Volume 18, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A weakly second-order differential structure on rectifiable metric measure spaces

Shouhei Honda

Geometry & Topology 18 (2014) 633–668
Bibliography
1 L Ambrosio, B Kirchheim, Currents in metric spaces, Acta Math. 185 (2000) 1 MR1794185
2 Y Burago, M Gromov, G Perelman, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3 MR1185284
3 J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 MR1708448
4 J Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane, Scuola Normale Superiore (2001) MR2006642
5 J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 MR1405949
6 J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 MR1484888
7 J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 MR1815410
8 J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37 MR1815411
9 S Y Cheng, S T Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333 MR0385749
10 T H Colding, A Naber, Lower Ricci curvature, branching and bi-Lipschitz structure of uniform Reifenberg spaces arXiv:1111.2184
11 T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173 MR2950772
12 Y Ding, Heat kernels and Green's functions on limit spaces, Comm. Anal. Geom. 10 (2002) 475 MR1912256
13 K Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87 (1987) 517 MR874035
14 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) MR2307192
15 S Honda, Ricci curvature and $L^p$–convergence, to appear in J. Reine Angew. Math. arXiv:1212.2052
16 S Honda, Bishop–Gromov type inequality on Ricci limit spaces, J. Math. Soc. Japan 63 (2011) 419 MR2793106
17 S Honda, Ricci curvature and convergence of Lipschitz functions, Comm. Anal. Geom. 19 (2011) 79 MR2818407
18 A Kasue, Convergence of Riemannian manifolds and Laplace operators, I, Ann. Inst. Fourier (Grenoble) 52 (2002) 1219 MR1927079
19 A Kasue, Convergence of Riemannian manifolds and Laplace operators, II, Potential Anal. 24 (2006) 137 MR2217418
20 A Kasue, H Kumura, Spectral convergence of Riemannian manifolds, Tohoku Math. J. 46 (1994) 147 MR1272877
21 A Kasue, H Kumura, Spectral convergence of Riemannian manifolds, II, Tohoku Math. J. 48 (1996) 71 MR1373175
22 S Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271 MR2041901
23 K Kuwae, T Shioya, Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom. 11 (2003) 599 MR2015170
24 T J Laakso, Ahlfors $Q$–regular spaces with arbitrary $Q\gt 1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111 MR1748917
25 J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 MR2480619
26 S i Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007) 805 MR2341840
27 Y Otsu, Almost everywhere existence of second differentiable structure of Alexandrov spaces, preprint
28 Y Otsu, T Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994) 629 MR1274133
29 P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 MR979599
30 G Perelman, A D Alexandrov spaces with curvature bounded from below, II, preprint
31 G Perelman, DC–structure on Alexandrov space
32 H Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919) 340 MR1511935
33 L Simon, Lectures on geometric measure theory, Proc. Cent. Math. Anal. Austr. Nat. Uni. 3, Australian National University Centre for Mathematical Analysis (1983) MR756417
34 K T Sturm, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65 MR2237206
35 K T Sturm, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133 MR2237207
36 C Villani, Optimal transport: Old and new, Grundl. Math. Wissen. 338, Springer (2009) MR2459454