Volume 18, issue 1 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Minimal surfaces with positive genus and finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$

Francisco Martín, Rafe Mazzeo and M Magdalena Rodríguez

Geometry & Topology 18 (2014) 141–177
Abstract

We construct the first examples of complete, properly embedded minimal surfaces in 2 × with finite total curvature and positive genus. These are constructed by gluing copies of horizontal catenoids or other nondegenerate summands. We also establish that every horizontal catenoid is nondegenerate.

Keywords
properly embedded minimal surfaces, finite total curvature, gluing constructions, moduli spaces, minimal surfaces, positive genus
Mathematical Subject Classification 2010
Primary: 49Q05, 53A10, 53C42
References
Publication
Received: 30 August 2012
Revised: 6 May 2013
Accepted: 19 July 2013
Preview posted: 5 December 2014
Published: 9 January 2014
Proposed: Tobias H Colding
Seconded: David Gabai, Ronald Stern
Authors
Francisco Martín
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada
Spain
http://www.ugr.es/local/fmartin
Rafe Mazzeo
Department of Mathematics
Stanford University
Stanford, CA 94305
USA
http://math.stanford.edu/~mazzeo/
M Magdalena Rodríguez
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada
Spain
http://www.ugr.es/local/magdarp