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Distortion elements for
surface homeomorphisms

EMMANUEL MILITON

Let S be a compact orientable surface and f* be an element of the group Homeog (.S)
of homeomorphisms of S isotopic to the identity. Denote by ]7 a lift of f to the
universal cover S of S. In this article, the following result is proved: If there exists a
fundamental domain D of the covering S — S such that

1
lim —d,log(d,) =0,
n

n——+o0o

where d, is the diameter of ]7 "(D), then the homeomorphism f is a distortion
element of the group Homeog(.S).

37C85

1 Introduction

Given a compact manifold M , we denote by Diffy(M) the identity component of
the group of C’—diffeomorphisms of M . A way to understand this group is to try to
describe its subgroups. In other words, given a group G, does there exist an injective
group morphism from the group G to the group Diffy(M)? In case the answer is
positive, one can try to describe the group morphisms from the group G to the group
Diffy (M) (ideally up to conjugacy, but this is often an unattainable goal).

The concept of distortion element allows one to obtain rigidity results on group mor-
phisms from G to Diffj(M). It will provide some very partial answers to these
questions. Here is the definition. Remember that a group G is finitely generated if there
exists a finite generating set G: any element g in this group is a product of elements
of G and their inverses, g = sfl ;2 -85, where the s; are elements of G and the ¢;
are equal to +1 or —1. The smallest integer »n in such a decomposition is denoted
by /g(g). The map /g is invariant under inverses and satisfies the triangle inequality
lg(gh) <Ig(g) + lg(h). Therefore, for any element g in the group G, the sequence
(Ig(g™))n>0 is sub-additive, so the sequence (/g(g")/n), converges. When the limit
of this sequence is zero, the element g is said to be distorted or a distortion element

in the group G . Notice that this notion does not depend on the generating set G. In
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other words, this concept is intrinsic to the group G. The notion extends to the case
where the group G is not finitely generated. In this case, an element g of the group G
is distorted if it belongs to a finitely generated subgroup of G in which it is distorted.
The main interest of the notion of distortion is the following rigidity property: for
any group morphism ¢: G — H, if an element g is distorted in the group G, then
its image under ¢ is also distorted. Suppose that the group H does not contain any
distortion element other than the identity element in H and that the group G contains
a distortion element different from the identity. Then such a group morphism cannot
be an embedding: the group G is not a subgroup of H.

Let us give now some simple examples of distortion elements.

(1) In any group G, the torsion elements, ie, those of finite order, are distorted.

(2) In free groups and free abelian groups, the only distorted element is the identity
element.

(3) The simplest examples of groups which contain a distortion element which is
not a torsion element are the Baumslag—Solitar groups. These groups have the
following presentation:

BS(1, p) = {a,b | bab™" = a?)

Then, for any integer 7, the relation #”ab™" = a?" holds. Taking G = {a, b}
as a generating set for this group, we have Ig(a?") < 2n + 1: the element a is
distorted in the group BS(1, p) if |p| = 2.

(4) A group G is said to be nilpotent if the sequence of subgroups (Gp),>o of
G defined by Gg = G and G, 41 = [Gy, G] (this is the subgroup generated
by elements of the form [g,, g] = g,,ggn_lg_1 , where g, € G, and g € G)
stabilizes and is equal to {1} for a sufficiently large n. A typical example of a
nilpotent group is the Heisenberg group, which is the group of upper triangular
matrices whose diagonal entries are 1 and other entries are integers. In a nilpotent
non-abelian group N, one can always find three distinct elements a, b and ¢
different from the identity such that [a, b] = ¢ and the element ¢ commutes with
a and b. In this case, we have ¢ = [a", b"] so that, in the subgroup generated
by a and b (and also in N), the element ¢ is distorted: I{a,b}(c”z) <d4n.

(5) A general theorem by Lubotzky, Mozes and Raghunathan implies that there
exist distortion elements (and even elements with a logarithmic growth) in some
lattices of higher rank Lie groups, for instance in the group SL,(Z) for n > 3.
In the case of the group SL,(Z), one can even find a generating set consisting
of distortion elements.
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(6) In mapping class groups (see Farb, Lubotzky and Minsky [6]) and in the group
of interval exchange transformations (see Novak [22]), any distorted element is
a torsion element.

Let us consider now the case of diffeomorphisms groups. The following theorem has
led to progress on Zimmer’s Conjecture. Let us denote by S' a compact surface without
boundary endowed with a probability measure area with full support. Let us denote
by Diff! (S, area) the group of C'—diffeomorphisms of the surface S that preserve
the measure area. Then we have the following statement:

Theorem 1 (Polterovich [23], Franks and Handel [9]) If the genus of the surface S is
greater than one, any distortion element in the group Diff! (S, area) is a torsion element.

As nilpotent groups and SL,(Z) have some non-torsion distortion elements, they
are not subgroups of the group Diff! (S, area). A natural question now is whether
these theorems can be generalized in the case of more general diffeomorphisms or
homeomorphisms groups (with no area-preservation hypothesis). Unfortunately, one
may find lots of distorted elements in those cases. The most striking example of this
phenomenon is the following theorem by Calegari and Freedman concerning the group
of homeomorphisms of the d —dimensional sphere s4.

Theorem 2 (Calegari and Freedman [5]) For any integer d > 1, every element in the
group Homeoy(S9) is distorted.

In the case of a higher regularity, Avila proved in [2] that any element in Diffg° (S 1) for
which arbitrarily large iterates are arbitrarily close to the identity in the C°°—topology
(such an element will be said to be recurrent) is distorted in the group Diffy° (Sh. We
obtained the following result (see Militon [20]):

Theorem 3 For any compact manifold M without boundary, any recurrent element
in Diffg° (M) is distorted in this group.

For instance, irrational rotations of the circle or of the 2—dimensional sphere or transla-
tions of the d —dimensional torus are distorted. More generally, take any manifold that
admits a non-trivial C® circle action. Then there exist non-trivial distortion elements
in the group of C°°—diffeomorphisms of this manifold. Notice that, thanks to the
Anosov—Katok method (see Herman [13], and Fathi and Herman [7]), we can build
recurrent elements in the case of the sphere or of the 2—dimensional torus that are not
conjugate to a rotation.

Anyway, we could not hope for a result analogous to the theorem by Polterovich,
Franks and Handel, at least in the C'! category. Indeed, we will see that the Baumslag—
Solitar group BS(1,2) embeds in the group Diff(l) (M) for any manifold M (this was
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indicated to me by Isabelle Liousse). Identify the circle S! with R U {oo}. Then
consider the (analytical) circle diffeomorphisms a: x — x + 1 and b: x +— 2x. The
relation hab~! = a? is satisfied and, therefore, the two elements ¢ and b define an
action of the group BS(1,2) on the circle. By thickening the point at infinity (ie, by
replacing the point at infinity with an interval), we obtain a compactly supported action
of BS(1,2) on R. This last action can be made C 1 Finally, by a radial action, we
have a compactly supported C! action of BS(1,2) on R?. By identifying an open
disc of a manifold with R?, we get an action of the Baumslag—Solitar group on any
manifold. This gives some non-recurrent distortion elements in the group Diff(l) (M)
for any manifold M .

In the case of diffeomorphisms, it is difficult to approach a characterization of distortion
element as there are many obstructions to being a distortion element (for instance, the
differential cannot grow too fast along an orbit, the topological entropy of the diffeo-
morphism must vanish). On the contrary, in the groups of surface homeomorphisms,
there is only one known obstruction to being a distortion element. We will describe it
in the next section.

In this article, we will try to characterize geometrically the set of distortion elements
in the group of homeomorphisms isotopic to the identity of a compact orientable
surface. The theorem we obtain is a consequence of a result that is valid on any
manifold and proved in the fourth section. This last result has a major drawback:
it uses the fragmentation length, which is not well understood except in the case of
spheres. Thus, we will try to connect this fragmentation length to a more geometric
quantity: the diameter of the image of a fundamental domain under a lift of the given
homeomorphism. It is not difficult to prove that the fragmentation length dominates this
last quantity: this will be treated in the third section of this article. However, conversely,
it is more difficult to show that this last quantity dominates the fragmentation length.
In order to prove this, we will make a distinction between the case of surfaces with
boundary (Section 5), which is the easiest, the case of the torus (Section 6) and the
case of higher genus closed surfaces (Section 7). The last section contains examples
of distortion elements in the group of homeomorphisms of the annulus for which the
growth of the diameter of a fundamental domain is “fast”.

2 Notation and results

Let M be a manifold, possibly with boundary. We denote by Homeoy (M) (respec-
tively Homeog (M, dM)) the identity component of the group of compactly supported
homeomorphisms of M (respectively of the group of homeomorphisms of M that
pointwise fix a neighbourhood of the boundary dM of M).
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Definition 2.1 Given two homeomorphisms f and g of M and a subset 4 of M,
an isotopy between f and g relative to A4 is a continuous path of homeomorphisms
(f?)¢ef0,17 that pointwise fix 4 such that fo = f and fi = g. Anisotopy between f
and g is an isotopy relative to the empty set. For a subset 4 of M, we denote by A
its interior and by A4 its closure.

In what follows, S denotes a compact orientable surface, possibly with boundary,
different from the disc and from the sphere. We denote by I1: S — S the universal
cover of S. The surface S is seen as a subset of the Euclidean plane R? or of the
hyperbolic plane H? so that the deck transformations are isometries for the Euclidean
metric or the hyperbolic metric. We endow the surface S with this metric. We identify
the fundamental group 71 (S) of the surface S with the group of deck transformations
of the covering II: S — S. For any subset A of the hyperbolic plane H? (respectively
of the Euclidean plane R?), we denote by §(A4) the diameter of A for the hyperbolic
distance (respectively the Euclidean distance).

Definition 2.2 For any homeomorphism f of S, a lift of f is a homeomorphism F
of § that satisfies
Mo F= foll.

For any isotopy (f¢)sefo,17> @ lift of (f¢)se[0,1] is a continuous path (F¢);e[o,1] of
homeomorphisms of S such that, for any ¢, the homeomorphism F; is a lift of the
homeomorphism f;.

For any homeomorphism f* in Homeog(S), take an isotopy between the identity and
/. Consider a lift of this isotopy which is equal to the identity for 1 = 0. We denote
by f the time 1 of this lift. If moreover the boundary of S is nonempty and the
homeomorphism f belongs to Homeog (S, d.5), the homeomorphism f is obtained
by lifting an isotopy relative to the boundary 9S. If there exists a disc D? embedded
in the surface S that contains the support of the homeomorphism f, we require that
the support of f is contained in IT~1(D?).

Claim Except in the cases of the groups Homeog (T?) and Homeog ([0, 1] x S1), the
homeomorphism f is unique.

Proof This is a consequence of a theorem by Hamstrom (see [11]): If S is a surface
without boundary of genus greater than 1, then the topological space Homeog(S) is
simply connected. Moreover, if S is a surface with nonempty boundary, the topological
space Homeoq (S, dS) is simply connected. Finally, let us prove the claim in the case
of an element f in Homeog(S) for a surface S with nonempty boundary. The double
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DS’ of a surface S’ with nonempty boundary is the surface obtained from S’ x{—1, 1}
by identifying S’ x {—1} with S’ x {1}. Take two lifts F; and F, of f to S as
above. Each homeomorphism F; canonically induces a homeomorphlsm called the
double of F;, on the double of S. Observe that the surface DS is a covering space
of the surface DS. Moreover, the double of F; and the double of F, are lifts of the
double of the homeomorphism f. Hence the double of F; is equal to the double of
F, by Hamstrom’s Theorem. This proves the claim. a

Notice that, for any deck transformation y € 71(S), and any homeomorphism f in
Homeog(S),

yof=/foy.
Indeed, take a lift ]7; of an isotopy between the identity and a homeomorphism f .

Then, for any y € m1(S), the path ¢ — f; oyo f;_l is continuous with values in the
discrete space of deck transformations: this path is constant.

Definition 2.3 We call a fundamental domain of S for the action of 71(S) any
compact connected subset D of S that satisfies the following properties:
() II(D) =
(2) For any deck transformation y in 7 (S) different from the identity, the interior
of D is disjoint from the interior of y (D).

The main theorem of the present article is a partial converse to the following property
(observed by Franks and Handel in [9, Lemma 6.1]):

Proposition 2.4 Denote by D a fundamental domain of S for the action of (S). If
a homeomorphism f in Homeog(S) (respectively in Homeoq (S, 0.5)) is a distortion
element in Homeog(S) (respectively in Homeog (S, 0S) ), then

; 8(f"(D))
m ———

n——+o0o n

=0.

Remark 2.5 In the case where the surface S under consideration is the torus T2 or
the annulus [0, 1]x S!, the conclusion of this proposition is equivalent to saying that
the rotation set of " is reduced to a single point (see Misiurewicz and Ziemian [21] for
a definition of the rotation set of a homeomorphism of the torus isotopic to the identity;
the definition is analogous in the case of the annulus). This proposition provides
examples of non-distorted elements. For instance, consider the homeomorphism F of
R? commuting to integral translations defined by
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on the unit square. This homeomorphism is a lift of a homeomorphism f of the
torus T 2. Notice that the point (0, 0) is fixed under the homeomorphism F whereas
F ”(%, 0) = (%, 5). Hence the conclusion of the proposition does not hold and the
homeomorphism f is not distorted. Of course, the rotation set of the homeomorphism
f is not reduced to a point: it is equal to [0, %] x {0}.

Proof Let f be adistortion element in Homeog (S) (respectively in Homeog (S, 0.5)).
Denote by

gz{glnga---agP}

a finite subset of Homeoq(S) (respectively of Homeog (S, d5)) such that:

(1) The homeomorphism f belongs to the group generated by G.
(2) The sequence (Ig(f")/n),>1 converges to 0.

Then we have a decomposition of the form f” = g;, 0g;,0---0g;, where I, =Ig(f™).
This implies the following equality: /o f" =g; 0gj,0---0g;, , where [ is an isometry
of §. Let us take

w= max _d(¥,g;i(X)).

1<i<p,XeS

For any index i and any deck transformation y in 1(S), y 0 g; = g; oy and the
distance d is invariant under deck transformations. Thus  is finite. Then, for any two
points X and y of the fundamental domain D, we have

d(f" ), (7)) =d(I o (). 1o f"(3))
<d(Io f"%),%)+dF ) +d o f"(5),7)
<hipn+38(D)+Inp.

This implies the proposition, by sublinearity of the sequence (/,);>0- a
The main theorem of this article is the following:

Theorem 2.6 Let f be a homeomorphism in Homeog(S) or Homeog (S, 95). If

fiming 8" (D) logB(/" (D)) _

n——+00 n

07

then f is a distortion element in Homeoy(S) or Homeoy (S, 9S), respectively.
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Remark 2.7 The hypothesis
i 8" (D)) log(8(/™ (D)) _

n——+o0o n

0

is independent of the chosen fundamental domain D, as we will see in the next section.
Thus, it is invariant under conjugation.

Definition 2.8 Let X and Y be topological spaces. A continuous map f: X — X
is said to be semi-conjugate to a continuous map g: ¥ — Y if there exists an onto
continuous map /: X — Y such that Af = gh.

Let us give some examples of homeomorphisms of the torus or of the annulus for which
this theorem can be applied.

(1) Of course, the rotations of the annulus and the translations of the torus satisfy
the hypothesis of this theorem. Actually, for any homeomorphism f* of the torus
(respectively of the annulus) that is semi-conjugate to a translation (respectively
a rotation), the sequence (§( f "(D)))n is bounded: the homeomorphism f is
distorted.

(2) The homeomorphisms that are C°—recurrent (in the sense that arbitrarily large
powers of these homeomorphisms are arbitrarily close to the identity) satisfy the
hypothesis of this theorem. In particular, the examples given after the statement
of Theorem 3 satisfy the hypothesis of Theorem 2.6. However, we already knew
that these homeomorphisms were distorted by Theorem 3.

(3) Tobias Jiger has built examples of homeomorphisms f in Homeog(T?2) that
are not semi-conjugate to a translation, and such that the sequence (§( f (D))
is bounded (see [14, Proposition 2.1]). His examples are skew-products over a
Denjoy counterexample. By Theorem 2.6, such homeomorphisms are distorted
in Homeog (T ?).

(4) In Section 8, for any sequence (vy,), of positive numbers such that

we will construct a simple example of homeomorphism f* of the annulus such
that, for any n,

U <8(f™(D)) < vn+1+8(D).

Theorem 2.6 can be applied in the case where lim;,—, 4o v, log(v,)/n = 0.
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(5) Recently, Koropecki and Tal built a C°° (area-preserving) diffeomorphism of
the torus T2 such that every orbit is bounded and lim,—s 4 o0 8( f "(D))/n=0
but the sequence (§( f "(D)))y is unbounded (see [17, Theorem 3]). The idea
is to embed an open disc in the torus in a wild way (in particular, any lift of
this disc to R? is unbounded). Then consider a homeomorphism which is equal
to the identity outside this disc and which is equal, in polar coordinates, to
(r,0) — (r,8 + ¢(r)) on the disc, where ¢: [0, 1] = R is a continuous map
which sends 0 and 1 to 0. Of course, ¢(r) has to converges sufficiently fast to
0 when r tends to 1 to ensure that the homeomorphism f is well-defined. If
¢ (r) converges sufficiently fast to 0 when r tends to 1, one can check that such
a homeomorphism satisfies the hypothesis of Theorem 2.6. In the same article,
with the same kind of construction, Koropecki and Tal built a homeomorphism
g of the torus such that, for Lebesgue almost every point of R?2, its forward and
its backward orbit under g accumulate in every direction at infinity (see [17,
Theorem 1]). We do not know whether such a homeomorphism is distorted.

The proof of Theorem 2.6 occupies the next five sections. For this proof, we need the
following notion. Let M be a compact d —dimensional manifold. Denote by B(0, 1)
the closed unit ball of R?. A subset B of M will be called a closed ball if there exists
an embedding e: R? — M such that ¢(B(0, 1)) = B. Let

HY :{(xl,xz,...,xd)eRN,xl > 0}.

We will call a closed half-ball of M the image of B(0,1) N H¢ under an embedding
e: H? — M such that
e(AHY) = e(HY) N oM.

Let us fix a finite family U of closed balls or closed half-balls whose interiors cover
M . Then, by the fragmentation lemma (see Bounemoura [4] or Fisher [8]), there exists
a finite family ( f;)1<i<n of homeomorphisms in Homeog (M ), each supported in one
of the sets of U/, such that

Jf=/liefro:-0 fu

We denote by Frag;,(f) the minimal integer » in such a decomposition: it is the
minimal number of factors necessary to write f as a composition of homeomorphisms
that are each supported in one of the balls of /.

Let us come back to the case of a compact surface S and denote by U/ a finite family of
closed discs or closed half-discs whose interiors cover S'. Denote by D a fundamental
domain of S for the action of 1(S). We now describe the two steps of the proof of
Theorem 2.6. The first step of the proof consists of checking that the quantity Frag,( /')
is almost equal to 5(]7(D)):

Geometry & Topology, Volume 18 (2014)
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Theorem 2.9 There exist two real constants C > 0 and C’ such that, for any homeo-
morphism f in Homeogy(S),

1 ~ -
oA C’ <Frag,(f) < C8(f(D))+C'.

There is a version of this theorem for the groups Homeog (S, 9.5) in case the surface S
has nonempty boundary. Let us denote by S’ a submanifold of S with the following
properties: the surface S’ is homeomorphic to .S, is contained in the interior of S and
is a deformation retract of .S. We denote by U/ a family of closed balls of S whose
interiors cover S’.

Theorem 2.10 There exist two real constants C > 0 and C’ such that, for any
homeomorphism f in Homeog (S, dS) supported in S’,

SOT(D) = € = Fragy (/) = CS(F(D) +C'.

It is not difficult to obtain the lower bound of the fragmentation length. This is treated
in the next section. In the same section, we will also see that the quantity Frag,, is
essentially independent of the chosen cover /. On the other hand, the argument for
the upper bound is much more technical. For this bound, we distinguish three cases:
the case of surfaces with boundary (Section 5), the case of the torus (Section 6) and
the case of higher genus compact surfaces without boundary (Section 7). The proof
seems to depend strongly on the fundamental group of the surface under consideration.
In particular, it is easier in the case of surfaces with boundary whose fundamental
groups are free. In the case of the torus, the proof is a little tricky. In the case of
higher genus closed surfaces, the proof is more complex and uses Dehn’s algorithm for
small-cancellation groups (surface groups in this case).

Let us explain now the second step of the proof. Denote by M a compact manifold
and by U a finite family of closed balls or half-balls whose interiors cover M . In
Section 4, we will prove the following theorem. It asserts that, for a homeomorphism
J in Homeoy (M), if the sequence Frag;,( /") does not grow too fast when n — +o0,
then the homeomorphism f is a distortion element:

Theorem 2.11 If
n n
L Fragy (/) log(Frag, (/")) _

n——+o0o n

0’

then the homeomorphism f is a distortion element in Homeog (M ).
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Moreover, assume that the manifold M has nonempty boundary. Then, if I/ denotes
a finite family of closed balls contained in the interior of M whose interiors cover
the support of a homeomorphism f in Homeoy (M, dM), this last theorem remains
true in the group Homeog (M, dM ). The proof of this theorem uses a technique due to
Avila (see [2]).

Theorem 2.6 is clearly a consequence of these two theorems.
The following theorem shows that Proposition 2.4 is optimal. It will be proved in the

last section.

Theorem 2.12 Let (v,),>1 be a sequence of positive real numbers such that

Then there exists a homeomorphism f in Homeog(R/Z x [0, 1], R/Z x {0, 1}) such
that:
(1) Foranyn>1,8(/"([0,1]x[0,1])) > v.

(2) The homeomorphism f is a distortion element in

Homeog(R/Z x [0, 1], R/Z x {0, 1}).

This theorem means that being a distortion element gives no information on the growth
of the diameter of a fundamental domain other than the sublinearity of this growth.
This theorem remains true for any surface S'. To see this, it suffices to embed the
annulus R/Z x [0, 1] in the surface S.

3 Quasi-isometries

In this section, we prove the lower bound in Theorems 2.9 and 2.10. More precisely, we
prove these theorems using the following propositions whose proofs will be discussed
in Sections 5, 6 and 7.

Proposition 3.1 There exists a finite cover U of S by closed discs and half-discs as
well as real constants C > 1 and C’ > 0 such that, for any homeomorphism f in
Homeog(S),

Frag, (/) < C diamp(f (Do) +C".

Here is a version of the previous proposition in the case of the group Homeoy (S, 95).

Geometry & Topology, Volume 18 (2014)
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Proposition 3.2 Fix a subsurface with boundary S’ of S that is contained in the
interior of S, is a deformation retract of S and is homeomorphic to S . There exists
a finite cover U of S’ by closed discs contained in the interior of S as well as real
constants C > 1 and C’ > 0 such that, for any homeomorphism f in Homeog (S, 3S)
supported in S’, B

Frag,,(f) < C diamp(f (Dy)) + C’.

In order to prove these theorems, we need some notation. As in the last section, let us
denote by S a compact orientable surface.

Definition 3.3 Two maps a, b: Homeoy(S) — R are quasi-isometric if and only if
there exist real constants C > 1 and C’ > 0 such that

for any f € Homeog(S), éa(f)—C’Sb(f) <Ca(f)+C'.

More generally, an arbitrary number of maps Homeog(S) — R are said to be quasi-
isometric if they are pairwise quasi-isometric.

Let us consider a fundamental domain Dy of S for the action of the group 1(S),
which satisfies the following properties (see Figure 1):

(1) If the surface S of genus g is closed, the fundamental domain Dy is a closed
disc bounded by a 4g—gone with geodesic edges.

(2) If the surface S has nonempty boundary, the fundamental domain Dy is a closed
disc bounded by a polygon with geodesic edges. We require that any edge of
this polygon that is not contained in S connects two edges contained in 95 .

\

S ! N
’ 0S8
D() [ DO
) 5%
a8 "\ !
Case of the torus Case of the torus with one hole Case of the genus 2

closed surface
Figure 1: The fundamental domain Dy

Let D = {y(Dy) | y € m1(S)}. For fundamental domains D and D’ in D, we denote
by dp(D, D’) + 1 the minimal number of fundamental domains met by a path that
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Distortion elements for surface homeomorphisms 533

connects the interior of D to the interior of D’. The map dp is a distance on D.
We now give an algebraic definition of this quantity. Denote by G the finite set of
deck transformations in 1 (S) that send Dy to a polygon in D adjacent to Dy, ie,
which shares an edge in common with Dg. Then the subset G is symmetric and is a
generating set for 771 (S). Notice that the map

dg: JTl(S) X7'[1(S) — R,
(0. ¥) > Ig(e~ ' ¥),

is a distance on the group 1 (S). Then, for any pair (¢, ) of deck transformations
in the group 71(S), we have Ig(¢~ ') = dp(e(Do), ¥ (Dp)). One can see it by
noticing that dp is invariant under the action of the group 7 (S) and by proving by
induction on /g(y) that

lg(¥) = dp (Do, ¥ (Dyo)).

Given a compact subset 4 of S , we call the discrete diameter of A the following
quantity:

diamp(A4) = max{dp(D,D') | DeD,D' € D, DNA# 2, D' NA+}

For a fundamental domain D; in D, we call the éloignement of A with respect to Dy
the following quantity:

elp,(4) =max{dp(D,D) | DeD, DN A # 2}
Notice that, in the case where D; N A # &, we have
elp, (4) <diamp(A4) < 2elp, (4).
In this section, we prove the following statement, using Proposition 3.1:
Proposition 3.4 Let U/ be a finite families of closed balls or hilf—balls whose interiors
cover the surface S. Let D be a fundamental domain of S for the action of the

fundamental group of S. Then the following maps Homeog(S) — R are quasi-
isometric:

(1) The map Frag;,

(2) The map f + 8(f (D))
(3) The map f — diamp( f(Dy))

Remark 3.5 The proposition implies the following properties. Let ¢/ and U’ be two

finite families of closed balls or half-balls whose interiors cover the surface S. Then
the maps Frag;, and Frag;,, are quasi-isometric.
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Take two fundamental domains D and D' of S for the action of the fundamental
group of S. Then the maps f + 8(f (D)) and f +> 8(f(D’)) are quasi-isometric.

When the boundary of the surface S is nonempty, we have an analogous proposition
in the case of the group Homeog (.S, 0.5). As in the last section, let us denote by S’ a
submanifold with boundary of S that is homeomorphic to S, contained in the interior
of S, and a deformation retract of S, and by U/ a finite family of closed balls contained
in the interior of .S, the union of whose interiors contains S’. Finally, let us denote by
G s’ the group of homeomorphisms in Homeog (.S, 0.5) that are supported in S’.

Proposition 3.6 Let D be a fundamental domain of S for the action of the fundamen-
tal group of S'. The following maps G g — R are quasi-isometric:

(1) The map Frag;,
(2) The map f > 8(f (D))
(3) The map f +— diamp(f(Do))
The proof of this proposition is similar to the proof of the previous one: that is why we
will not provide it.
These two propositions directly imply Theorems 2.9 and 2.10.
Proof of Proposition 3.4 Let us prove first that, for any two fundamental domains D
and D’, the maps f + 8(f (D)) and f + §(f(D’)) are quasi-isometric. Let
.ve, =1y em(S)| D'ny(D) # o).
Notice that D’ C Ule vi(D) and the right-hand side is path-connected. Then
~ p ~
F)cl faiby.
i=1

The lemma below implies that §( f~ (D) < pé( ]7 (D)). As the fundamental domains
D and D’ play symmetric roles, this implies that the maps f + §(f (D)) and [
5(f(D’)) are quasi-isometric.

Lemma 3.7 Let X be a path-connected metric space. Let (A;)1<i<p be a family of
closed subsets of X such that X = Ule A;. Then
3(X)= sup d(x,y)=<p max §(4;).
xeX,yeX I<i=p
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Proof Let x and y be two points in X. By path-connectedness of X, there exists
an integer k between 1 and p, an injection o: {1,...,k} —> {l,...,p}NZ and a
sequence (X;)i<j<k+1 Of points in X that satisfy the following properties:

(1) xy=xand x4 =Y.

(2) For any index i between 1 and k, the points x; and x; 1 both belong to Ay ;).

Then:

k k
d(x,y) <Y d(xi,Xit1) =) 8(Ae) < p max §(4i).

This last inequality implies the lemma. a

Let us show now that, for two finite families ¢/ and U’ as in the statement of Proposition
3.4, the maps Frag;, and Frag,,, are quasi-isometric. The proof of this fact requires
the following lemmas. Recall that we denoted by B(0, 1) the unit closed ball of RY.

Lemma 3.8 Let V be a neighbourhood of the identity in Homeog(B(0, 1), dB(0, 1)).
There exists an integer N > 0 such that any homeomorphism in

Homeog (B(0,1),dB(0, 1))

can be written as a composition of at most N homeomorphisms in V.

Lemma 3.9 Let M be a compact manifold and {U,,U,, ..., Uy} be an open cover
of M . There exist a neighbourhood V of the identity in Homeog (M) (respectively
in Homeog (M, dM) ) and an integer N’ > 0 such that the following property is satis-
fied. For any homeomorphism f in )V, there exist homeomorphisms g1, ..., gn’ in
Homeog (M) (respectively in Homeog (M, 0M ) ) such that:

(1) Each homeomorphism g; is supported in one of the Uj .
(2) f=g10820--0gnN".

Lemma 3.8 is a consequence of Béguin, Crovisier, Le Roux and Patou [3, Lemma 5.2]
(notice that the proof works in dimensions higher than 2). Lemma 3.9 is classical. It is
a consequence of the proof of Theorem 1.2.3 in [4]. These two lemmas imply that, for
an open cover of the disc D2, there exists an integer N such that any homeomorphism
in Homeog (D2, 9D?) can be written as a composition of at most N homeomorphisms,
each supported in one of the open sets of the cover. Now, for an element U in U, we
denote by U NU’ the cover of U given by the intersections of the elements of /" with
U . The application of this last result to the ball U with the cover U NU’ gives us a
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constant Ny . Let us denote by /N the maximum of the N7, where U varies over U.
We directly obtain that, for any homeomorphism f,

Frag,,(f) = N Frag,(f).

As the two covers U and U’ play symmetric roles, the fact is proved. Notice that this
fact is true in any dimension.

Using a quasi-isometry between the metric spaces (7r1(S), ds) and S, we will prove
the following lemma. It implies that the last two maps in the proposition are quasi-
isometric.

Lemma 3.10 There exist constants C > 1 and C’ > 0 such that, for any compact
subset A of S,

1
F8(4) —C' < diamp(4) < C8(4) +C".

Proof Let us fix a point x¢ in the interior of Dy. The map
q: 71(S) — S,
y = v(xo),

is a quasi-isometry for the distance dg and the distance on S (this is the Svarc—Milnor
lemma; see de la Harpe [12] p. 87). We notice that, for a compact subset 4 of S, the
number diamp(4) is equal to the diameter of ¢~!(B) for the distance dg, where

B=\JD|DeD,DNA#g}.
We deduce that there exist constants C; > 1 and C 1’ > 0 independent of 4 such that
1
F(S(B) — C{ <diamp(4) < C18(B) + (7.
1

The inequalities 6(B) —25(Dg) < 6(A4) < §(B) complete the proof of the lemma. O

We now prove that, for any cover U as in the statement of Proposition 3.4, there exist
constants C > 1 and C’ > 0 such that, for any homeomorphism f in Homeog(S),

& diamn(F(Do)) — ' = Fragy (/).

Let us fix such a family ¢/. We will need the following lemma, which we will prove
later:
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Lemma 3.11 There exists a constant C > 0 such that, for any compact subset A of S
and any homeomorphism h supported in one of the sets in U,

diamp (7(A4)) > diamp(A4) — C.

Take k = Frag;,(f) and f = gy 0g,0---0 g, where each homeomorphism g; is
supported in one of the elements of ¢/. Then [ o f =gy0g0---0g), where [ isa
deck transformation (and an isometry). Lemma 3.11 and induction on j imply that

forall j €[1.k]NZ, diamp(g;' o --0& " o f(Dy)) = diamp(f(Dy)) — jC.
as the homeomorphisms g; commute with 7. Hence
2 = diamp(g; ' o---0 Z7" 0 f(Do)) = diamp (f(Do)) — kC.
Therefore

Frag (/) 2 & diamp(/(Do) — .

We obtain the wanted lower bound.

Proof of Lemma 3.11 For an element U in U, we denote by U alift of U ,le, a
connected component of TI™!1(U). Let u(U) = diamp(U). This quantity does not
depend on the chosen lift U. We denote by p the maximum of the u(U), for U in U.

We denote by Uy, an element in &/ which contains the support of /. Let us consider
two fundamental domains D and D’ which meet A and which satisfy the following
relation:

dD(D, D/) = diamD(A).

Let us take a point x in DN A and a point x” in D" N A. If the point x belongs to

I~1(U,), we denote by Uh the lift of Up which contains x. Then the point h(x)
belongs to U 1, and a fundamental domain D which contains the point h(x) is at dlstance
at most u from D (for dp). Hence, in any case, there exists a fundamental domain D
which contains the point h (x) and is at distance at most p from D. Similarly, there
exists a fundamental domain D’ which contains the point h (x’) and is at distance at
most pu from D’. Therefore

dp(D, D"y > dp(D, D) —2p.

We deduce that diamp (E (A)) = diamp(A)—2u, which is what we wanted to prove. O

Thus, to complete the proof of Proposition 3.4, it suffices to prove Proposition 3.1. O
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It suffices now to find a finite family &/ for which Proposition 3.1 or 3.2 holds. We
will distinguish the following cases. A section is devoted to each of them.

(1) The surface S has nonempty boundary (Section 5).
(2) The surface S is the torus (Section 6).

(3) The surface S is closed of genus greater than one (Section 7).

The proof of Propositions 3.1 and 3.2, in each of these cases, consists in putting back
the boundary of ]7 (Dyg) close to the boundary of D¢ by using homeomorphisms that
are each supported in the interior of one of the balls of a well-chosen cover /. Most of
the time, after composing with a homeomorphism supported in the interior of one of the
balls of U/, the image of the fundamental domain Dq will not meet faces that were not
met before the composition. However, it will not be always possible, which explains
the difficulty of parts of the proof. Then, we will have to ensure that, after composing
by a uniformly bounded number of homeomorphisms supported in interiors of balls of
U, the image of the boundary of Dg will be strictly closer to Dy than before.

4 Distortion and fragmentation on manifolds

In this section, M denotes a compact d —dimensional manifold, possibly with boundary.
Let us fix a finite family ¢/ of closed balls or half-balls of M whose interiors cover
M . For any homeomorphism f in Homeog(M ), we denote by ay,( f) the minimum
of the quantities /.log(k), where there exists a finite set {f; | 1 <i < k} of k
homeomorphisms in Homeog (M), each supported in one of the elements of I/, and a
map v: {1,...,I} > {1,..., k} with

S = o foor o fuy-

The aim of this section is to prove the following proposition:

Proposition 4.1 Let f be a homeomorphism in Homeog(M ). Then
au(f™)

liminf ——= =0
n——+00 n

if and only if the homeomorphism f is a distortion element in Homeog (M ).

Let us give now an analogous statement in the case of the group Homeoy (M, dM).
Denote by M’ a submanifold with boundary that is homeomorphic to M , contained
in the interior of M and which is a deformation retract of M . We denote by U a
family of closed balls of M whose interiors cover M. For any homeomorphism f* in
Homeogy (M, dM) supported in M’, we define ay/(f) in the same way as before.
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Proposition 4.2 Let /' be a homeomorphism in Homeoy (M, dM ) supported in M.

Then
/™)
lim inf

n——+00 n

=0

if and only if the homeomorphism f is a distortion element in Homeog (M, M ).
As ay(f) < Frag,,(f).log(Frag;,(f)), these last propositions imply Theorem 2.11.

Proof of the “if”’ statement in Propositions 4.1 and 4.2 If the homeomorphism f
is a distortion element, we denote by G the finite set that appears in the definition of a
distortion element. Then we write each of the homeomorphisms in G as a product of
homeomorphisms supported in one of the sets of /. We denote by G’ the (finite) set
of homeomorphisms that appear in such a decomposition. Then the homeomorphism
f™ is equal to a composition of /, elements of G’, where [, is less than a constant
independent of n times Ig( /™). As the element f is distorted, limy—s 400 In/n =0
and ay/(f™) <log(card(G"))l,. Therefore

i au(f")
m =

n——+o00 n

0.

In the case of Proposition 4.2, there is only one new difficulty: the elements of G are
not necessarily supported in the union of the balls of (/. Let us take a homeomorphism
h in Homeoy(M, dM') with the following properties: the homeomorphism / is equal
to the identity on M’ and sends the union of the supports of elements of G to the
union of the interiors of the balls of /. Then it suffices to consider the finite set #Gh™!
instead of G in order to complete the proof. a

The full power of Propositions 4.1 and 4.2 will be used only for the proof of Theorem
2.12 (construction of the example). In order to prove Theorem 2.6, we just used
Theorem 2.11, which is weaker.

Remark 4.3 Notice that, if ¢/ is the cover of the sphere by two neighbourhoods
of the hemispheres, the map Frag;, is bounded by 3 on the group Homeog (S?) of
homeomorphisms of the n—dimensional sphere isotopic to the identity (see [5]). This
is a consequence of the annulus theorem by Kirby (see [16]) and Quinn (see [24]).
Thus, the following theorem by Calegari and Freedman (see [5]) is a consequence of
Theorem 2.11:

Theorem 4.4 (Calegari and Freedman [5]) Any homeomorphism in Homeog(S?) is
a distortion element.
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The proof of Proposition 4.1 is based on the following lemma, whose proof uses a
technique due to Avila (see [2]):

Lemma 4.5 Let (f4)n>1 be a sequence of homeomorphisms of R4 (respectively of
HY) supported in the open unit ball B(0, 1) (respectively in B(0,1) N H 4). There
exists a finite set G of compactly supported homeomorphisms of R4 (respectively of
Hd) such that:

(1) For any natural number n, the homeomorphism f, belongs to the group gener-
ated by G.

() Ilg(fn) < 14.10g(n) + 14.

This lemma is not true anymore in case of the C” regularity, for » > 1. It crucially uses
the following fact: given a sequence of homeomorphisms (%) supported in the unit
ball B(0, 1), one can store all the information of this sequence in one homeomorphism.
Let us explain now how to build such a homeomorphism. For any integer 7, denote by
gn a homeomorphism that sends the unit ball to a ball B, such that the balls B, are
pairwise disjoint and have a diameter that converges to 0. Then it suffices to consider
the homeomorphism

o0
[ ] gnhngy "
n=1

Such a construction is not possible in the case of a higher regularity.

Remark 4.6 There are two main differences between this lemma and the one stated
by Avila:

(1) Avila’s lemma deals with a sequence of diffeomorphisms that converges suf-
ficiently fast (in the C°°—topology) to the identity, whereas any sequence of
homeomorphisms is considered here.

(2) The upper bound is logarithmic and not linear.

Remark 4.7 This lemma is optimal in the sense that, if the homeomorphisms f; are
pairwise distinct, the growth of /g( f5) is at least logarithmic. Indeed, if the generating
set G contains k elements, there are at most (kT —1)/(k — 1) homeomorphisms
whose length with respect to G is less than or equal to /.

Before proving Lemma 4.5, let us see why this lemma implies Propositions 4.1 and 4.2.
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End of the proof of Propositions 4.1 and 4.2 Suppose that
n
liminf 4

n——+00 n

=0.

Consider an increasing map n: N — N such that

ay(f"™) _

lim =0.

n—>+oo  1(n)

Let U = {U;,U,,...,Up}. For any integer i between 1 and p, denote by ¢; an
embedding of R into M that sends the closed ball B (0,1) onto Uj; if U; is a closed
ball, or an embedding of H 4 into M that sends the closed half-ball B(0,1) N HY
onto U; if U; is a closed half-ball. For any natural number #n, let /, and k, be two
positive integers such that:

(D) ay(f7™) = I, log(kn).

(2) There exists a sequence of homeomorphisms in Homeogy (M),

(fl,n’ f2,m cee fk,,,n)v

each supported in one of the elements of ¢/, such that £ is the composition
of [, homeomorphisms of this family.

Let us build an increasing one-to-one function o: N — N that satisfies

/ 141 Y ke 14
foralln € N, ol (141082 i1 ko) +14) < 1 )
n(o(n)) n
Suppose that, for some m > 0, o(1),0(2),...,0(m) have been built. Then, as
Iy log(k
lim ioekn) _

n—+00 1’](1’1)

we have
n—-oo n(n) B

Hence, we can find an integer o (m 4 1) > o(m) such that
lon+1) (141070 ko) +14) _ 1
n(o(m+ 1)) Tm1

This completes the construction of the map o . Take a bijective map

/8 N—>{(i,o(j))€NxN|i§k0(j),jeN}

Geometry & Topology, Volume 18 (2014)



542 Emmanuel Militon

such that, if ¥ (n1) = (i1.0(j1)), ¥ (n2) = (i2,0(j2)) and o(j1) < 0(j2), then
ni < ny. For instance, take the inverse of the bijective map

{(i,0(j)) eN XN |i <kg(jy,j €N} - N,
(o) i+ Y ko).

J'<ij

Then v~ 1(i,0(j)) < ZLI k(1) - Denote by 7; j an integer between 1 and p such that
supp( fi,j) C Uy, ; . Then apply Lemma 4.5 to the sequence of homeomorphisms cpt—wl(n) )
Su(n) © ¥ry(ny » Where the @; were defined at the beginning of the proof. Let us denote
by G the finite set given by Lemma 4.5. Let G; be the finite set of homeomorphisms
supported in U; of the form ¢; o5 0¢;” !, where s is a homeomorphism in G. Let
¢ =U7_,Gi. By Lemma 4.5, forall n € N, lg/(fy(m) < Clog(n) + C'. Now the
homeomorphism @) can be decomposed as f"@M) = g 0g50---0 8y » Where
each of the homeomorphisms g; belongs to the set { f1,65(n): /2,0(n)s - - - » Shor (y.0m) -
Thus

Io/( f”("(”)))fla(n)(Clog( max w_l(i,a(n)))—i-C').

1<i<ko(n)
Therefore
Ig(f7") _loe(Clog(3ioy Ko@) +C') _ 1
n(o(n) n(o(n)) on
and the homeomorphism f is a distortion element in Homeog (M) (respectively in
Homeoy (M, dM)). O

Now, let us prove Lemma 4.5. This will require two lemmas.

Let @ and b be the generators of the free semigroup L, on two generators. For two
compactly supported homeomorphisms f and /4 of R4, let nfn be the semigroup
morphism from L, to the group of homeomorphisms of R¥ defined by 7 rnla) = f
and nf,h(b) =h.

Lemma 4.8 There exist compactly supported homeomorphisms s; and s, of R4 such
that

forallme Ly, m' € Ly, m#m' = ng,5,(m)(B(0,2)) Nns, 5, (m')(B(0,2)) =@
and the diameter of ny, 5,(m)(B(0, 2)) converges to 0 when the length of m tends to
infinity.

Let us denote by Homeoy (Rd) the group of compactly supported homeomorphisms
of R,
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Sz*’SmZ S1 s2 Sz‘ S1

QQ

Y L 7

52 S2©S1
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Figure 2: Lemma 4.8

Lemma 4.9 Let f be a homeomorphism in Homeog(R?). There exist two home-
omorphisms hy and hy in Homeoo(R?) such that f = [hy,hy], where [hy, h,] =
hq ohzohl_1 ohgl.

This lemma is classical and seems to appear for the first time in Anderson [1]. Let us
prove it now.

Proof Denote by ¢ a homeomorphism in Homeog (R?) whose restriction to B(0, 2)
is defined by

B(0,2) — R4,
vis X
5
For any natural number 7, let
1 1
An:{xeRd y+1§wm§§;}

Let f be an element in Homeog(R™). As any element in Homeog(R”) is conjugate
to an element supported in the interior of 4, we may suppose that the homeomorphism
/ is supported in the interior of Ay. Then we define i € Homeog(R?) by:

(1) /& =1d outside B(0,1)
(2) for any natural number i, h|4, = ¢' fo ™"
(3) h(0)=0

Then f =[h,¢]. a
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Figure 3: Proof of Lemma 4.9: Description of the homeomorphism ¢

These two lemmas remain true when we replace R? with H? and B(0,2) with
B(0,2)n HY.

Before proving Lemma 4.8, let us prove Lemma 4.5 with the help of these two lemmas.

Proof of Lemma 4.5 We prove the lemma in the case of homeomorphisms of R%. In
the case of the half-space, the proof is similar. For an element m in L,, let /(m) be
the length of m as a word in @ and b. Let

N—)Lz,

nt— my,

be a bijective map that satisfies /(1) <[(my’) = n <n’. This last condition implies that
I(mp) =1 < 2! <n <2!*! In particular, for any natural number n, /(m,) < log, (n).
Let 51 and s, be the homeomorphisms in Homeo (RY) given by Lemma 4.8. Let
s3 be a homeomorphism in Homeog(R?) supported in the ball B(0,?2) that satisfies
s3(B(0,1)) N B(0, 1) = @. We denote by B, the closed ball 5y, 5, (m,)(B(0,1)). By
Lemma 4.9, there exist homeomorphisms /1, ; and /4, supported in B(0, 1) such
that f = [hn,1, hn,2]-

Define the homeomorphism s4 by
VneN, S4|B,, = Nsyi.s2 (Wln) © hn,l O MNsy,s2 (mn)_l’

s4=Id onR?— |J By,
neN
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and the homeomorphism s5 by

Vn e N’ S5|B, = Usl,sZ(mn) Ohn,Z o nsl,sz(mn)_lv

ss=Id onR?— |J By.
neN

Nsy,82 (ml) (B(O, 2))

Nsy,s2 (M2) (B(0,2))
Ns1,s2(m3) (B(0,2))

Ns1,s2 (1) (B(0,2))
(09) @ oo -

77S] 5852 (mn)(B(O’ 2))

Figure 4: Notation in the proof of Lemma 4.5
Let G={s; |i€{l,...,5} and e € {—1, 1}}. Let

An = Nsy 55 (My) 0530 Usl,sz(mn)_l, B,/, = An(Bn).
Notice that the balls B, and B, are disjoint and contained in 7, s, (1,)(B(0, 2)).

Notice also that:

S40Ap0Sy Loa™ =1d

n |Rd (B,UB,)
—1
540 Ay os4 okn |Bn = nsl,sg(mn) ohn,l onsl,sz(mn)
—1 —1 —1
540 An 08, O)L |B’ :)\nonsl,sz(mn)othonsl,sz(mn) O)\n

§50Ap 085 Lo~ =1d

|Rd (B,UBy,)
—1
550 Ap O55 O)"n |B, = nsl,sz(mn) Ohn,z O Nsy,so (mp)

- —1 -1 -1
SSOAn°S5 O)Ln |B;l=)¥nOnsl,sz(mn)ohnﬁzOnsl,sz(mn) o)\n

Geometry & Topology, Volume 18 (2014)



546 Emmanuel Militon

S4_1S5 OApOS5540A" =1Id

|Rd (B,UB))
-1 .- —17—1 -1
S4 SS ° )\’n 0558540 )‘n | By = nsth (mn) °© hnylhnsz © nsl’sz (mn)

1

—1 -1 —1 -1 -1
84 S5 0)\11055540)\” |Blf1=)\n°77s1,sz(mn)°hn,2hn,lonsl,sz(mn) ok,

Therefore, the homeomorphlsm [s4, An][ss, n][s4 s5 , An] 1s equal to ng, s, (mp) 0
Jn©Ns, .50 (my)~! on B, and fixes the points outside B,,. Thus

Jn = nsl,sz(mn) [S4» ][SS,)\n][SZIS;Ia)\n]nsl,sZ(mn)-

Hence the homeomorphism f; belongs to the group generated by G and

lg(fn) = 2lg(Ms, 5, (Mn)) + 6lg(An) + 8
= 2lg(ns1,sz(mn)) + 12lg(77s1,s2 (my)) + 14
< l4log,(n) + 14. O

Proof of Lemma 4.8 First, let us prove the lemma in the case of homeomorphisms
of R. By perturbing two given homeomorphisms (as in Ghys [10]), one can find
two compactly supported homeomorphisms §; and 5, of R that satisfy the following

property:
forallm e Ly, m' e Ly, m#m' = ng, 5,(m)(0) # nz, 5,(m")(0)

Then, in the same way as in Denjoy’s construction (see Katok and Hasselblatt [15]
page 403), replace each point of the orbit of 0 under L, with an interval with
positive length to obtain the wanted property. Thus, the proof is completed in the
one-dimensional case. In the case of a higher dimension, denote by f and / the two
homeomorphisms of R that we obtained in the one-dimensional case. Let [-M, M ]
be an interval that contains the support of each of these homeomorphisms.

Let us look now at the case of R¢. The homeomorphism
RY - R4,
(X1, X2, ... xg) = (f(x1), f(x2). ... f(xa)),

preserves the cube [—M, M ]d . Let s; be a homeomorphism of R4 supported in
[-M —1, M + 1]¢ that is equal to the above homeomorphism on [—-M, M]%. Apply
the same construction to the homeomorphism / to obtain a homeomorphism s,. The
ball centered on 0 in R of radius 2 is contained in the cube [—2, 2] and the diameter
of the set

Ns1,52 (M) ([=2, 217) = (g (m) (2, 2])?
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M2 (B0 2) 5211 (BO,2)

sy sz(mn 1)(B(0,2))
‘ ‘ =l 1

Nsy,52 (M2)(B(0,2)) Nsy,s2 (Mn) (B(0,2))
54

sy 52 (1) (B (0. 2)) sty () (B(0.2))

Nsy Sz(mn 1)(B(0,2))
7
Bz B, “ Byt1 Bny

N5y .52 (mM2)(B(0,2)) Ns1.52 (mn) (B(0,2))
nS4 1)\ 1

sy 52 (1) (B(0. 2)) Ty 2 (4 1) (B(0. 2))

N5y S2(n7n 1)(B(0,2))

Nsq sz(mz)(B(O 2)) Tsy,52 (mu)(B(0,2))

Figure 5a

converges to 0 when the length of the word m tends to infinity. The case of the
half-spaces H d is similar as long as compactly supported homeomorphisms that are
equal to homeomorphisms of the form

R4 x R-1 R4 x R,
(t.x1.x2.....xg—1) = (5. f(x1). [(x2). ... [(xq-1)).

in a neighbourhood of 0 are used. O

S Case of surfaces with boundary

Suppose that the boundary of the surface S is nonempty. Let us prove now Proposition
3.2. By considering a cover by half-discs, one can prove, with the same techniques as
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Nsy,s2 (M1)(B(0,2)) Nsy 52 (Mng1)(B(0,2))

Nsy Sz(mn 1)(3(0 2))
‘ ‘ i1 n+

Ns1,52 (m2)(B(0,2)) s1.s2 (M) (B(0.2))
[S57 )\n]

Ns1.52(m1)(B(0,2))

Tsy.2 (1) (B(0,2)) a1 52 (1) (B0, 2))
“ B¢

UK Sz(mZ)(B(O 2)) TNsy,s2 (mn)(B(0,2))
[SZISS_I , Anl

Nsy Sz(ml)(B(O 2))

Nsy,55 (Mp—1)(B(0,2)) Ns1,52 (Mn41)(B(0,2))
B/ ‘ By — lB Bnt1 B;1+

Ns1,52 (M) (B(0.2) Mst.s2 (M) (B(0.2))

[s4, An][ss, Anllsy s_1 , Anl

Figure 5b: The different homeomorphisms appearing in the proof of Lemma 4.5

below, Proposition 3.1 in the case where S has nonempty boundary: this case is left to
the reader.

Recall that, in Section 3, we have chosen a “nice” polygonal fundamental domain Dy.

Let B be the set of edges of the boundary dD, that are not contained in the boundary
of S and let

A={II(B) | € B}.
For any edge « in A, let us consider a closed disc V,, with the following properties:

(1) The disc V, does not meet the boundary of the surface S.

(2) The interior of V,, contains o N .S’.
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(3) There exists a homeomorphism @g: Vo — D? that sends the set & N Vj, to the
horizontal diameter of the unit disc D?.

Choose sufficiently thin discs V, so that they are pairwise disjoint. Let U; be a closed
disc that contains the union of the discs V. Let U, be a closed disc of S that satisfies
the three following properties:

(1) The disc U, does not meet any edge in 4, ie, it is contained in the interior of
the fundamental domain Dy.

(2) The surface S’ is contained in the interior of | Jyc 4 Vo U Ua.
(3) For any edge « in A4, the set U, N V,, is homeomorphic to the disjoint union of
two closed discs.

Let U = {U;, U,}.

Figure 6: Notation in the case of surfaces with boundary

The proof of the inequality in the case of the group Homeog (S, d.5) requires the
following lemmas:

Lemma 5.1 Let f be a homeomorphism in Homeog (S, 0.S) supported in the interior
of |J Vo UU,. Suppose that elp, ( ]7 (Dg)) = 2. Then there exist homeomorphisms gy,
g2 and g3 in Homeog (S, 0.5) supported respectively in the interior of | ) Vy,, U, and
\J Vi such that the following property is satisfied:

elp, (83082081 0 f(Do)) <elp,(f (Do) — 1
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Lemma 5.2 Let f be a homeomorphism in Homeog (S, dS) supported in the interior
of Ve UU,. Ifelp,(f(Dy)) =1, then Fragy,(f) < 6.

End of the proof of Proposition 3.2 Let k = elp,( f (Dg)). By Lemma 5.1, after
composing the homeomorphism f with 3(k — 1) homeomorphisms, each supported in
one of the discs of U/, we obtain a homeomorphism f; supportedin |, ¢ 4 Vo UU> with
elp,( ]71 (Do)) =1. Then, apply Lemma 5.2 to the homeomorphism f;: Frag;,(f1) <6.
Therefore Frag;,(f) < 3(elp, (f~(D0)) —1) + 6. However, as Dy N f(Do) # & (the
homeomorphism f pointwise fixes a neighbourhood of the boundary of §S),

elp, (f(Dy)) < diamp(f(Dy)).
Hence Frag,, (/) < 3diamp(f(Do)) + 3. O

Notice that we indeed proved the following more precise proposition:

Proposition 5.3 Let f be a homeomorphism in Homeoo (S, dS) supported in the
interior of | J Vi UU,. Then Frag,,(f) < 3diamp(f(Dy)) + 3.

acA

Proof of Lemma 5.1 Let us give an idea of the action of the homeomorphisms g1,
g» and g3 that we will construct “by hand”. If we look at the pieces of the disc ]7 (Do)
furthest from Dy, the homeomorphism g; repulses them back to the open set U,, the
homeomorphism g, repulses them outside the open set U, and the homeomorphism
g3 makes them exit from the fundamental domain of D in which these pieces were
contained (see Figure 7). Let us give the precise construction of these homeomorphisms.

Let g be a homeomorphism supported in |, 4 Ve such that:

(1) The homeomorphism g; pointwise fixes I1(dDy).

(2) For any edge « and any connected component C of V, N f(IT1(dDy)) that does
not meet I1(dDy), g1(C) C U,.

One can build such a homeomorphism g; by taking the time 1 of the flow of a
well-chosen vector field that vanishes on T1(dDy).

Let g, be a homeomorphism supported in U, that satisfies the following property: For
any edge o in A and for any connected component C of (}2 Ngio f(IT1(dDg)) both
of whose ends (ie, the points of the closure of C which do not belong to C) cE)elong
to the same connected component of Vy —«, the set g,(C) is contained in V. Let
us explain how such a homeomorphism g, can be built. We will need the following
elementary lemma, which is a consequence of the Schonflies theorem:
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Figure 7: Illustration of the proof of Lemma 5.1

Lemma 5.4 Let ¢;: [0,1]— D? and c,: [0, 1] — D? be two injective curves that are
equal in neighbourhoods of 0 and 1, and such that:

(1) ¢1(0) = c2(0) € AD? and ¢ (1) = c,(1) € ID?
(2) ¢1((0,1)) c D2 —9D? and ¢,((0, 1)) C D? — dD?

Then, there exists a homeomorphism h in Homeog (D2, 9D?) such that for all t €0, 1],
h(c1 (1)) = ez (7).

Corollary 5.5 Let (¢c;)1<i<; and (cj);<i<; be finite sequences of injective curves
[0, 1] — D? of the closed disc D? such that:

(1) Forany index 1 <i </, the maps c; and c; are equal in a neighbourhood of 0
andof 1.

(2) The curves c;, as well as the curves clf, are pairwise disjoint.
(3) For any index i, the points ¢;(0) and c;(1) belong to the boundary of the disc.
(4) For any index i, the sets ¢;((0, 1)) and ¢;((0, 1)) are contained in D2 —9D2.

Then there exists a homeomorphism h in Homeoy(D?, dD?) such that, for any index
1 <i <[, foranyte[0,1], h(c;(t)) = cj(t).
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Proof of the corollary It suffices to use Lemma 5.4 and an induction argument. O

First, let us notice that only a finite number of connected components of

U, N gy o f(TI(3Dy))

are not contained in one of the open discs Io/a . We denote by C the set of such connected
components with both ends in the same connected component of V, — «, for some
edge « in 4. Let us fix now an edge o in A. Let C be a connected component in C
whose ends both belong to V;,. We denote by ac: [0, 1] — U, an injective path such
that:

(1) The set ac((0, 1)) is contained in I(}a NU,.
(2) The path ac is equal to the path C in a neighbourhood of a¢(0) and of ac(1).

(3) The path ac does not meet the connected components of g; o f(IT(dDg)) N ﬁz
that do not belong to C.

The construction is made in such a way that the paths a¢ are pairwise disjoint. Denote
by A the closure of a connected component of

&2—UC,

where the union is taken over the connected components C of g o f(I1(dDg)) N I}Z
that do not belong to C. By a theorem by Kerekjarto (see Le Calvez and Yoccoz [18,
page 246]), the set A is homeomorphic to a closed disc. Then, for each such disc A,
we apply the last corollary in the disc A to the families of paths (C)cec,cca and
(ac)cec.cca to build the homeomorphism g, that we wanted.

Finally, let g3 be a homeomorphism supported in | J V4 that satisfies, for any edge
a in A, the following properties: oA

(1) For any connected component C of Ic}a Ngpogio f(I1(dDg)) whose ends both
belong to the same connected component of V, —«, g35(C)Na = 2.

(2) The homeomorphism g3 pointwise fixes any other connected component of
Va N gz 0g1 0 f(I1(3Dy)).

The construction of the homeomorphism g3 is analogous to the construction of the
homeomorphism g5 . In what follows, we will not give details anymore on this kind of
construction.

We claim that homeomorphisms g, g> and g3 that satisfy the above properties satisfy
also the conclusion of Lemma 5.1. This is a consequence of the two following claims.
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Claim 1 The set of fundamental domains in D which meet g3 o gr0g10 f (Dyg) is
contained in the set of fundamental domains of D which meet f'(Dy).

If i is a homeomorphism in Homeog (S, d.5), we say that a fundamental domain D
in D is maximal for / if it meets h(DO) and satisfies dp(D, Dg) = elp, (h(DO))

Claim 2 The fundamental domains D in D that are maximal for f do not meet
g30820810 f(Do).

Let us assume for the moment that these two claims are true and let us prove Lemma 5.1.

Claim 1 implies that

elp, (&3 0 &2 081 0 f(Do)) <elp,(f(Do)).

Suppose that we have an equality in the above inequality. Then there exists a funda-
mental domain D in D that is maximal for j and that meets g3 09,087 0 f (Dy), a
contradiction to Claim 2. This proves the lemma.

Now, let us prove Claim 1. Notice that, for any homeomorphism 7 in Homeog (S, 9.5),
the set of fundamental domains in D met by h (Dy) is equal to the set of fundamental
domains in D met by h (0Dy). Indeed, the interior of a fundamental domain cannot
contain a fundamental domain.

As the homeomorphisms g; and g, both pointwise fix | Jpep 0D, the set of elements
of D met by the curve gr0g10 f(dDy) is equal to the set of elements of D met by
f(0Dg). Therefore, it suffices to prove the following inclusion:

{DeD|§308,0810f(Do)ND # 2} C{DeD|gr08 0 f(dDg) N D # 2}

Let D be a fundamental domain that belongs to the left-hand set in the above inclusion.
Let X be a point in g, 0 g1 o f(dDy) that satisfies g3(X) € D. If the point X belongs
to the fundamental domain D, then the fundamental domain D belongs to

{D'€D|gr08 0 f(dDg) N D' # &}

Let us suppose that the point X does not belong to the fundamental domain D. As
the homeomorphism g3 is supported in pea Vp, there exists an edge « in A such
that the point IT(X) belongs to the disc V,,. Let 170, be the lift of the disc V, that
contains X. By construction of the homeomorphism g3, the point X belongs to a
connected component C of

§2081(3Dg) N Vg
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whose ends both belong to the interior D’ of a same fundamental domain D’ in D.
Let us recall that the connected components that are not of this kind are ﬁxed by the
homeomorphism g3. By the definition of g3, we have 3(%) € §3(C) C D’ and, by
hypothesis, g3(X) € D. Thus, D’ = D and, as the fundamental domain D’ meets
Cc gr0g10 ]7 (0Dyg), the fundamental domain D belongs to the set

{DeD|g20810 /(Do) N D # 2}.
We now come to the proof of Claim 2. As in Section 3, let
G={aj|ief{l,...,P}}Ula;"|iel{l,...,P}}

be the generating set for the group 1 (S), which consists of the deck transformations
that send the fundamental domain Dy to a fundamental domain in D adjacent to Dy.
As, in the case under discussion, the surface S has nonempty boundary, the group
m1(S) is the free group generated by {ai,a,,...,ap}. Let Dyax be a fundamental
domain in D that is maximal for f . By definition,

dp(Diax, Do) = elp, (f(Dy)).

Let us denote by y the deck transformation that sends Dgy to Dp,x. The element y
can be uniquely written as a reduced word in elements of G: y = 5155 - - - 5, where the
s; belong to the generating set G and n = dp(Dex, D). Every fundamental domain
in D adjacent to Dy, is a domain of the form y (s(Dg)), where s is an element in G.
If the element s is different from s, 1 then

dp(y(s(Do)), Do) = lg(ys) = n+1>n = elp,(f(3Dy)).

Thus, the only face adjacent to Dp,ax that meets f (0Dg) is y o, 1(Dg). We denote
by & the edge that is contained in the fundamental domains y o s, ~1(Dy) and Dpax.
The ends of any connected component of f (0Dg) N Dpax belong to &. Let V~ be the
lift of V() that contains &. We claim that

Z10 f(dDg) N Dyax C Vz U Us,
where (72 is the lift of U, that is contained in Dy, .

Let us prove this last claim. For a point X in Dp,x N f (0Dg)NTII™ I(Vﬂ) V., where
B is an edge in A4, the connected component of f (0Dg)NII™ I(Vﬂ) that contains X
does not meet the set T1~1(8). Hence the point g;(X) belongs to U,, by construction
of g1. Moreover, the homeomorphism g; preserves the sets

ﬁz—(U H—I(Vﬂ)) and Vj.

BeA
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The claim is proved.
Notice also that .
20810 f(3Dg) N Dmax C V.
Indeed, the ends of any connected component of g; o f (0Dg) N (%2 belong to 175;.
Let us prove that B
g30820810 f(3Dg) N Dimax = 2.

Let C be a connected component of g, 0 g o ]7 (0Dg) N 175;. As

Z2081 0 f(3Dg) N Dimax C Vg,

the ends of C do not belong to 13max N 175; butto y os;,! (130) N 175;, which is the
other connected component of Vg — o (the ends of C do not belong to o because
elp,(f(Do)) = dp(Dmax, Do) = 2). By construction of the homeomorphism g3,

g3(C) C yos; ' (Do).

Thus, the set g3(C) is disjoint from D¢, which completes the proof of the second
claim. O

Proof of Lemma 5.2 For any edge & in B, we denote by Dg the fundamental domain
in D that satisfies Dy N Dz = &. Let us fix an edge & in B. As elp, (f(DO)) =1,
the curve f (&) does not meet fundamental domains in D adjacent to Dg and different
from Dy: these fundamental domains are at distance 2 from Dg. Let us prove that,
if ,g is an edge in B different from &, then ]7 (@) N Dg = @. Otherwise, we would
have ]7 (Dz) N Dg # &, for an edge ,g different from &. Let us denote by s the deck
transformation which sends Dy to Dg. Then

2 =dp(Dg, Dj) = dp(Do, s (Dp)).

Moreover f(s(Dg)) N Dg # &. Hence f(Do) Ns~1(DF) # @. It contradicts the
hypothesis elp,(f(Dg)) = 1. Thus, for any edge & in B,

7(@) c D3 U Dy UG.
For an edge & in B, we denote by 175 the lift of Vpy) which contains the edge @ .

We now build homeomorphisms g and g, supported respectively in (] Vg and in
U, such that acd

for any & € B, §zo§10f(&)cl75;U&.
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Figure 8: Proof of Lemma 5.2: The homeomorphisms g; and g»

As in the proof of Lemma 5.1, we build homeomorphisms g; and g, that satisfy the
following properties:

(1) The homeomorphism g is supported in | J,c 4 Vo and pointwise fixes dDy.

(2) For any edge « in A and any connectgd component C of f(IT(dDg))N Ij'a that
does not meet «, we have g{(C) C U,.

(3) The homeomorphism g, is supported in U, .

(4) For any edge « in A and any connected component C of g1 o f(I1(dDg)) N ?2
whose ends belong to the same connected component of Vy —a, g,(C) C V.

Let us denote by (72,0 the lift of the disc U, contained in Dy and, for any edge & in
B, U, 5 the lift of the disc U, contained in Dg. As in the proof of Lemma 5.1, for
any edge & in B,

g10f@ CcloUVzU0,5 and 2080 f(@ C V.

We will now build homeomorphisms g3 and g4 of S supported respectively in
Uges Ve and U, such that, for any edge @ in B, the homeomorphism g4 o g3 o
g2 081 0 f pointwise fixes V.

Let g3 be a homeomorphism supported in ] V,, that satisfies the following properties:
a€A
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(1) The homeomorphism g3 pointwise fixes g, 0 gy o f(a).
(2) For any connected component C of g, 0gq10 f(dVy) N Io/a: g3(C) C I}Z.

Then, the set g3 0g,0g1 0 f(0Vy)AdVy is contained in l(}z.

We impose that the homeomorphism g4 is supported in U, and satisfies the following
property: The homeomorphism g4 is equal to (g3 0g50g10 f)~! on the closed set
g30g20g;10 f(dVy). Thus, as the homeomorphism g4 0 g3 0 g, 0g; o f pointwise
fixes | Jyeyg 0Vo, the map gs: S — S, which is equal to g4 0 g30g,0g10 f on
(Ugea Vo and to the identity outside this set, is a homeomorphism of .S supported in
Ugea Va- Let g =(g508g40830820g810 /). Then the homeomorphism g¢ is
supported in U, and we have

f=g'ogslogilog logslogy!.
This implies that Frag,,(f) < 6. O

6 Case of the torus

In this section, we prove Proposition 3.1 in the case of the torus T2 = R?/Z2. We
set Dy = [0, 1]? and the covering II is given by the projection R? — R2/Z2. We
denote by A (respectively Ay, BO, B1) the closed annulus [—%, %] xR/Z C T?
(respectively [ l]xR/Z R/Zx[ 4 2] R/Zx[ , 1]). For any integer i, we denote
by A’ (respectively A’ B’ ) the band of the plane
[i —%.i+3]xR (respectively [i + 4. + 1]xR, Rx[i —+.i+1], Rx[i +1.i +1]).
Finally, for i € Z and j € {0, 1}, we denote by &5— (respectively E;) the curve
{i + %} xR (respectively R x {i 4+ %}). Let U be the cover of the torus T2 defined by
U={IxJ|I.Je{[—5.5)[5. 1} ={4;NBj | j.j €{0,1}}.

For a compact subset 4 of R?, we set

length(A4) = card{(i, j) € Z x {0, 1} | &; LNA+ o),

height(A4) = card{(i, j) € Z x {0, 1} | ﬂ} N A # o}
We claim that, for any compact path-connected subset 4 of R?,

length(A) < 2diamp(A4) and height(A) < 2diamp(A4).

~no+1 ~no+N—1

Indeed, suppose that the set 4 meets the curves on 0 s O , for some

nog € Z, N € N. Then there exist fundamental domains D; and D, in D such that:
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(1) The fundamental domain D; lies between the lines &@;° o=1 and a,’.

~nog+N—1

a, and ozn°+N

(2) The fundamental domain D, lies between the lines «
(3) The sets D; and D, meet A4.

Then N < dp(Dy, Dy) < diamp(A4). Similarly, if the set 4 meets the curves
&fo,&;'OH, . ,62’110+N_1 or the curves ﬁno ,8”°+1 ..,,37°+N_1
N eN, je{0,1}, then N <diamp(A4). ThlS proves the claim.

Let us fix a homeomorphism f in Homeoy(T?) and a lift ]7 of f. Let imaxa € Z

and jmax,a € {0, 1} (respectively im,y g and jmay g) be the integers that satisfy

for some ng € Z,

lmax,(x + 2]max,(x = max{l + 2] | f(DO) Nna 7& @}
(espectively s+ Ljmens = masti-+ 1 | Do)V .

Let (i, jo) (respectlvely (ig. jp)) be the pair such that the interior of the band A’“

max o

(respectively B ) contains the curve & = = Omax (respectively /3 “max, 5 ,Bmdx) See

Figure 9. ~
: e
ff(aDo) /’“\
R e S R N I 7
....... OO s S e RTTIIS FEA
e et R S I e B e F--
. e L — | P |
Bo l : : ; : i
Bl A R A A A A R
a) a¥ ay a; - Omax

Figure 9: Notation in the case of the torus

Definition 6.1 The connected components of A jo N f(IT(dDyg)) can be split into two
classes:

(1) On the one hand, the connected components that are homeomorphic to R will
be called the regular connected components of A; je N f(I1(0Dy)).

(2) On the other hand, there exists at most one connected component homeomorphic
to the union of two transverse straight lines in R?. This is the connected
component that contains the point f(0,0). We will call it the singular connected
component of fi)ja N f(I1(dDy)).

The connected components of B js N f(ITI(3Dg)) can be analogously split.
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Suppose that either height( f~ (Dg)) > 5 or length( f (Dg)) > 5. We claim that one of
the following cases occurs.

First case There exists a connected component C of ! (/i) je) N f~ (0Dy) such that:

(1) The ends of C belong to two different connected component of the boundary of
n='(4,).

(2) height(C) <35.

3) (C ) is a regular connected component of A je N f(I1(0Dy)).

Second case There exists a connected component C of TI"! (éjﬁ) N ]7 (0Dg) such
that:

(1) The ends of C belong to two different connected components of the boundary
of ™1 (Bj,).

(2) length(C) <5.
3) H(C ) is a regular connected component of §j6 N f(I1(aDy)).

Let us prove this claim. Suppose first that the length ofo f~ (Dg) is greater than
5. Then there exists a regular connected component C of 4, N f(I1(0Dy)) whose
ends belong to different boundary components of A4 j, . Take a lift C of C contained
in f (0Dg). If the first case does not occur for C, the height of C is greater than
5. Therefore, there exists a connected component C'of I™ 1(B jg) N C whose ends
belong to two different connected components of the boundary of I1~!(B jg)- In
this case, the length of the component C’ is at most 1: the second case occurs.
Finally, suppose that the length of f (Dg) is smaller than or equal to 5 and the
height of this component is greater than 5. Take a regular connected component of
s N f(IT1(3Dg)) whose ends belong to different connected components of 9B,
Then any lift of this connected component contained in f (0Dg) satisfies the propertles
of the second case.

The next lemmas will allow us to prove Proposition 3.1 in the case of the 2—dimensional
torus.

Lemma 6.2 In the first case above, there exists a homeomorphism h supported in Aj,
that satisfies the following properties:

(1) If po: R? - R denotes the projection on the second coordinate, we have:

sup | p2 o hi(x) — pa(x)| < 4

x€R2

(2) height(h o f(Dg)) < height( /(D))
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(3) length(ho /(Do) < length(f (Do) ~ 1
We have of course a symmetric statement in the second case.

Lemma 6.3 There exists a constant C' > 0 such that, for any homeomorphism f in
Homeog (T ?) that satisfies the following properties,

length(f(Do)) <5 and height(f(Do)) <5,
we have Frag;,(f) < C’.

Proof of Proposition 3.1 in the case of the torus T2 Take any homeomorphism /
supported in one of the A; (respectively one of the B;) with

sup |paoh(x)— pa(x)| < 4

x€R2

(respectively sup |pio fz(x) —p1(x)] < 4).

xeR2

Observe that D 4; = AO N[0, 1]x R (respectively Dp; = B0 NR %[0, 1]) is a funda-
mental domain for the coverlng map AO — Aj (respectlvely B0 — Bj). Let

A]. :{DAj+(0,k)|k€Z} and DB]- :{DBj+(k,0)|k€Z}.

Then diamp ” (E(DAJ. )) <7 (respectively diamDBj (}7 (Dp;)) = 7). Using Proposition
5.3 in the case of the annulus, we see that there exists a constant C > 0 such that, for
any such homeomorphism /, we have

Frag;,(h) < C.
Using Lemma 6.2, we see that, after composing the homeomorphism f* with at most
C(max{height(f(Do)) —5,0}+ max{length(f(DO)) —5,0})

homeomorphisms supported in one of the discs of ¢/, we obtain a homeomorphism f;
that satisfies the hypothesis of Lemma 6.3: Frag;,(f;) < C’. Therefore

Frag;,(f) <4C diamp(f(Do)) +C.

The proposition is proved in the case of the torus T2, O
Now, let us turn to the proof of the two above lemmas.

Proof of Lemma 6.2 Suppose that the first case occurs (the proof in the second case is
symmetric). Let /7 be a homeomorphism supported in 4, that satisfies the following
properties:
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(1) For any regular connected component C of f(IT(dDgy)) N A j, that meets
IT(&max) and both of whose ends belong to the same connected component
of 04;,, h(C) NI (@max) = @

2) "lz)he homeomorphism / fixes any regular connected component of f(IT(dDg))N
Aj, whose ends belong to different connected components of 04, .

(3) The homeomorphism / fixes the projection of any connected component of
f(0Dg) NI~ ! (4j,) that does not meet the set N (T (Gmax)) -

(4) For any connected component C of f(aDo) N1 (/Tja), D2 (5(5)) c p2(0).

(5) If the point f(0,0) belongs to Aj-a, we add the followiong condition. Let Cy be
the singular connected component of f(I1(dDg)) N A4;, . If there exists a lift
50 of the component Cy that meets the set ]7 (0Dg) N &max, We impose the
following condition. Let us denote by Cy, C,, C3 and C4 the connected
components of Co—{f(0,0)}. Only three of these connected components admit
a lift contained in f (Dg) that meets the interior of A ‘; : for the last connected
component, the two hfts of this one contained in f (Dy) are necessarily contained
in the interior of A;‘;‘( - We can suppose that these three connected components
are Cy, C, and C3 Let C;, C, and C; be respective lifts of Cy, C, and
C3 contained in A’“ Then, for any integer i between 1 and 3, we add the
following condltlon h(C,) N Upax = & .

We claim that such a homeomorphism / satisfies the wanted properties. First, recall
that there exists a connected component C of 17! (A je) N f (0Dg) whose ends belong
to two different connected components of the boundary of T1~!(4 j,) and whose height
is less than or equal to 5 (and therefore sup p, (C) —inf )2 (C ) < 3). Recall also that
the homeomorphism / pointwise fixes the projection of this connected component.
Therefore

sup | py o hi(x) — pa(x)| < 4.

x€eR?2

The condition (4) on thg second coordinate of the images under / of the connected
components of the set 4;, N f(I1(dDg)) implies that

height(7 o f(Dy)) < height(f(Do)).

Finally, by construction, the set h ) f (Dg) does not meet the curve &pyax anymore and
meets only curves of the form & a already met by the set f (Dg). Thus

length(h ) f(Do)) < length(f(Do)) —1.

Lemma 6.2 is proved. a
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Proof of Lemma 6.3 During this proof, we will often use the following result, which
is a direct consequence of Proposition 3.2 in the case of the annulus. There ex1sts a
constant A > 0 such that, for any homeomorphism 7 in Homeog (T 2) supported in Ao
or in A1 that satisfies height(77(Dg)) < 45, we have Frag;,(n) < A.

First, notice that the inequality length( f (D)) <5 implies the inequality
length(f(&o)) <3.

Indeed, suppose that length( /' (ag)) > 3. Note that one of the edges of the square D¢
is contained in ozo and that the curve f (ao) meets two curves among the & oc that the
curve f (ozo) does not meet. Therefore,

length( /(Dyg)) > length(f(&g)) +2>5,

a contradiction. We denote by n( f (ozo)) the number of connected components of
U; J 8A’ met by the path f(&g) As the length of f(ag) is less than or equal to
3, then n( f (ag)) < 7. We now prove that, after composing f with a homeomorphism
whose fragmentation length with respect to I{ is less than or equal to 7A if necessary,
we can suppose that n(f(ozo)) =0.

Suppose that n(f(ozg)) > 0. Consider (io, jo) € Z x {0, 1} such that the band A’O i
the leftmost band met by the set f (Dg). Then the set f (Dg) meets A O but meets
only one connected component of the boundary of A 8 that we denote by Cig, jo - Let
A’1 be the unique band among the A’ whose interior contains the curve c¢;,, j,. Then
J1 7’5 Jo-

First case The set f (Dg) meets the two connected components of the boundary of
A{ll . Let & be a homeomorphism in Homeog(T?) supported in the interior of the
annulus Aj, that satisfies the following properties:

(1) For any connected component C of f (ao) NI~ 1(A jo) whose projection is not
contained in the interior of A;, , we have h(I1(C)) C AJ1

(2) The homeomorphism h pointwise fixes the other connected components of
J@) NI (4)).

(3) For any connected component C of f(BDO) N1 (/fjo), )2 (/7(5)) C P2 (5’).

@ sup [paoh(x) = pa(x)| <3.

x€R?2
Notice that this last condition is compatible with the first one. Indeed, as the height of
f(Dy) is less than or equal to 5, then, for any connected component C of f(dDg) N
I~ 1(4j,), we have height(C) < 5. Therefore, we can choose /4 so that the support of
h is contained in a disjoint union of discs whose height is smaller than or equal to five.
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For such a homeomorphism #, the following properties are satisfied:
Fragy(h) <, n(ho (@) <n(f(@)). height(ho [(Do)) < height(f (D)),

The second one comes from the fact that the set Jio f (ozo) no longer meets one of the
connected components of the boundary of A

Second case Suppose that the set f (Dyg) does not meet both boundary components of
AJ !'. Likewise, we build a homeomorphism in Homeoo (T?2) supported in A; j; such
that the curve /i o f (a ) does not meet the band A4 1’8 anymore and such that

Frag, (h) <A, n(ho f(@) <n(f(@)). height(ho f(Dg)) < height(f(Dy)).

Thus, it suffices to prove the following property. There exists a constant C' > 0 such that,
if f is a homeomorphism in Homeog (T ?) with n(f(&'g)) =0 and height( f(Dy)) <5,
then Frag,,(f) < C. Let us consider such a homeomorphism f.

First case ( f(ag) € Ag) Let & be a homeomorphism supported in the annulus A
that preserves the horizontal foliation such that /( f(cg)) C Ag. The preservation of
this foliation implies that Frag,,(4) < A. We are led to the second case.

Second case ( f(xg) C Ag) Let 4 be a homeomorphism supported in the annulus
Ay that is equal to the homeomorphism f in a neighbourhood of the curve > 0. As the
height of f (Do) is less than or equal to 5, we can suppose that helght(h (Dg)) <5.
Thus Frag,(h) < A. Moreover helght(h o f (Dg)) < 15. We have pointwise fixed «,
which is one of the boundary components of A;. By an analogous procedure, we can
find a homeomorphism 4’ such that //~! o h~1 o f pointwise fixes a neighbourhood
of the boundary of 4 and such that

Frag,(h') <A and height(k' "' o' o f(Dy)) <45.

We denote by /1; the homeomorphism supported in A that is equal to 2/’~1oh™ 1o f
on Ay. The height of h (Do) is less than or equal to 45 and that is why Frag,,(h1) <A.
Moreover, the homeomorphism /1, = hi'oh'~"oh™'o f is supported in Ag. The
height of the image of Dy under /5 is less than or equal to 45: Frag;,(h,) < A. Finally,
Frag;,(f) < 4A in this case. a

7 Case of higher genus closed surfaces

In this section, we prove Proposition 3.1 for a closed surface S of genus g > 2. Let us
begin by describing the cover U/ that we use in what follows. Let p be the point of S
that is the image under IT of a vertex of the polygon dDg. Let us denote by B the set
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of edges of the polygon dDy and by A the set of curves that are the images under T1
of an edge in B. Let

A=1{y@ |deB,yem(S)=T"(TI(B)).

We denote by U, a closed disc of S whose interior contains the point p and that
satisfies the following property: if Uy is a lift of Uy and p is a lift of the point p,
then the disc Uy meets only edges in A for which one end is p and the boundary dUj
meets each of them in exactly one point. For any edge « in 4, we denote by V,, a
closed disc that does not contain the point p such that the following properties are
satisfied:

(1) For any edge o in A4, the set V, U Uy is a neighbourhood of the edge «.

(2) For any edge o in A, the set V, N Uy is the disjoint union of two closed discs.

(3) The discs V,, are pairwise disjoint.
We denote by U; a closed disc that contains the union of the V. Finally, we denote

by U, a closed disc that does not meet any edge in 4 and that satisfies the following
properties:

(1) For any edge « in A, the closed set U, NV, is homeomorphic to the disjoint
union of two closed discs.

@) U,uU,U | Va=S.
a€A
(3) The closed set (|, Vo U U,) N Uy is homeomorphic to an annulus for which
one boundary component is dUj.

Let U = {U(), U, Uz}.
Proposition 7.1 Let f be a homeomorphism in Homeog(S). Suppose that

elp, (f (D)) = 4g.

Then there exists a homeomorphism h in Homeog(S) that satisfies the following
properties:

(1) Fragy,(h) <8g+3
(2) elpy(fo f(Dg)) <elp,(f(Dg))—1

Remark 7.2 We did not try to obtain an optimal upper bound of the fragmentation
length of a homeomorphism /4 with elp,(h o f(Dg)) <elp,(f(Do)) —1.

Lemma 7.3 There exists a constant C "> 0 such that, for any homeomorphism f in
Homeog (S) with elp,(f(Dy)) <4g, we have Frag,,(f) < C’.
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Figure 10: Notation in the case of higher genus closed surfaces

End of the proof of Proposition 3.1: Case of a higher genus closed surface Take
any homeomorphism f € Homeog(S). A classical result asserts that the homeomor-
phism f~ has a fixed point. Indeed, suppose that it is not the case. Then associate to
each point X of S the unit tangent vector at X to the geodesic between the point X
and the point f (X), oriented from X to f (X). This vector field on S gives rise to a
nowhere vanishing vector field on S, a contradiction.

Recall that the homeomorphism ]7 commutes with the deck transformations. Hence
J(Do)NDo#2 and  elp,(f(Dy)) < diamp(f(Do)).

Therefore, the two above lemmas allow us to complete the proof of Proposition 3.1 as
in the case of surfaces with nonempty boundary. a

For the proof of Proposition 7.1, we will need some combinatorial lemmas concerning
the group 71(.S), which we state in the following subsection. The proofs of these
lemmas will not be used elsewhere in the text: the reader can skip them if he wants.

7.1 Some combinatorial lemmas

7.1.1 Some definitions Recall that two fundamental domains D; and D, in D
are adjacent if the intersection of D; with D, is an edge common to the polygons
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dD1 and 0D, . Recall also that G is the generating set for 71 (S) consisting of deck
transformations that send the fundamental domain Dy to a fundamental domain adjacent
to Dg. By abuse of notation, for any word y in elements of G, we also denote by y
the corresponding element in the group 7 (S).

Definition 7.4 We call a geodesic word a word y in elements of G C 71 (.S) such that
the number of letters of the word y is equal to /g(y).

We now describe a more geometric way to see the words whose letters are elements
of G.

Definition 7.5 We call a path in D of origin Dy any finite sequence (Do, Dy, ..., Dp)
of fundamental domains in D such that two consecutive fundamental domains in this
sequence are adjacent. Such a path in D is said to be geodesic if for any index i,
dp(Dgy, D;) =1i.

Remark 7.6 Notice that there is a bijective map between words in the elements of
G and the paths of origin Dy in D: to a word /; ---[,, one can associate the path
(Do, 11(Dy), 1112(Dy), ... 1115 ---1,(Dy)). This last map is bijective and sends the
geodesic words to geodesic paths in D.

Definition 7.7 For a homeomorphism / in Homeoo(S), we call a maximal face for
h any fundamental domain in D at distance elp,(/(Dy)) from Dy.

We want to prove that, after composing / with a number independent of / of homeo-
morphisms supported in one of the discs in I/, the image of Dy does not meet maximal
faces for & anymore. There will be two different kinds of maximal faces for /. The
first ones, which we call non-exceptional, are not problematic: after composing s with
four homeomorphisms, each of them being supported in one of the discs of U/, the
image of the fundamental domain Dy will not meet these faces anymore.

Definition 7.8 A face D is called non-exceptional if it satisfies the following prop-
erty: In the set of faces adjacent to D, there is only one element that is at distance
dp(D, Dy)—1 from Dgy. The faces in D that do not satisfy this property are called
exceptional.

In the case of exceptional faces, we will have to understand the relative arrangement of
the nearby fundamental domains in D.

Let us describe more precisely the crucial property used in this proof. Let us denote
by D an exceptional face and by y a geodesic word such that y(Dg) = D. Let
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(Dyg, D1, ..., Dy = D) be the geodesic path in D corresponding to the geodesic word
y. We will see later (see Lemmas 7.10 and 7.11) that the 2g — 1 last faces in this
sequence share a vertex in common. The crucial property is the following: if 1 <k <

2g —2, for any geodesic path of the form (Do, ..., DNk, Dy _s . qs---» D), where
the face D'y, , is different from the face D1, thenthe faces Dy _; . ..., Dy

are not exceptional (see Lemma 7.18).

Remark 7.9 By replacing the face Dy with any other fundamental domain D in D
and the generating set G with the generating set consisting of deck transformations
that send D; to a face adjacent to D;, we can define the notion of exceptional faces
with respect to D;. All the following statements dealing with exceptional faces (with
respect to Dg) can be generalized to the case of an exceptional face with respect to
any fundamental domain in D. We implicitly use this remark during the proof of
Lemma 7.20.

7.1.2 Theset A Let
G={af|1<i<gandee{-1,1}JU{bf|1<i<gandec{-11}}
so that
71 (S) = ((@i)1<i<g. bi)1<i<g | la1.b1]-+-[ag. be] = 1).

Let us denote by A the set of cyclic permutations of the words [ay, b;]---[ag, bg] and
[bg.ag]---[b1,a1]. In terms of paths in D, these words correspond to a circle around
one of the vertices of the polygon dDy:

Lemma 7.10 For any word Ay ---A4g in A, the faces Ay ---A;(Dy), for 1 <i <4g,
share a point in common.

Proof Let us denote by X the set of 4g—tuples (J;)1<;<4g Of elements of D that
satisfy the following properties:
(1) 84g = Do

(2) There exists a vertex p of Dy such that the set of elements of D that contain
the point p is {§; | 1 <i <4g}.

(3) Every counterclockwise oriented circle whose center is p and whose diameter
is sufficiently small meets successively the fundamental domains 6y, ..., d4g.
In particular, the faces §; and §;4; are adjacent.
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The set X is naturally isomorphic to the set of vertices of the polygon dDy. An
element a = (§;)1<j<4g in X is associated to a word ¢(a) = A = A;---Age in A
defined in the following way: The letter Ay is the unique deck transformation in G
that sends Dg to 6;. The second letter A, is the unique deck transformation in G
such that A1A,(Dg) = 6,. Likewise, if we suppose that we have built the letters
Als...,A; such that Ay ---A;(Dg) = §;, the letter A;41 is defined by the relation
At Aig1(Do) =841 . Finally, Ay ---A45(Dg) = Dy so the word Aj ---A4g belongs
to the set A.

Thus, we have built an injective map that, to any vertex p of Dy, associates a word A
in A such that the fundamental domains A ---A;(Dg), for 1 <i <4g, share the point
P in common. Notice that the word A~! also satisfies this property. Moreover, as the
cardinality of the set A is 4g and as the cardinality of the set of vertices of the polygon
dDy is 2g, we obtain the following property: for a word A in A, the fundamental
domains Aq ---A;(Dg), for 1 <i <4g, share a point in common. a

7.1.3 Geodesic words and exceptional faces The next lemma describes the shape
of the geodesic words that send the face Dy to an exceptional face.

Lemma 7.11 Let D be an exceptional face different from D . For any geodesic word
y with y(Dg) = D, one of the following properties holds:
(1) The 2g last letters of the word y form a subword of a word of A .
(2) The 4g — 1 last letters of y are the concatenation of two subwords A1 and A, of
words in A with the following properties:

(a) The length of Ay is equal to 2g and the length of A, is equal to 2g — 1.

(b) If we denote by a the last letter of Ay and by b the first letter of A, then
the word ab is not contained in any word of A.

In the second case above, denote by [ the letter in G such that the word A,/ is contained
in some word in A . Then the word y! is not geodesic.

Moreover, there exists a geodesic word y such that y(Dg) = D that satisfies the first
property above. We denote by [y --- 1,4 its 2g last letters, where [y ---l4¢ € A. Then
the 2g last letters of any geodesic word for which this first property holds are [y --- 54

-1 -1
orl4g lzg+1'

In the case g = 2, an example of a geodesic word associated to an exceptional face
with the first property above is [a1, b1] = [b2, a»] and an example of a geodesic word
associated to an exceptional face with the second property above is

—1p—1,, 72 —1p—1 _ —17—1 —1 R
a, by aybyay by =a, by aibiay |ai,bi]=b; a; bilay,by].
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The first property holds for this last word.

Proof Let us describe Dehn’s algorithm, which we will use. Let m be a reduced word
in elements of G. At each step of the algorithm, we look for a subword f of m with
length greater than 2g that is contained in a word f.A” of A (such a word f will be
said to be simplifiable) and whose length is maximal among such words (it is said to
be maximal in m). The word X’ will be called the complementary word of f . Then
we replace in m the subword f with the word A’~! whose length is strictly smaller
(the words in A have length 4g) and we make if necessary the free group reductions
to obtain a new reduced word. By a theorem by Dehn (see Lyndon and Schupp [19]), a
reduced word represents the trivial element in 7r1(.S) if and only if, after implementing
a finite number of steps of this algorithm, we obtain the empty word.

Let us give some general facts on the group 71 (S) that are immediate and are used
below.

Fact1 For any two letters ¢ and b in G, there exists at most one word in A whose
two first letters are given by ab. The other words in A that contain the word ab are a
cyclic permutation of this one.

Fact 2 For any letter a in G, there exist exactly two words in A whose last letter
(respectively first letter) is a. If b and ¢ denote the penultimate letters (respectively
the second letters) of these words, then the word 5~ !¢ is not contained in any word
in A.

Fact 3 For any two letters ¢ and b in G such that the word ab is contained in a word
of A, let us denote by m the word of A with first letter b, but whose last letter /; is
different from a, and by m, the word in A whose last letter is a, but whose first letter
I, isnot b. Then 12_111_1 is not contained in any word in A.

We will use Fact 2 in the following situation: If, at a given step of Dehn’s algorithm,
we obtain a reduced word of the form macm’, where acm’ is a subword of a word in
A, ma is a simplifiable word and mac is not simplifiable, then, after replacing ma by
the inverse of its complementary word, we obtain a word of the form m” cm’, where
m” ¢ is not contained in any word in A. As for Fact 3, we will use it in the following
situation: Suppose that, at a given step of Dehn’s algorithm, we obtain a word of the
form mabm’, where ab is a subword of a word in A, and ma and bm’ are simplifiable.
Suppose moreover that the words mab and abm’ are not simplifiable (these are not
subwords of words in A). Then after replacing the words ma and bm’ with the inverse
of their complementary words, we obtain a word of the form n/; 1 1 'n’, where the
words nlz_lll_1 and lz_lll_ln’ are not contained in any word in A.
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Let us come back to the proof of the lemma. As D is an exceptional face, there exist
two geodesic words y; and y, with distinct last letters such that y;(Dg) = D for
i =1,2. We now prove that one of them satisfies necessarily the first property given by
the lemma and both of them satisfy one of the properties stated in the lemma. Moreover,
if both of them satisfy the first property of the lemma, there exists a word [ -+ /44
in A such that the 2g last letters of y; are / --- /5 and the 2g last letters of y, are

Z4_g1 el gl +1- These two results imply all the claims of the lemma.

Then take two geodesic words y; and y, with distinct last letters such that y; (Do) = D
fori =1,2. The word yyy, ! is reduced but represents the trivial element in the group
1(S). We apply Dehn’s algorithm to this word to prove the lemma. As the words y;
and y, are geodesic, they do not contain simplifiable words. Let A’ be a simplifiable
word that is maximal in y1y; . Let A3 be the complementary word of A’. Then we
have a decomposition of the word A’, ' = A{A,, with

Vi =Pk, va=Ah

By the previous remark, the words A; and A, are nonempty. The words ; and y, are
geodesic. Moreover, as the words y; and y, are both geodesic, the words A; and A,
are not simplifiable. Thus, if the length of A" is 4g, the words A; and A, both have
length 2g. We now prove the following fact.

Fact Such a word A" necessarily has length greater than 4g — 2.

Suppose first that the length of A is less than or equal to 4g — 3 (ie, the length of A3
is greater than 2). After the first step of the algorithm, we obtain the word )71)»3_1)72_ L
which is reduced as A’ is maximal. Moreover, the concatenation of the word )»;1 with
the first letter of the word ¥, ! is not contained in any word in A, and similarly for
the concatenation of the last letter of the word y; with the word k;l : otherwise, by
Fact 1, the word A,y ! would not be reduced. Suppose by induction that, at a given
step of the algorithm, we obtain a reduced word of the form

Pimna vyt

where k > 1, the words ¥ and }, are geodesic and the words 1; are each contained
in a word of A, have length smaller than 2g and satisfy the following properties:

(1) The words 1y and 5 have length greater than 1 and, if they are both of length
2,then k > 1.

(2) For any index i between 1 and k — 1, the concatenation of the last letter of #;
with the first letter of n;; is not contained in any word in A.
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(3) The concatenation of the word n; with the first letter of the word )72_ 1 is not
contained in any word in A and similarly for the concatenation of the last letter
of the word ¥; with the word 7.

Let us apply a new step of the algorithm. A simplifiable subword A’ of the above word
is necessarily contained in one of the words Y11y or Ny, ! by the second property
above and by using the fact that each of the n; has length smaller than 2g. We may
suppose, without loss of generality, that such a subword is contained in y17;. By
combining Fact 1 with the third property above, we obtain that the last letter a of the
word A" = A a is also the first letter of the word 7 = an’; . As the word J; is geodesic,
it does not contain any simplifiable subword, so the word )»’1 , which it contains, has
length 2g. After applying the algorithm, we obtain the word

P ey

where ¥, = y{A} and X is the complementary word of A". The obtained words ¥
and y, are geodes1c. The word A, of length 2g — 1, has length smaller than 2g and
greater than 1. Moreover, if k = 1, the length of 1 is greater than 2 so the length
of 7 is greater than 1. Fact 2 implies that the concatenation of the last letter of Al
with the first letter of 7/ is not contained in any word in A. Fmally, the third property
is satisfied for this decomposition: denoting by / the last letter of ¥ ]/1 , if the word /A1
were a subword of a word in A, then, by Fact 1, the first letter of the word A" would
be /=1, which would contradict the fact that the word 7; is reduced. At each step of
the algorithm, the sum of the lengths of the geodesic words at the beginning and at the
end of this decomposition strictly decreases. Therefore, after applying a finite number
of steps of the algorithm, we obtain a word of the form

)717717]2"'77k)72_1,

where k > 1, which satisfies the three properties that we just described as well as the
following property: The length of }/; as well as the length of J, are less than 2g. In
this case, we can see that the considered word does not contain subwords of a word in
A with length greater than 2g, a contradiction.

Let us come back to the first step of the algorithm. Then the considered word A" has
length 4g —2 or 4g — 1, if its length is not 4g. Suppose now that the length of A’ is
4g — 2. We want to find a contradiction.

After the first step of the algorithm, we obtain a reduced word of the form p;A37; L
where the length of A3 = ab is 2. As before, the concatenation of the last letter of p;
with the word A3 as well as the concatenation of the word A3 with the first letter of

23 ! is not contained in any word of A. Without loss of generality, we may suppose
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that, during the second step of the algorithm, we choose a subword of a word in A
of the form b}:z, where the word Xz is the concatenation of the 2g first letters of the
word ¥, 1 Let us use notation from Fact 3. After applying a step of the algorithm, we
obtain a word of the form yyan;y, I where the length of 7, is 2g — 1 and the first
letter of nq is [ !'. While the subwords that were chosen during the algorithm do not
meet };, we obtain words of the form yyaniny--- iy, ! where the properties (1)
and (2) are satisfied as well as property (3) for 3, alone and where the first letter of 7,
is I 1 After the first step for which we replace a subword which meets 7;, we obtain
a word of the form

Vinon - mkvs L

where the last letter of the word g is /5 I and the first letter of 7 is / 1 I Fact 3
implies the situation is the same as before, a contradiction.

Finally, in the case where the length of A" is 4g — 1, one of the two geodesic words y;
or y, satisfies necessarily the first property of the lemma. Similarly, after implementing
the algorithm, we see that the second geodesic word satisfies the second property of
the lemma. a

7.1.4 Faces of type (i, j)

Definition 7.12 For a natural number / > 1, we call a face of type (0, /) any funda-
mental domain D in D that is at distance / from D and that satisfies the following
property: In the set of faces adjacent to D, only one element is at distance / — 1 from
Dy, ie, this face is not exceptional and is at distance / from Dy.

Remark 7.13 In the case where the fundamental domain D is a face of type (0,/),
the other faces adjacent to D are at distance / + 1 from the fundamental domain
Dy . Indeed, denote by m a word in elements of G and by A a letter in G. Then the
elements mA and m of the group 71 (.S) do not have the same length /g modulo 2, as
the relations that define this group have even length.

Remark 7.14 By using the notion of geodesic word, another (equivalent) definition
of faces of type (0,/) can be given: a face of type (0,/) is a fundamental domain D
in D such that all the geodesic words y with y(Dg) = D have the same last letter and
their length is /.

Definition 7.15 For any integer k& between 0 and /, we define by induction the set
of faces of types (k,!). A face of type (k,!) is a fundamental domain D in D that
is at distance / — k from Dg and that satisfies the following property: All the faces
adjacent to D, except one, are faces of type (k —1,/).
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Remark 7.16 A face of type (k, ) is also a face of type (0,/—k) (oreven (k—i,[—i),
for 0 <i <k).

Remark 7.17 An equivalent definition of faces of type (k,/) is the following. Let
us consider a geodesic word y’ of length / —k such that y/(Dg) = D. The face D
is a face of type (k,/) if and only if the following property holds. For any reduced
word m with length less than or equal to k& such that the word y’m is reduced, the face
y'm(Dy) is not exceptional. This definition can also be interpreted in terms of geodesic
paths in D. Let us denote by (Dy, ..., Dj_;) a geodesic path in D. The fundamental
domain Dj_j is a face of type (k,/) if and only if, for any geodesic extension of the
form (D, ..., Dj_x, Dj_g+1, ..., Dy) of this last path, the faces D;_g, ..., D; are
not exceptional.

Let us fix an exceptional face D. Let /1 ---l4¢ be a word in A and y be a geodesic
word whose 2g last letters are /; - -- I, such that y (Do) = D. Let y =yl ---I5
and, for 0 <i <2g,

D} =y'li--lgi(Do), Df =yl 13 ;1 (Do).

Then D} = D} = D and D) = D; ¢+ By Lemma 7.10, all the fundamental domains
that we just defined meet in one point: they are the elements of the set of fundamental
domains in D that contain this point.

The crucial property described above can be translated in the following way.

Lemma 7.18 For any integers i between 1 and 2g—2 and j € {1, 2}, the fundamental
domains adjacent to Dij that are different from Dl.J 4 and from Dij_1 are faces of type
(l - 1’ d'D(DOa D))

Remark 7.19 Forany i and j, the face Dij is not a face of type (i, dp(D, Dy)) as the
face D, which is exceptional, is at distance i from D. However, forany 1 </ <2g—2
and j, the face Dij is a face of type (i — 1, dp(D, Do) —1).

Proof of Lemma 7.18 The cases j =1 and j = 2 are symmetric: suppose that j = 1.
Take an index 2 <i’ <2g — 1 (think that i’ = 2g —i). By induction on the length of
m, we prove that, for any reduced word m of length less than or equal to 2g — i’ with
a first letter distinct from /; 1 and from /;; L.

(1) The word y’l{l,---1;ym is geodesic.

(2) The fundamental domain y’l{/, - --l;ym(Dy) is not exceptional.
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Figure 11: The Dl.j for a genus 2 surface

If the word m is empty, either the 2g — 1 last letters of the word y’l1/5 --- ;s are not
contained in any word in A or i’ = 2g — 1 and the word y'l;/5 ---l54 is geodesic. In
both cases, by Lemma 7.11, the face y’l1l5 ---1;7(Dg) is not exceptional.

Suppose that the property holds for a word m as above of length less than 2g —i’. Let /
be a letter in G different from the inverse of the last letter of m (or different from /;/ 4
and from /;; 1 if the word m is empty). As the fundamental domain y’l;/, - - - l;;m(Dg)
is not an exceptional face, then

dp(y'lily -+~ lyml(Dy), Do) = dp(y'lily -+ lym(Dy), Do) + 1

and the word y’l1[, ---lyml is geodesic. Moreover, as the length of m/ is less than or
equal to 2g —i’ and the word y'l[, --- 54 is geodesic, the face y'li/5 -+ - lymI(Dy)
is not exceptional. This completes the proof of Lemma 7.18. a

7.1.5 First letter of geodesic words The next lemma is symmetric to Lemma 7.11.

Lemma 7.20 Let D, be a fundamental domain in D. Suppose that there exist two
geodesic words with distinct first letters a and b such that

Y1(Do) = y2(Do) = Dy.
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Then:

(1) There exists a geodesic word y such that y(Dgy) = Dy whose 2g first letters
A1+ Aog form a subword of a word Ay ---A4g in A.

(2) The fundamental domains Dy, a(Dy) and b(Dy) share a point p in common
with the following property: The fundamental domains in D that contain the point
p are faces of the form Ay --- X;(Dg) or k;gl ---k;gl_l.+1(D0), with 0 <i <2g.
Proof The generating set for the group 1 (S) given by the deck transformations that
send the fundamental domain D; on a fundamental domain in D adjacent to Dy is
"19y; I Notice that, under the hypothesis of the lemma, the fundamental domain Dy
is an exceptional face with respect to D;. By Lemma 7.11, there exists a geodesic
word in elements of y1 Gy I whose 2g last letters determine a word

(idagvi Dihag_ v D AT v,

where A1y -+ Asg € A, which sends the face D; to the face Dg. Thus, in the group
m1(S),
Y= g hag A v

where n_lkzglk;;_l ---)»1_1 is a geodesic word in elements of G. Let y be the word

A1Ag+++Azgn. Then, in the group 71(S), y = y1. Thus, the geodesic word y satisfies
the required properties. The second point of the lemma comes from the above argument
and from Lemma 7.10. a

7.1.6 Image of a vertex of the polygon dD( For ahomeomorphism / in Homeog(S),
we denote by /(%) the maximum of the quantities dp(D, Dy), where D varies over
the set of fundamental domains in D that contain the image under the homeomorphism

h of a vertex of the polygon dDg. Let p be the image under IT of a vertex of the
polygon dDy.

Lemma 7.21 Let & be a homeomorphism in Homeoy(S). Suppose that h(p) ¢
h(I1(dDo)). There exists a unique fundamental domain Dy in D whose interior
contains the image under h of a vertex p of the polygon 0Dy such that

dp(Dy, Do) = I(h).
Moreover, the following properties hold:

(1) There exists a word AyAy - -+ Aag in A and a geodesic word y such that y (Do) =
D and the 2g first letters of y are AjAy -+ Ayg.
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(2) The vertices of the polygon 0Dy are the points of the form
B = AT AT ) or Bl = hagoi e hag(P),
with 0 <i <2g—1.
Proof Let us denote by s(Dg) and s'(Dy), where s and s’ are deck transformations
in G, the faces that are adjacent to the face Dy and that contain the point . Suppose
that dp(Dy, D1) = [(h). If the relation dp(s(Dy), D1) = dp(Dy, D1) + 1 held, then
we would have dp(Dg,s~1(D;)) > I(h) and the vertex s~!(p) of 9Dy would satisfy
hs™H(P) =57 (h(p) €5~ (D),
which is not possible by definition of /(). Thus, necessarily,
dp(s(Do), D1) = dp(s' (Do), D1) = dp(Dy, Dy) — 1.
The face Dy is exceptional with respect to D{. By Lemma 7.11, there exists a word
A1Ag -+ A4ge in A such that
y:klkz---kzgy/zkz )‘2g+1V and y(Dg) = D,
Moreover, by Lemma 7.10, the point p is common to the faces of the form
MAz--Ai(Do) and Az hag—1---Agg_itq (Do)

with 0 <7 <2g. Let i be an integer between 0 and 2g. The point p is a vertex of
the polygon A1, -+ A;(Dyg) so the point A7 'A! -~ A7 (P) belongs to the polygon
dDg . Therefore, we have 4g pairwise distinct points that are vertices of the polygon

dDy: we have obtained in this way all the vertices of the polygon dD,. Moreover, if
i>1,

RO - AT () € A ihiga - hagy' (Do),
hhag—i+1hag—i+2-hag(P)) € Ayg_ihag—iy - Aag417' (Do),

so the image under the homeomorphism I of the vertices of the polygon 9Dy that are
different from p belong to the interior of fundamental domains D in D strictly closer
to Dy than D;. This implies the uniqueness of the face D. a

Now, let us start the proof of Proposition 7.1. Let f be a homeomorphism in
Homeog (S) such that elp, ( ]7 (Dg)) = 4g. The proof is decomposed into two parts.
First we build a homeomorphism 7, so that the set 7j; o f~ (Dg) does not meet faces of
type (i, elp,( f (Dy))) for 0 <i <2g —2 anymore. Then we build a homeomorphism
1, so that the set 7j, o 77 o f~ (Dg) does not meet exceptional maximal faces for f .
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In these constructions, we will ensure that the quantities Frag;,(n;) are bounded by a
constant independent of the chosen homeomorphism /. Let us give more details now.

7.2 Pushing the image under f of Dy away from faces of
type (l’ elDo (f (DO)))

Let us denote by p the image under the projection IT of any vertex of the polygon dDy.

Lemma 7.22 Let f be a homeomorphism in Homeog (S). Suppose that

elp, (/(Dy)) = 4g.

Then there exists a homeomorphism 1 in Homeog(S) such that:

(1) Frag,(n) <4(2g—-1)+1
(2) no f(p) € I1(3Do)
(3) elp, (7o f(Do)) = elp, (f (Do)
(4) One of the following properties holds:
(@) elp, (o f(Do)) <elp,(f(Do))—1

(b) The set jo f~(D0) does not meet any face of type (i, elp, (f~(D0))), for
anyindex 0 <i <2g—2.

Definition 7.23 There are two kinds of connected components of f(I1(dDy)) —
I1 (aDo) :
(1) The connected components homeomorphic to R, which will be called regular.

(2) At most one connected component called singular, homeomorphic to the union
of 2g pairwise transverse straight lines of the plane that meet in one point.

This last connected component is the one that contains the image under / of the vertex
of T1(dDg) and will raise technical issues.

Proof of Lemma 7.22 Consider a little perturbation of the identity 1o supported in
the interior of one of the discs in U/ so that

elp, (oo /(Do) <p and noo f(p) ¢ T1(IDy).

Notice that, if elp, (7o o f(Dq)) < elp,(f (Do) — 1, then the lemma is proved with
n = 1no. Suppose, by induction, that, for an integer j € [0, 2g — 2], we have built a
homeomorphism 7; in Homeoq(S) such that:
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(1) Frag,(n;) <4j +1.

(2) elp,(7lj o /(Do) = elp, (/ (Do)).

(3) The set 7; (f(DO)) does not meet the faces of type (i, u) for 0 <i < j.
(4) The point n; o h(p) does not belong to I1(dDy).

We need the following lemma, which will be proved afterwards.

Lemma 7.24 Let i be a homeomorphism in Homeoy(S) and j be an integer in
[0,2g —2]. Suppose that:
(1) The set E(DO) does not meet the faces of type (i, elp, (E(DO))), for0<i<j.
(2) The point h(p) does not belong to I1(dDy).

Then there exists a homeomorphism 1’ in Homeog(S) such that:

(1) Frag,(n') <4.

(2) Either elp, (7] o h(Dy)) < elp, (h(Dy)) or the set 7' o h(Dy) does not meet the
faces of type (i, el;(DO)), forany 0 <i < j.

The above lemma provides a homeomorphism 1’ so that either elp, (7 o7; o f (Dy)) <
pu—1 orthe set 7 o7]j o f(Dyg) does not meet the faces of type (j, u) either. Moreover,
Frag,,(n') < 4. Hence it suffices to take nj1; = 1’ on;. Lemma 7.22 is proved
because, either elp, (741 © f(DO)) < elp, (f(DO)) and n = n;y is appropriate,
or one can repeat the process until the set 7; o f (0Dg) does not meet faces of type
(k,elDO(f(Do))) forany 0 <k <2g—2. a

We now prove Lemma 7.24. Let = elp, (ﬁ (Dg)). The homeomorphism 1" will be
built by composing four homeomorphisms fi, f2, f3 and f; each supported in the
interior of one of the discs in /. The homeomorphisms f; for 1 <i < 3 will satisfy
the following Property P:

{(DeD|DN f;-+ fLoh(Dy) £ @} ={D eD|DNh(Dy) # 2}

The proof is divided into two cases.
7.2.1 Proof of Lemma 7.24: Easy case

Proof Suppose that the image under I of any vertex p of the polygon dDg does not
belong to any face of type (j, u).
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-

3Ua.p(j.am)

Figure 12: Idea of the proof of Lemma 7.22: the face D(j, u)

Let f; be a homeomorphism supported in the disc Uy with the following properties:
(1) The homeomorphism f; globally preserves each edge in A.

(2) For any connected component C of (OJO N A(I1(0Dy)) that does not contain the
point p, we have
A c | VaUln.

a€A

To build such a homeomorphism f7, it suffices to take the time 1 of the flow of a vector
field with the following properties: the point p is a repulsive fixed point of the flow,
the vector field is tangent to the edges of A and it is supported in the open disc l?o.
As the homeomorphism fi globally preserves each edge in A, the homeomorphism
/1 satisfies Property P. Denote by D(j, i) a face of type (/j, ). Recall that, by
definition, if j > 1, all the faces adjacent to D(j, i), except one, are of type (j —1, ).
Let ,g D(j,u) be the edge common to both the face D(/, 1) and the unique face adjacent
to D(j, u) that is at distance dp(D(j, i), Do) — 1 from the fundamental domain Dy .
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Then, by hypothesis, the ends of any connected component of h(8D0) N D(j, ) are
contained in the interior ,8 D(jp) — 3,8 D(j,w of the edge ,8 D(j.u) - Let us denote by
Uz, D(j,w the lift of the disc U, contained in the fundamental domain D(j, ). Then
the construction of the homeomorphism f; implies

Fi0R(3Do) N D(j. 1) C Uy, p(j o UTT™! ( U 7).
a€A
Let f> be a homeomorphism in Homeog(S) that is supported in the union of the discs
Vo, where o varies over A, and which satisfies the following properties:
(1) The homeomorphism f, pointwise fixes all the edges in 4.

(2) Take any edge « in A. Consider any connected component C of
J1oh(I1(3Dg)) N Va

that does not meet the edge o and whose ends are contained in U,. Then
f2(C) C Us.

Let f/'ﬁD(j,u) be the lift of the disc Vg, ,,) that meets the edge ,BVD(J-,M). As the
homeomorphism f, pointwise fixes I1~!(IT1(dDy)), it satisfies Property P. Moreover,
by construction of the homeomorphism f;, we have, for any face D(j, ) of type

(1),

fro fioh(dDg) N D(;, u)c B U U200 0

D(J.

With the same method, we build a homeomorphism f3 supported in the disc U, such
that, for any face D(j, n) of type (j, i), we have

f30 fao fioh(@De) N D(j, 1) C V-

ﬂD( -

As this homeomorphism pointwise fixes I1~!(IT(dDy)), it also satisfies Property P.

Finally, leg f4 be a homeomorphism in Homeog(.S) that is supported in the union of
the discs V,,, where « varies over the set 4, and satisfies the following properties for
any edge o in A4:

(1) For any connected component C of f30 f50 f1oh(I1(dDg)) N I(}a whose ends
belong to the same connected component of V,, —a, we have f4(C) Na = O

(2) The homeomorphism [y p01ntw1se fixes any other connected component of
fy0 fa0 fi o h(TI(8D)) N V.
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We now prove that the homeomorphlsm n = f4 o fz30 fr0 fi satlsﬁes the required
property, namely that elp, (r] o h(Do)) <elp, (h(Do)) and that the set 17 o h(DO) does
not meet the faces of type (i, ) for 0 <i < j. We will distinguish several pieces of
the curve ]7; ) f”; o ]71 o E(&DO): the piece

kv = fio fr0 fioh(3Do) =TI~ (UaVa)
and the piece
ky = f3o fy0 f1oh(dDo) NI~ (Ug Va).

In each of these cases, we prove that the image under £4 of the chosen piece does not
meet new faces (ie, which were not met by the curve f3o0 f; 0 fj 0h(dDg)) and does
not meet faces of type (j, ).

First case Take the closure C of a connected component of l:l . Then f4 (5 )y=C is
contained in a face that belongs to the set

{(DeD|DN fi0 fr0 fioh(Dy) # @} ={D eD|DNh(Dy) # }
and is not contained in a face of type (j, ) because, for any face D(j, i) of type
(. 1),
fio fao froh(@Do)ND(j.p) C Vg, .
Jow)
Second case Take a connected component C of Ez whose ends do not belong to the

same connected component of TT~!(Ug Vy — «). Then ﬁ;(& )= C is contained in the
union of the faces of the set {D € D | D N h(Dy) # @} and does not meet faces of

type (/. 1).

Third case Take a connected component C of l:z whose ends all belong to the same
connected component of TT~!(Ug(V, —a)). Then the subset ];:;(5 ) is contained in
the interior of the fundamental domain in D that contains the ends of C and which,
therefore, is not a face of type (j, i). Indeed, for any face D(j, ) of type (j, i),

fio fao freh(@Do) N D(j.p) C Vg, .
J.u)

Moreover, such a face belongs to the set {D € D | DN h (Do) # @}. O
7.2.2 Proof of Lemma 7.24: Second case

Proof We suppose that the image under hi of a vertex p of the polygon dDg belongs
to a face D of type (Jj, ). In this case, we need the following lemma.
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Lemma 7.25 Let h be a homeomorphism in Homeoo(S). Take an integer j in
[0,2g —2]. Suppose that the following properties hold:

(1) elp,((Do)) = 4g.
(2) The point h(p) does not belong to the set T1(dDy).
(3) The set Z(Do) does not meet faces of type (i, elp, (fz(Do))) for0<i<j.

(4) The image under h of a vertex p of the polygon dDg belongs to a face Dy of
type (j.elp,(h(Dy))).

In this case, the image under the homeomorphism h of any vertex of the polygon 9Dy
different from p does not belong to a face of type (j,elp,(h(Dy))). Moreover, the
face Dy is exceptional with respect to Dy if j > 1.

Proof of Lemma 7.25 Suppose first that j = 0. Lemma 7.21 implies that the images
under the homeomorphism Ji of the other vertices of the polygon 9D, belong to
fundamental domains in D strictly closer to Dy than D;. Suppose now that j > 1.
We prove by contradiction that the face Dy is exceptional with respect to D;. Denote
by s(Dg), where s is a deck transformation in G, a face adjacent to Dy that contains
the point p. Notice that there are two such faces. Suppose by contradiction that
dp(s(Dy), D1) = dp(Dgy, D1) + 1. Then

dp(Do, s~ (D1)) = dp(Do, D) +1, h(s~'(F)) € s~ (Dy).

Let us prove that the fundamental domain s ! (D) is a face of type (j—1, elp, (i: (Dy)))-
As h (Do) Ns~1 (D) # @, this contradicts the hypothesis of the lemma. Let y be a
geodesic word such that y (D) = D;. As elp, (E(Do)) > 4g, the length of the word
y is greater than or equal to 2g. Moreover, as

dp(Do,s ' (Dy)) = dp(Dg, Dy) + 1,

the word s~ !y is geodesic. If we concatenate i € [0, j] letters ay,ds, ...,a; on the
right with y so that the word yaa; ---a; is reduced, then the 2g last letters of the
obtained word do not form a subword of a word in A, as the fundamental domain D4
is a face of type (j,elp, (E(Do))). Therefore, if we concatenate i € [0, j — 1] letters
ay.das,...,a; on the right with the geodesic word s~y so that the obtained word is
reduced, the 2g — 1 last letters of the obtained word do not form a subword of a word
in A. By Lemma 7.11, the faces s~ !yaja, ---a;(Dg) are not exceptional so the face
s~1(Dy) is a face of type (j —1, elp, (E(DO))).

Thus, the face Dy is exceptional with respect to D;. Using Lemma 7.21, we see that
the images under the homeomorphism / of the vertices of dDg distinct from p belong
to fundamental domains in D strictly closer to Dy than Dy. a
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As the proof of Lemma 7.24 in this case is analogous to the proof in the first case we
will just give details on what has to be changed in this case.

We denote by C, the connected component of h (0Dg)N D that contains the point h (p).
By Lemma 7.25, this is the unique connected component of h (0Dg) — I~ (T1(0Dy))
with the following properties: it contains the image under the homeomorphism i of
a vertex of the polygon 0Dy and it is contained in a face of type (j, n). Notice that
H(C~' 1) is a subset of the singular component of /4 (I1(Dg)) — I1(dDyg).

The constructions of the homeomorphisms fi, f2, f3 and fy have to be slightly
modified. Let f; be a homeomorphism supported in the disc Uy with the following
properties:

(1) The homeomorphism f; globally preserves each edge in 4.

(2) For any connected component C of l;() N A(I1(0Dy)) that does not contain the
point p, we have

A©) c | Vaul.

a€A
(3) The image of H(él) under f7 is contained in the open set
U Igva U (}2.
aeA

Notice that this condition is not implig:d by the second one when H(é 1) is con-
tained in a connected component of Uy N A(I1(dDg)) that contains the point p.

As the set C; is contained in a face of type (/, i), the set H(é 1) does not contain the
point p (otherwise the closed set C'; would meet a face of type (j — 1, u) or a face at
distance u + 1 from Dy, which contradicts the hypothesis on the homeomorphism £).

Let f5 be a homeomorphism Homeog(S) that is supported in the union of the discs
Va, where o varies over A, and which satisfies the following properties:

(1) The homeomorphism f, pointwise fixes all the edges in 4.
(2) Take any edge « in A. Consider any connected component C of
J1oh(I1(8Dg)) N Ve

that does not meet the edge o and whose ends are contained in U,. Then
/2(C) C Us.

3) fro fiTI(C))) C Us.
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The homeomorphisms f; and f5 satisfy Property P. Moreover, for any face D(j, i)
of type (/. 1),

o

Jao Jioh(@Do) N D(j. ) C V B Y 02,060

With the same method, we build a homeomorphism f3 supported in the disc U, such
that, for any face D(j, u) of type (j, ), we have

Jsof2o Jioh(®@Do) N D(j ) C Vg, .

Finally, leto /4 be a homeomorphism in Homeog(:S) that is supported in the union of
the discs V,, where « varies over the set A, and satisfies the following properties for
any edge o in A4:

(1) For any connected component C of f30 f50 f10h(I1(dDg)) N I(}a whose ends
belong to the same connected component of V, —«, we have f4(C)Na =2

(2) The homeomorphism f; poointwise fixes any other connected component of
f3 0 fro f1oh(I1(dDg)) N Vg that is homeomorphic to R.

(3) Denote by 5’ the connected component of f3o0 f50 fi 0h(dDg)NIT~! (Ua I(}a
with the followmg properties: it contains the image under the homeomorphism
f3 o f2 o f1 oh of a vertex of the polygon 0Dy and it meets a face of type (, 1).
Then f4(H(C1)) Na =

Let
= fao o fioh(@Do) -1 ({J Va).  *o= fro fro fiohi(@Do)n T~ (| Va)-

As in the first case, one can prove the following properties:

(1) If C is the closure of a connected component of k. Then f4(5 ) = C is
contained in a face which belongs to the set {D € D | D N h(Dgy) # @} and is
not contained in a face of type (j, u).

(2) Take any connected component C of Ez whose ends do not belong to the same
connected component of IT~! (Uq Vo —a) and such that the set C does not
contain the image under the homeomorphism ]73 o f; ° f~1 o/ of a vertex of the
polygon dDq. Then ﬁ(é )= C is contained in the union of the faces of the set
{DeD|Dn iz‘(Do) = @} and does not meet faces of type (7, it).

(3) Take a connected component C of l:z whose ends all belong to the same
connected component of TT~! (Ugy (Va—0)). Then the subset ﬁ;(é ) is contained
in the interior of the fundamental domain in D that is not a face of type (j, i).
Moreover, such a face belongs to the set {D € D | DN E(DO) #+ o},
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Let us finally address the case where C is a connected component of k2 that contains
the image under the homeomorphism f3 ) f2 o fl ol of a vertex of the polygon 9Dy . Let
P be the vertex of the polygon whose image under the homeomorphism f3 o f2 o f 1 oh
belongs to a face Dy of type (j, ;). By Lemmas 7.21 and 7.25, there exists a geodesic
word of the form AjA; -+ A5y, where the word A Ay ---A4sg belongs to A, which
sends the face Dy to the face D;. Let us denote by y’ the word y without the last
letter. By construction of the homeomorphism f; and by Lemma 7.21, the set f;(é )
is contained in the interior of the union of the following fundamental domains:

Ai-+-dagy' (Do)
Aig1-Aagy(Dg) if 1 <i<2g
Mig1---hogy' (Do) if 1<i<2g
)‘4_g i’

)‘4g1'

Aagv(Do) if 1<i<2g
Agv'(Do) if 1<i<2g

These fundamental domains are each at distance less than or equal to & — j — 1 from
Dy and hence are not faces of type (i, ) for 0 <i < j. a

7.3 Pushing the image of Dy into U

For a homeomorphism % in Homeoy(S), we denote by Fj the union of the set
of exceptional faces that are maximal for the homeomorphism / with the set of
fundamental domains D in D such that:

(1) The face D is at distance less than or equal to elp, (}7 (Dg)) —1 and greater than
or equal to elp, (h~(D0)) —(2g—2) from Dy.

(2) The face D shares a vertex in common with an exceptional face Dy, that is
maximal for /# and with the two faces D; and D, in D with the following
properties:

(a) The faces Dy and D, are distinct and adjacent to Dy .
(b) The faces Dy and D, are at distance elp, (/~1(D0)) — 1 from the face Dy.

By Lemma 7.18, the faces D that belong to the set Fy, satisfy the following property.
Denote by p a vertex of the boundary of D that belongs to an exceptional maximal
face and to two faces at distance elp, (E (Dg)) — 1 from the face Dy. Then any face
adjacent to D that does not contain the point p is a face of type (7,elp, (E(Do))),
for some integer i between 0 and 2g — 3. This property implies that, for any face
D in Fj, there exists a unique exceptional face Dp,x such that the second property
above holds. This exceptional maximal face will be called the exceptional maximal
face associated to D.
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Lemma 7.26 Let h be a homeomorphism in Homeog(S) with the following proper-
ties:
(1) h(p) & T1(0Dy).
(2) elpy(h(Do)) = 4g.
(3) The set Z(Do) does not meet any face of type (i,elp, (E(Do))), for any index
0<i=<2g-2.

Then there exists a homeomorphism 1 in Homeog (S) with the following properties:

(1) For any fundamental domain D in JF}, that is at distance at most 2g 3 from
its associated exceptional maximal face, 7] o h(aDo) NnNDcCIl™ 1(Uo)

(2) For any fundamental domain D in Fj, at distance 2g — 2 from its associated
exceptional maxunal face, any connected component of j o h(aDo) N D is either
contained in I1™ 1(Uo) orin D —T171(Uj).

(3) Frag,(n) <4.
(4) noh(p) ¢ T1(0Dy).
(5) elp, (o (Do) = elp, ((Do)).
(6) Theset o h (Do) does not meet any face of type (i, elp, (Z (Dy))), for any index
0<i=<2g-2.
For any homeomorphism A’ in Homeog(S), let &, be the set of connected components
C of h'(dDgy) — IT~1(T1(dDy)) such that:

(1) The connected component C contains the image under ' of a vertex of the
polygon 9Dy .

(2) The face D in D that contains C belongs to Fy,.
For any edge @ in A, we denote by 175 the lift of the disc V@) that meets &.

Definition 7.27 Two edges @ and E in A are said to be consecutive if:
(1) They share a point in common.
(2) They are both contained in the same face D% in D.
Given two consecutive edges o and /3 in A, we denote by Ug i the lift of the disc

Uy that meets @ and ,3 and by U“ﬂ the lift of the disc U, that is contained in the
face DPP.

We will first prove Lemma 7.26 under the additional hypothesis that the set &, is empty.
Then we explain the necessary modifications for the proof in the case where &, # @.
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Figure 13: Illustration of the proof of Lemma 7.26

7.3.1 Proof of Lemma 7.26: Case £;, = &

Proof By methods similar to those used to prove Lemma 7.22, we build a homeomor-

phism f; with the following properties:

(1) The homeomorphism f; is the composition of a homeomorphism supported in

Uy with a homeomorphism supported in the union of the V.

(2) The homeomorphism ﬁ globally preserves any edge in A.

(3) Take any two consecutive edges a and ,E and any connected component C of
h(0Dg) — 1(H(8D0)) whose ends belong to & U ,8 but are not endpoints of

this path. Then the set fl (C) is contained in the interior of the set

&ﬂUV&UVEUﬁ&ﬂ.

Moreover, if no end of C meets E where E is one of the sets V V= U o

ﬂ,
or U“'B U VE’ then f1 (C) does not meet E.
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Take a face D in F;,. By Lemma 7.18, there exist only two edges &p and BD in A
such that:

(1) These edges are not contained in a face of type (i, elp, (}; (Dy))), for any 0 <
i <2g-—2.

(2) These edges are not contained in a face at distance elp,, (i[ (Dg)) + 1 from Dy.

Moreover, these two edges are consecutive. By hypothesis, the ends of any connected
component of h(aDO) N D are contained in ap U ,3 p and are not endpoints of this
path. Hence the set f1 o h(aDo) N D is contained in the interior of the set

g3Bo U 7z, U Vs U ginko,

We denote by C the set of lifts C of connected components of f70h(I1(0Dg))—T1(0Dyg)
such that: all the ends of C belong either to the same edge in A, or to two consecutive
edgesin A.

We build a homeomorphism f; that is supported in U, with the following property.
For any connected component C in C whose ends belong to the union of edges aup
but are not endpoints of this path, the set f5(C) is contained in the interior of the set

T,uipu TP,
Moreover, if the ends of C do not meet aset E among Vy, Vg, Ug by Vz or Ug by V.
then f2 (C ) is disjoint from E . The construction implies that, for any fundamental

domain D in F} and any connected component C of fl o h(aDo) N D, the set f2 (C )
is contained in the interior of the set

~&'B' ~ ~
UOD DUV& UVE .

Also, if C doesn’t meet a set £ among Vo Vap U"‘DﬂD U V~ or U“DﬁD UV

aD K aD b
then f2 (C) does not meet the set E either. As the homeomorphlsm f2 o fl globally

preserves any edge in A,
{DeD| fro fioh(De)ND # @t ={DeD|h(Dy)ND + .

Let f3 be a homeomorphism supported in the union of the V, with the following

properties:
(1) Forany edge « in A and any connected component C of f50 f1oh(I1(dDg))N
Vo whose ends belong to the same connected component of UyNVy,, f3(C)CUy.

(2) For any edge @ in A and any connected component C of f2 ) fl oh(8D0) N V
that does not meet the edge @, f3 (C yNa =
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By the second property satisfied by the homeomorphism f3,
{DeD| fyofrofioh(Do)ND#2yC{DeD| fr0fioh(Do)N D # 2}
C{DeD|h(Dy)N D # &}

Let D be aface in F}, at distance i < 2g—2 from an exceptional face that is maximal for
h. We prove  that, for any fundamental domain D’ in D and any connected component
C of D'N f>0 f10h(dDy),

f(C)ynDcUiPkr,

If the face DL is not adjacent to D, as f; (5 ) is contained in the set of faces adjacent
to D', then f3(C)N D = @. Otherwise, by Lemma 7.18, the face D’ satisfies one of
the following properties.

(1) The face D’ is a face of type (i —1,elp, (E(DO))).
(2) The face D’ is at distance elp, (Z(Do)) + 1 from the face Dy.
(3) The face D’ belongs to F,.

In the first two cases, the face D’ does not meet fz o fi oh (0Dyg). Therefore, it suffices
to consider the two following cases:

(1) The face D’ belongs to F, and is adjacent to D.
(2) D'=D.

In the first case, let @ = D N D’ and V~ be the lift of V) that meets &. No-
tice that any point of C that does not meet V~ has an image disjoint from D.

Moreover, by construction of f3, any connected component of Cn V~ that does
not meet @ has an image under f3 that does not meet the fundamental domain
D. Let us denote by C1 a connected component of cn V~ that meets & and
denote by C ! the connected | component of V~ N f2 o fl ) h(aDO) that contains Cj .

The connected component C ' has necessarily both its ends contained in UO p by
the properties satisfied by fz o f1 oh. Therefore, the set f3 (Cl) is contained in the
set ]’3 (C 1), which is itself contained in U(‘)"DBD. This proves the above result in
the first case. The second case is similar: the same kind of arguments implies that
f(C)ND CUp,p.

Take any face D in Fj, at distance 2g — 2 from its associated exceptional maximal
face. After interchanging &p and Bp if necessary, we can suppose that the edge &p is
equal to the intersection of the face D with a face that does not belong to Fj,. We will
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always make this assumption for such faces in what follows. Then, for any connected
component C of DN f>0 fi0h(dDy),

AC)NDC U"‘Df’D U V~

Finally, let f; be a homeomorphism in Homeog(S) supported in the union of the V,
with the following properties:

(1) fa(Uo) C Up.
(2) Take any face D in Fj, at distance 2g — 2 from its associated exceptional
maximal face. For any connected component C of f3 ) f2 o fl ) h(aDO) NV D

the following property is satlsﬁed Any connected component of f4 (C )N D is
contained either in I1™ 1(UO) orin D —TIT~1(Uy).

(3) For any edge o in A and any connected component C of f30 f 0 fjo
h(I1(dDg)) N Vg that does not meet «, f4(C)=C

The compatibility of the second condition above with the third one is a consequence of
the two remarks below:

(1) Let o be any edge in A and C be any connected component of f30 f,0 fjo
h(I1(dDg)) N J/a whose ends are both contained iI}) the same connected compo-
nent of V,, N Uy. Then the set C is contained in Uj.

(2) Let D be a face in Fy, at distance 2g — 2 from an exceptional maximal face
and suppose as above that dp is contained in a face that does not belong to
Fp. Let C be any connected component of f3 f2 o fl o h(aDO) N VaD that
meets D. Then the set C is either contained in T1~ 1(UO) or meets &. Indeed, if
the connected component C did not satisfy any of these properties, then it would
meet at least two connected components of I1~!(Ugy) N D, a contradiction.

The homeomorphism n = f4 o f3 0 f; o f1 satisfies the following properties. As
the homeomorphism f4 o f3 is supported in U; and as Frag;,(f;) < 2, we have
Frag;,(n) < 4. For any face D in F}, at distance at most 2g — 3 from an exceptional
maximal face,

Toh(dDy) N D C I~ (Uy).

By construction of the homeomorphism fy, for any face D in Fj, at distance 2g —2
from its associated exceptional max1mal face, any connected component of nOh (0Dg)N
D is either contained in TI~!(Up) orin D—I1~! (Uy). Moreover, by the third property
satisfied by the homeomorphism fg,

{DeD|DNijoh(dDy) # @} C{D € D| D Nh(dDy) # &}
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Hence elp, (lhz'(DO)) >elp, (7o Z(Do)) and the set 7o E(Do) does not meet faces of
type (i,elp,(h(Dy))) forany 0 <i <2g —2. Itis easy to choose the f; so that the
property noh(p) € I1(dDg) holds. a

7.3.2 Proof of Lemma 7.26: Case £, # &

Proof During this proof, we need the following lemma, which allows us to deal with
the singular component:

Lemma 7.28 Let i’ be a homeomorphism in Homeoq (S') that satisfies the hypothesis
of Lemma 7.26. There exist words Ay -« d4g, A --‘)\gg in A, a geodesic word of the
form Ay -+ Aygy Ay -+ A5,y and aninteger 0 <i <2g—2 such that, for any connected
component C in &y, either

there exists i’, 1 <i' <2g such that Dg = Ajr -+ Aagy A} -+ Aoy (Do),
)‘Z_g-i-l iz "')‘/Zg—l—i (Do).
Moreover, in the first case above, the faces that are adjacent to D and are not faces of
type (j,elp,(h'(dDy))) forany 0 < j <2g —2 are the faces

or there existsi’, 1 < i’ < 2g such that Dg = )\Zg i

Mir e dagydy e My 5 (Do) and Ay-edagydy - My i(Do).

In the second case above, the faces that are adjacent to D¢ and are not faces of type
(j.elp,(h'(dDy))) forany 0 < j <2g —2 are the faces
-3, oy

Ay, , 2g+1)/)‘/ )‘lzg 2— z(DO) and )‘4g irt” 2g+ly)‘/1' 2g z(DO)

4g—i’ "’
Proof Let us denote by p the vertex of the polygon dDy such that the point " (p)
belongs to a fundamental domain D; in D at distance /(h’) from Dq. Then, by
Lemma 7.21, Dy = Ay ---Aagy' (Do), where Aq ---Aag is a subword of length 2g of
aword Ay---Age in A and Ay ---Aygy’ is a geodesic word. Suppose that the set £y
is nonempty and fix an element CO in & . Let pg be the vertex of dDy whose image
under the homeomorphism J' is contained in CO By Lemma 7.21, after interchanging
the roles of Ap-+-Aag and Aj, 1 AT 1+1 if necessary, we can suppose that py =
AITI_ . 1(;3') where 1 < ’0 < 2g. Recall that the face

0

Dg, =y -+ hagy' (Do)

belongs to Fj/. Therefore, there exists a subword /; ---/; of a word in A, with
0 <i <2g—2, such that the face )\i() o+ AagV'li -+ 1;(Dy) is exceptional and maximal
for A’ and the word Aiy <+ AhagV'ly -+ I; is geodesic. By Lemma 7.11, the 2¢ — 1 last
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letters of the word )‘ié o dogy'ly el are A - )ng |» Where A} ---k;g is a word
in A. Hence the word y’ can be written y" =y -- )ng 1—i*

Recall that, by Lemma 7.21, the vertices of the polygon dD, are the points of the form
)‘1/11 . kl_l(ﬁ) or k4g_i/+1;--k4g(ﬁ), where 1 < i’ <2g. Hence the faces in D
that contain the image under /4’ of a vertex of the polygon 0D are the faces

A 1

)\i/"')‘Zgy)‘/l' 2g 1— l(DO) and )\.4g i 2g+1‘}/)\,/ zg l—l(DO)

where 1 < i’ <2g. Each face of the form D@, where C belongs to &, is one of
these faces.

Fix an element C of & i - Let us look for the that which are adjacent to D and are not
faces of type (j,elp,(h(dDy))) forany 0 < j <2g—2. For ease of notation, suppose
that

Dg =hir++hagyAy Ay y_;(Do)

for some 1 <i’ <2g. Recall that the face iy ~o+dagy Ay o+ Ahe 1 (Do) is exceptional
and that the word 2;, e hogV A A ¢—1 is geodesic. Therefore, by Lemma 7.11,
one of the following properties holds:

(1) The last letter of the word y is )\g g and the penultimate letter of y is different

/
from k4g .

(2) The concatenation of the last letter of the word y and the letter )‘/1 is not
contained in any word in A.

First case The last letter of the word y is )J For any reduced word w either
of length less than i — 1 or of length i — 1 and dlfferent from )ng —i “Ayg_s, the
concatenation of the 2g — 1 last letters of the word A;/ - -+ AygyA] - 2g ;—qW is not
a subword of a word in A. By Lemma 7.11, the face A;7 --- Aoy A} - 2g—1—1 w(Dyp)
is not exceptional for such words w.

First subcase The face Ajr--- Ay YA -+ Ay, 5(Do) is exceptional. This face is
necessarily the exceptional maximal face Dy associated to D¢ . The faces that share
a vertex in common with the faces D¢ and Dex and are at distance less than or equal
to elp, (E’ (Dyg)) from Dy are the faces of the form

Ajr e 'AZgV)‘/ Nzg 1— k(DO) or Ay "'XZgV()‘;g)_ (A2g+1+k)_1(DO)»
where 0 < k < 2g — 1. Among the faces above, only two of them are adjacent to D :

hir+ehagyMy oMy 5 1(Do) and  Agr---AagyA; oAy, (Do)
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By Lemma 7.18, these two faces are the only ones that are adjacent to D¢ and that
are not faces of type (/,elp,(h'(Dy))) forany 0 < j <2g—2.

Second subcase The face A;/ -+ AagyA) -+ As,_»(Do) is not exceptional. Notice that
the word A;7 -+ Aag YA} -+ Ay, is not geodesic: the face A7+ -+ Aagy Ay -+ Aoy (Do)
is exceptional. The face A;/ ---Aagy A ---)ng_l (Do) is the exceptional maximal face
associated to 96. Hence the faces that are adjacent to D¢ and that are not faces of
type (j,elp,(h'(Dy))) forany 0 < j <2g—2 are

Mo dagyd e My _p (Do) and Ap-edagydy -+ My (Do).

Second case The concatenation of the last letter of the word y with the letter A is
not contained in any word in A. Then either the face A;/-+-A2gy A} -+ A3, (Do)
or the face A;7---Aygy Al --- A ¢(Do) is the exceptional maximal face associated to
D¢ . In either case, the faces that are adjacent to D¢ and that are not faces of type
(. elpo(g’(Do))) forany 0 < j <2g—2 are

Air - hagyAy oMy 5 (Do) and  Ayr---Aagy A - A, (D). a

We now prove Lemma 7.26 in the case &, # &. The proof is similar to the one in the
first case: we will just indicate how to modify the proof in the case £, = @ to obtain a
proof in the case &, # .

The construction of the homeomorphism f; is identical to the construction in the first
case.

The definition of the homeomorphism f; is also identical if we slightly change the
definition of the set C. Here we denote by C the union of &f,,;, with the set of lifts C
of connected components of fj o h(H(E)DO)) — I1(0Dg) such that all the ends of C
belong either to the same edge in A, or to two consecutive edges in A. Note that, by
Lemma 7.28, for any elements C and C'in & 'f,0h » there exists a deck transformation
& € m1(S) such that

tge/(Dg) =Dg, and {tzz/(@ps). 16 (Bps)} ={&pg,. BDg, -
This remark is a justification for the existence of the homeomorphism f; in this case.

The definition of the homeomorphism f3 has to be slightly modified. Here f3 denotes
a homeomorphism supported in the union of the V,, with the following properties:

(1) For any edge o in A and any connected component C of f>o0 fi oh(H(aDo))oﬂ
Vo whose ends belong to the same connected component of UgNVy,, f3(C)CUp.

(2) For any edge @ in A and any connected component C of f2 ) fl oh(8D0) N V
that does not meet the edge @, f3 (C yNa =
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(3) Let & be an edge in A and C be a connected component of f‘; o ]71 oh (0Dg) N
V~ Suppose that the connected component C contains the i image under the
homeomorphism f2 o f1 o1 of a vertex of the polygon dDg and is contained
in the union of the faces in Fj,. Notice that all the ends of such a connected
component belong to the same connected component of 175 NTI~1(Up). Then

f([(C)) c Us.

The definition of the homeomorphism f4 and the rest of the proof are the same as in
the case &, = . a

7.4 End of the proof of Proposition 7.1

Proof Let u =elp,( ]7 (Dg)). By Lemmas 7.22 and 7.26, after possibly composing
the homeomorphism f with 8g + 1 homeomorphisms that are each supported in the
interior of one of the discs of U/, we can suppose that the homeomorphism f* satisfies
the following properties:

(1) f(p) £ T1(3Do).
(2) The set f (Dg) does not meet faces of type (i, i), for any index i € [0,2g —2].

(3) For any fundamental domain D in Fy at distance at most 2¢ — 3 from an
exceptional maximal face, the set f (0Dg) N D is contained in the interior of
UO D, Where Uo p is the lift of Uy with the following properties: it meets D,
it meets an exceptional maximal face, it does not meet any face of type (j, i)
for any 0 < j < u and it meets only fundamental domains in D at distance less
than or equal to @ from Dy.

(4) For any fundamental domain D in Fy at distance 2¢ — 2 from its exceptional

maximal face, any connected component of f (0Dg) N D is contained either in
II=1(Up) orin D — T~ 1(Uy).

Definition 7.29 Two distinct connected components &; and &, of Uy — I1(dDy) are
said to be adjacent if €; N &, is homeomorphic to the interval [0, 1]. Two connected
components &; and & of Uy — I1(0Dg) are said to be almost adjacent if there exists
a connected component & of Uy — I1(dDy) different from &; and from &, that is
adjacent to &; and to &,. Then such a connected component £ is unique: we call it the
adjacency face of & and &,.

We denote by C’ the set of connected components of f(IT(dDg)) N lc}o whose ends
belong:
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(1) either to the same connected component of Uy — IT1(dDy),

(2) or to the interior (in the sense interior of a manifold with boundary) of an arc of
the form
dUp N &1 U &y,

where &; and &, are adjacent connected components of Uy — I1(dDy),

(3) or to the interior of an arc of the form
AU NEUEUE,,

where £; and &, are connected components of Uy — I[1(dDg) that are almost
adjacent and whose adjacency face is .

Suppose that the image under f* of the vertex p of I1(dDy) is contained in lc}o. We
now look at the connected components of IT~!(Uy) N ]7 (dDy) that contain the image
under the homeomorphism f of a vertex of the polygon dDg. Denote by p the vertex
of the polygon 9Dy whose image under f belongs to a face Dy in D such that
[(f) =dp(Dgy, D1). Such a point is unique by Lemma 7.21. Let us denote by Uo 0
the connected component of TI~!(Uj) that contains the point f (P). Let Dpax be the
face in D that realizes the maximum of dp(D, Dg), where D varies over the faces in
D that meet the disc U0 o- The two faces that are adjacent to Dp,x and that meet the
disc Uo o are closer to Dy than Dp,x. Hence the face Dp,y is exceptional. As in the
proof of Lemma 7.28, one can prove that there exist words Ay ---A4g and A --- 1) 4g
in A and a word y in the elements of G such that:

(1) Diax = Ar - ")MZgV)\/l "')‘/g_l(DO)-

(2) The word Ay ---Azgy Al -+ A

2g—1 is geodesic.

(3) The set of vertices of the polygon dDy is

Dt AT P 1020 =28 = 13U {hagir -+ hag(P) | 0 =i <2g — 1},

For any 0 <i’ <2g —1, we denote by 51.1, (respectively 51.2,) the connected component
of the set f(0Dy) N TI~1(Uy) that contains the point

Pr=at AT () = SO AT ()

(respectlvely the point pl, = f(k4g i’ Aag(p))). For any / € {1, 2}, we denote by
UO ;+ the connected component of IT~1(Uy) that contains the connected component Cl.l, .

Notice that U()lz’ =A; L. 1(UIO) and that UO s =Agg—ir - hag(U, ’0)
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Fix now 0 <i’ <2g — 1. The faces in D that meet the disc 1701 ;» are the faces of the
form

hirgt - hagyAy - 2j(Do) or Ay e hagy (W)™ - (g i) (Do),
where 1 <i <2g. As in Lemma 7.28, notice that one of the faces
Mirg1 e hagyVAy oo Aye (Do) or  Ajrgq--AagyAl---A5, (Do)
is exceptional.
First case The two faces
A1 hogy Ay oAy, (Do) and  Ajrgy--hogyAl -+ A5, (Do)

are at distance less than p from the face Dg. Then all the faces in D that meet the
disc U()li are at distance less than p from the face Dy.

Second case One of the faces
Airg1 o hagyAy oo Ayp (Do) and  Ajrpq--AagyAy -+ A5, (Do)

is at distance greater than p from the face Dgy. Consider the set of faces in D that
meet U()l,i/ and are not faces of type (j, i), forany 0 < j <2g —2. By Lemma 7.18,
this set is contained in

{Dil/,l’ Dil/,zv Dil/,3}v
where this last set consists either of the faces
Airg1++-A2gy (Do), Airg1 "')ngV(}»Qg)_l(Do),
Air41 "'Kzg)/()»ﬁ;g)_l(ﬁg_l)_l(l)o)
or of the faces

hirgr1 - hagV(Do)s Airg1 - hagyM (Do), Airg1--hagy(Ryg) ™" (Do)

The connected component 5,-1/ is contained in the interior of Dilz’l U D,-l/’z U D,-l/’ 3

Suppose that one of the faces D1  1s at distance greater than or equal to 4 from Dy.
Then we claim that i” = 0 and that two of the faces D1 are faces of type (0, ), the
third one being at distance u — 1 from Dy. Notice that this third face is necessarily
one of the faces

Kl"')»zg)/(DO) and )»1"')¥2gV()\£1g)_1(D0)

and that it contains the set 501 in its interior.
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Let us prove the claim now. Suppose that one of the faces D,-lz’k , with 1 <k <3,
is exceptional and maximal for f. Then all the faces D,l/ k> With 1 <k < 3, either
belong to Fj, or are faces of type (0, i) or are at distance greater than p from the
face Dg. Then the set f (0Dg) would be contained in the disc Uo ;- a contradiction.
Moreover, it is not possible that all the Dl/ , are at distance greater than or equal to
as the set f (0Dg) would not meet any of these faces. It remains only one possibility:
two of the faces D,/’k are faces of type (0, i) and the third one is at distance u — 1
from Dy. If i’ > 0, then the faces D,-lz_l’k, with 1 < k <3, would be all at distance
greater than or equal to p from the face Dy, a contradiction.

Third case One of the faces
Airg1 e hogy Ay oAy, (Do) and  Ajrgy--hogyAl -+ A5, (Do)

is exceptional and maximal for the homeomorphism /. Consider the set of faces in D
that meet U, 01 i and are not contained in a face in F 7 This set is contained in

1
{Di’,l’ ’ ,2 1/ 3}
where this last set consists either of the faces
hirg1--hagy (Do), Airg1---Aagy (M) (Do),
At hagy(hyg)™ A 4g—1) (D).
or of the faces

Mirg1 - hagy Do)y hirg1---AagyYA (Do), Airgr-+hagy ()™ (Do)

In this case, the ends of the connected component 511, is contained in the interior of
D}, UD},,U D}, ,. Moreover, for any 1 <k <3, the face D}, , is at distance less
than p from Dg. Notice that

Dil/,l = )‘1_1 "')‘i_/l(D(l),l)
if the faces appearing in this equality are well-defined.

One can also define faces D2 with similar properties. However, all the faces of the
form Dz,  are at distance less than p from the face Dy.

Let us denote by L the subset of {1,2} x {0,...,2¢g — 1} consisting of pairs (/,i’)
such that the disc Ué ;» meets a face in D at distance greater than or equal to u from
the face Dy .

The faces D' ir.j can be chosen so that the following properties hold:
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(1) Suppose that one of the faces Dé’k, with 1 <k < 3, is at distance p from the
face Dg. Then Dé’l is the face among the Dé,k that is at distance © — 1 from
the face Dy .

(2) For any elements (/1,i1) and (/2,i5) of L, there exists a deck transformation
that sends the face Df} | to the face Dlléz .
1 9 9
In the case where the set L is nonempty, let &y, be the image under the projection
IT of the interior of Ué N Df for some (/,i’) € L. This set is independent of the
chosen pair (/,i’) € L.

/ 9
,1

D (exceptional maxirhal face)

————-

Figure 14: End of the proof of Proposition 7.1

Let /1 be a homeomorphism supported in (}0 with the following properties:

(1) Take any connected component C in C’ whose ends belong to the same face or
to two adjacent faces. Then /(C) is contained in the interior of _J £, where the
union is taken over the connected components & of Uy — [1(0Dyg) that meet the
ends of C.

(2) For any connected component C in C’ whose ends belong to two almost adjacent
connected components €1 and & of Up —T1(9dDy) and to their adjacency face
&,then h(C) Ck,with k =& U& UE.
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(3) Suppose that the point f(p) belongs to the interior of Uy, that the connected
component of f(IT(dDg)) that contains the image of the vertex of I1(dDg) does
not belong to C’ and that the set L is nonempty. Then the homeomorphism /
satisfies the following properties:

@ h(f(p)) € &min-

(b) Take any pair (/,i’) in L and any connected component C of 511, — ﬁll,
Let C = H(é ) and & be the connected component of Uy — [1(dDg) that
contains the end of C that meets dUy. The connected component & is
either almost adjacent or adjacent or equal to £y, by the discussion above.
If the set £ is either equal to &y, or adjacent to £y, then the set 4(C) is
contained in the interior of the set £ U &min. If the set & is almost adjacent
to &Emin, denote by &’ the adjacency face of & and &y, . Then the set 2(C)
is contained in the interior of the set € U &’ U &min.

By construction and by the discussion above, for any pair (/,i’) in L, the set fz(q’,)
is contained in the interior of Dl{/ Y Df, , U Dl{, 3

We claim that elp, (Eo f(Do)) <elp, (f(DO)) —1 = p—1. This completes the proof
of Proposition 7.1.

First, for any point ¥ in ]7 (0Dg) that does not belong to TT~! ((C}o), we have /1 M=y
and the point y belongs neither to an exceptional maximal face nor to a face of type
(0, u) by the properties satisfied by f.

Let C be a connected component of f~ (0Dg) N TI~1(Up) that is contained in a lift of
some connected component in C'. Let D be an exceptional maximal face for f. Let
us prove that D N h(C ) = &. Suppose that the lift Uy of the disc Uy that contains C
does not meet D. Then, as the homeomorphism / is supported in Uy, this property
holds. Suppose now that the disc U meets D. We now use notation from Lemma 7.18.
The faces Dl.] ,for 1 <i <2g¢g—2 and j € {l,2}, belong to .7-"}:. By the properties
satisfied by the homeomorphism f', the connected component C necessarily has its
ends contained in the union of the faces that meet Uy and do not belong to Fr:

1 2 1 _n2
Djg_y, D3,y and D,, = Dj,.

But the connected components H(ng N Uo) and H(D N Uo) of Up—T1(dDy)
are almost adjacent with adjacency face H(D1 N0o). Hence the set h(C ) is contained
in the interior of the set D2g U D 1y D2 ¢~ In particular, h(C ) ND =o. Now, let
D be a fundamental domain in D of type (0, i). Let us prove that h(C) ND=g. By
the properties satisfied by f the set C does not meet D. The set h(C ) meets the face
D only in the following case: the two ends of C belong to two distinct fundamental
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domains that are adjacent to D. However, these two fundamental domains would be at
distance  — 1 from Dy (they cannot be at distance p + 1 from Dy by definition of
W), which would contradict the fact that the fundamental domain D is a face of type

0, ).

Suppose now that the point f(p) belongs to the interior of Uy and that the connected
component of f(IT(dDg)) N Uy that contains the image of the vertex of [1(dDg) does
not belong to C’. For any pair (/,i") € {1,2} x{0,...,2¢g — 1} — L, the set fz(é 1)
is contained in the disc 170 ;+ that does not meet any face at distance greater than
or equal to p from Do For any pair (/,i") € L, the set h(C ) is contained in the
interior of Dl a1 U D 12U D . Moreover, the faces Dl/ 1> Dl 2 and D 3 are at
distance less than I from Do, except possibly in the case (/,i’) = (1,0). In this last
case, as the connected component C0 was contained in the interior of D0 1> the set
h(Co) is also contained in the interior of Do 1 by construction of /1. Now recall that
the face D0,1 is at distance p — 1 from Dy in this case. ml

7.5 Proof of Lemma 7.3

Proof of Lemma 7.3 The proof of this lemma is analogous to the proof of Lemma 6.3.
Let B and y be simple closed curves of S that are homotopic and that are not homotopic
to a point. Let us denote by « an edge in 4 and by &’ a simple closed curve isotopic to «
and disjoint from «. Let Sy’ be the complement of an open tubular neighbourhood of o’
and let Sy, be the complement of an open tubular neighbourhood of « so that g’a/ U §a =
S. Let f be a homeomorphism in Homeoy (S) with elp,, ( f (D)) <4g. Throughout
the proof, R denotes a positive constant that will be fixed later. We will use the
following result, which is a consequence of Proposition 3.2 applied to neighbourhoods
of Sy and of Sy : there exists Ag > 0 such that, for any homeomorphism / in
Homeog (Sy) or in Homeogy(Sy) with elp, (g(Do)) =< R, we have Frag;,(h) < Ag.

Let us give the idea of the proof. Let oy and «, (respectively o/l and 0/2) be the
two connected components of the boundary of S, (respectively of Sy/). We will
see that, after composing the homeomorphism f with at most 16g + 1 well-chosen
homeomorphisms with fragmentation length (with respect to /) less than or equal to
AR, we obtain a homeomorphism f, that sends the curve o to a curve contained
in the interior of §a/. Then, after composing f, with a homeomorphism supported
in Sy that is equal to f2_1 on a neighbourhood of f,(«;) and whose fragmenta-
tion length is bounded by A g, we obtain a homeomorphism f3 that is equal to the
identity on a neighbourhood of «; and is isotopic to the identity relative to o (ie,
the homeomorphism f; is equal to the identity on a neighbourhood of IT~!(ay)).
By composing f3 with at most two homeomorphisms supported in Sy or in Sy
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and with fragmentation length bounded by A g, we obtain a homeomorphism f5 that
pointwise fixes a neighbourhood of the boundary of S, and is isotopic to the identity
relative to this boundary. Then the homeomorphism f5 can be written as a product
of a homeomorphism in Homeog(S,) and of a homeomorphism in Homeog(Sy’)
with disjoint supports. The previous statement applied to these two homeomorphisms
implies that the fragmentation length of f5 is less than or equal to 2A g. Of course,
the constant R will have to be large enough so that this proof works.

Let us give now some details. For any two disjoint subsets A and B of S, we denote by
8(A, B) the number of connected components of TT™1 (a; U, Ua Ua)) disjoint from
A and from B that separate A4 and B. Let &@; be a connected component of IT~!(ay)
and let w(f) be the maximum of 5(§ ’,d1), where S’ varies over all connected
components of TI71(Sy) or of TI71(Sy/) that meet f (7). As, by hypothesis, we have
elDO(f(Do)) <4g,then u(f) <16g. Indeed, u(f) < 4elD0(f(Do)) and the proof
of this last fact is analogous to the proof of the claim length( f (A4)) <2diamp( f (Dy))
in Section 6. Notice that, if S’ is a connected component of TT™ 1(So,) or of TI71(Sy/)
such that §(S”,&;) = j(f), then any connected component of F(@;)N S’ has its ends
in the same connected component of 3S’. Let S’ = I1(S’) and S” be the surface
S if 8" = Sy, or the surface Sy if S = Sy. Denote by /#; a homeomorphism
supported in S’ with the following properties:

(1) elpy(h1(Do)) <4g.
(2) For any connected component C of f(a;) NS’ whose ends are in the same

connected _component of 05’ and homotopic to a path on the boundary of S’,
hq (C) C S//

These two properties are compatible because elp,( f (Dg)) < 4g. Notice that we have
elp, (hl ) f (DO)) < 8g and Frag,, (hl) <Apg if R>4g. Moreover, for any connected
component S’ of I~ 1(S ) with d (a, S’ ) = u(f) and for any connected component
C of f(@ NS, hy(C)cI™ 1(S”) Now, let /1, be a homeomorphism supported in
S’ with the following properties:

(1) elp,(i2(Do)) < 8g.
(2) For any connected component C of /110 f(a1) NS” whose ends are in the same

connected component of 95" and homotopic to a path on the boundary of S”,
hy(C) C S !

These two properties are compatible because elp, (/; 10 f (0Dg)) < 8g. Notice that we

have o
ClDo(hz Ohl o f(aD())) < 16g
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and Frag;,(h,) < Apg if R> 16g. Moreover, we have p(hyohyo f) < u(f)—2. We
repeat this process at most 8g times so that, after composing the homeomorphism f
with at most 16g homeomorphisms with fragmentation length less than or equal to
A g (by taking R > 2884¢), we obtain a homeomorphism f; with (/i) = 0 and that
satisfies the following inequality:

elp, (f1(Do)) <288 F14g

After composing if necessary the homeomorphism f; with a homeomorphism 7
supported in Sy that pushes the curve fi(cp) into the interior of Sy and such that

elp, (71 (Do) < 2%+ 14g,
we obtain a homeomorphism f, with the following properties:

(1) The homeomorphism f; sends the curve «; to a curve contained in the interior
Of Sa/ .

() elp,(f2(Dog)) < 2%8+24g.

We then compose the homeomorphism f; with a homeomorphism 7, supported in
Sqr with the following properties:

(1) The homeomorphism 7, is equal to the homeomorphism f";_l on a neighbour-
hood of TI71( f>(&1)).

(2) elp,(72(Dy)) < 288T24g.

We obtain a homeomorphism f3 that is equal to the identity on a neighbourhood of
the curve o and isotopic to the identity relative to this curve. Moreover

elp, (f3(Do)) <288 +%4g.

We compose this homeomorphism f3 with a homeomorphism 73 that pushes the curve
f3(a2) into the interior of S,/ and that fixes the curve «; to obtain a homeomorphism
f4. As usual, we require that

elp, (73(Dy)) < 288 +34g.

Finally, compose the homeomorphism f; with a homeomorphism 74 supported in Sy
to obtain a homeomorphism f5 that pointwise fixes a neighbourhood of 95, and that
is isotopic to the identity relative to this neighbourhood. Of course, we also require that
elp, (74(Dy)) < 288 T44g. Hence elp, (f; (Dg)) < 288+34g. The homeomorphism
f5 is the product of two homeomorphisms with disjoint supports and that are supported
respectively in S, and Sy. It suffices to take R > 28¢+34¢ to complete the proof of
Lemma 7.3. a
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8 Distortion elements with a fast orbit growth

In this section, we prove Theorem 2.12.

First notice that it suffices to prove Theorem 2.12 for sequences (v,),>; with the
following additional properties:

(1) The sequence (vy,),> is strictly increasing.

(2) The sequence (v;41 — Un)n>1 is decreasing.

Let us prove this. Suppose we have proved Theorem 2.12 for strictly increasing
sequences. If (v,),>1 is any sequence, it suffices to apply the theorem to the sequence
(Supg<, vk +1— 2%,) n>1 to deduce the general theorem. Suppose now that the theorem
is proved only for sequences that satisfy the two properties above. Let us prove that it is
true for any strictly increasing sequence. Let (v,),>1 be a strictly increasing sequence
such that the sequence (v,/n), converges to 0. Let A be the convex hull in R? of
the set {(n,¢) |n > 1and t < v,} and let w, = sup{t € R | (n,t) € A}. The sequence
(wn)p>1 satisfies the two properties above and lim,— 4o wy/n = 0. Then it suffices
to apply the theorem to this sequence to prove it for the sequence (vy),>1-

In what follows, we suppose that (v,),>1 is a sequence that satisfies the hypothesis of
Theorem 2.12 as well as the two above properties.

Let A=R/Z x[—1, 1] and let « be the curve {0} x[—1, 1] C A. The homeomorphism
f in Homeog (A, dA) that we are going to build will satisfy the following property:
There exists x € A such that v + 2% Z P2 (fn (X)) — pa(x) = vy,
where p,: Rx(—1,1) = R denotes the projection. As f is compactly supported, this

guarantees that the property

for all n > 0, S(fn([O, 1]1x[0,1])) = vp,
holds. Now, let us consider the following embedding of R in A
L: R —>10% =R/Z x(—1,1),

x> (x mod 1, g(x)),

% as x tends to

400 and whose limit is —% as x tends to —oo. We identify a tubular neighbourhood
T of L(R) with the band R x[—1, 1], where the real line R is identified with the curve
L(R) via the map L so that, for any integer j, the path {;j} x[—1, 1] is contained in
a. Let & be a homeomorphism of the line L, identified with R, with the following
properties:

where g is a continuous strictly increasing function whose limit is
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(1) The map x + /(x)— x is decreasing on the interval [0, +00) and

lim A(x)—x=0.

x—>+o0
(2) The homeomorphism / is equal to the identity on (—oo, —1].
(3) For any nonnegative integers i and n, h"(i) ¢ Z.

(4) For any nonnegative integer n, h"(0) = v, + (€,/2"), where ¢, is equal to 1 if
vy, is an integer and vanishes otherwise.

The “€5,” in the fourth property makes this property compatible with the third one. Let
f be the homeomorphism defined on 7' by

f:Rx[-1,1]— R x[-1,1],
(x,0) = (1= [tDh(x) + [t]x, 7).

This extends continuously to a homeomorphism in Homeog (A, dA) that we denote
by f by abuse. This extension is possible thanks to the first property satisfied by
h that makes sure that the homeomorphism f is close to the identity when we are
close to the circle R/Z x {%} The third property satisfied by / implies that, for
any nonnegative integers i, j and n, the curve f"({i} x (—1, 1)) is transverse to the
curve {j} x (—=1,1). For any curve f§ in the annulus A, let /(f, «) be the number
of connected components of IT~!(«) met by a lift of 8. In order to prove that the
homeomorphism f is a distortion element, the crucial proposition is the following:

Proposition 8.1 Let [ be a positive integer and let A; = I(f'(«), o). There exist
two homeomorphisms g, and g, in Homeog(A, dA) supported respectively in the
complement of « and in a tubular neighbourhood of « such that

(2080 (1@ ) =1.
First, let us see why this property implies Theorem 2.12.

Proof of Theorem 2.12 Let I/ be the open cover of A built at the beginning of
Section 5. By Lemma 5.2, Frag;,(g;) < 6 and Frag;,(g,) < 6.

Remark 8.2 Looking closely at the proof of Lemma 5.2, we can see that the upper
bound can be replaced with 3.

By Lemma 5.2, Frag;,((g2 o g 1o fIy < 6. Recall that a; = ay(f?) is the
minimum of the m.log(k) where there exists a family (%;)1<;<» of homeomorphisms
that are each supported in one of the open sets of 2/ such that f/ =hjohyo---0hy
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and the cardinality of the set {/, | 1 < p <m} is k. So, for any positive integer /,
a; < (12A; — 6)1og(18). But

M _ 1@ vt

VY e
where the left-hand side of the inequality converges to 0. Therefore, the sequence
(a;/1);>¢ converges to 0. By Proposition 4.1, the homeomorphism f is a distortion
element in Homeog (A, dA). Notice that, here, the use of Proposition 4.1 is crucial as
the hypothesis

. Frag, (/") log(Frag,, (/™)) . Anlog(An)
lim = lim ——=0
n—+00 n n—+00 n
of Theorem 2.11 does not necessarily hold. a

Proof of Proposition 8.1 Let A =A; = I(f (), «). In what follows, everything will
take place in the tubular neighbourhood 7' of the line L that is identified to R x[—1, 1].
Therefore, we can “forget” the annulus A. Let us give briefly the idea of the proof. As
the curve g({0} x (—1, 1)) has length A with respect to «, we have no choice: in the
product (g, 0 g4 y*~1, each factor must push this curve to the left and it must go across
a curve of the form {i} x (—1, 1) at each step (under the action of each factor g, o g1).
The curves g({i} x (—1, 1)) are less dilated and must come back to their initial places
in A steps. Then we must “make them wait” so that they do not come back too fast: if
they come back before the time A, they go too far to the left, which we want to avoid.
On Figure 15, we represented the action of g 0 g; on f’(a) on an example.

Let N be the minimal nonnegative integer such that
FHN,0) €[N, N + 1) x {0} CR x[~1,1] C A.

In the case of Figure 15, this integer is equal to 4. Let us take a real number € in (0, %)
such that, for any integer i in [0, N], any connected component of

SN (i —ei+ex[-1,1]— f1{i} x (—1,1))

joins both boundary components of [i —€,i 4+ €] x (—1, 1). The transversality property
satisfied by f enables us to find such a real number €. Let n > 0 such that, for any
integer i in [0, N], any connected component of

flleyni+Si+1-¢x[-1,1]

is contained in [i 4+ §,i +1—§]x (=1+4n, 1 —n). Let us start with the construction of
the homeomorphism g;. Let g, be a homeomorphism with the following properties:
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(1) The homeomorphism g5 is supported in | Jo<; <y (i —€,i +€) x (=1, 1).

(2) Denote by P; the connected component of [i —e, i +€]x[—1, 1]—g({i} x[—1, 1])
that contains {i — €} x [—1, 1] and denote by K; a topological closed disc
contained in P; that contains the connected components of

(1@ Nl —ei+ 5] (=1L.D) = f1({i} x[-1.1)).
Then for all i, g5(K;) Cli —€,i —5]x(=1+n,1-n).
(3) The homeomorphism g, globally preserves each connected component of

gl@)Nli—e,i +e€]x(—1,1).

Loy x[-1.1)) L x-1,1) Flaarx-1,1)
£ x-1,1)) £ x[=1.1]) L5 x[=1,1)
{0} x[-1,1] {1y x[=1,1] | {2} x[-1,1] | {3} x[-1,1] | {4} x[-1,1]| {5} x[-1,1]

Figure 15: The action of g5 o g;

Before defining g1, we first need to build a sequence of integers (7;)o<;<n - For any
integer i between 0 and N, let:
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. Ll <=L Nt x[-1, 1] £ @
A"{JG[O’N]‘ f’({j}X[—L1])ﬂ{i+1}><[—1,1]=®}
Let

io =max{i,{i} x[-1,1)N fA{0} x (=1, 1)) £ @} =1 —1.

The sets Ag, Ay, ..., Aj,—1 are all empty but we will see that, for any integer N > m >
ig,the set A,, is nonempty. In the case of Figure 15, the sets A4y, A; and A, are empty,
A3 =1{0,1} and A4 = {2, 3,4}. More generally, the family (4;,, Ajy+1,..., AN) is
a partition of {0, 1, ..., N} such that: if ig <m <m’ < N, then any integer in A, is
smaller than any integer in A, . Let us prove that if, for an integer i between 0 and
N —1, the set A; is nonempty, then the set 4;; is nonempty. Notice that, for an
integer j in the interval [0, N],

ISy < (=1, D)) = AN —j +1

by construction of f. As the map x +— h(x)—x is decreasing by construction of /,
then the map

j e 1@ > (=L D))
is decreasing on [0, N]. Let j = max(A4;). As

I G+ x (=1, 1)) I G < (=1, 1),0),

then the curve f/({j + 1} x (=1, 1)) does not meet the curve {i + 2} x[—1,1]. The
integer j + 1 belongs to A;; which is nonempty. For any integer i between iy and
N, let

Ai=4j@). j@)+1,....jG+1D—1}
We define by induction a finite sequence of integers (7;)o<i<nN:

(1) Ifi <ig,wesetn; =1.
(2) Otherwise, assuming that the ny, for k < i, have been defined, we set

i—1

nj==A-— Z ny.

k=j@+1)—1

The integer n; will represent the number of iterations of g, o g; necessary for a
compact set in a neighbourhood of {i + 1} x (—1, 1) to become disjoint from the set
(i,i +1)x(=1,1). Forany 0 < j < N, let i(j) be the unique integer such that
J € Aj(jy. After a number of iterations of g5 o g; that is less than or equal to n;(j),
the curve f!({j}x (=1, 1)) will become disjoint from {i ()} x (—1, 1). Then, after
nj(j)—1 iterations, it will cross the curve {i (j)—1}x(—1, 1) and so on.... For instance,
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in the case of Figure 15, ng =n; =n, =1, n3 =2 and nqy = 4. Let us prove by
induction that, for any integer i > i,

i—1
Z ny <A.

k=j(@)

This will prove also that the integers n; are positive. If i =iy = A—1, then, for j < iy,
the set A; is empty and we have

iop—1

A=Y np=hi—ig>0.
k=0

The property holds for i = iy. Suppose that the property holds for any integer k
between iy and i given between 0 and N — 1. Then

i—1

i i—1
Z ng=A— Z ng + Z g =A—njiy1)—1 <A

k=j@i+1) k=j(i+1)-1 k=j(i+1)
because 7j(;4-1)—1 > 0 by the induction hypothesis. The property is proved.

For any integer j between 0 and N, notice that, by construction, there is only one
connected component of

gdiixl=npn (J i+5i+1-§x(-11)
0<i<N
that does not join two distinct connected components of the boundary of
U i+ i+1-¢]x(=10).
0<i<N

We denote this connected component by C;. Notice that
Cicli(H+5.i()+1=5]1x(=1,1).

Now, we can build an appropriate homeomorphism g;. Let g; be a homeomorphism
that is supported in

| G+5i+1-9x[-L1cRx[-1.1]CA
0<i<N

and that satisfies the following properties for any integer i between 0 and N :
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(1) The homeomorphism g; globally preserves each connected component of
Fla)nli + %1+ 1—=%]x[=1,1] that joins the two boundary components of
i+ S i+ 1= x(—=1,1).
[+ 5.1+ a1 ( ) o
(2) For any integer j in A; and any integer r <A — >_ ng,
k=j
g1(ChN@i—ei+e)x[-1,1]=C;N(@{i—€,i+e€)x[—1,1].

(3) For any integer j in A;, the following inclusion holds:

A—Z;'_:L ny
1 - (Cj) C K;
i—1
(notice that these properties are compatible as A — ny increases with j and,
prop p k J
moreover, i—1 k=j

A— an =n;
by definition of n;). k=i
(4) The following inclusion holds:
gl (i +5. i+1=51x (=140, 1-n) Cli+5.i+5) x (=1+n, 1-n) N K;
(5) For any connected component C of f/(a)N[i + i+ 1—€]x(=1,1) that
joins the two boundary components of [i + %,i +1—¢€]x(—1,1), we have
forallr <n;, gi(C)NG—€,i+e)x[-1,1]=CN@{—¢€,i+e)x[-11].

(6) For any integer r < n;, the set g7([i +1—¢,7 +1—g]x[~1,1]) does not meet
the square([i, i + €] x [—1, 1].

The second and the third above properties give the speeds with which we push back the
components C;: the third property means that the piece C; is pushed back in a K;
after time A — Z h— ] +1 1k and the second condition implies that it cannot be pushed
back before this time. The properties 4, 5 and 6 give the exact time necessary to pass
through [i,7 4+ 1] x (-1, 1).

Now, we prove that, for homeomorphisms g; and g, with the properties given above,
we have

I((g20g)* ' (S (@), ) = 1.

Let j be an integer between 0 and N and let i =i(j). We denote by «; the curve
{j}x[—=1,1]. Let us prove that, for any ;' €[j —1,i — 1] and any

Jj'+1

A— an>r>)\ an,
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we have [((g, 0 g1) o fl(ozj) Q) = l(fl(aj) a) — (i — j' —1). By the two first
properties satisfied by g; and the third property satisfied by g,, we have, for any
positive integer r which is less than A — Zk Mk

(g2080) (S (@) N[0,i +elx[~1,1) = £/ (aj) N[0, i +€]x[~1,1],
(g2081)" (/") = ¢ (/ (@))).
This implies the above property for j' =i — 1. Therefore

A— Zk jnk

g10(g0g) k=i o fl(g)) = ¢ (" (@))).

The third property satisfied by the homeomorphism g; implies that the intersection
of the above set with [i — €, +00) x [—1, 1] is contained in K;. Therefore, the second
property satisfied by the homeomorphism g, implies that

i—1
(g20g1) " 2k=i"k o fl(a;) C[j,i—E]x[~1 47, 1—1].

All of the extremal part of the curve has been put back in [i —€,i — §]x (=1, 1). The
remainder has not moved. Indeed

(g20 g0 Zk=i ™ (L)) N[j.i — el x[-1. 1) = S (o)) N[j.i — €] x[~1.1]
1((g20 g1) " Zk=i" o fl(aj).0) =i — j = I(f'(a)). ) — 1.

It suffices now to repeat this argument. Suppose that, for an integer j’ between j + 1
and i — 1,

— j/ . - . .
(g20g) " Zk=i" o fla;) C [, +1—E]x (=1 +7,1—7)

(22080 k=i " (flay) N '+ 1] x [~1.1))
= )N+ 1= x[-1.1]

We saw that this property holds for j' =i —1. Supposing that this property holds for
an integer j’, we prove now that it holds for the 1nteger j'—1 and also that, under this
hypothesis, for any integer r greater than A — 7 k= and smaller than A—Y 7 k=j nk,

I((g2081) o fH(ej).a) = 1(f (@), @) — (i — j").

By the fifth and the sixth properties satisfied by the homeomorphism g and the third
property satisfied by the homeomorphism g, , for any integer 0 < r <nj,
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(g2021)" 0 (g20 1) Zhms ™ (£1(a;) N[0, j' + €] x [~1. 1)
= fle) N0, j/ + el x[-1.1]
(2081) 0(g2081)* Th=i " o f1(@) = gl (g2 0 g1 k=i " (! ().

Therefore

_ i . v
g10(g2081)" To(gr0g1) Zk=i "k (f1(;)) = g7 (g2081)* k=i " (1 (),

so, by the fourth property satisfied by the homeomorphism g1, the intersection of this
set with the half-band [j’ 4 €, +00) x[—1, 1] is contained in the set K. By the second
property satisfied by the homeomorphism g5 :

— j/ . . .
(g2081)"" 0(ga0g)) " Zk=i"k o fl(a;) C ), = E]x (=1 +1,1—7)

and, moreover,

(g2081)"" 0 (g20g1) Zk=i ™ (fL(aj) N [j. j — €] x[~1.1])
= flap) Nlj. j' —elx[-1.1].

This completes the induction argument. One can prove, as before, that, for any
A>r>A—nj,
. —A+n;j —n:
(82080 o f1ep) =g, (g2080" 7 (f (@))).

This implies that /((g,0g1 Y 1o fl (aj), @) =1, which is what we wanted to prove. O

9 Generalization of the results

In this section, we will briefly generalize the results in two directions. First, we could
look at other growth speeds of words than the linear speed. Moreover, we can also
consider finite families of elements instead of looking at one element, and define a
notion of distortion for this situation. The results are analogous to those we stated
before. In what follows, let (wy),>o be a sequence of positive real numbers that tends
to +o00. Let us start with a definition:

Definition 9.1 Let G be a group and g be an element of G. The element g is said
to be (wy),>o—distorted in G if and only if there exists a finite set G in G such that:

(1) The element g belongs to the group generated by G.
(2) The inferior limit of the sequence (Ig(g")/wy) is 0.
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This notion of distortion is interesting only if limsup,, , \ o, wn/n # +00: otherwise,
any element of G is (wy),>o—distorted. Moreover, this notion depends only on the
equivalence class of (wy),>¢ for the following equivalence relation:

(wn) = (6n)
1

<= there exist C > 0, C’ > 0 such that Vn > 0, EE,,—C/Swn <C& +C'.

Then, one can prove the following theorems:

Proposition 9.2 Let D be a fundamental domain of S for the action of m1(S). If
a homeomorphism f in Homeog(S) (respectively in Homeog (S, 9S)) is (wy)y>0—
distorted in Homeog(S) (respectively in Homeog (S, 05 ), then
. 8(/(D) _
liminf ———— =

0.

Theorem 9.3 Let f be a homeomorphism in Homeog(S) or Homeog (S, 95). If
. 8(/(D) logB(/™(D))) _
lim inf =

n——+00 Wy

07
then f is (wy)n=>o—distorted in Homeoq(.S) or Homeoq (S, 9.5), respectively.
Theorem 9.4 Let (v,),>0 be a sequence of positive real numbers such that
liminf % =0,
n—>+00 Wy
Then there exists a homeomorphism f in Homeog(R/Z x [0, 1], R/Z x {0, 1}) such
that:
(1) Forany n>0, §(f"([0,1]x [0, 1])) > v
(2) The homeomorphism f is (wy),>o—distorted in

Homeog(R/Z x [0, 1], R/Z x {0, 1}).

For any positive integer k, we denote by [F; the free group on &k generators. Let
ai,a,...,ay be the standard generators of this group and A be the set of these
generators.

Definition 9.5 Let G be a group generated by a finite set G. A k—tuple ( f1, f2, ..., fx)
is said to be distorted if the map F; — G, which sends the generator a; to f;, is
not quasi-isometric for the distances d4 and dg. More generally, for any group G, a
k—tuple (f1, f2,..., fr) is said to be distorted if there exists a subgroup of G that is
finitely generated, that contains the elements f;, and in which this k —tuple is distorted.
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One can prove the following theorem for a compact surface S':

Theorem 9.6 Let D be a fundamental domain of S for the action of (S). Let
(f1, f2,- .., fx) be a k—tuple of homeomorphisms of S . Suppose that there exists a
sequence of words (my),>o on the f; whose sequence of lengths (I(my)), tend to

+00 such that
lim 8(mn (D)) log(6(ma(D))) _
n—+o00 l(my)

Then the k —tuple (f1, f2,-.., fr) is distorted.

0.
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