1 is not contained in any word in ƒ.
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(3) The concatenation of the word �k with the first letter of the word z
�1
2

is not
contained in any word in ƒ and similarly for the concatenation of the last letter
of the word z
1 with the word �1 .

Let us apply a new step of the algorithm. A simplifiable subword �0 of the above word
is necessarily contained in one of the words z
1�1 or �k z


�1
2

by the second property
above and by using the fact that each of the �i has length smaller than 2g . We may
suppose, without loss of generality, that such a subword is contained in z
1�1 . By
combining Fact 1 with the third property above, we obtain that the last letter a of the
word �0D �0

1
a is also the first letter of the word �1D a�0

1
. As the word z
1 is geodesic,

it does not contain any simplifiable subword, so the word �0
1

, which it contains, has
length 2g . After applying the algorithm, we obtain the word

z
 01
z��1�01�2 � � � �k z


�1
2 ;

where z
1 D z

0
1
�0

1
and z� is the complementary word of �0 . The obtained words z
 0

1

and z
2 are geodesic. The word z�, of length 2g� 1, has length smaller than 2g and
greater than 1. Moreover, if k D 1, the length of �1 is greater than 2 so the length
of �0

1
is greater than 1. Fact 2 implies that the concatenation of the last letter of z��1

with the first letter of �0
1

is not contained in any word in ƒ. Finally, the third property
is satisfied for this decomposition: denoting by l the last letter of z
 0

1
, if the word lz��1

were a subword of a word in ƒ, then, by Fact 1, the first letter of the word �0 would
be l�1 , which would contradict the fact that the word z
1 is reduced. At each step of
the algorithm, the sum of the lengths of the geodesic words at the beginning and at the
end of this decomposition strictly decreases. Therefore, after applying a finite number
of steps of the algorithm, we obtain a word of the form

z
1�1�2 � � � �k z

�1
2 ;

where k � 1, which satisfies the three properties that we just described as well as the
following property: The length of z
1 as well as the length of z
2 are less than 2g . In
this case, we can see that the considered word does not contain subwords of a word in
ƒ with length greater than 2g , a contradiction.

Let us come back to the first step of the algorithm. Then the considered word �0 has
length 4g� 2 or 4g� 1, if its length is not 4g . Suppose now that the length of �0 is
4g� 2. We want to find a contradiction.

After the first step of the algorithm, we obtain a reduced word of the form y
1�3y

�1
2

,
where the length of �3 D ab is 2. As before, the concatenation of the last letter of y
1

with the word �3 as well as the concatenation of the word �3 with the first letter of
y
�1
2

is not contained in any word of ƒ. Without loss of generality, we may suppose
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that, during the second step of the algorithm, we choose a subword of a word in ƒ
of the form bz�2 , where the word z�2 is the concatenation of the 2g first letters of the
word y
�1

2
. Let us use notation from Fact 3. After applying a step of the algorithm, we

obtain a word of the form y
1a�1z

�1
2

, where the length of �1 is 2g� 1 and the first
letter of �1 is l�1

1
. While the subwords that were chosen during the algorithm do not

meet y
1 , we obtain words of the form y
1a�1�2 � � � �k z

�1
2

, where the properties (1)
and (2) are satisfied as well as property (3) for z
2 alone and where the first letter of �1

is l�1
1

. After the first step for which we replace a subword which meets y
1 , we obtain
a word of the form

z
1�0�1 � � � �k z

�1
2 ;

where the last letter of the word �0 is l�1
2

and the first letter of �1 is l�1
1

. Fact 3
implies the situation is the same as before, a contradiction.

Finally, in the case where the length of �0 is 4g�1, one of the two geodesic words 
1

or 
2 satisfies necessarily the first property of the lemma. Similarly, after implementing
the algorithm, we see that the second geodesic word satisfies the second property of
the lemma.

7.1.4 Faces of type .i ; j /

Definition 7.12 For a natural number l � 1, we call a face of type .0; l/ any funda-
mental domain D in D that is at distance l from D0 and that satisfies the following
property: In the set of faces adjacent to D , only one element is at distance l � 1 from
D0 , ie, this face is not exceptional and is at distance l from D0 .

Remark 7.13 In the case where the fundamental domain D is a face of type .0; l/,
the other faces adjacent to D are at distance l C 1 from the fundamental domain
D0 . Indeed, denote by m a word in elements of G and by � a letter in G . Then the
elements m� and m of the group �1.S/ do not have the same length lG modulo 2, as
the relations that define this group have even length.

Remark 7.14 By using the notion of geodesic word, another (equivalent) definition
of faces of type .0; l/ can be given: a face of type .0; l/ is a fundamental domain D

in D such that all the geodesic words 
 with 
 .D0/DD have the same last letter and
their length is l .

Definition 7.15 For any integer k between 0 and l , we define by induction the set
of faces of types .k; l/. A face of type .k; l/ is a fundamental domain D in D that
is at distance l � k from D0 and that satisfies the following property: All the faces
adjacent to D , except one, are faces of type .k � 1; l/.
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Remark 7.16 A face of type .k; l/ is also a face of type .0; l�k/ (or even .k�i; l�i/,
for 0� i � k ).

Remark 7.17 An equivalent definition of faces of type .k; l/ is the following. Let
us consider a geodesic word 
 0 of length l � k such that 
 0.D0/DD . The face D

is a face of type .k; l/ if and only if the following property holds. For any reduced
word m with length less than or equal to k such that the word 
 0m is reduced, the face

 0m.D0/ is not exceptional. This definition can also be interpreted in terms of geodesic
paths in D . Let us denote by .D0; : : : ;Dl�k/ a geodesic path in D . The fundamental
domain Dl�k is a face of type .k; l/ if and only if, for any geodesic extension of the
form .D0; : : : ;Dl�k ;Dl�kC1; : : : ;Dl/ of this last path, the faces Dl�k ; : : : ;Dl are
not exceptional.

Let us fix an exceptional face D . Let l1 � � � l4g be a word in ƒ and 
 be a geodesic
word whose 2g last letters are l1 � � � l2g such that 
 .D0/DD . Let 
 D 
 0l1 � � � l2g

and, for 0� i � 2g ,

D1
i D 


0l1 � � � l2g�i.D0/; D2
i D 


0l�1
4g � � � l

�1
2gCiC1.D0/:

Then D1
0
DD2

0
DD and D1

2g
DD2

2g
. By Lemma 7.10, all the fundamental domains

that we just defined meet in one point: they are the elements of the set of fundamental
domains in D that contain this point.

The crucial property described above can be translated in the following way.

Lemma 7.18 For any integers i between 1 and 2g�2 and j 2f1; 2g, the fundamental
domains adjacent to D

j
i that are different from D

j
iC1

and from D
j
i�1

are faces of type
.i � 1; dD.D0;D//.

Remark 7.19 For any i and j , the face D
j
i is not a face of type .i; dD.D;D0// as the

face D , which is exceptional, is at distance i from D . However, for any 1� i � 2g�2

and j , the face D
j
i is a face of type .i � 1; dD.D;D0/� 1/.

Proof of Lemma 7.18 The cases j D 1 and j D 2 are symmetric: suppose that j D 1.
Take an index 2� i 0 � 2g� 1 (think that i 0 D 2g� i ). By induction on the length of
m, we prove that, for any reduced word m of length less than or equal to 2g� i 0 with
a first letter distinct from li0C1 and from l�1

i0 :

(1) The word 
 0l1l2 � � � li0m is geodesic.

(2) The fundamental domain 
 0l1l2 � � � li0m.D0/ is not exceptional.
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Figure 11: The D
j
i for a genus 2 surface

If the word m is empty, either the 2g� 1 last letters of the word 
 0l1l2 � � � li0 are not
contained in any word in ƒ or i 0 D 2g� 1 and the word 
 0l1l2 � � � l2g is geodesic. In
both cases, by Lemma 7.11, the face 
 0l1l2 � � � li0.D0/ is not exceptional.

Suppose that the property holds for a word m as above of length less than 2g�i 0 . Let l

be a letter in G different from the inverse of the last letter of m (or different from li0C1

and from l�1
i0 if the word m is empty). As the fundamental domain 
 0l1l2 � � � li0m.D0/

is not an exceptional face, then

dD.

0l1l2 � � � li0ml.D0/;D0/D dD.


0l1l2 � � � li0m.D0/;D0/C 1

and the word 
 0l1l2 � � � li0ml is geodesic. Moreover, as the length of ml is less than or
equal to 2g� i 0 and the word 
 0l1l2 � � � l2g is geodesic, the face 
 0l1l2 � � � li0ml.D0/

is not exceptional. This completes the proof of Lemma 7.18.

7.1.5 First letter of geodesic words The next lemma is symmetric to Lemma 7.11.

Lemma 7.20 Let D1 be a fundamental domain in D . Suppose that there exist two
geodesic words with distinct first letters a and b such that


1.D0/D 
2.D0/DD1:
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Then:

(1) There exists a geodesic word 
 such that 
 .D0/ D D1 whose 2g first letters
�1 � � ��2g form a subword of a word �1 � � ��4g in ƒ.

(2) The fundamental domains D0 , a.D0/ and b.D0/ share a point zp in common
with the following property: The fundamental domains in D that contain the point
zp are faces of the form �1 � � ��i.D0/ or ��1

4g
� � ���1

4g�iC1
.D0/, with 0� i � 2g .

Proof The generating set for the group �1.S/ given by the deck transformations that
send the fundamental domain D1 on a fundamental domain in D adjacent to D1 is

1G
�1

1
. Notice that, under the hypothesis of the lemma, the fundamental domain D0

is an exceptional face with respect to D1 . By Lemma 7.11, there exists a geodesic
word in elements of 
1G
�1

1
whose 2g last letters determine a word

.
1�
�1
2g 


�1
1 /.
1�

�1
2g�1


�1
1 / � � � .
1�

�1
1 
�1

1 /;

where �1�2 � � ��4g 2ƒ, which sends the face D1 to the face D0 . Thus, in the group
�1.S/,


�1
1 D 
1�

�1��1
2g�
�1
2g�1 � � ��

�1
1 
�1

1 ;

where ��1��1
2g
��1

2g�1
� � ���1

1
is a geodesic word in elements of G . Let 
 be the word

�1�2 � � ��2g�. Then, in the group �1.S/, 
 D 
1 . Thus, the geodesic word 
 satisfies
the required properties. The second point of the lemma comes from the above argument
and from Lemma 7.10.

7.1.6 Image of a vertex of the polygon @D0 For a homeomorphism h in Homeo0.S/,
we denote by l.h/ the maximum of the quantities dD.D;D0/, where D varies over
the set of fundamental domains in D that contain the image under the homeomorphism
zh of a vertex of the polygon @D0 . Let p be the image under … of a vertex of the
polygon @D0 .

Lemma 7.21 Let h be a homeomorphism in Homeo0.S/. Suppose that h.p/ …

h.….@D0//. There exists a unique fundamental domain D1 in D whose interior
contains the image under zh of a vertex zp of the polygon @D0 such that

dD.D1;D0/D l.h/:

Moreover, the following properties hold:

(1) There exists a word �1�2 � � ��4g in ƒ and a geodesic word 
 such that 
 .D0/D

D1 and the 2g first letters of 
 are �1�2 � � ��2g .
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(2) The vertices of the polygon @D0 are the points of the form

zpi D �
�1
i ��1

i�1 � � ��
�1
1 . zp/ or zp0i D �4g�i � � ��4g. zp/;

with 0� i � 2g� 1.

Proof Let us denote by s.D0/ and s0.D0/, where s and s0 are deck transformations
in G , the faces that are adjacent to the face D0 and that contain the point zp . Suppose
that dD.D0;D1/D l.h/. If the relation dD.s.D0/;D1/D dD.D0;D1/C1 held, then
we would have dD.D0; s

�1.D1// > l.h/ and the vertex s�1. zp/ of @D0 would satisfy

zh.s�1. zp//D s�1.zh. zp// 2 s�1.D1/;

which is not possible by definition of l.h/. Thus, necessarily,

dD.s.D0/;D1/D dD.s
0.D0/;D1/D dD.D0;D1/� 1:

The face D0 is exceptional with respect to D1 . By Lemma 7.11, there exists a word
�1�2 � � ��4g in ƒ such that


 D �1�2 � � ��2g

0
D ��1

4g � � ��
�1
2gC1


0 and 
 .D0/DD1:

Moreover, by Lemma 7.10, the point zp is common to the faces of the form

�1�2 � � ��i.D0/ and ��1
4g�4g�1 � � ��

�1
4g�iC1.D0/

with 0 � i � 2g . Let i be an integer between 0 and 2g . The point zp is a vertex of
the polygon �1�2 � � ��i.D0/ so the point ��1

i ��1
i�1
� � ���1

1
. zp/ belongs to the polygon

@D0 . Therefore, we have 4g pairwise distinct points that are vertices of the polygon
@D0 : we have obtained in this way all the vertices of the polygon @D0 . Moreover, if
i � 1,

zh.��1
i ��1

i�1 � � ��
�1
1 . zp// 2 �iC1�iC2 � � ��2g


0.D0/;

zh.�4g�iC1�4g�iC2 � � ��4g. zp// 2 �
�1
4g�i�

�1
4g�i�1 � � ��

�1
2gC1


0.D0/;

so the image under the homeomorphism zh of the vertices of the polygon @D0 that are
different from zp belong to the interior of fundamental domains D in D strictly closer
to D0 than D1 . This implies the uniqueness of the face D1 .

Now, let us start the proof of Proposition 7.1. Let f be a homeomorphism in
Homeo0.S/ such that elD0

. zf .D0// � 4g . The proof is decomposed into two parts.
First we build a homeomorphism �1 so that the set z�1 ı

zf .D0/ does not meet faces of
type .i; elD0

. zf .D0/// for 0� i � 2g� 2 anymore. Then we build a homeomorphism
�2 so that the set z�2 ı z�1 ı

zf .D0/ does not meet exceptional maximal faces for f .
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In these constructions, we will ensure that the quantities FragU .�i/ are bounded by a
constant independent of the chosen homeomorphism f . Let us give more details now.

7.2 Pushing the image under f of D0 away from faces of
type .i; elD0

. zf .D0///

Let us denote by p the image under the projection … of any vertex of the polygon @D0 .

Lemma 7.22 Let f be a homeomorphism in Homeo0.S/. Suppose that

elD0
. zf .D0//� 4g:

Then there exists a homeomorphism � in Homeo0.S/ such that:

(1) FragU .�/� 4.2g� 1/C 1

(2) � ıf .p/ …….@D0/

(3) elD0
.z� ı zf .D0//� elD0

. zf .D0//

(4) One of the following properties holds:

(a) elD0
.z� ı zf .D0//� elD0

. zf .D0//� 1

(b) The set z� ı zf .D0/ does not meet any face of type .i; elD0
. zf .D0///, for

any index 0� i � 2g� 2.

Definition 7.23 There are two kinds of connected components of f .….@D0// �

….@D0/:

(1) The connected components homeomorphic to R, which will be called regular.

(2) At most one connected component called singular, homeomorphic to the union
of 2g pairwise transverse straight lines of the plane that meet in one point.

This last connected component is the one that contains the image under h of the vertex
of ….@D0/ and will raise technical issues.

Proof of Lemma 7.22 Consider a little perturbation of the identity �0 supported in
the interior of one of the discs in U so that

elD0
.z�0 ı

zf .D0//� � and �0 ıf .p/ …….@D0/:

Notice that, if elD0
.z�0 ı

zf .D0//� elD0
. zf .D0//� 1, then the lemma is proved with

� D �0 . Suppose, by induction, that, for an integer j 2 Œ0; 2g � 2�, we have built a
homeomorphism �j in Homeo0.S/ such that:
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(1) FragU .�j /� 4j C 1.

(2) elD0
.z�j ı

zf .D0//D elD0
. zf .D0//.

(3) The set z�j . zf .D0// does not meet the faces of type .i; �/ for 0� i < j .

(4) The point �j ı h.p/ does not belong to ….@D0/.

We need the following lemma, which will be proved afterwards.

Lemma 7.24 Let h be a homeomorphism in Homeo0.S/ and j be an integer in
Œ0; 2g� 2�. Suppose that:

(1) The set zh.D0/ does not meet the faces of type .i; elD0
.zh.D0///, for 0� i < j .

(2) The point h.p/ does not belong to ….@D0/.

Then there exists a homeomorphism �0 in Homeo0.S/ such that:

(1) FragU .�
0/� 4.

(2) Either elD0
.z�0 ı zh.D0// < elD0

.zh.D0// or the set z�0 ı zh.D0/ does not meet the
faces of type .i; elzh.D0/

/, for any 0� i � j .

The above lemma provides a homeomorphism �0 so that either elD0
.z�0ız�j ı

zf .D0//�

��1 or the set z�0ız�j ı
zf .D0/ does not meet the faces of type .j ; �/ either. Moreover,

FragU .�
0/ � 4. Hence it suffices to take �jC1 D �0 ı �j . Lemma 7.22 is proved

because, either elD0
.z�jC1 ı

zf .D0// < elD0
. zf .D0// and � D �jC1 is appropriate,

or one can repeat the process until the set z�j ı
zf .@D0/ does not meet faces of type

.k; elD0
. zf .D0/// for any 0� k � 2g� 2.

We now prove Lemma 7.24. Let �D elD0
.zh.D0//. The homeomorphism �0 will be

built by composing four homeomorphisms f1 , f2 , f3 and f4 each supported in the
interior of one of the discs in U . The homeomorphisms fi for 1� i � 3 will satisfy
the following Property P :

fD 2D jD\ zfi � � �
zf1 ı
zh.D0/¤∅g D fD 2D jD\ zh.D0/¤∅g:

The proof is divided into two cases.

7.2.1 Proof of Lemma 7.24: Easy case

Proof Suppose that the image under zh of any vertex zp of the polygon @D0 does not
belong to any face of type .j ; �/.
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zf1

zf1

z�j ı
zh.@D0/

zf1

zf2

zf2

@ zU2;D.j ;M /

zf3

zf3

zf4

zf4

ž
D.j ;M /

zf2

Figure 12: Idea of the proof of Lemma 7.22: the face D.j ; �/

Let f1 be a homeomorphism supported in the disc U0 with the following properties:

(1) The homeomorphism f1 globally preserves each edge in A.

(2) For any connected component C of VU0\ h.….@D0// that does not contain the
point p , we have

f1.C /�
[
˛2A

VV˛ [ VU2:

To build such a homeomorphism f1 , it suffices to take the time 1 of the flow of a vector
field with the following properties: the point p is a repulsive fixed point of the flow,
the vector field is tangent to the edges of A and it is supported in the open disc VU0 .
As the homeomorphism zf1 globally preserves each edge in zA, the homeomorphism
f1 satisfies Property P . Denote by D.j ; �/ a face of type .j ; �/. Recall that, by
definition, if j � 1, all the faces adjacent to D.j ; �/, except one, are of type .j �1; �/.
Let žD.j ;�/ be the edge common to both the face D.j ; �/ and the unique face adjacent
to D.j ; �/ that is at distance dD.D.j ; �/;D0/�1 from the fundamental domain D0 .
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Then, by hypothesis, the ends of any connected component of zh.@D0/\D.j ; �/ are
contained in the interior žD.j ;�/ � @ žD.j ;�/ of the edge žD.j ;�/ . Let us denote by
zU2;D.j ;�/ the lift of the disc U2 contained in the fundamental domain D.j ; �/. Then
the construction of the homeomorphism f1 implies

zf1 ı
zh.@D0/\D.j ; �/�

VzU2;D.j ;�/[…
�1
�[
˛2A

VV˛

�
:

Let f2 be a homeomorphism in Homeo0.S/ that is supported in the union of the discs
V˛ , where ˛ varies over A, and which satisfies the following properties:

(1) The homeomorphism f2 pointwise fixes all the edges in A.

(2) Take any edge ˛ in A. Consider any connected component C of

f1 ı h.….@D0//\V˛

that does not meet the edge ˛ and whose ends are contained in U2 . Then
f2.C /� VU2 .

Let zV ž
D.j ;�/

be the lift of the disc V…. žD.j ;�// that meets the edge žD.j ;�/ . As the
homeomorphism zf2 pointwise fixes …�1.….@D0//, it satisfies Property P . Moreover,
by construction of the homeomorphism f2 , we have, for any face D.j ; �/ of type
.j ; �/,

zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

[
VzU2;D.j ;�/:

With the same method, we build a homeomorphism f3 supported in the disc U2 such
that, for any face D.j ; �/ of type .j ; �/, we have

zf3 ı
zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

:

As this homeomorphism pointwise fixes …�1.….@D0//, it also satisfies Property P .

Finally, let f4 be a homeomorphism in Homeo0.S/ that is supported in the union of
the discs VV˛ , where ˛ varies over the set A, and satisfies the following properties for
any edge ˛ in A:

(1) For any connected component C of f3 ıf2 ıf1 ıh.….@D0//\ VV˛ whose ends
belong to the same connected component of V˛ �˛ , we have f4.C /\˛ D∅.

(2) The homeomorphism f4 pointwise fixes any other connected component of
f3 ıf2 ıf1 ı h.….@D0//\ VV˛ .
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We now prove that the homeomorphism �0 D f4 ı f3 ı f2 ı f1 satisfies the required
property, namely that elD0

.z�0 ı zh.D0//� elD0
.zh.D0// and that the set z�0 ı zh.D0/ does

not meet the faces of type .i; �/ for 0� i � j . We will distinguish several pieces of
the curve zf3 ı

zf2 ı
zf1 ı
zh.@D0/: the piece

zk1 D
zf3 ı
zf2 ı
zf1 ı
zh.@D0/�…

�1.[˛V˛/

and the piece
zk2 D

zf3 ı
zf2 ı
zf1 ı
zh.@D0/\…

�1.[˛V˛/:

In each of these cases, we prove that the image under f4 of the chosen piece does not
meet new faces (ie, which were not met by the curve zf3 ı

zf2 ı
zf1 ı
zh.@D0/) and does

not meet faces of type .j ; �/.

First case Take the closure zC of a connected component of zk1 . Then f4. zC /D zC is
contained in a face that belongs to the set

fD 2D jD\ zf3 ı
zf2 ı
zf1 ı
zh.D0/¤∅g D fD 2D jD\ zh.D0/¤∅g

and is not contained in a face of type .j ; �/ because, for any face D.j ; �/ of type
.j ; �/,

zf3 ı
zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

:

Second case Take a connected component zC of zk2 whose ends do not belong to the
same connected component of …�1.[˛V˛ �˛/. Then zf4. zC /D zC is contained in the
union of the faces of the set fD 2 D j D \ zh.D0/¤ ∅g and does not meet faces of
type .j ; �/.

Third case Take a connected component zC of zk2 whose ends all belong to the same
connected component of …�1.[˛.V˛ �˛//. Then the subset zf4. zC / is contained in
the interior of the fundamental domain in D that contains the ends of zC and which,
therefore, is not a face of type .j ; �/. Indeed, for any face D.j ; �/ of type .j ; �/,

zf3 ı
zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

:

Moreover, such a face belongs to the set fD 2D jD\ zh.D0/¤∅g.

7.2.2 Proof of Lemma 7.24: Second case

Proof We suppose that the image under zh of a vertex zp of the polygon @D0 belongs
to a face D of type .j ; �/. In this case, we need the following lemma.
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Lemma 7.25 Let h be a homeomorphism in Homeo0.S/. Take an integer j in
Œ0; 2g� 2�. Suppose that the following properties hold:

(1) elD0
.zh.D0//� 4g .

(2) The point h.p/ does not belong to the set ….@D0/.

(3) The set zh.D0/ does not meet faces of type .i; elD0
.zh.D0/// for 0� i < j .

(4) The image under zh of a vertex zp of the polygon @D0 belongs to a face D1 of
type .j ; elD0

.zh.D0///.

In this case, the image under the homeomorphism zh of any vertex of the polygon @D0

different from zp does not belong to a face of type .j ; elD0
.zh.D0///. Moreover, the

face D0 is exceptional with respect to D1 if j � 1.

Proof of Lemma 7.25 Suppose first that j D 0. Lemma 7.21 implies that the images
under the homeomorphism zh of the other vertices of the polygon @D0 belong to
fundamental domains in D strictly closer to D0 than D1 . Suppose now that j � 1.
We prove by contradiction that the face D0 is exceptional with respect to D1 . Denote
by s.D0/, where s is a deck transformation in G , a face adjacent to D0 that contains
the point zp . Notice that there are two such faces. Suppose by contradiction that
dD.s.D0/;D1/D dD.D0;D1/C 1. Then

dD.D0; s
�1.D1//D dD.D0;D1/C 1; zh.s�1. zp// 2 s�1.D1/:

Let us prove that the fundamental domain s�1.D1/ is a face of type .j�1; elD0
.zh.D0///.

As zh.D0/\ s�1.D1/¤∅, this contradicts the hypothesis of the lemma. Let 
 be a
geodesic word such that 
 .D0/DD1 . As elD0

.zh.D0//� 4g , the length of the word

 is greater than or equal to 2g . Moreover, as

dD.D0; s
�1.D1//D dD.D0;D1/C 1;

the word s�1
 is geodesic. If we concatenate i 2 Œ0; j � letters a1; a2; : : : ; ai on the
right with 
 so that the word 
a1a2 � � � ai is reduced, then the 2g last letters of the
obtained word do not form a subword of a word in ƒ, as the fundamental domain D1

is a face of type .j ; elD0
.zh.D0///. Therefore, if we concatenate i 2 Œ0; j � 1� letters

a1; a2; : : : ; ai on the right with the geodesic word s�1
 so that the obtained word is
reduced, the 2g� 1 last letters of the obtained word do not form a subword of a word
in ƒ. By Lemma 7.11, the faces s�1
a1a2 � � � ai.D0/ are not exceptional so the face
s�1.D1/ is a face of type .j � 1; elD0

.zh.D0///.

Thus, the face D0 is exceptional with respect to D1 . Using Lemma 7.21, we see that
the images under the homeomorphism zh of the vertices of @D0 distinct from zp belong
to fundamental domains in D strictly closer to D0 than D1 .
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As the proof of Lemma 7.24 in this case is analogous to the proof in the first case we
will just give details on what has to be changed in this case.

We denote by zC1 the connected component of zh.@D0/\ VD that contains the point zh. zp/.
By Lemma 7.25, this is the unique connected component of zh.@D0/�…

�1.….@D0//

with the following properties: it contains the image under the homeomorphism zh of
a vertex of the polygon @D0 and it is contained in a face of type .j ; �/. Notice that
…. zC1/ is a subset of the singular component of h.….D0//�….@D0/.

The constructions of the homeomorphisms f1 , f2 , f3 and f4 have to be slightly
modified. Let f1 be a homeomorphism supported in the disc U0 with the following
properties:

(1) The homeomorphism f1 globally preserves each edge in A.

(2) For any connected component C of VU0\ h.….@D0// that does not contain the
point p , we have

f1.C /�
[
˛2A

VV˛ [ VU2:

(3) The image of …. zC1/ under f1 is contained in the open set[
˛2A

VV˛ [ VU2:

Notice that this condition is not implied by the second one when …. zC1/ is con-
tained in a connected component of VU0\h.….@D0// that contains the point p .

As the set zC1 is contained in a face of type .j ; �/, the set …. zC1/ does not contain the
point p (otherwise the closed set zC 1 would meet a face of type .j �1; �/ or a face at
distance �C 1 from D0 , which contradicts the hypothesis on the homeomorphism h).

Let f2 be a homeomorphism Homeo0.S/ that is supported in the union of the discs
V˛ , where ˛ varies over A, and which satisfies the following properties:

(1) The homeomorphism f2 pointwise fixes all the edges in A.

(2) Take any edge ˛ in A. Consider any connected component C of

f1 ı h.….@D0//\V˛

that does not meet the edge ˛ and whose ends are contained in U2 . Then
f2.C /� VU2 .

(3) f2 ıf1.…. zC1//� VU2 .
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The homeomorphisms f1 and f2 satisfy Property P . Moreover, for any face D.j ; �/

of type .j ; �/,

zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

[
VzU2;D.j ;�/:

With the same method, we build a homeomorphism f3 supported in the disc U2 such
that, for any face D.j ; �/ of type .j ; �/, we have

zf3 ı
zf2 ı
zf1 ı
zh.@D0/\D.j ; �/�

VzV ž
D.j ;�/

:

Finally, let f4 be a homeomorphism in Homeo0.S/ that is supported in the union of
the discs VV˛ , where ˛ varies over the set A, and satisfies the following properties for
any edge ˛ in A:

(1) For any connected component C of f3 ıf2 ıf1 ıh.….@D0//\ VV˛ whose ends
belong to the same connected component of V˛ �˛ , we have f4.C /\˛ D∅.

(2) The homeomorphism f4 pointwise fixes any other connected component of
f3 ıf2 ıf1 ı h.….@D0//\ VV˛ that is homeomorphic to R.

(3) Denote by zC 0
1

the connected component of zf3ı
zf2ı
zf1ı
zh.@D0/\…

�1.
S
˛
VV˛/

with the following properties: it contains the image under the homeomorphism
zf3ı
zf2ı
zf1 ı
zh of a vertex of the polygon @D0 and it meets a face of type .j ; �/.

Then f4.…. zC
0
1
//\˛ D∅.

Let

zk1D
zf3ı
zf2ı
zf1ı
zh.@D0/�…

�1
�[
˛

V˛

�
; zk2D

zf3ı
zf2ı
zf1ı
zh.@D0/\…

�1
�[
˛

V˛

�
:

As in the first case, one can prove the following properties:

(1) If zC is the closure of a connected component of zk1 . Then f4. zC / D zC is
contained in a face which belongs to the set fD 2D jD\ zh.D0/¤∅g and is
not contained in a face of type .j ; �/.

(2) Take any connected component zC of zk2 whose ends do not belong to the same
connected component of …�1.

S
˛ V˛ �˛/ and such that the set zC does not

contain the image under the homeomorphism zf3 ı
zf2 ı
zf1 ı
zh of a vertex of the

polygon @D0 . Then zf4. zC /D zC is contained in the union of the faces of the set
fD 2D jD\ zh.D0/¤∅g and does not meet faces of type .j ; �/.

(3) Take a connected component zC of zk2 whose ends all belong to the same
connected component of …�1.

S
˛.V˛�˛//. Then the subset zf4. zC / is contained

in the interior of the fundamental domain in D that is not a face of type .j ; �/.
Moreover, such a face belongs to the set fD 2D jD\ zh.D0/¤∅g.
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Let us finally address the case where zC is a connected component of zk2 that contains
the image under the homeomorphism zf3ı

zf2ı
zf1ı
zh of a vertex of the polygon @D0 . Let

zp be the vertex of the polygon whose image under the homeomorphism zf3 ı
zf2 ı
zf1 ı
zh

belongs to a face D1 of type .j ; �/. By Lemmas 7.21 and 7.25, there exists a geodesic
word of the form �1�2 � � ��2g
 , where the word �1�2 � � ��4g belongs to ƒ, which
sends the face D0 to the face D1 . Let us denote by 
 0 the word 
 without the last
letter. By construction of the homeomorphism f4 and by Lemma 7.21, the set zf4. zC /

is contained in the interior of the union of the following fundamental domains:

�1 � � ��2g

0.D0/

�iC1 � � ��2g
 .D0/ if 1� i � 2g

�iC1 � � ��2g

0.D0/ if 1� i � 2g

��1
4g�i � � ��

�1
2g 
 .D0/ if 1� i � 2g

��1
4g�i � � ��

�1
2g 


0.D0/ if 1� i � 2g

These fundamental domains are each at distance less than or equal to �� j � 1 from
D0 and hence are not faces of type .i; �/ for 0� i � j .

7.3 Pushing the image of D0 into U0

For a homeomorphism h in Homeo0.S/, we denote by Fh the union of the set
of exceptional faces that are maximal for the homeomorphism h with the set of
fundamental domains D in D such that:

(1) The face D is at distance less than or equal to elD0
.zh.D0//�1 and greater than

or equal to elD0
.zh.D0//� .2g� 2/ from D0 .

(2) The face D shares a vertex in common with an exceptional face Dmax that is
maximal for h and with the two faces D1 and D2 in D with the following
properties:
(a) The faces D1 and D2 are distinct and adjacent to Dmax .

(b) The faces D1 and D2 are at distance elD0
.zh.D0//� 1 from the face D0 .

By Lemma 7.18, the faces D that belong to the set Fh satisfy the following property.
Denote by zp a vertex of the boundary of D that belongs to an exceptional maximal
face and to two faces at distance elD0

.zh.D0//� 1 from the face D0 . Then any face
adjacent to D that does not contain the point zp is a face of type .i; elD0

.zh.D0///,
for some integer i between 0 and 2g � 3. This property implies that, for any face
D in Fh , there exists a unique exceptional face Dmax such that the second property
above holds. This exceptional maximal face will be called the exceptional maximal
face associated to D .
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Lemma 7.26 Let h be a homeomorphism in Homeo0.S/ with the following proper-
ties:

(1) h.p/ …….@D0/.

(2) elD0
.zh.D0//� 4g .

(3) The set zh.D0/ does not meet any face of type .i; elD0
.zh.D0///, for any index

0� i � 2g� 2.

Then there exists a homeomorphism � in Homeo0.S/ with the following properties:

(1) For any fundamental domain D in Fh that is at distance at most 2g� 3 from
its associated exceptional maximal face, z� ı zh.@D0/\D �…�1. VU0/.

(2) For any fundamental domain D in Fh at distance 2g � 2 from its associated
exceptional maximal face, any connected component of z�ı zh.@D0/\D is either
contained in …�1. VU0/ or in D�…�1.U0/.

(3) FragU .�/� 4.

(4) � ı h.p/ …….@D0/.

(5) elD0
.z� ı zh.D0//� elD0

.zh.D0//.

(6) The set z�ı zh.D0/ does not meet any face of type .i; elD0
.zh.D0///, for any index

0� i � 2g� 2.

For any homeomorphism h0 in Homeo0.S/, let Eh0 be the set of connected components
zC of zh0.@D0/�…

�1.….@D0// such that:

(1) The connected component zC contains the image under zh0 of a vertex of the
polygon @D0 .

(2) The face D zC in D that contains zC belongs to Fh .

For any edge z̨ in zA, we denote by zVz̨ the lift of the disc V….z̨/ that meets z̨ .

Definition 7.27 Two edges z̨ and ž in zA are said to be consecutive if:

(1) They share a point in common.

(2) They are both contained in the same face D z̨
ž in D .

Given two consecutive edges z̨ and ž in zA, we denote by zU z̨ ž
0

the lift of the disc
U0 that meets z̨ and ž and by zU z̨ ž

2
the lift of the disc U2 that is contained in the

face D z̨
ž .

We will first prove Lemma 7.26 under the additional hypothesis that the set Eh is empty.
Then we explain the necessary modifications for the proof in the case where Eh ¤∅.
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f3 f1 ı h .….@D0//

f2 ıf1 ı h.….@D0//

f2

f2

f2

f2

f2

f2

Figure 13: Illustration of the proof of Lemma 7.26

7.3.1 Proof of Lemma 7.26: Case Eh D ∅

Proof By methods similar to those used to prove Lemma 7.22, we build a homeomor-
phism f1 with the following properties:

(1) The homeomorphism f1 is the composition of a homeomorphism supported in
U0 with a homeomorphism supported in the union of the V˛ .

(2) The homeomorphism zf1 globally preserves any edge in zA.

(3) Take any two consecutive edges z̨ and ž and any connected component zC of
zh.@D0/�…

�1.….@D0// whose ends belong to z̨ [ ž but are not endpoints of
this path. Then the set zf1. zC / is contained in the interior of the set

zU
z̨ ž

0
[ zVz̨ [ zV ž[ zU

z̨ ž

2
:

Moreover, if no end of zC meets zE , where zE is one of the sets zVz̨ , zV ž , zU z̨
ž

0
[ zVz̨

or zU z̨ ž
0
[ zV ž , then zf1. zC / does not meet zE .

Geometry & Topology, Volume 18 (2014)



588 Emmanuel Militon

Take a face D in Fh . By Lemma 7.18, there exist only two edges z̨D and žD in zA
such that:

(1) These edges are not contained in a face of type .i; elD0
.zh.D0///, for any 0 �

i � 2g� 2.

(2) These edges are not contained in a face at distance elD0
.zh.D0//C 1 from D0 .

Moreover, these two edges are consecutive. By hypothesis, the ends of any connected
component of zh.@D0/\D are contained in z̨D [ žD and are not endpoints of this
path. Hence the set zf1 ı

zh.@D0/\D is contained in the interior of the set

zU z̨D
ž

D
0 [ zVz̨D [

zV ž
D
[ zU z̨D

ž
D

2 :

We denote by C the set of lifts zC of connected components of f1ıh.….@D0//�….@D0/

such that: all the ends of zC belong either to the same edge in zA, or to two consecutive
edges in zA.

We build a homeomorphism f2 that is supported in U2 with the following property.
For any connected component zC in C whose ends belong to the union of edges z̨ [ ž

but are not endpoints of this path, the set zf2. zC / is contained in the interior of the set

zV˛ [ zVˇ [ zU
z̨ ž

0
:

Moreover, if the ends of zC do not meet a set zE among zV˛ , zVˇ , zU z̨ ž
0
[ zVz̨ or zU z̨ ž

0
[ zV ž ,

then zf2. zC / is disjoint from zE . The construction implies that, for any fundamental
domain D in Fh and any connected component zC of zf1 ı

zh.@D0/\D , the set zf2. zC /

is contained in the interior of the set

zU
z̨D
ž

D

0
[ zVz̨D [

zV ž
D
:

Also, if zC doesn’t meet a set zE among zVz̨D , zV ž
D

, zU z̨D žD
0

[ zVz̨D or zU z̨D žD
0

[ zVz̨D ,
then zf2. zC / does not meet the set zE either. As the homeomorphism zf2 ı

zf1 globally
preserves any edge in zA,

fD 2D j zf2 ı
zf1 ı
zh.D0/\D ¤∅g D fD 2D j zh.D0/\D ¤∅g:

Let f3 be a homeomorphism supported in the union of the V˛ with the following
properties:

(1) For any edge ˛ in A and any connected component C of f2ıf1ıh.….@D0//\

V˛ whose ends belong to the same connected component of VU0\V˛ , f3.C /� VU0 .

(2) For any edge z̨ in zA and any connected component zC of zf2 ı
zf1 ı
zh.@D0/\ zVz̨

that does not meet the edge z̨ , zf3. zC /\ z̨ D∅.
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By the second property satisfied by the homeomorphism f3 ,

fD 2D j zf3 ı
zf2 ı
zf1 ı
zh.D0/\D ¤∅g � fD 2D j zf2 ı

zf1 ı
zh.D0/\D ¤∅g

� fD 2D j zh.D0/\D ¤∅g:

Let D be a face in Fh at distance i <2g�2 from an exceptional face that is maximal for
h. We prove that, for any fundamental domain D0 in D and any connected component
zC of D0\ zf2 ı

zf1 ı
zh.@D0/,

zf3. zC /\D �
VzU
z̨D
ž

D

0
:

If the face D0 is not adjacent to D , as zf3. zC / is contained in the set of faces adjacent
to D0 , then zf3. zC /\D D∅. Otherwise, by Lemma 7.18, the face D0 satisfies one of
the following properties.

(1) The face D0 is a face of type .i � 1; elD0
.zh.D0///.

(2) The face D0 is at distance elD0
.zh.D0//C 1 from the face D0 .

(3) The face D0 belongs to Fh .

In the first two cases, the face D0 does not meet zf2ı
zf1 ı
zh.@D0/. Therefore, it suffices

to consider the two following cases:

(1) The face D0 belongs to Fh and is adjacent to D .

(2) D0 DD .

In the first case, let z̨ D D \D0 and zVz̨ be the lift of V….z̨/ that meets z̨ . No-
tice that any point of zC that does not meet zVz̨ has an image disjoint from D .
Moreover, by construction of f3 , any connected component of zC \ zVz̨ that does
not meet z̨ has an image under zf3 that does not meet the fundamental domain
D . Let us denote by zC1 a connected component of zC \ zVz̨ that meets z̨ and
denote by zC 0

1
the connected component of zVz̨ \ zf2 ı

zf1 ı
zh.@D0/ that contains zC1 .

The connected component zC 0
1

has necessarily both its ends contained in zU0;D by
the properties satisfied by zf2 ı

zf1 ı
zh. Therefore, the set zf3. zC1/ is contained in the

set zf3. zC
0
1
/, which is itself contained in zU z̨D žD

0
. This proves the above result in

the first case. The second case is similar: the same kind of arguments implies that
zf3. zC /\D � zU0;D .

Take any face D in Fh at distance 2g� 2 from its associated exceptional maximal
face. After interchanging z̨D and žD if necessary, we can suppose that the edge z̨D is
equal to the intersection of the face D with a face that does not belong to Fh . We will
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always make this assumption for such faces in what follows. Then, for any connected
component zC of D\ zf2 ı

zf1 ı
zh.@D0/,

zf3. zC /\D �
VzU
z̨D
ž

D

0
[
VzVz̨D :

Finally, let f4 be a homeomorphism in Homeo0.S/ supported in the union of the V˛
with the following properties:

(1) f4.U0/� U0 .

(2) Take any face D in Fh at distance 2g � 2 from its associated exceptional
maximal face. For any connected component zC of zf3 ı

zf2 ı
zf1 ı
zh.@D0/\ zVz̨D ,

the following property is satisfied. Any connected component of zf4. zC /\D is
contained either in …�1. VU0/ or in D�…�1.U0/.

(3) For any edge ˛ in A and any connected component C of f3 ı f2 ı f1 ı

h.….@D0//\V˛ that does not meet ˛ , f4.C /D C .

The compatibility of the second condition above with the third one is a consequence of
the two remarks below:

(1) Let ˛ be any edge in A and C be any connected component of f3 ıf2 ıf1 ı

h.….@D0//\V˛ whose ends are both contained in the same connected compo-
nent of V˛ \ VU0 . Then the set C is contained in VU0 .

(2) Let D be a face in Fh at distance 2g � 2 from an exceptional maximal face
and suppose as above that z̨D is contained in a face that does not belong to
Fh . Let zC be any connected component of zf3 ı

zf2 ı
zf1 ı
zh.@D0/\ zVz̨D that

meets D . Then the set zC is either contained in …�1. VU0/ or meets z̨ . Indeed, if
the connected component zC did not satisfy any of these properties, then it would
meet at least two connected components of …�1.U0/\D , a contradiction.

The homeomorphism � D f4 ı f3 ı f2 ı f1 satisfies the following properties. As
the homeomorphism f4 ı f3 is supported in U1 and as FragU .f1/ � 2, we have
FragU .�/� 4. For any face D in Fh at distance at most 2g� 3 from an exceptional
maximal face,

z� ı zh.@D0/\D �…�1. VU0/:

By construction of the homeomorphism f4 , for any face D in Fh at distance 2g� 2

from its associated exceptional maximal face, any connected component of z�ızh.@D0/\

D is either contained in …�1. VU0/ or in D�…�1.U0/. Moreover, by the third property
satisfied by the homeomorphism f4 ,

fD 2D jD\ z� ı zh.@D0/¤∅g � fD 2D jD\ zh.@D0/¤∅g:
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Hence elD0
.zh.D0//� elD0

.z� ı zh.D0// and the set z� ı zh.D0/ does not meet faces of
type .i; elD0

.zh.D0/// for any 0 � i � 2g� 2. It is easy to choose the fi so that the
property � ı h.p/ …….@D0/ holds.

7.3.2 Proof of Lemma 7.26: Case Eh ¤ ∅

Proof During this proof, we need the following lemma, which allows us to deal with
the singular component:

Lemma 7.28 Let h0 be a homeomorphism in Homeo0.S/ that satisfies the hypothesis
of Lemma 7.26. There exist words �1 � � ��4g , �0

1
� � ��0

4g
in ƒ, a geodesic word of the

form �1 � � ��2g
�
0
1 � � ��

0
2g�1 and an integer 0� i �2g�2 such that, for any connected

component zC in Eh0 , either

there exists i 0; 1� i 0 � 2g such that D zC D �i0 � � ��2g
�
0
1 � � ��

0
2g�1�i.D0/;

or there exists i 0; 1� i 0 � 2g such that D zC D �
�1
4g�i0 � � ��

�1
2gC1
�

0
1 � � ��

0
2g�1�i.D0/:

Moreover, in the first case above, the faces that are adjacent to D zC and are not faces of
type .j ; elD0

.zh0.@D0/// for any 0� j � 2g� 2 are the faces

�i0 � � ��2g
�
0
1 � � ��

0
2g�2�i.D0/ and �i0 � � ��2g
�

0
1 � � ��

0
2g�i.D0/:

In the second case above, the faces that are adjacent to D zC and are not faces of type
.j ; elD0

.zh0.@D0/// for any 0� j � 2g� 2 are the faces

��1
4g�i0 � � ��

�1
2gC1
�

0
1 � � ��

0
2g�2�i.D0/ and ��1

4g�i0 � � ��
�1
2gC1
�

0
1 � � ��

0
2g�i.D0/:

Proof Let us denote by zp the vertex of the polygon @D0 such that the point zh0. zp/
belongs to a fundamental domain D1 in D at distance l.h0/ from D0 . Then, by
Lemma 7.21, D1 D �1 � � ��2g


0.D0/, where �1 � � ��2g is a subword of length 2g of
a word �1 � � ��4g in ƒ and �1 � � ��2g


0 is a geodesic word. Suppose that the set Eh0

is nonempty and fix an element zC0 in Eh0 . Let zp0 be the vertex of @D0 whose image
under the homeomorphism zh0 is contained in zC0 . By Lemma 7.21, after interchanging
the roles of �1 � � ��2g and ��1

4g
� � ���1

2gC1
if necessary, we can suppose that zp0 D

��1
i0
0
�1
� � ���1

1
. zp/, where 1� i 0

0
� 2g . Recall that the face

D zC0
D �i0

0
� � ��2g


0.D0/

belongs to Fh0 . Therefore, there exists a subword l1 � � � li of a word in ƒ, with
0� i � 2g�2, such that the face �i0

0
� � ��2g


0l1 � � � li.D0/ is exceptional and maximal
for h0 and the word �i0

0
� � ��2g


0l1 � � � li is geodesic. By Lemma 7.11, the 2g� 1 last
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letters of the word �i0
0
� � ��2g


0l1 � � � li are �0
1
� � ��0

2g�1
, where �0

1
� � ��0

4g
is a word

in ƒ. Hence the word 
 0 can be written 
 0 D 
�0
1
� � ��0

2g�1�i
.

Recall that, by Lemma 7.21, the vertices of the polygon @D0 are the points of the form
��1

i0�1
� � ���1

1
. zp/ or �4g�i0C1 � � ��4g. zp/, where 1 � i 0 � 2g . Hence the faces in D

that contain the image under zh0 of a vertex of the polygon @D0 are the faces

�i0 � � ��2g
�
0
1 � � ��

0
2g�1�i.D0/ and ��1

4g�i0 � � ��
�1
2gC1
�

0
1 � � ��

0
2g�1�i.D0/;

where 1 � i 0 � 2g . Each face of the form D zC , where zC belongs to Eh0 , is one of
these faces.

Fix an element zC of Eh0 . Let us look for the that which are adjacent to D zC and are not
faces of type .j ; elD0

.zh.@D0/// for any 0� j � 2g�2. For ease of notation, suppose
that

D zC D �i0 � � ��2g
�
0
1 � � ��

0
2g�1�i.D0/

for some 1� i 0 � 2g . Recall that the face �i0
0
� � ��2g
�

0
1 � � ��

0
2g�1.D0/ is exceptional

and that the word �i0
0
� � ��2g
�

0
1
� � ��0

2g�1
is geodesic. Therefore, by Lemma 7.11,

one of the following properties holds:

(1) The last letter of the word 
 is �0
4g

and the penultimate letter of 
 is different
from �0

4g�1
.

(2) The concatenation of the last letter of the word 
 and the letter �0
1

is not
contained in any word in ƒ.

First case The last letter of the word 
 is �04g . For any reduced word w either
of length less than i � 1 or of length i � 1 and different from �02g�i � � ��

0
2g�2 , the

concatenation of the 2g� 1 last letters of the word �i0 � � ��2g
�
0
1 � � ��

0
2g�i�1w is not

a subword of a word in ƒ. By Lemma 7.11, the face �i0 � � ��2g
�
0
1 � � ��

0
2g�i�1w.D0/

is not exceptional for such words w .

First subcase The face �i0 � � ��2g
�
0
1 � � ��

0
2g�2.D0/ is exceptional. This face is

necessarily the exceptional maximal face Dex associated to D zC . The faces that share
a vertex in common with the faces D zC and Dex and are at distance less than or equal
to elD0

.zh0.D0// from D0 are the faces of the form

�i0 � � ��2g
�
0
1 � � ��

0
2g�1�k.D0/ or �i0 � � ��2g
 .�

0
4g/
�1
� � � .�02gC1Ck/

�1.D0/;

where 0� k � 2g� 1. Among the faces above, only two of them are adjacent to D zC :

�i0 � � ��2g
�
0
1 � � ��

0
2g�2�i.D0/ and �i0 � � ��2g
�

0
1 � � ��

0
2g�i.D0/:
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By Lemma 7.18, these two faces are the only ones that are adjacent to D zC and that
are not faces of type .j ; elD0

.zh0.D0/// for any 0� j � 2g� 2.

Second subcase The face �i0 � � ��2g
�
0
1 � � ��

0
2g�2.D0/ is not exceptional. Notice that

the word �i0 � � ��2g
�
0
1 � � ��

0
2g is not geodesic: the face �i0 � � ��2g
�

0
1 � � ��

0
2g�1.D0/

is exceptional. The face �i0 � � ��2g
�
0
1 � � ��

0
2g�1.D0/ is the exceptional maximal face

associated to D zC . Hence the faces that are adjacent to D zC and that are not faces of
type .j ; elD0

.zh0.D0/// for any 0� j � 2g� 2 are

�i0 � � ��2g
�
0
1 � � ��

0
2g�2�i.D0/ and �i0 � � ��2g
�

0
1 � � ��

0
2g�i.D0/:

Second case The concatenation of the last letter of the word 
 with the letter �01 is
not contained in any word in ƒ. Then either the face �i0 � � ��2g
�

0
1 � � ��

0
2g�1.D0/

or the face �i0 � � ��2g
�
0
1 � � ��

0
2g.D0/ is the exceptional maximal face associated to

D zC . In either case, the faces that are adjacent to D zC and that are not faces of type
.j ; elD0

.zh0.D0/// for any 0� j � 2g� 2 are

�i0 � � ��2g
�
0
1 � � ��

0
2g�2�i.D0/ and �i0 � � ��2g
�

0
1 � � ��

0
2g�i.D0/:

We now prove Lemma 7.26 in the case Eh ¤∅. The proof is similar to the one in the
first case: we will just indicate how to modify the proof in the case Eh D∅ to obtain a
proof in the case Eh ¤∅.

The construction of the homeomorphism f1 is identical to the construction in the first
case.

The definition of the homeomorphism f2 is also identical if we slightly change the
definition of the set C . Here we denote by C the union of Ef1ıh with the set of lifts zC
of connected components of f1 ı h.….@D0//�….@D0/ such that all the ends of zC
belong either to the same edge in zA, or to two consecutive edges in zA. Note that, by
Lemma 7.28, for any elements zC and zC 0 in Ef1ıh , there exists a deck transformation
t zC zC 0 2 �1.S/ such that

t zC zC 0.D zC /DD zC 0 and ft zC zC 0.z̨D zC /; t zC zC 0.
ž
D zC
/g D fz̨D zC 0 ;

ž
D zC 0
g:

This remark is a justification for the existence of the homeomorphism f2 in this case.

The definition of the homeomorphism f3 has to be slightly modified. Here f3 denotes
a homeomorphism supported in the union of the V˛ with the following properties:

(1) For any edge ˛ in A and any connected component C of f2ıf1ıh.….@D0//\

V˛ whose ends belong to the same connected component of U0\V˛ , f3.C /� VU0 .

(2) For any edge z̨ in zA and any connected component zC of zf2 ı
zf1 ı
zh.@D0/\ zVz̨

that does not meet the edge z̨ , zf3. zC /\ z̨ D∅.
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(3) Let z̨ be an edge in zA and zC be a connected component of zf2 ı
zf1 ı
zh.@D0/\

zVz̨ . Suppose that the connected component zC contains the image under the
homeomorphism zf2 ı

zf1 ı
zh of a vertex of the polygon @D0 and is contained

in the union of the faces in Fh . Notice that all the ends of such a connected
component belong to the same connected component of zVz̨ \…�1.U0/. Then
f3.…. zC //� VU0 .

The definition of the homeomorphism f4 and the rest of the proof are the same as in
the case Eh D∅.

7.4 End of the proof of Proposition 7.1

Proof Let �D elD0
. zf .D0//. By Lemmas 7.22 and 7.26, after possibly composing

the homeomorphism f with 8gC 1 homeomorphisms that are each supported in the
interior of one of the discs of U , we can suppose that the homeomorphism f satisfies
the following properties:

(1) f .p/ …….@D0/.

(2) The set zf .D0/ does not meet faces of type .i; �/, for any index i 2 Œ0; 2g� 2�.

(3) For any fundamental domain D in Ff at distance at most 2g � 3 from an
exceptional maximal face, the set zf .@D0/\D is contained in the interior of
zU0;D , where zU0;D is the lift of U0 with the following properties: it meets D ,
it meets an exceptional maximal face, it does not meet any face of type .j ; �/
for any 0� j � � and it meets only fundamental domains in D at distance less
than or equal to � from D0 .

(4) For any fundamental domain D in Ff at distance 2g� 2 from its exceptional
maximal face, any connected component of zf .@D0/\D is contained either in
…�1. VU0/ or in D�…�1.U0/.

Definition 7.29 Two distinct connected components �1 and �2 of U0�….@D0/ are
said to be adjacent if �1\ �2 is homeomorphic to the interval Œ0; 1�. Two connected
components �1 and �2 of U0�….@D0/ are said to be almost adjacent if there exists
a connected component � of U0 �….@D0/ different from �1 and from �2 that is
adjacent to �1 and to �2 . Then such a connected component � is unique: we call it the
adjacency face of �1 and �2 .

We denote by C0 the set of connected components of f .….@D0//\ VU0 whose ends
belong:
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(1) either to the same connected component of U0�….@D0/,

(2) or to the interior (in the sense interior of a manifold with boundary) of an arc of
the form

@U0\ �1[ �2;

where �1 and �2 are adjacent connected components of U0�….@D0/,

(3) or to the interior of an arc of the form

@U0\ �1[ � [ �2;

where �1 and �2 are connected components of U0 �….@D0/ that are almost
adjacent and whose adjacency face is � .

Suppose that the image under f of the vertex p of ….@D0/ is contained in VU0 . We
now look at the connected components of …�1.U0/\ zf .@D0/ that contain the image
under the homeomorphism zf of a vertex of the polygon @D0 . Denote by zp the vertex
of the polygon @D0 whose image under zf belongs to a face D1 in D such that
l.f /D dD.D0;D1/. Such a point is unique by Lemma 7.21. Let us denote by zU 1

0;0

the connected component of …�1.U0/ that contains the point zf . zp/. Let Dmax be the
face in D that realizes the maximum of dD.D;D0/, where D varies over the faces in
D that meet the disc zU 1

0;0 . The two faces that are adjacent to Dmax and that meet the
disc zU 1

0;0 are closer to D0 than Dmax . Hence the face Dmax is exceptional. As in the
proof of Lemma 7.28, one can prove that there exist words �1 � � ��4g and �0

1
� � ��0

4g

in ƒ and a word 
 in the elements of G such that:

(1) Dmax D �1 � � ��2g
�
0
1
� � ��0

2g�1
.D0/.

(2) The word �1 � � ��2g
�
0
1
� � ��0

2g�1
is geodesic.

(3) The set of vertices of the polygon @D0 is

f��1
i0 � � ��

�1
1 . zp/ j 0� i 0 � 2g� 1g[ f�4g�i0 � � ��4g. zp/ j 0� i 0 � 2g� 1g:

For any 0� i 0 � 2g�1, we denote by zC 1
i0 (respectively zC 2

i0 ) the connected component
of the set zf .@D0/\…

�1.U0/ that contains the point

zp1
i0 D �

�1
i0 � � ��

�1
1
zf . zp/D zf .��1

i0 � � ��
�1
1 . zp//

(respectively the point zp2
i0 D

zf .�4g�i0 � � ��4g. zp//). For any l 2 f1; 2g, we denote by
zU l

0;i0 the connected component of …�1.U0/ that contains the connected component zC l
i0 .

Notice that zU 1
0;i0
D ��1

i0 � � ��
�1
1
. zU 1

0;0
/ and that zU 2

0;i0
D �4g�i0 � � ��4g. zU

1
0;0
/.
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Fix now 0� i 0 � 2g� 1. The faces in D that meet the disc zU 1
0;i0

are the faces of the
form

�i0C1 � � ��2g
�
0
1 � � ��

0
i.D0/ or �i0C1 � � ��2g
 .�

0
4g/
�1
� � � .�02gCiC1/

�1.D0/;

where 1� i � 2g . As in Lemma 7.28, notice that one of the faces

�i0C1 � � ��2g
�
0
1 � � ��

0
2g�1.D0/ or �i0C1 � � ��2g
�

0
1 � � ��

0
2g.D0/

is exceptional.

First case The two faces

�i0C1 � � ��2g
�
0
1 � � ��

0
2g�1.D0/ and �i0C1 � � ��2g
�

0
1 � � ��

0
2g.D0/

are at distance less than � from the face D0 . Then all the faces in D that meet the
disc zU 1

0;i
are at distance less than � from the face D0 .

Second case One of the faces

�i0C1 � � ��2g
�
0
1 � � ��

0
2g�1.D0/ and �i0C1 � � ��2g
�

0
1 � � ��

0
2g.D0/

is at distance greater than � from the face D0 . Consider the set of faces in D that
meet zU 1

0;i0
and are not faces of type .j ; �/, for any 0� j � 2g� 2. By Lemma 7.18,

this set is contained in
fD1

i0;1;D
1
i0;2;D

1
i0;3g;

where this last set consists either of the faces

�i0C1 � � ��2g
 .D0/; �i0C1 � � ��2g
 .�
0
4g/
�1.D0/;

�i0C1 � � ��2g
 .�
0
4g/
�1.�04g�1/

�1.D0/

or of the faces

�i0C1 � � ��2g
 .D0/; �i0C1 � � ��2g
�
0
1.D0/; �i0C1 � � ��2g
 .�

0
4g/
�1.D0/:

The connected component zC 1
i0 is contained in the interior of D1

i0;1 [D1
i0;2 [D1

i0;3 .
Suppose that one of the faces D1

i0;k is at distance greater than or equal to � from D0 .
Then we claim that i 0 D 0 and that two of the faces D1

0;k
are faces of type .0; �/, the

third one being at distance �� 1 from D0 . Notice that this third face is necessarily
one of the faces

�1 � � ��2g
 .D0/ and �1 � � ��2g
 .�
0
4g/
�1.D0/

and that it contains the set zC 1
0

in its interior.
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Let us prove the claim now. Suppose that one of the faces D1
i0;k , with 1 � k � 3,

is exceptional and maximal for f . Then all the faces D1
i0;k , with 1 � k � 3, either

belong to Fh or are faces of type .0; �/ or are at distance greater than � from the
face D0 . Then the set zf .@D0/ would be contained in the disc zU 1

0;i0 , a contradiction.
Moreover, it is not possible that all the D1

i0;k are at distance greater than or equal to �
as the set zf .@D0/ would not meet any of these faces. It remains only one possibility:
two of the faces D1

i0;k are faces of type .0; �/ and the third one is at distance �� 1

from D0 . If i 0 > 0, then the faces D1
i0�1;k , with 1� k � 3, would be all at distance

greater than or equal to � from the face D0 , a contradiction.

Third case One of the faces

�i0C1 � � ��2g
�
0
1 � � ��

0
2g�1.D0/ and �i0C1 � � ��2g
�

0
1 � � ��

0
2g.D0/

is exceptional and maximal for the homeomorphism f . Consider the set of faces in D
that meet zU 1

0;i0
and are not contained in a face in Ff . This set is contained in

fD1
i0;1;D

1
i0;2;D

1
i0;3g;

where this last set consists either of the faces

�i0C1 � � ��2g
 .D0/; �i0C1 � � ��2g
 .�
0
4g/
�1.D0/;

�i0C1 � � ��2g
 .�
0
4g/
�1.�04g�1/

�1.D0/:

or of the faces

�i0C1 � � ��2g
 .D0/; �i0C1 � � ��2g
�
0
1.D0/; �i0C1 � � ��2g
 .�

0
4g/
�1.D0/:

In this case, the ends of the connected component zC 1
i0 is contained in the interior of

D1
i0;1
[D1

i0;2
[D1

i0;3
. Moreover, for any 1� k � 3, the face D1

i0;k
is at distance less

than � from D0 . Notice that

D1
i0;1 D �

�1
1 � � ��

�1
i0 .D

1
0;1/

if the faces appearing in this equality are well-defined.

One can also define faces D2
i0;k

with similar properties. However, all the faces of the
form D2

i0;k
are at distance less than � from the face D0 .

Let us denote by L the subset of f1; 2g � f0; : : : ; 2g � 1g consisting of pairs .l; i 0/
such that the disc zU l

0;i0
meets a face in D at distance greater than or equal to � from

the face D0 .

The faces Dl
i0;k

can be chosen so that the following properties hold:
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(1) Suppose that one of the faces D1
0;k , with 1� k � 3, is at distance � from the

face D0 . Then D1
0;1 is the face among the D1

0;k that is at distance �� 1 from
the face D0 .

(2) For any elements .l1; i 01/ and .l2; i 02/ of L, there exists a deck transformation
that sends the face D

l1

i0
1
;1

to the face D
l2

i0
2
;1

.

In the case where the set L is nonempty, let �min be the image under the projection
… of the interior of zU l

0;i0
\Dl

i0;1
, for some .l; i 0/ 2L. This set is independent of the

chosen pair .l; i 0/ 2L.

D (exceptional maximal face)

zf .@D0/
@ zU0;D

zh
zh

Figure 14: End of the proof of Proposition 7.1

Let h be a homeomorphism supported in VU0 with the following properties:

(1) Take any connected component C in C0 whose ends belong to the same face or
to two adjacent faces. Then h.C / is contained in the interior of

S
� , where the

union is taken over the connected components � of U0�….@D0/ that meet the
ends of C .

(2) For any connected component C in C0 whose ends belong to two almost adjacent
connected components �1 and �2 of U0�….@D0/ and to their adjacency face
� , then h.C /� Vk , with k D �1[ �2[ � .
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(3) Suppose that the point f .p/ belongs to the interior of U0 , that the connected
component of f .….@D0// that contains the image of the vertex of ….@D0/ does
not belong to C0 and that the set L is nonempty. Then the homeomorphism h

satisfies the following properties:

(a) h.f .p// 2 �min .

(b) Take any pair .l; i 0/ in L and any connected component zC of zC l
i0 � zp

l
i0 .

Let C D…. zC / and � be the connected component of U0�….@D0/ that
contains the end of C that meets @U0 . The connected component � is
either almost adjacent or adjacent or equal to �min by the discussion above.
If the set � is either equal to �min or adjacent to �min , then the set h.C / is
contained in the interior of the set � [ �min . If the set � is almost adjacent
to �min , denote by � 0 the adjacency face of � and �min . Then the set h.C /

is contained in the interior of the set � [ � 0[ �min .

By construction and by the discussion above, for any pair .l; i 0/ in L, the set zh. zC l
i0/

is contained in the interior of Dl
i0;1
[Dl

i0;2
[Dl

i0;3
.

We claim that elD0
.zhı zf .D0//� elD0

. zf .D0//�1D��1. This completes the proof
of Proposition 7.1.

First, for any point zy in zf .@D0/ that does not belong to …�1. VU0/, we have zh.zy/D zy
and the point zy belongs neither to an exceptional maximal face nor to a face of type
.0; �/ by the properties satisfied by f .

Let zC be a connected component of zf .@D0/\…
�1.U0/ that is contained in a lift of

some connected component in C0 . Let D be an exceptional maximal face for f . Let
us prove that D\ zh. zC /D∅. Suppose that the lift zU0 of the disc U0 that contains zC
does not meet D . Then, as the homeomorphism h is supported in U0 , this property
holds. Suppose now that the disc zU0 meets D . We now use notation from Lemma 7.18.
The faces D

j
i , for 1 � i � 2g � 2 and j 2 f1; 2g, belong to Ff . By the properties

satisfied by the homeomorphism f , the connected component zC necessarily has its
ends contained in the union of the faces that meet zU0 and do not belong to Ff :

D1
2g�1; D2

2g�1 and D1
2g DD2

2g:

But the connected components …. VD1
2g�1\

zU0/ and …. VD2
2g�1\

zU0/ of U0�….@D0/

are almost adjacent with adjacency face …. VD1
2g\
zU0/. Hence the set zh. zC / is contained

in the interior of the set D1
2g�1[D2

2g�1[D1
2g . In particular, zh. zC /\DD∅. Now, let

D be a fundamental domain in D of type .0; �/. Let us prove that zh. zC /\DD∅. By
the properties satisfied by zf , the set zC does not meet D . The set zh. zC / meets the face
D only in the following case: the two ends of zC belong to two distinct fundamental
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domains that are adjacent to D . However, these two fundamental domains would be at
distance �� 1 from D0 (they cannot be at distance �C 1 from D0 by definition of
�), which would contradict the fact that the fundamental domain D is a face of type
.0; �/.

Suppose now that the point f .p/ belongs to the interior of U0 and that the connected
component of f .….@D0//\U0 that contains the image of the vertex of ….@D0/ does
not belong to C0 . For any pair .l; i 0/ 2 f1; 2g � f0; : : : ; 2g � 1g �L, the set zh. zC l

i0/

is contained in the disc zU l
0;i0 that does not meet any face at distance greater than

or equal to � from D0 . For any pair .l; i 0/ 2 L, the set zh. zC l
i0/ is contained in the

interior of Dl
i0;1 [Dl

i0;2 [Dl
i0;3 . Moreover, the faces Dl

i0;1 , Dl
i0;2 and Dl

i0;3 are at
distance less than � from D0 , except possibly in the case .l; i 0/D .1; 0/. In this last
case, as the connected component zC 1

0 was contained in the interior of D1
0;1 , the set

zh. zC 1
0 / is also contained in the interior of D1

0;1 by construction of h. Now recall that
the face D1

0;1 is at distance �� 1 from D0 in this case.

7.5 Proof of Lemma 7.3

Proof of Lemma 7.3 The proof of this lemma is analogous to the proof of Lemma 6.3.
Let ˇ and 
 be simple closed curves of S that are homotopic and that are not homotopic
to a point. Let us denote by ˛ an edge in A and by ˛0 a simple closed curve isotopic to ˛
and disjoint from ˛ . Let S˛0 be the complement of an open tubular neighbourhood of ˛0

and let S˛ be the complement of an open tubular neighbourhood of ˛ so that VS˛0[ VS˛D
S . Let f be a homeomorphism in Homeo0.S/ with elD0

. zf .D0//� 4g . Throughout
the proof, R denotes a positive constant that will be fixed later. We will use the
following result, which is a consequence of Proposition 3.2 applied to neighbourhoods
of S˛ and of S˛0 : there exists �R > 0 such that, for any homeomorphism h in
Homeo0.S˛/ or in Homeo0.S˛0/ with elD0

.zh.D0//�R, we have FragU .h/� �R .

Let us give the idea of the proof. Let ˛1 and ˛2 (respectively ˛0
1

and ˛0
2

) be the
two connected components of the boundary of S˛ (respectively of S˛0 ). We will
see that, after composing the homeomorphism f with at most 16gC 1 well-chosen
homeomorphisms with fragmentation length (with respect to U ) less than or equal to
�R , we obtain a homeomorphism f2 that sends the curve ˛1 to a curve contained
in the interior of VS˛0 . Then, after composing f2 with a homeomorphism supported
in S˛0 that is equal to f �1

2
on a neighbourhood of f2.˛1/ and whose fragmenta-

tion length is bounded by �R , we obtain a homeomorphism f3 that is equal to the
identity on a neighbourhood of ˛1 and is isotopic to the identity relative to ˛1 (ie,
the homeomorphism zf3 is equal to the identity on a neighbourhood of …�1.˛1/).
By composing f3 with at most two homeomorphisms supported in S˛ or in S˛0
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and with fragmentation length bounded by �R , we obtain a homeomorphism f5 that
pointwise fixes a neighbourhood of the boundary of S˛ and is isotopic to the identity
relative to this boundary. Then the homeomorphism f5 can be written as a product
of a homeomorphism in Homeo0.S˛/ and of a homeomorphism in Homeo0.S˛0/

with disjoint supports. The previous statement applied to these two homeomorphisms
implies that the fragmentation length of f5 is less than or equal to 2�R . Of course,
the constant R will have to be large enough so that this proof works.

Let us give now some details. For any two disjoint subsets A and B of zS , we denote by
ı.A;B/ the number of connected components of …�1.˛1[˛2[˛

0
1
[˛0

2
/ disjoint from

A and from B that separate A and B . Let z̨1 be a connected component of …�1.˛1/

and let �.f / be the maximum of ı. zS 0; z̨1/, where zS 0 varies over all connected
components of …�1.S˛/ or of …�1.S˛0/ that meet zf .z̨1/. As, by hypothesis, we have
elD0

. zf .D0//� 4g , then �.f /� 16g . Indeed, �.f /� 4 elD0
. zf .D0// and the proof

of this last fact is analogous to the proof of the claim length. zf .A//� 2 diamD. zf .D0//

in Section 6. Notice that, if zS 0 is a connected component of …�1.S˛/ or of …�1.S˛0/

such that ı. zS 0; z̨1/D�.f /, then any connected component of zf .z̨1/\ zS 0 has its ends
in the same connected component of @ zS 0 . Let S 0 D …. zS 0/ and S 00 be the surface
S˛ if S 0 D S˛0 , or the surface S˛0 if S 0 D S˛ . Denote by h1 a homeomorphism
supported in S 0 with the following properties:

(1) elD0
.zh1.D0//� 4g .

(2) For any connected component C of f .˛1/\ S 0 whose ends are in the same
connected component of @S 0 and homotopic to a path on the boundary of S 0 ,
h1.C /� VS

00 .

These two properties are compatible because elD0
. zf .D0//� 4g . Notice that we have

elD0
.zh1 ı

zf .D0//� 8g and FragU .h1/� �R if R� 4g . Moreover, for any connected
component zS 0 of …�1.S 0/ with d.z̨; zS 0/D �.f / and for any connected component
zC of zf .z̨/\ zS 0 , zh1. zC /�…

�1. VS 00/. Now, let h2 be a homeomorphism supported in
S 00 with the following properties:

(1) elD0
.zh2.D0//� 8g .

(2) For any connected component C of h1ıf .˛1/\S 00 whose ends are in the same
connected component of @S 00 and homotopic to a path on the boundary of S 00 ,
h2.C /� VS

0 .

These two properties are compatible because elD0
.zh1 ı

zf .@D0//� 8g . Notice that we
have

elD0
.zh2 ı

zh1 ı
zf .@D0//� 16g
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and FragU .h2/� �R if R� 16g . Moreover, we have �.h2 ıh1 ıf /��.f /�2. We
repeat this process at most 8g times so that, after composing the homeomorphism f

with at most 16g homeomorphisms with fragmentation length less than or equal to
�R (by taking R� 28g4g ), we obtain a homeomorphism f1 with �.f1/D 0 and that
satisfies the following inequality:

elD0
. zf1.D0//� 28gC14g

After composing if necessary the homeomorphism f1 with a homeomorphism �1

supported in S˛ that pushes the curve f1.˛1/ into the interior of S˛0 and such that

elD0
.z�1.D0//� 28gC14g;

we obtain a homeomorphism f2 with the following properties:

(1) The homeomorphism f2 sends the curve ˛1 to a curve contained in the interior
of S˛0 .

(2) elD0
. zf2.D0//� 28gC24g .

We then compose the homeomorphism f2 with a homeomorphism �2 supported in
S˛0 with the following properties:

(1) The homeomorphism z�2 is equal to the homeomorphism zf �1
2

on a neighbour-
hood of …�1. zf2.z̨1//.

(2) elD0
.z�2.D0//� 28gC24g .

We obtain a homeomorphism f3 that is equal to the identity on a neighbourhood of
the curve ˛1 and isotopic to the identity relative to this curve. Moreover

elD0
. zf3.D0//� 28gC34g:

We compose this homeomorphism f3 with a homeomorphism �3 that pushes the curve
f3.˛2/ into the interior of S˛0 and that fixes the curve ˛1 to obtain a homeomorphism
f4 . As usual, we require that

elD0
.z�3.D0//� 28gC34g:

Finally, compose the homeomorphism f4 with a homeomorphism �4 supported in S˛0

to obtain a homeomorphism f5 that pointwise fixes a neighbourhood of @S˛ and that
is isotopic to the identity relative to this neighbourhood. Of course, we also require that
elD0

.z�4.D0// � 28gC44g . Hence elD0
. zf5.D0// � 28gC54g . The homeomorphism

f5 is the product of two homeomorphisms with disjoint supports and that are supported
respectively in S˛ and S˛0 . It suffices to take R� 28gC54g to complete the proof of
Lemma 7.3.
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8 Distortion elements with a fast orbit growth

In this section, we prove Theorem 2.12.

First notice that it suffices to prove Theorem 2.12 for sequences .vn/n�1 with the
following additional properties:

(1) The sequence .vn/n�1 is strictly increasing.

(2) The sequence .vnC1� vn/n�1 is decreasing.

Let us prove this. Suppose we have proved Theorem 2.12 for strictly increasing
sequences. If .vn/n�1 is any sequence, it suffices to apply the theorem to the sequence
.supk�n vkC1� 1

2n /n�1 to deduce the general theorem. Suppose now that the theorem
is proved only for sequences that satisfy the two properties above. Let us prove that it is
true for any strictly increasing sequence. Let .vn/n�1 be a strictly increasing sequence
such that the sequence .vn=n/n converges to 0. Let A be the convex hull in R2 of
the set f.n; t/ j n� 1 and t � vng and let wn D supft 2R j .n; t/ 2Ag. The sequence
.wn/n�1 satisfies the two properties above and limn!C1wn=nD 0. Then it suffices
to apply the theorem to this sequence to prove it for the sequence .vn/n�1 .

In what follows, we suppose that .vn/n�1 is a sequence that satisfies the hypothesis of
Theorem 2.12 as well as the two above properties.

Let ADR=Z� Œ�1; 1� and let ˛ be the curve f0g� Œ�1; 1��A. The homeomorphism
f in Homeo0.A; @A/ that we are going to build will satisfy the following property:

There exists x 2 VA such that vnC
1

2n
� p2. zf

n.x//�p2.x/� vn;

where p2W R� .�1; 1/!R denotes the projection. As f is compactly supported, this
guarantees that the property

for all n� 0; ı. zf n.Œ0; 1�� Œ0; 1�//� vn;

holds. Now, let us consider the following embedding of R in VA:

LW R! VADR=Z� .�1; 1/;

x 7! .x mod 1;g.x//;

where g is a continuous strictly increasing function whose limit is 1
2

as x tends to
C1 and whose limit is �1

2
as x tends to �1. We identify a tubular neighbourhood

T of L.R/ with the band R� Œ�1; 1�, where the real line R is identified with the curve
L.R/ via the map L so that, for any integer j , the path fj g � Œ�1; 1� is contained in
˛ . Let h be a homeomorphism of the line L, identified with R, with the following
properties:
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(1) The map x 7! h.x/�x is decreasing on the interval Œ0;C1/ and

lim
x!C1

h.x/�x D 0:

(2) The homeomorphism h is equal to the identity on .�1;�1�.

(3) For any nonnegative integers i and n, hn.i/ … Z.

(4) For any nonnegative integer n, hn.0/D vnC .�n=2
n/, where �n is equal to 1 if

vn is an integer and vanishes otherwise.

The “�n ” in the fourth property makes this property compatible with the third one. Let
f be the homeomorphism defined on T by

f W R� Œ�1; 1�!R� Œ�1; 1�;

.x; t/ 7! ..1� jt j/h.x/Cjt jx; t/:

This extends continuously to a homeomorphism in Homeo0.A; @A/ that we denote
by f by abuse. This extension is possible thanks to the first property satisfied by
h that makes sure that the homeomorphism f is close to the identity when we are
close to the circle R=Z � f1

2
g. The third property satisfied by h implies that, for

any nonnegative integers i , j and n, the curve f n.fig � .�1; 1// is transverse to the
curve fj g � .�1; 1/. For any curve ˇ in the annulus A, let l.ˇ; ˛/ be the number
of connected components of …�1.˛/ met by a lift of ˇ . In order to prove that the
homeomorphism f is a distortion element, the crucial proposition is the following:

Proposition 8.1 Let l be a positive integer and let �l D l.f l.˛/; ˛/. There exist
two homeomorphisms g1 and g2 in Homeo0.A; @A/ supported respectively in the
complement of ˛ and in a tubular neighbourhood of ˛ such that

l..g2 ıg1/
�l�1.f l.˛//; ˛/D 1:

First, let us see why this property implies Theorem 2.12.

Proof of Theorem 2.12 Let U be the open cover of A built at the beginning of
Section 5. By Lemma 5.2, FragU .g1/� 6 and FragU .g2/� 6.

Remark 8.2 Looking closely at the proof of Lemma 5.2, we can see that the upper
bound can be replaced with 3.

By Lemma 5.2, FragU ..g2 ı g1/
�l�1 ı f l/ � 6. Recall that al D aU .f

l/ is the
minimum of the m: log.k/ where there exists a family .hi/1�i�m of homeomorphisms
that are each supported in one of the open sets of U such that f l D h1 ı h2 ı � � � ıhm
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and the cardinality of the set fhp j 1 � p � mg is k . So, for any positive integer l ,
al � .12�l � 6/ log.18/. But

�l

l
D

l.f l.˛/; ˛/

l
�
vl C

1
2l

l
;

where the left-hand side of the inequality converges to 0. Therefore, the sequence
.al= l/l>0 converges to 0. By Proposition 4.1, the homeomorphism f is a distortion
element in Homeo0.A; @A/. Notice that, here, the use of Proposition 4.1 is crucial as
the hypothesis

lim
n!C1

FragU .f
n/ log.FragU .f

n//

n
D lim

n!C1

�n log.�n/

n
D 0

of Theorem 2.11 does not necessarily hold.

Proof of Proposition 8.1 Let �D �l D l.f l.˛/; ˛/. In what follows, everything will
take place in the tubular neighbourhood T of the line L that is identified to R� Œ�1; 1�.
Therefore, we can “forget” the annulus A. Let us give briefly the idea of the proof. As
the curve g.f0g � .�1; 1// has length � with respect to ˛ , we have no choice: in the
product .g2 ıg1/

��1 , each factor must push this curve to the left and it must go across
a curve of the form fig� .�1; 1/ at each step (under the action of each factor g2 ıg1 ).
The curves g.fig � .�1; 1// are less dilated and must come back to their initial places
in � steps. Then we must “make them wait” so that they do not come back too fast: if
they come back before the time �, they go too far to the left, which we want to avoid.
On Figure 15, we represented the action of g2 ıg1 on f l.˛/ on an example.

Let N be the minimal nonnegative integer such that

f l.N; 0/ 2 ŒN;N C 1/� f0g �R� Œ�1; 1��A:

In the case of Figure 15, this integer is equal to 4. Let us take a real number � in .0; 1
2
/

such that, for any integer i in Œ0;N �, any connected component of

f l.˛/\ .Œi � �; i C ��� Œ�1; 1��f l.fig � .�1; 1//

joins both boundary components of Œi � �; iC ��� .�1; 1/. The transversality property
satisfied by f enables us to find such a real number � . Let � > 0 such that, for any
integer i in Œ0;N �, any connected component of

f l.˛/\ Œi C �
4
; i C 1� �

4
�� Œ�1; 1�

is contained in ŒiC �
4
; iC1� �

4
�� .�1C�; 1��/. Let us start with the construction of

the homeomorphism g2 . Let g2 be a homeomorphism with the following properties:
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(1) The homeomorphism g2 is supported in
S

0�i�N .i � �; i C �/� .�1; 1/.

(2) Denote by Pi the connected component of Œi��; iC���Œ�1; 1��g.fig�Œ�1; 1�/

that contains fi � �g � Œ�1; 1� and denote by Ki a topological closed disc
contained in Pi that contains the connected components of

.f l.˛/\ Œi � �; i C �
2
�� .�1; 1//�f l.fig � Œ�1; 1�/:

Then for all i , g2.Ki/� Œi � �; i �
�
2
�� .�1C �; 1� �/.

(3) The homeomorphism g2 globally preserves each connected component of
g.˛/\ Œi � �; i C ��� .�1; 1/.

g2 ıg1

g2 ıg1

g2 ıg1

f l .f0g � Œ�1; 1�/

f l .f1g � Œ�1; 1�/

f l .f2g � Œ�1; 1�/

f l .f3g � Œ�1; 1�/

f l .f4g � Œ�1; 1�/

f l .f5g � Œ�1; 1�/

f0g� Œ�1;1� f1g� Œ�1;1� f2g� Œ�1;1� f3g� Œ�1;1� f4g� Œ�1;1� f5g� Œ�1;1�

Figure 15: The action of g2 ıg1

Before defining g1 , we first need to build a sequence of integers .ni/0�i�N . For any
integer i between 0 and N , let:
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Ai D

�
j 2 Œ0;N �

ˇ̌̌̌
f l.fj g � Œ�1; 1�/\fig � Œ�1; 1�¤∅
f l.fj g � Œ�1; 1�/\fi C 1g � Œ�1; 1�D∅

�
Let

i0 Dmaxfi; fig � Œ�1; 1/\f l.f0g � .�1; 1//¤∅g D �� 1:

The sets A0;A1; : : : ;Ai0�1 are all empty but we will see that, for any integer N �m�

i0 , the set Am is nonempty. In the case of Figure 15, the sets A0 , A1 and A2 are empty,
A3 D f0; 1g and A4 D f2; 3; 4g. More generally, the family .Ai0

;Ai0C1; : : : ;AN / is
a partition of f0; 1; : : : ;N g such that: if i0 �m�m0 �N , then any integer in Am is
smaller than any integer in Am0 . Let us prove that if, for an integer i between 0 and
N � 1, the set Ai is nonempty, then the set AiC1 is nonempty. Notice that, for an
integer j in the interval Œ0;N �,

l.f l.fj g � .�1; 1//; ˛/D bhl.j /c� j C 1

by construction of f . As the map x 7! hl.x/�x is decreasing by construction of h,
then the map

j 7! l.f l.fj g � .�1; 1//; ˛/

is decreasing on Œ0;N �. Let j Dmax.Ai/. As

l.f l.fj C 1g � .�1; 1//; ˛/� l.f l.fj g � .�1; 1//; ˛/;

then the curve f l.fj C 1g � .�1; 1// does not meet the curve fi C 2g � Œ�1; 1�. The
integer j C 1 belongs to AiC1 which is nonempty. For any integer i between i0 and
N , let

Ai D fj .i/; j .i/C 1; : : : ; j .i C 1/� 1g:

We define by induction a finite sequence of integers .ni/0�i�N :

(1) If i < i0 , we set ni D 1.

(2) Otherwise, assuming that the nk , for k < i , have been defined, we set

ni D ��

i�1X
kDj.iC1/�1

nk :

The integer ni will represent the number of iterations of g2 ı g1 necessary for a
compact set in a neighbourhood of fi C 1g � .�1; 1/ to become disjoint from the set
.i; i C 1/ � .�1; 1/. For any 0 � j � N , let i.j / be the unique integer such that
j 2 Ai.j/ . After a number of iterations of g2 ıg1 that is less than or equal to ni.j/ ,
the curve f l.fj g � .�1; 1// will become disjoint from fi.j /g � .�1; 1/. Then, after
ni.j/�1 iterations, it will cross the curve fi.j /�1g�.�1; 1/ and so on. . . . For instance,
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in the case of Figure 15, n0 D n1 D n2 D 1, n3 D 2 and n4 D 4. Let us prove by
induction that, for any integer i � i0 ,

i�1X
kDj.i/

nk < �:

This will prove also that the integers ni are positive. If i D i0D ��1, then, for j < i0 ,
the set Aj is empty and we have

��

i0�1X
kD0

nk D �� i0 > 0:

The property holds for i D i0 . Suppose that the property holds for any integer k

between i0 and i given between 0 and N � 1. Then

iX
kDj.iC1/

nk D ��

i�1X
kDj.iC1/�1

nk C

i�1X
kDj.iC1/

nk D �� nj.iC1/�1 < �

because nj.iC1/�1 > 0 by the induction hypothesis. The property is proved.

For any integer j between 0 and N , notice that, by construction, there is only one
connected component of

g.fj g � Œ�1; 1�/\
[

0�i�N

Œi C �
4
; i C 1� �

4
�� .�1; 1/

that does not join two distinct connected components of the boundary of[
0�i�N

Œi C �
4
; i C 1� �

4
�� .�1; 1/:

We denote this connected component by Cj . Notice that

Cj � Œi.j /C
�
4
; i.j /C 1� �

4
�� .�1; 1/:

Now, we can build an appropriate homeomorphism g1 . Let g1 be a homeomorphism
that is supported in[

0�i�N

.i C �
4
; i C 1� �

4
/� Œ�1; 1��R� Œ�1; 1��A

and that satisfies the following properties for any integer i between 0 and N :
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(1) The homeomorphism g1 globally preserves each connected component of
f l.˛/\ Œi C �

4
; i C 1� �

4
�� Œ�1; 1� that joins the two boundary components of

Œi C �
4
; i C 1� �

4
�� .�1; 1/.

(2) For any integer j in Ai and any integer r < ��
i�1P
kDj

nk ,

gr
1.Cj /\ .i � �; i C �/� Œ�1; 1�D Cj \ .i � �; i C �/� Œ�1; 1�:

(3) For any integer j in Ai , the following inclusion holds:

g
��

Pi�1
kDj nk

1
.Cj /�Ki

(notice that these properties are compatible as ��
i�1P
kDj

nk increases with j and,
moreover,

��

i�1X
kDj

nk � ni

by definition of ni ).

(4) The following inclusion holds:

g
ni

1
.ŒiC �

4
; iC1� �

2
�� .�1C�; 1��//� ŒiC �

4
; iC �

2
/� .�1C�; 1��/\Ki

(5) For any connected component C of f l.˛/\ Œi C �
4
; i C 1� ��� .�1; 1/ that

joins the two boundary components of Œi C �
4
; i C 1� ��� .�1; 1/, we have

for all r < ni ; gr
1.C /\ .i � �; i C �/� Œ�1; 1�D C \ .i � �; i C �/� Œ�1; 1�:

(6) For any integer r < ni , the set gr
1
.ŒiC1� �; iC1� �

4
�� Œ�1; 1�/ does not meet

the square Œi; i C ��� Œ�1; 1�.

The second and the third above properties give the speeds with which we push back the
components Cj : the third property means that the piece Cj is pushed back in a Ki

after time ��
Pi�1

kDjC1 nk and the second condition implies that it cannot be pushed
back before this time. The properties 4, 5 and 6 give the exact time necessary to pass
through Œi; i C 1�� .�1; 1/.

Now, we prove that, for homeomorphisms g1 and g2 with the properties given above,
we have

l..g2 ıg1/
��1.f l.˛//; ˛/D 1:

Let j be an integer between 0 and N and let i D i.j /. We denote by j̨ the curve
fj g � Œ�1; 1�. Let us prove that, for any j 0 2 Œj � 1; i � 1� and any

��

j 0X
kDj

nk > r � ��

j 0C1X
kDj

nk ;
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we have l..g2 ı g1/
r ı f l. j̨ /; ˛/ D l.f l. j̨ /; ˛/ � .i � j 0 � 1/. By the two first

properties satisfied by g1 and the third property satisfied by g2 , we have, for any
positive integer r which is less than ��

Pi�1
kDj nk ,

.g2 ıg1/
r .f l. j̨ /\ Œ0; i C ��� Œ�1; 1�/D f l. j̨ /\ Œ0; i C ��� Œ�1; 1�;

.g2 ıg1/
r .f l. j̨ //D gr

1.f
l. j̨ //:

This implies the above property for j 0 D i � 1. Therefore

g1 ı .g2 ıg1/
��

Pi�1
kDj nk�1

ıf l. j̨ /D g
��

Pi�1
kDj nk

1
.f l. j̨ //:

The third property satisfied by the homeomorphism g1 implies that the intersection
of the above set with Œi � �;C1/� Œ�1; 1� is contained in Ki . Therefore, the second
property satisfied by the homeomorphism g2 implies that

.g2 ıg1/
��

Pi�1
kDj nk ıf l. j̨ /� Œj ; i �

�
2
�� Œ�1C �; 1� ��:

All of the extremal part of the curve has been put back in Œi � �; i � �
2
�� .�1; 1/. The

remainder has not moved. Indeed

.g2 ıg1/
��

Pi�1
kDj nk .f l. j̨ /\ Œj ; i � ��� Œ�1; 1�/D f l. j̨ /\ Œj ; i � ��� Œ�1; 1�

l..g2 ıg1/
��

Pi�1
kDj nk ıf l. j̨ /; ˛/D i � j D l.f l. j̨ /; ˛/� 1:

It suffices now to repeat this argument. Suppose that, for an integer j 0 between j C 1

and i � 1,

.g2 ıg1/
��

Pj 0
kDj

nk ıf l. j̨ /� Œj ; j
0
C 1� �

2
�� .�1C �; 1� �/

.g2 ıg1/
��

Pj 0
kDj

nk .f l. j̨ /\ Œj ; j
0
C 1� ��� Œ�1; 1�/

D f l. j̨ /\ Œj ; j
0
C 1� ��� Œ�1; 1�

We saw that this property holds for j 0 D i � 1. Supposing that this property holds for
an integer j 0 , we prove now that it holds for the integer j 0�1 and also that, under this
hypothesis, for any integer r greater than ��

Pj 0

kDj
nk and smaller than ��

Pj 0�1

kDj
nk ,

l..g2 ıg1/
r
ıf l. j̨ /; ˛/D l.f l. j̨ /; ˛/� .i � j 0/:

By the fifth and the sixth properties satisfied by the homeomorphism g1 and the third
property satisfied by the homeomorphism g2 , for any integer 0� r < nj 0 ,
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.g2 ıg1/
r
ı .g2 ıg1/

��
Pj 0

kDj
nk .f l. j̨ /\ Œ0; j

0
C ��� Œ�1; 1�/

D f l. j̨ /\ Œ0; j
0
C ��� Œ�1; 1�

.g2 ıg1/
r
ı .g2 ıg1/

��
Pj 0

kDj
nk ıf l. j̨ /D gr

1.g2 ıg1/
��

Pj 0
kDj

nk .f l. j̨ //:

Therefore

g1ı.g2ıg1/
nj 0�1

ı.g2ıg1/
��

Pj 0
kDj

nk .f l. j̨ //D g
nj 0

1
.g2ıg1/

��
Pj 0

kDj
nk .f l. j̨ //;

so, by the fourth property satisfied by the homeomorphism g1 , the intersection of this
set with the half-band Œj 0C�;C1/� Œ�1; 1� is contained in the set Kj 0 . By the second
property satisfied by the homeomorphism g2 :

.g2 ıg1/
nj 0 ı .g2 ıg1/

��
Pj 0

kDj
nk ıf l. j̨ /� Œj ; j

0
�
�
2
�� .�1C �; 1� �/

and, moreover,

.g2 ıg1/
nj 0 ı .g2 ıg1/

��
Pi�1

kDj nk .f l. j̨ /\ Œj ; j
0
� ��� Œ�1; 1�/

D f l. j̨ /\ Œj ; j
0
� ��� Œ�1; 1�:

This completes the induction argument. One can prove, as before, that, for any
� > r > �� nj ,

.g2 ıg1/
r
ıf l. j̨ /D g

r��Cnj
1

.g2 ıg1/
��nj .f l. j̨ //:

This implies that l..g2ıg1/
��1ıf l. j̨ /; ˛/D 1, which is what we wanted to prove.

9 Generalization of the results

In this section, we will briefly generalize the results in two directions. First, we could
look at other growth speeds of words than the linear speed. Moreover, we can also
consider finite families of elements instead of looking at one element, and define a
notion of distortion for this situation. The results are analogous to those we stated
before. In what follows, let .wn/n�0 be a sequence of positive real numbers that tends
to C1. Let us start with a definition:

Definition 9.1 Let G be a group and g be an element of G . The element g is said
to be .wn/n�0 –distorted in G if and only if there exists a finite set G in G such that:

(1) The element g belongs to the group generated by G .

(2) The inferior limit of the sequence .lG.gn/=wn/ is 0.
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This notion of distortion is interesting only if lim supn!C1wn=n¤C1: otherwise,
any element of G is .wn/n�0 –distorted. Moreover, this notion depends only on the
equivalence class of .wn/n�0 for the following equivalence relation:

.!n/� .�n/

” there exist C > 0;C 0 � 0 such that 8n� 0;
1

C
�n�C 0 � !n � C �nCC 0:

Then, one can prove the following theorems:

Proposition 9.2 Let D be a fundamental domain of zS for the action of �1.S/. If
a homeomorphism f in Homeo0.S/ (respectively in Homeo0.S; @S/) is .wn/n�0 –
distorted in Homeo0.S/ (respectively in Homeo0.S; @S/), then

lim inf
n!C1

ı. zf n.D//

wn
D 0:

Theorem 9.3 Let f be a homeomorphism in Homeo0.S/ or Homeo0.S; @S/. If

lim inf
n!C1

ı. zf n.D// log.ı. zf n.D///

wn
D 0;

then f is .wn/n�0 –distorted in Homeo0.S/ or Homeo0.S; @S/, respectively.

Theorem 9.4 Let .vn/n�0 be a sequence of positive real numbers such that

lim inf
n!C1

vn

wn
D 0:

Then there exists a homeomorphism f in Homeo0.R=Z� Œ0; 1�;R=Z� f0; 1g/ such
that:

(1) For any n� 0, ı. zf n.Œ0; 1�� Œ0; 1�//� vn .

(2) The homeomorphism f is .wn/n�0 –distorted in

Homeo0.R=Z� Œ0; 1�;R=Z� f0; 1g/:

For any positive integer k , we denote by Fk the free group on k generators. Let
a1; a2; : : : ; ak be the standard generators of this group and A be the set of these
generators.

Definition 9.5 Let G be a group generated by a finite set G . A k –tuple .f1;f2; : : : ;fk/

is said to be distorted if the map Fk ! G , which sends the generator ak to fk , is
not quasi-isometric for the distances dA and dG . More generally, for any group G , a
k –tuple .f1; f2; : : : ; fk/ is said to be distorted if there exists a subgroup of G that is
finitely generated, that contains the elements fi , and in which this k –tuple is distorted.
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One can prove the following theorem for a compact surface S :

Theorem 9.6 Let D be a fundamental domain of zS for the action of �1.S/. Let
.f1; f2; : : : ; fk/ be a k –tuple of homeomorphisms of S . Suppose that there exists a
sequence of words .mn/n�0 on the fi whose sequence of lengths .l.mn//n tend to
C1 such that

lim
n!C1

ı.mn.D// log.ı.mn.D///

l.mn/
D 0:

Then the k –tuple .f1; f2; : : : ; fk/ is distorted.
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