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Large scale geometry of negatively curved Rn Ì R

XIANGDONG XIE

We classify all negatively curved Rn Ì R up to quasi-isometry. We show that all
quasi-isometries between such manifolds (except when they are bilipschitz to the real
hyperbolic spaces) are almost similarities. We prove these results by studying the
quasisymmetric maps on the ideal boundary of these manifolds.

20F65, 30C65; 53C20

1 Introduction

In this paper we study quasi-isometries between negatively curved solvable Lie groups
of the form Rn Ì R and quasisymmetric maps between their ideal boundaries.

Given an n� n matrix A, we let GA be the semidirect product Rn ÌA R, where R
acts on Rn by x 7! etAx for t 2R, x 2Rn . Then GA is a solvable Lie group.

Let GA be equipped with any left-invariant Riemannian metric such that the R direction
is perpendicular to the Rn factor. When A D In , GA is isometric to HnC1 . More
generally, if the eigenvalues of A all have positive real parts, then it follows from
Heintze’s results [12] that GA is Gromov hyperbolic. Hence GA has a well-defined
ideal boundary @GA . The ideal boundary @GA can be naturally identified with (the
one-point compactification of) Rn . On Rn (identified with the ideal boundary with one
point removed), there is a parabolic visual (quasi)metric DA , which is invariant under
Euclidean translations and admits a family of dilations f�t D etAg. See Section 3 for
more details.

Given an n� n matrix A, the real part Jordan form of A is obtained from the Jordan
form of A by replacing each diagonal entry with its real part and reordering to make it
canonical. Notice that the real part Jordan form is different from the real Jordan form
and the absolute Jordan form. It is related to the absolute Jordan form through matrix
exponential.

Here are the main results of the paper. See Theorem 5.12 for a more precise statement
of Theorem 1.2. Also see Section 2 for basic definitions.
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Theorem 1.1 Let A and B be n� n matrices whose eigenvalues all have positive
real parts. Then .Rn;DA/ and .Rn;DB/ are quasisymmetric if and only if there is
some s > 0 such that A and sB have the same real part Jordan form.

Theorem 1.2 Let A and B be n� n matrices whose eigenvalues all have positive
real parts. Denote by �1 and �1 the smallest real parts of the eigenvalues of A and B

respectively, and set � D �1=�1 . If the real part Jordan form of A is not a multiple of
the identity matrix In , then for every quasisymmetric map F W .Rn;DA/! .Rn;DB/,
the map F W

�
Rn;D�

A

�
! .Rn;DB/ is bilipschitz.

When AD In , the manifold GA is isometric to the real hyperbolic space HnC1 . In
this case, the ideal boundary is Rn with the Euclidean metric, and hence the claim
in Theorem 1.2 fails: there are nonbilipschitz quasiconformal maps in the Euclidean
space Rn . More generally, if the real part Jordan form of A is a multiple of In , then it
follows from the result of Farb and Mosher (see Section 3) that .Rn;DA/ is bilipschitz
to .Rn; j � j�/, where j � j denotes the Euclidean metric and � > 0 is some constant.
Hence the claim in Theorem 1.2 also fails.

There are several consequences of the main results.

Recall that two geodesic Gromov hyperbolic spaces admitting cocompact isometric
group actions are quasi-isometric if and only if their ideal boundaries are quasisymmetric
with respect to the visual metrics; see Paulin [17] or Bonk and Schramm [2]. Hence
Theorem 1.1 yields the quasi-isometric classification of all negatively curved Rn Ì R.

Corollary 1.3 Let A and B be n� n matrices whose eigenvalues all have positive
real parts. Then GA and GB are quasi-isometric if and only if there is some s > 0 such
that A and sB have the same real part Jordan form.

The next three results are consequences of Theorem 1.2.

A map f W X ! Y between two metric spaces is called an almost similarity if there
are constants L > 0 and C � 0 such that Ld.x1;x2/ � C � d.f .x1/; f .x2// �

Ld.x1;x2/CC for all x1;x2 2X and d.y; f .X //� C for all y 2 Y .

Corollary 1.4 Let A and B be n� n matrices whose eigenvalues all have positive
real parts. Suppose the real part Jordan form of A is not a multiple of the identity
matrix In . Then every quasi-isometry f W GA!GB is an almost similarity.

We view the canonical projection hAW GA D Rn � R ! R as the height function
for GA . Let A and B be two n � n matrices. A quasi-isometry f W GA ! GB is
height-respecting if it maps the fibers of hA to within uniformly bounded Hausdorff
distance from the fibers of hB .
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Corollary 1.5 Let A and B be n� n matrices whose eigenvalues all have positive
real parts. Suppose the real part Jordan form of A is not a multiple of the identity
matrix In . Then every quasi-isometry f W GA!GB is height-respecting.

Corollary 1.6 Let A be a square matrix whose eigenvalues all have positive real parts.
If the real part Jordan form of A is not a multiple of the identity matrix, then GA is not
quasi-isometric to any finitely generated group.

A group G of bijections gW X !X of a quasimetric space is a uniform quasimöbius
group if there is some homeomorphism �W Œ0;1/! Œ0;1/ such that every element g

of G is �–quasimöbius. The following result follows from Theorem 1.2 and a theorem
of Dymarz and Peng [6].

Corollary 1.7 Let A be a square matrix whose eigenvalues all have positive real parts.
Suppose that the real part Jordan form of A is not a multiple of the identity matrix.
Let G be a uniform quasimöbius group of @GA (equipped with a visual metric). If the
induced action of G on the space of distinct triples of @GA is cocompact, then G can
be conjugated by a bilipschitz map of .Rn;DA/ into the group of almost homotheties
of .Rn;DA/.

When A is a Jordan block, we describe all the quasisymmetric maps on .Rn;DA/.
Consequently, we are able to prove a Liouville-type theorem. See Sections 7 and 8.

Theorem 1.2 was established in the diagonal case by Shanmugalingam and the au-
thor [20] and in the 2 � 2 Jordan block case by the author [22]. We believe that
Theorem 1.2 holds true for most homogeneous manifolds with negative curvature
(HMNs), with only a few exceptions. Recall that HMNs were characterized by Heintze
in [12]: each such manifold is isometric to a solvable Lie group S with a left-invariant
Riemannian metric and the group S has the form S DN Ì R, where N is a simply
connected nilpotent Lie group, and the action of R on N is generated by a derivation
whose eigenvalues all have positive real parts. The only exceptions known to the author
are (those HMNs that are bilipschitz to) the real and complex hyperbolic spaces: there
are quasisymmetric maps in the Euclidean spaces (Gehring and Väisälä [10]) and the
Heisenberg groups (Balogh [1]) that change Hausdorff dimensions (of certain subsets),
so they can not be bilipschitz.

Our results concern the quasi-isometric rigidity and quasi-isometric classification of
negatively curved solvable Lie groups. The first result in this area is Pansu’s rigidity
theorem [16] for the quarternionic hyperbolic spaces and Cayley plane. Later, by
using Lp cohomology, Pansu [14, Corollaries 55, 93] established the quasi-isometric
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classification theorem for those GA where A is diagonal. This same result also follows
from a theorem of Tyson [21, Theorem 15.3]. All these results belong to the larger
project of quasi-isometric rigidity and quasi-isometric classification of focal hyperbolic
groups; see Conrulier [3]. Dymarz [5] recently extended Theorem 1.2 to the case of
mixed type focal hyperbolic groups.

Recently, Eskin, Fisher and Whyte [7; 8] and Peng [18; 19] proved quasi-isometric
rigidity and classification theorems for certain solvable Lie groups that admit lattices but
do not admit negative curvature. By contrast, the solvable Lie groups we study in this
paper have negative curvature but do not admit lattices (except for rank one symmetric
spaces). The approaches taken are also very different. Eskin, Fisher and Whyte and
Peng work directly on the solvable Lie groups by using coarse differentiation, while
we do analysis on the ideal boundary.

Acknowledgments I thank Bruce Kleiner for suggestions and stimulating discussions.
I also would like to thank Tullia Dymarz for telling me about her joint paper with Irine
Peng [6]. Finally I thank Yves Cornulier for pointing out Pansu’s result [14]. The
author was supported in part by NSF grant DMS–1265735.

2 Some basic definitions

In this section we recall some basic definitions.

A quasimetric � on a set X is a function �W X �X !R satisfying the following three
conditions:

(1) �.x;y/D �.y;x/ for all x;y 2X .

(2) �.x;y/� 0 for all x;y 2X , and �.x;y/D 0 if and only if x D y .

(3) There is some M�1 such that �.x; z/�M.�.x;y/C�.y; z// for all x;y; z2X .

For each M � 1, there is a constant �0 > 0 such that �� is bilipschitz equivalent to
a metric for all quasimetric � with constant M and all 0< � � �0 ; see [11, Proposi-
tion 14.5].

For any quadruple QD .x;y; z; w/ of distinct points in a quasimetric space X , the
cross ratio cr.Q/ of Q is

cr.Q/D
�.x; w/�.y; z/

�.x; z/�.y; w/
:

Let �W Œ0;1/ ! Œ0;1/ be a homeomorphism. A bijection F W X ! Y between
two quasimetric spaces is �–quasimöbius if cr.F.Q//� �.cr.Q// for all quadruples
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QD .x;y; z; w/ of distinct points in X , where F.Q/D .F.x/;F.y/;F.z/;F.w//.
A bijection F W X ! Y between two quasimetric spaces is �–quasisymmetric if for all
distinct triples x;y; z 2X , we have

�.F.x/;F.y//

�.F.x/;F.z//
� �

�
�.x;y/

�.x; z/

�
:

A map F W X ! Y is quasisymmetric if it is �–quasisymmetric for some �.

Let K � 1 and C > 0. A bijection F W X ! Y between two quasimetric spaces is
called a K–quasisimilarity (with constant C ) if

C

K
�.x;y/� �.F.x/;F.y//� CK�.x;y/

for all x;y 2 X . When K D 1, we say F is a similarity. It is clear that a map is a
quasisimilarity if and only if it is a bilipschitz map. The point of using the notion of
quasisimilarity is that sometimes there is control on K but not on C .

3 Negatively curved Rn Ì R

In this section we first review some basics about negatively curved Rn�R, then define
the parabolic visual (quasi)metric on their ideal boundary and study its properties. We
also recall a result of Farb and Mosher and the main results of [22] and [20].

3.1 Ideal boundary and parabolic visual quasimetric

Let A be an n� n matrix. Let R act on Rn by

R�Rn
!Rn;

.t;x/ 7! etAx:

We denote the corresponding semidirect product by GA D Rn ÌA R. Then GA is a
solvable Lie group. Recall that the group operation in GA is given by

.x1; t1/ � .x2; t2/D .x1C et1Ax2; t1C t2/:

We will always assume that the eigenvalues of A have positive real parts. An admis-
sible metric on GA is a left-invariant Riemannian metric such that the R direction
is perpendicular to the Rn factor. The standard metric on GA is the left-invariant
Riemannian metric determined by the standard inner product on the tangent space of the
identity element .0; 0/ 2Rn �RDGA . We remark that GA with the standard metric
does not always have negative sectional curvature. However, Heintze’s result [12]
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says that GA has an admissible metric with negative sectional curvature. Since any
two left-invariant Riemannian distances on a Lie group are bilipschitz equivalent, GA

with any left-invariant Riemannian metric is Gromov hyperbolic. From now on, unless
indicated otherwise, GA will always be equipped with the standard metric.

At a point .x; t/ 2Rn �R�GA , the tangent space is identified with Rn �R, and the
standard metric is given by the symmetric matrix�

QA.t/ 0
0 1

�
;

where QA.t/D e�tAT

e�tA . Here T denotes matrix transpose.

For each x 2Rn , the map x W R!GA , x.t/D .x; t/ is a geodesic. We call such a
geodesic a vertical geodesic. It can be checked that all vertical geodesics are asymptotic
as t ! C1. Hence they define a point �0 in the ideal boundary @GA . The sets
Rn � ftg (t 2R) are horospheres centered at �0 . For each t 2R, the induced metric
on the horosphere Rn � ftg � GA is determined by the quadratic form QA.t/. This
metric has the distance formula dA;t ..x; t/; .y; t//D je

�tA.x�y/j. Here j � j denotes
the Euclidean norm.

Each geodesic ray in GA is asymptotic to either an upward-oriented vertical geodesic
or a downward-oriented vertical geodesic. The upward-oriented vertical geodesics
are asymptotic to �0 and the downward-oriented vertical geodesics are in one-to-one
correspondence with Rn . Hence @GAnf�0g can be naturally identified with Rn .

We next define a parabolic visual quasimetric on @GAnf�0g DRn . Given x;y 2RnD

@GAnf�0g, the parabolic visual quasimetric is defined as DA.x;y/D et , where t is
the smallest real number such that at height t the two vertical geodesics x and y are
at distance one apart in the horosphere; that is,

dA;t ..x; t/; .y; t//D je
�tA.x�y/j D 1:

For each g D .x; t/ 2GA , the Lie group left translation Lg is an isometry of GA and
fixes the point �0 . It shifts all the horospheres centered at �0 in the vertical direction by
the same amount. It follows that the boundary map of Lg is a similarity of .Rn;DA/.
When g D .z; 0/, Lg leaves invariant all the horospheres centered at �0 , and the
boundary map is the Euclidean translation by z . Hence Euclidean translations are
isometries with respect to DA ,

DA.xC z;yC z/DDA.x;y/ for all x;y; z 2Rn:

When g D .0; t/, Lg shifts all the horospheres centered at �0 by t , and the bound-
ary map is the linear transformation etA . Hence etA is a similarity with similarity
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constant et ,

DA.e
tAx; etAy/D etDA.x;y/ for all x;y 2Rn and all t 2R:

We remark that DA in general is not a metric, but merely a quasimetric. See the remark
after the proof of Corollary 3.2.

For any integer n� 2, let

Jn D

0BBBBBBB@

1 1 0 � � � 0 0

0 1 1 � � � 0 0

0 0 1 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 1 1

0 0 0 � � � 0 1

1CCCCCCCA
be the n� n Jordan matrix with eigenvalue 1. We write Jn D InCN . Here we omit
the subscript n for N to simplify the notation. Notice that e�tJn D e�tIne�tN D

e�te�tN . Hence DJn
.x;y/D et if and only if t is the smallest real number satisfying

et D je�tN .y �x/j. For later use, we notice the following:

(3-1) etN
D

0BBBBBBBBB@

1 t t2

2!
� � �

tn�2

.n�2/!
tn�1

.n�1/!

0 1 t � � � tn�3

.n�3/!
tn�2

.n�2/!

0 0 1 � � � tn�4

.n�4/!
tn�3

.n�3/!
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 1 t

0 0 0 � � � 0 1

1CCCCCCCCCA
3.2 Reduction to the real part Jordan form case

Here we state a corollary of a result of Farb and Mosher [9], which implies that the
main results in this paper can be reduced to the case when the matrices are already in
real part Jordan form.

Let P be a nonsingular n� n matrix. Define a map f W GA!GPAP�1 by f .x; t/D
.Px; t/. Then it is easy to check that f is a Lie group isomorphism. Hence f is an
isometry if GPAP�1 is equipped with the standard metric and GA has the admissible
metric in which P�1e1; : : : ;P

�1en; enC1 is orthonormal at the identity element of GA .
Here e1; : : : ; en denote the standard basis of Rn , and enC1 is the standard basis for R.
Hence, GA with any admissible metric is isometric to GPAP�1 with the standard
metric for some nonsingular matrix P . By Heintze’s result [12], there is a nonsingular
matrix P such that GPAP�1 with the standard metric has negative sectional curvature.
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Now we suppose both GA and GPAP�1 are equipped with the standard metric. Then
it is easy to check that for each t 2R, the restricted map

f jRn�ftgW .R
n
� ftg; dA;t /! .Rn

� ftg; dPAP�1;t /

is K–bilipschitz, where K WDmaxfkPk; kP�1kg. Here kM k D supfjM xj j x 2Rn ,
jxj D 1g denotes the operator norm of an n� n matrix M . We next recall a more
general result by Farb and Mosher [9].

Proposition 3.1 [9, Proposition 4.1] Let A and B be two n� n matrices. Suppose
there are constants r; s > 0 such that rA and sB have the same real part Jordan form.
Then there is a height-respecting quasi-isometry f W GA! GB . To be more precise,
there exist an n� n matrix M and K � 1 such that for each t 2R, the map v!M v

is a K–bilipschitz homeomorphism from .Rn; dA;t / to .Rn; dB;.s=r/t /; it follows that
the map f W GA!GB given by

.x; t/ 7�!
�
M x; s

r
� t
�

is bilipschitz with bilipschitz constant supfK; s
r
; r

s
g.

Corollary 3.2 Suppose we are in the setting of Proposition 3.1. Assume further
that r D 1 and GA has negative sectional curvature. Then:

(1) The boundary map @f W .Rn;Ds
A
/! .Rn;DB/ is bilipschitz.

(2) f is an almost similarity.

Proof (1) We observe that the boundary map is given by @f .x/DM x . Let x;y2Rn

and assume Ds
A
.x;y/ D et . Then DA.x;y/ D et=s . By the definition of DA ,

we have dA;t=s..x; t=s/; .y; t=s// D 1. Since GA has pinched negative sectional
curvature, there is a constant a depending only on the curvature bounds of GA ,
such that dA;t 0..x; t

0/; .y; t 0// < 1=K for t 0 > t=sC a and dA;t 0..x; t
0/; .y; t 0// >K

for t 0< t=s�a. It now follows from Proposition 3.1 that dB;t 00..M x; t 00/; .My; t 00//<1

for t 00 > t C sa and dB;t 00..M x; t 00/; .My; t 00// > 1 for t 00 < t � sa. By the definition
of DB we have e�saet �DB.M x;My/� esaet . Hence @f W .Rn;Ds

A
/! .Rn;DB/

is bilipschitz with bilipschitz constant esa .

(2) Let p D .x1; t1/, q D .x2; t2/ 2 GA be arbitrary. We may assume t1 � t2 . If
x1Dx2 , then it is clear from the definition of f that d.f .p/; f .q//Ds�d.p; q/. So we
assume x1 6Dx2 and that dA;t0

..x1; t0/; .x2; t0//D 1 for some t0 . First assume t0� t2 .
Then d..x1; t2/; q/ < dA;t2

..x1; t2/; q/ � 1 as GA has negative sectional curvature.
By the triangle inequality, we have jd.p; q/ � .t2 � t1/j � 1. By Proposition 3.1,
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d..M x1; st2/; f .q//�dB;st2
..M x1; st2/; f .q//�K . By the triangle inequality again

we have jd.f .p/; f .q//�.st2�st1/j�K . Hence jd.f .p/; f .q//�s�d.p; q/j� sCK .

Next assume t0> t2 . By [20, Lemma 6.3 (1)] we have jd.p; q/�.t0�t1/�.t0�t2/j�C1

for some constant C1 depending only on the curvature bounds of GA . By [20,
Lemma 6.2], the point .x1; t0/ is a C2 –quasicenter of x1;x2; �0 2 @GA for some
constant C2 depending only on the curvature bounds of GA . Since f is a quasi-
isometry, f .x1; t0/ D .M x1; st0/ is a C3 –quasicenter of M x1;M x2; �0 2 @GB

(here �0 denotes the point in @GB corresponding to upward-oriented vertical geodesics),
where C3 depends only on C2 , the quasi-isometry constants of f and the Gromov
hyperbolicity constant of GB . Similarly, the point .M x2; st0/ is also a C3 –quasicenter
of M x1;M x2; �02@GB . Now consider the geodesic triangle consisting of fM x1g�R,
fM x2g �R and a geodesic joining M x1 , M x2 . Notice that f .p/ 2 fM x1g �R
lies between M x1 and .M x1; st0/ and f .q/ 2 fM x2g �R lies between M x2 and
.M x2; st0/. It follows that

jd.f .p/; f .q//� .st0� st1/� .st0� st2/j

D jd.f .p/; f .q//� d.f .p/; .M x1; st0//� d.f .q/; .M x2; st0//j � C4

for some constant C4 depending only on C3 and the Gromov hyperbolicity con-
stant of GB . This combined with jd.p; q/ � .t0 � t1/ � .t0 � t2/j � C1 implies
jd.f .p/; f .q//� s � d.p; q/j � C4C sC1 .

We notice that Corollary 3.2 (1) implies that DA is indeed a quasimetric: by Heintze’s
result, there is some nonsingular P such that GPAP�1 has pinched negative sectional
curvature and hence DPAP�1 is a quasimetric (this can be proved by the arguments of
Coornaert, Delzant and Papadopoulos [4, page 124] or by using the relation between
parabolic visual quasimetric and visual quasimetric [20, Section 5]); since .Rn;DA/

and .Rn;DPAP�1/ are bilipschitz, DA is also a quasimetric.

3.3 Distance between certain subsets

In this subsection we show that certain subsets of .Rn;DA/ are “parallel.” These
results will be used in Section 5.

Let A be an n� n matrix in real part Jordan form with positive eigenvalues

�1 < � � �< �kA
:

Let Vi �Rn be the generalized eigenspace of �i , and let di D dim Vi .

If k WD kA � 2, we write A in the block diagonal form AD ŒA1; : : : ;Ak �, where Ai

is the block corresponding to the eigenvalue �i ; we also denote A0 D ŒA1; : : : ;Ak�1�.
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Correspondingly, Rn admits the decomposition Rn D V1 � � � � � Vk . Hence each
point x 2 Rn can be written x D .x1; : : : ;xk/, where xi 2 Vi . Observe that, for
each xk 2 Vk , if we identify V1 � � � � � Vk�1 � fxkg with V1 � � � � � Vk�1 , then
the restriction of DA to V1 � � � � � Vk�1 � fxkg agrees with DA0 . It is not hard to
check that for all xk ;yk 2 Vk , the following holds for the distance with respect to the
quasimetric DA :

(3-2) DA.V1 � � � � �Vk�1 � fxkg;V1 � � � � �Vk�1 � fykg/DDAk
.xk ;yk/

Also, for any x D .x1; : : : ;xk/ 2Rn and any yk 2 Vk ,

(3-3) DA.x;V1 � � � � �Vk�1 � fykg/DDAk
.xk ;yk/:

When k D 1, that is, when A has only one eigenvalue � WD �1 > 0, the matrix A also
has a block diagonal form AD Œ�In0

; �In1
CN; : : : ; �Inr

CN �, where n0 � 0 and
�Ini
CN is a Jordan block. We allow the case AD �In . We write a point p 2 Rn

as p D .z; .x1;y1/; : : : ; .xr ;yr //
T , where T denotes matrix transpose, z 2 Rn0

corresponds to �In0
and .xi ;yi/

T 2Rni (xi 2Rni�1 , yi 2R) corresponds to �Ini
CN .

Let �AW R
n!Rn0Cr be the projection given by

�A.p/D .z;y1; : : : ;yr /
T for p D .z; .x1;y1/; : : : ; .xr ;yr //

T
2Rn:

Set
A.1/D Œ�In1�1CN; : : : ; �Inr�1CN �;

where �I1CN is understood to be �I1 .

Lemma 3.3 The restriction of DA to the fibers of �A agrees with DA.1/ . To be more
precise, for all p D .z; .x1;y1/; : : : ; .xr ;yr //

T , p0 D .z; .x0
1
;y1/; : : : ; .x

0
r ;yr //

T

we have
DA.p;p

0/DDA.1/.x;x
0/;

where x D .x1; : : : ;xr /
T and x0 D .x0

1
; : : : ;x0r /

T .

Proof Assume DA.p;p
0/ D et and DA.1/.x;x

0/ D es . By the definition, s is the
smallest real number such that je�sA.1/.x0�x/j D 1. We calculate

e�sA.1/.x0�x/D e��s.e�sNn1�1.x01�x1/; : : : ; e
�sNnr�1.x0r �xr //

T :

Similarly, t is the smallest real number such that je�tA.p0�p/j D 1. We calculate

e�tA.p0�p/D e��t
�
0; .e�tNn1�1.x01�x1/; 0/; : : : ; .e

�tNnr�1.x0r �xr /; 0/
�T
:

It follows that the two equations je�sA.1/.x0�x/j D 1 and je�tA.p0�p/j D 1 are the
same. Hence s D t .
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Lemma 3.4 The following hold for all y;y0 2Rn0Cr :

(1) DA.�
�1
A
.y/; ��1

A
.y0//D jy �y0j1=�

(2) For any p 2 ��1
A
.y/, we have DA.p; �

�1
A
.y0//D jy �y0j1=�

Proof Let

p D .z; .x1;y1/; : : : ; .xr ;yr //
T
2 ��1

A .y/;

p0 D .z0; .x01;y
0
1/; : : : ; .x

0
r ;y
0
r //

T
2 ��1

A .y0/;

where y and y0 are written y D .z;y1; : : : ;yr /, y0 D .z0;y0
1
; : : : ;y0r /. Assume

DA.p;p
0/D et . Then t is the smallest real number such thatˇ̌�

z0� z; e�tNn1 .x01�x1;y
0
1�y1/

T ; : : : ; e�tNnr .x0r �xr ;y
0
r �yr /

T
�ˇ̌
D e�t :

Notice that the last entry of e�tNni .x0i �xi ;y
0
i �yi/

T is y0i �yi , which is independent
of t . It follows that e�t � j.z0 � z;y0

1
� y1; : : : ;y

0
r � yr /j D jy

0 � yj, and hence
DA.p;p

0/D et � jy0�yj1=� .

Set t0D ln jy0�yj=�. Then e�t0Djy0�yj. Now let pD .z; .x1;y1/; : : : ; .xr ;yr //
T 2

��1
A
.y/ be arbitrary. Since the matrix e�t0Nni is nonsingular, the equation

e�t0Nni .ui ; vi/
T
D .0; : : : ; 0;y0i �yi/

T

has a unique solution .ui ; vi/
T , where ui 2Rni�1 and vi 2R. Notice that viDy0i�yi .

Set x0i D ui Cxi and p0 D .z0; .x0
1
;y0

1
/; : : : ; .x0r ;y

0
r //

T . Then p0 2 ��1
A
.y0/ and

e�t0A.p0�p/D e�t0�.z0� z; .0;y01�y1/; : : : ; .0;y0r �yr //
T :

It follows that t0 is a solution of je�tA.p0 � p/j D 1 and so DA.p;p
0/ � et0 D

jy � y0j1=� . This together with the first paragraph implies DA.p;p
0/D jy � y0j1=� .

So each point p 2 ��1
A
.y/ is within jy � y0j1=� of ��1

A
.y0/. Similarly, every point

p0 2 ��1
A
.y0/ is also within jy �y0j1=� of ��1

A
.y/. Therefore, (1) holds.

Part (2) also follows from the above two paragraphs.

3.4 Previous results

The following two results will be used in the proof of Theorems 1.1 and 1.2. They are
the basic steps in the induction.

Theorem 3.5 [20, Theorem 4.1] Suppose A is diagonal with positive eigenvalues
˛1 < ˛2 < � � �< ˛r (r � 2). Then every �–quasisymmetry F W .Rn;DA/! .Rn;DA/

is a K–quasisimilarity, where K depends only on � and r .
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Theorem 3.6 [22, Theorems 4.1, 5.1] Every �–quasisymmetric map F W .R2;DJ2
/!

.R2;DJ2
/ is a K–quasisimilarity, where K depends only on �. Furthermore, a bi-

jection F W .R2;DJ2
/! .R2;DJ2

/ is a quasisymmetric map if and only of it has the
following form: F.x;y/D .axC c.y/; ayC b/ for all .x;y/ 2R2 , where a 6D 0, b

are constants and cW R!R is a Lipschitz map.

4 Q–variation on the ideal boundary

In this section we introduce the main tool in the proof of the main results: Q–variation
for maps between quasimetric spaces. It is a discrete version of the notion of capacity.
The advantage of this notion is that it makes sense for quasimetric spaces and does
not require the existence of rectifiable curves. We remark that, while dealing with
ideal boundary of negatively curved spaces, very often either one has to work with
quasimetric spaces in which the triangle inequality is not available, or one needs to work
with metric spaces that contain no rectifiable curves. Both scenarios are unpleasant
from the point of view of classical quasiconformal analysis.

The notion of Q–variation is due to Bruce Kleiner [13].

Let .X; �/ be a quasimetric space and L�1. A subset A�X is called an L–quasiball
if there is some x 2 X and some r > 0 such that B.x; r/ � A � B.x;Lr/. Here
B.x; r/ WD fy 2X j �.y;x/ < rg.

For any ball B WD B.x; r/ and any � > 0, we sometimes denote B.x; �r/ by �B .

For a subset E of a quasimetric space .Y; �/, the �–diameter of E is

diam�.E/ WD supf�.e1; e2/ j e1; e2 2Eg:

Let uW .X; �1/! .Y; �2/ be a map between two quasimetric spaces. For any sub-
set A�X , the oscillation of u over A is

osc.ujA/D diam�2
.u.A//:

Let Q� 1. For a collection of disjoint subsets AD fAig of X , the Q–variation of u

over A, denoted by VQ.u;A/, is the quantityX
i

Œosc.ujAi
/�Q:

For ı > 0 and K � 1, set

V ı
Q;K .u/D supfVQ.u;A/g;
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where A ranges over all disjoint collections of K–quasiballs in .X; �1/ with �1 –
diameter at most ı . Finally, the .Q;K/–variation VQ;K .u/ of u is

VQ;K .u/D lim
ı!0

V ı
Q;K .u/:

We notice that VQ;K .ujE1
/� VQ;K .ujE2

/ whenever E1 �E2 �X .

There are useful variants of this definition, for instance one can look at the infimum
over all coverings. Or one can take the infimum over all coverings followed by the sup
as the mesh size tends to zero. As a tool, Q–variation could be compared with Pansu’s
modulus [15], but seems slightly easier to work with in our context.

Since quasisymmetric maps send quasiballs to quasiballs quantitatively, it is easy to
see that Q–variation is a quasisymmetric invariant. To be more precise, we recall the
following lemma.

Lemma 4.1 [22, Lemma 3.1] Let X be a bounded quasimetric space and F W X!Z

an �–quasisymmetric map. Then for every map uW X ! Y we have VQ;K .u/ �

VQ;�.K /.u ıF�1/.

We next calculate the Q–variation of certain functions defined on the ideal boundary of
negatively curved Rn Ì R. These calculations will be used in the next section to show
that certain foliations on the ideal boundary are preserved by quasisymmetric maps.

For later use we recall that, for any Q > 1, any integer k � 1 and any nonnegative
numbers a1; : : : ; ak , Jensen’s inequality statesPk

iD1 a
Q
i

k
�

�Pk
iD1 ai

k

�Q

;

and equality holds if and only if all the ai are equal. In our applications, the ai will be
the oscillations of a function u along a “stack” of quasiballs.

Let A be an n� n matrix in real part Jordan form with positive eigenvalues

�1 < �2 < : : : < �k ;

let Vi � Rn be the generalized eigenspace of �i , and let di D dim Vi . Then Rn

admits the decomposition: Rn D V1 � � � � � Vk . Since etA is a linear transforma-
tion with det.etA/ D et.

P
i di�i / , for any subset U � Rn , we have Vol.etA.U // D

et.
P

i di�i / Vol.U /.

There are constants C1;C2;C3 depending only on the dimension n with the following
properties. If B WDB.o; 1/�Rn is the unit ball (in the Euclidean metric), and t ��1,
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then

(4-1) B.o;C1et�k jt j�nC1/� etAB � B.o;C2et�1 jt jn�1/;

while

(4-2) Vol.etAB/D C3et.
P

i di�i /:

Let S D
Qn

iD1Œ0; 1� � Rn be the unit cube. We notice that both S and B are K0 –
quasiballs with respect to DA for some K0 depending only on A. Hence there is
some r > 0 such that BA.o; r/ � B � BA.o;K0r/. Here the subscript A refers
to DA . Also recall that DA is a quasimetric: there is a constant M � 1 such that
DA.x; z/�M.DA.x;y/CDA.y; z// for all x;y; z 2Rn .

In the following, when we say a subset E �Rn is convex, we mean it is convex with
respect to the Euclidean metric. The continuity of a function uW E!R is with respect
to the topology induced from the usual topology on Rn .

Lemma 4.2 Let E�Rn be a convex open subset. If uW .E;DA/!R is a nonconstant
continuous function, then VQ;K .u/D1 for all Q<

�P
i di�i

�
=�k and all K �K0 .

Proof Let p; q 2E with u.p/¤ u.q/. Let C �E be a fixed cylinder with axis pq ,
such that the minimum of u on one cap of C is strictly greater than its maximum on
the other cap. We pack C with translates of etAB , for t � 0, as follows. First pick a
maximal set of lines LD fLj g in Rn satisfying the following conditions:

(1) Each line is parallel to pq .

(2) Each line intersects C .

(3) The Hausdorff distance (with respect to DA ) between any two of the lines is at
least 2MK0ret .

The maximality implies that for each x 2 C , we have DA.x;Lj / � 2MK0ret for
some j . For each j , consider a translate Bj of etAB centered at some point on Lj .
Then we move Bj along Lj (in both directions) by translations until the translates just
touch Bj . Repeat this and we obtain a “stack” of K0 –quasiballs centered on Lj . Do
this for each j and we obtain a packing P D fPg of C by translates of etAB , after
removing those that are disjoint from C .

We claim that the collection P covers a fixed fraction of the volume of C . To see
this, first notice that the DA –distance between the centers x1 , x2 of two consecutive
K0 –quasiballs along Lj is at most M.K0ret CK0ret / D 2MK0ret , due to the
generalized triangle inequality for DA . Assume DA.x1;x2/D es . Then

e.ln r�s/A.x2�x1/ 2 e.ln r�s/A xBA.o; e
s/D xBA.o; r/� xB � xBA.o;K0r/:
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Since xB is convex, the line segment joining o and e.ln r�s/A.x2 � x1/ is contained
in xB � xBA.o;K0r/. It follows that the segment joining o and x2 � x1 lies in
e.s�ln r/A xBA.o;K0r/ D xBA.o;K0es/. Hence x1x2 �

xBA.x1;K0es/. This shows
that every point on Lj \ C is within K0es � K1 WD 2MK2

0
ret of the center of

some P 2 P . Now the choice of the lines fLj g and the generalized triangle inequality
for DA imply that C is covered by DA –balls with radius K2 WDM.2MK0retCK1/

and centers at the centers of fPg. Since the volumes of etAB and BA.o;K2/ are
comparable, the claim follows.

The number of K0 –quasiballs in P along each line Lj is . e�t�k jt jn�1 in view of
the estimate (4-1). By Jensen’s inequality, the Q–variation of u for the K0 –quasiballs
along Lj is at least as large as the Q–variation when the oscillations of u on these
quasiballs are equal. This common oscillation is & et�k jt j�nC1 . Since P covers a
fixed fraction of C , the cardinality of P is & e�t.

P
i di�i / . Hence the Q–variation

of u on P is

& e�t.
P

i di�i /.et�k jt j�nC1/Q D et.Q�k�
P

i di�i /jt j.�nC1/Q;

which tends to 1 as t !�1 for Q<
�P

i di�i

�
=�k . Hence VQ;K .u/D1.

Notice that
�P

i di�i

�
=�k < n if k � 2 and

�P
i di�i

�
=�k D n if k D 1. Hence we

have the following corollary.

Corollary 4.3 Suppose kD1. Let E�Rn be a convex open subset. If uW .E;DA/!R
is a nonconstant continuous function, then VQ;K .u/D1 for all Q<n and all K�K0 .

Lemma 4.4 Let E �Rn be a convex open subset. Let uW .E;DA/!R be a contin-
uous function. Suppose there is an affine subspace W parallel to the subspace

Q
i�l Vi

such that ujW \E is not constant. Then VQ;K .u/D1 for all Q<
�P

i di�i

�
=�l and

all K �K0 .

Proof Note that in the proof of Lemma 4.2, if pq is parallel to the subspace
Q

i�l Vi ,
then the number of quasiballs in P along a line Lj is . e�t�l jt jn�1 , so the lower
bound on Q–variation becomes

Cet.Q�l�
P

i di�i /jt j.�nC1/Q;

which tends to 1 as t !�1 if Q<
�P

i di�i

�
=�l .

Let � W Rn D V1 � � � � �Vk ! Vk be the natural projection.
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Lemma 4.5 Let � 0W Vk ! R be a coordinate function on Vk , and set u D � 0 ı � .
Then VQ;K .ujE/ D 0 for all Q >

�P
i di�i

�
=�k , all K � K0 and all bounded sub-

sets E �Rn .

Proof Let E be a bounded open subset. Let 0 < ı� 1 and fBj gj2I be a packing
of E by K–quasiballs with size less than ı . Then for each j there is some xj 2Rn

and some tj such that

BA.xj ; e
tj /� Bj � BA.xj ;Ketj /:

Since BA.o; r/�B �BA.o;K0r/, we have et 0
j

AB �BA.o; e
tj / and BA.o;Ketj /�

et 00
j

AB , where t 0j D tj � ln r � ln K0 and where t 00j D tj � ln r C ln K . Set B0j D

xj C et 0j AB and B00j D xj C et 00j AB . Then B0j � Bj � B00j . It follows that

osc.ujBj
/� osc.ujB00

j
/. et 00

j
�k jt 00j j

dk�1;

.osc.ujBj
//Q . et 00

j
.Q�k/jt 00j j

Q.dk�1/ . et 0
j
.Q�k/jt 0j j

Q.dk�1/:

If we have Q>
�P

i di�i

�
=�k , then this will be . .Vol.B0j //

s � .Vol.Bj //
s for s D�

Q�k C
P

i di�i

�
=
�
2
P

i di�i

�
> 1, which implies that the Q–variation is zero.

For the rest of this section, we will assume k D 1 and use the notation introduced
before Lemma 3.3.

Lemma 4.6 Suppose A has only one eigenvalue � > 0. Let � 0W Rn0Cr ! R be a
coordinate function and uD � 0 ı�A . Then for any bounded open subset E :

(1) VQ;K .ujE/D 0 for all Q> n and all K �K0

(2) 0< Vn;K .ujE/ <1 for all K �K0

Proof Let P be a K–quasiball. Then there is a DA –ball U with U � P � KU .
Let t0 D ln.KK0/. For some t 2R there is a translate S.t/ of etAS and a translate
S.tCt0/ of e.tCt0/AS such that .1=K0/U �S.t/�U and KU �S.tCt0/�KK0U .
Observe that for any translate S 0 of etAS , we have osc.ujS 0/D e�t . It follows that

osc.ujP /� osc.ujS.t//D
1

.KK0/�
osc.ujS.tCt0//�

1

.KK0/�
osc.ujP /:

Also notice that osc.ujS.t//D .Vol.S.t///1=n � .Vol.P //1=n .

Now let E be a bounded open subset and fPig a packing of E by a disjoint collection
of K–quasiballs with size less than ı . For each Pi , let Ui be a DA –ball with Ui �
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Pi �KUi and let Si be a translate of some eti AS with .1=K0/Ui � Si � Ui . Then
the preceding paragraph impliesX

i

osc.ujPi
/Q � .KK0/

Q�
X

i

osc.ujSi
/Q � .KK0/

Q�
X

i

Vol.Pi/
Q=n:

From this it is clear that VQ;K .ujE/D 0 if Q> n and Vn;K .ujE/ <1 since fPig is
a disjoint collection in E .

Now consider a particular packing fPig of E by the images of the integral unit
cubes in Rn under etA . Then osc.ujPi

/ D e�t . The cardinality of fPig is approxi-
mately Vol.E/=en�t . Hence V ı

n;K
.ujE/�

P
i osc.ujPi

/n � Vol.E/. Hence we have
0< Vn;K .ujE/ <1.

Lemma 4.7 Suppose A has only one eigenvalue � > 0. Let E �Rn be a rectangular
box whose edges are parallel to the coordinate axes. Let uW .E;DA/ ! R be a
continuous function. Suppose there is some fiber H of �AW R

n! Rn0Cr such that
ujH\E is not constant. Then VQ;K .u/D1 for all Q� n and all K �K0 .

Proof Suppose there is some fiber H of �A such that ujH\E is not constant. Then
there is some Jordan block J in A with the following property: if we denote by
x D .x1; : : : ;xm/ the coordinates corresponding to J , then there is some index k ,
1 � k � m� 1, such that u is constant along every line parallel to the xj –axis for
j � k � 1, but is not constant along some line L parallel to the xk –axis. We write
Rn D Rk�1 �R�Rn�k , where the R corresponds to the xk –axis and the Rk�1 is
spanned by the xj –axes (j � k � 1). After composing u with an affine function, we
may assume that for some rectangular box C D

Qn
iD1Œai ; bi ��E , we have u� 0 on

the codimension-1 face F0 WD fx 2C j xk D akg of C and u� 1 on the codimension-1
face F1 WD fx 2 C j xk D bkg of C . We will induct on k .

Recall that for a Jordan block J D �ImCN , we have etJ D e�tetN . See (3-1) for an
expression of etN .

We first assume k D 1. For t � 0, consider the images of the integral unit cubes
under etA . Let fBig be the collection of all those images that intersect the box C .
Notice that a vertical stack (ie parallel to the xm –axis) of integral cubes is mapped
by etA to a sequences of K0 –quasiballs which is almost parallel to the x1 –axis. We
divide fBig into such sequences which join F0 and F1 . Note that the projection of
each Bi to the x1 –axis has length comparable to e�t jt jm�1 . Hence the cardinality
of each sequence is comparable to e��t jt j1�m . The Q–variation of u along each
sequence is at least the Q–variation of u when oscillations of u on the members of
the sequence are equal. Since u� 0 on F0 and u� 1 on F1 , this common oscillation
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is at least comparable to e�t jt jm�1 . Since each Bi has volume en�t , the cardinality
of fBig is comparable to e�n�t . It follows that the Q–variation of ujC is at least
comparable to

e�n�t
� .e�t

jt jm�1/Q D e�t.Q�n/
jt jQ.m�1/;

which tends to 1 as t !�1 if Q� n. Hence VQ;K .ujC /D1 for Q� n.

Now we assume m� 1� k � 2. Then u is constant along affine subspaces parallel to
Rk�1 � f0g � f0g �Rn . Let

U D fx 2 F0 j .3ai C bi/=4� xi � .ai C 3bi/=4 for all i 6D kg � F0:

For t � 0, denote by
v.t/D .�1/m�ke��tetA

Eem;

where Eem is the mth vector in the standard basis for Rn . Notice that the components
of v.t/ corresponding to the Jordan block J is

.�1/m�k

�
tm�1

.m� 1/!
;

tm�2

.m� 2/!
; : : : ; t; 1

�
and all other components are 0. Hence for t � 0, lines parallel to v.t/ travel much
faster in the xi (1� i �m� 1) direction than in the xiC1 direction. Let Z �Rn be
the subset given by

Z D
n
f C sv.t/

ˇ̌̌
f 2 U; 0� s �

.m� k/!

jt jm�k
.bk � ak/

o
:

Note that for each fixed f , the segment ffCsv.t/ j0� s� ..m�k/!=jt jm�k/.bk�ak/g

joins the two hyperplanes xk D ak and xk D bk . Also notice that these segments are
parallel to the images of vertical stacks (ie, parallel to the xm –axis) of integral cubes
under etA . Hence Z has a packing P that can be divided into sequences such that
each sequence joins xk D ak and xk D bk and is the image (under etA ) of a vertical
stack of integral cubes.

For pD .x;y; z/, qD .x0;y0; z0/2Rk�1�R�Rn�k , define p� q if y0D y , z0D z

and x0i �xi is an integral multiple of bi � ai for 1� i � k � 1. Set Y DRn=� and
let � W Rn! Y be the natural projection. Also let �C W C ! Y be the composition
of the inclusion C � Rn and � . It is clear that �C is injective on the interior
of C . It is also easy to check that �jZ is injective. Now the packing P of Z

projects onto a packing of Y , which can then be pulled back through �C to obtain
a packing P 0 of C (since �.Z/� �C .C /). A sequence in P gives rise to a broken
sequence in P 0 : the broken sequence will first hit the boundary of C at a point of
@
�Qk�1

iD1 Œai ; bi �
�
�
Qn

k Œai ; bi � � @C , it continues after a translation by an element of
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the form
�Pk�1

iD1 mi.bi �ai/; 0; 0
�
2Rn , where mi 2Z; this can be repeated until the

sequence hits xk D bk . Note that we can apply Jensen’s inequality to each broken
sequence while considering Q–variations of u since by assumption u is constant along
affine spaces parallel to Rk�1 � f0g � f0g.

Each broken sequence joins F0 to F1 . Since the projection of etAS to the xk –axis
has length comparable to e�t jt jm�k , the cardinality of each sequence is comparable
to e��t jt jk�m . The Q–variation of u along the sequence is at least the Q–variation
when the oscillations of u are the same on all members of the sequence. The common
oscillation is at least comparable to e�t jt jm�k . Hence the Q–variation of u is at least
comparable to

1

en�t
� .e�t

jt jm�k/Q D jt jQ.m�k/e.Q�n/�t ;

which tends to 1 when t !�1 if Q� n. Hence VQ;K .ujC /D1 for Q� n.

5 Proof of the main theorems

In this section we prove the main results of the paper. The main tools are the notion of
Q–variation (Section 4) and the arguments from [22, Section 4] and [20]. The main
results of [20] and [22] are the basic steps in the induction.

We first fix the notation. Let A be an n�n matrix in real part Jordan form with positive
eigenvalues

�1 < � � �< �kA
:

Let Vi �Rn be the generalized eigenspace of �i , and set di D dim Vi . If kA � 2, we
write A in the block diagonal form AD ŒA1; : : : ;AkA

�, where Ai is the block corre-
sponding to the eigenvalue �i ; we also denote A0D ŒA1; : : : ;AkA�1�. If kAD1, that is,
if A has only one eigenvalue �D�1 , we also write AD Œ�In0

; �In1
CN; : : : ; �Inr

CN �

in the block diagonal form, and we let �AW R
n! Rn0Cr be the projection defined

before Lemma 3.3. If kA D 1 and r � 1, we set lA Dmaxfn1; : : : ; nr g.

Similarly, let B be an n� n matrix in real part Jordan form with positive eigenvalues

�1 < � � �< �kB
:

Let Wj �Rn be the generalized eigenspace of �j , and set ej D dim Wj . If kB � 2, we
write B in the block diagonal form B D ŒB1; : : : ;BkB

�, where Bj is the block corre-
sponding to the eigenvalue �j ; we also denote B0D ŒB1; : : : ;BkB�1�. If kBD1, that is,
if B has only one eigenvalue �D�1 , we write BD Œ�Im0

; �Im1
CN; : : : ; �Ims

CN �
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in the block diagonal form, and we let �BW R
n! Rm0Cs be the projection defined

before Lemma 3.3. If kB D 1 and s � 1, we set lB Dmaxfm1; : : : ;msg.

Suppose there is an �–quasisymmetric map F W .Rn;DA/! .Rn;DB/.

Lemma 5.1 kA D 1 if and only if kB D 1.

Proof Suppose kA D 1 and kB � 2. Fix any Q with
�P

j �j ej

�
=�kB

<Q< n. Let
� W .Rn;DB/! WkB

be the projection onto WkB
, and � 0W WkB

! R a coordinate
function on WkB

. Set u D � 0 ı � . Then Lemma 4.5 implies VQ;�.K /.ujF.E// D 0

for all sufficiently large K and all bounded subsets E � .Rn;DA/. By Lemma 4.1
VQ;K .u ıF jE/D 0. But this contradicts Corollary 4.3.

Lemma 5.2 Suppose kA D 1. Then AD �1In if and only if B D �1In .

Proof Suppose B D �1In . Let �i (i D 1; 2; : : : ; n) be the coordinate functions on
.Rn;DB/. Then by Lemma 4.6 we have Vn;�.K /.�i jF.E//<1 for all i , all sufficiently
large K and all rectangular boxes E � .Rn;DA/. Hence Vn;K .�i ıF jE/ <1 by
Lemma 4.1. Now Lemma 4.7 implies that �i ıF is constant on the fibers of �A . Since
this is true for all 1� i � n, the fibers of �A must have dimension 0. Hence A must
also be a multiple of In .

Lemma 5.3 Suppose kA D 1 and r � 1. Then F maps each fiber of �A onto some
fiber of �B .

Proof Lemmas 5.1 and 5.2 imply that kB D 1 and s � 1. Notice that it suffices to
show that each fiber of �A is mapped by F into some fiber of �B : by symmetry each
fiber of �B is mapped by F�1 into some fiber of �A and hence the lemma follows.
We shall prove this by contradiction and so assume that there is some fiber H of �A

such that F.H / is not contained in any fiber of �B . Then there is some coordinate
function � 0W Rm0Cs!R such that u ıF is not constant on H , where u WD � 0 ı�B .
Now Lemma 4.6 implies that Vn;�.K /.ujF.E// <1 for all sufficiently large K and
all rectangular boxes E � .Rn;DA/. By Lemma 4.1 we have Vn;K .u ıF jE/ <1.
This contradicts Lemma 4.7 since we can choose E such that u ıF is not constant
on H \E .

It follows from Lemma 5.3 that F induces a map GW Rn0Cr ! Rm0Cs such that
F.��1

A
.y//D ��1

B
.G.y// for all y 2Rn0Cr . Define

�AW R
n
DRn0 �Rn1 � � � � �Rnr �!Rn

DRn�n0�r
�Rn0Cr
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by
�A.z; .x1;y1/; : : : ; .xr ;yr //D ..x1; : : : ;xr /; .z;y1; : : : ;yr //;

where .xi ;yi/ 2Rni DRni�1 �R. Similarly, there is an identification

�BW R
n
DRm0 �Rm1 � � � � �Rms �!Rn

DRn�m0�s
�Rm0Cs:

With the identifications �A and �B , we have ��1
A
.y/DRn�n0�r �fyg, ��1

B
.G.y//D

Rn�m0�s � fG.y/g, and F.Rn�n0�r � fyg/ D Rn�m0�s � fG.y/g. Hence for each
y 2Rn0Cr , there is a map

H. � ;y/W Rn�n0�r
!Rn�m0�s

such that F.x;y/D .H.x;y/;G.y// for all x 2Rn�n0�r .

In the following j � j denotes the Euclidean norm.

Lemma 5.4 Suppose kA D 1 and r � 1. Then:

(1) The map GW .Rn0Cr ; j � j1=�/! .Rm0Cs; j � j1=�/ is �–quasisymmetric.

(2) For each y2Rn0Cr , the map H. � ;y/W .Rn�n0�r ;DA.1//! .Rn�m0�s;DB.1//

is �–quasisymmetric.

Proof Statement (1) follows from Lemma 3.4 and the arguments in [22, page 10].
Statement (2) follows from Lemma 3.3.

Suppose kA D 1. Set � D �=� and �1.t/D �.t
1=�/. We notice that all the following

maps are �1 –quasisymmetric:

(1) F W
�
Rn;D�

A

�
! .Rn;DB/

(2) GW .Rn0Cr ; j � j1=�/! .Rm0Cs; j � j1=�/

(3) H. � ;y/W
�
Rn�n0�r ;D�

A.1/

�
! .Rn�m0�s;DB.1//, for each y 2Rn0Cr

Let gW .X1; �1/! .X2; �2/ be a bijection between two quasimetric spaces. Suppose g

satisfies the following condition: for any fixed x 2 X1 , �1.y;x/! 0 if and only if
�2.g.y/;g.x//! 0. We define for every x 2X1 and r > 0,

Lg.x; r/D supf�2.g.x/;g.x
0// j �1.x;x

0/� rg;

lg.x; r/D inff�2.g.x/;g.x
0// j �1.x;x

0/� rg;

and set

Lg.x/D lim sup
r!0

Lg.x; r/

r
; lg.x/D lim inf

r!0

lg.x; r/

r
:
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Lemma 5.5 Consider the map GW .Rn0Cr ; j � j1=�/ ! .Rm0Cs; j � j1=�/ and the
map H. � ;y/W

�
Rn�n0�r ;D�

A.1/

�
! .Rn�m0�s;DB.1//. The following hold for all

y 2Rn0Cr , x 2Rn�n0�r :

(1) LG.y; r/� �1.1/lH . � ;y/.x; r/ for any r > 0

(2) ��1
1
.1/lH . � ;y/.x/� lG.y/� �1.1/lH . � ;y/.x/

(3) ��1
1
.1/LH . � ;y/.x/�LG.y/� �1.1/LH . � ;y/.x/

Proof The proof is very similar to that of [22, Lemma 4.3]. Let y 2 Rn0Cr ,
x 2Rn�n0�r and r > 0. Let y0 2Rn0Cr with jy�y0j1=�� r and x0 2Rn�n0�r with
D�

A.1/.x;x
0/� r . Set t0D ln jy0�yj=�. Let .ui ; vi/ (ui 2Rni�1 , vi 2R, 1� i � r )

be the unique solution of e�t0Nni .ui ; vi/
T D .0; : : : ; 0;y0i�yi/

T . Let x00i DuiCxi and
x00D .x00

1
; : : : ;x00r /. Then D�

A..x;y/; .x
00;y0//Djy�y0j1=�� r �D�

A..x;y/; .x
0;y//.

Since F W
�
Rn;D�

A

�
! .Rn;DB/ is �1 –quasisymmetric, we have

jG.y/�G.y0/j1=� �DB.F.x
00;y0/;F.x;y//� �1.1/DB.F.x;y/;F.x

0;y//

D �1.1/DB.1/.H.x;y/;H.x
0;y//:

Since y0 and x0 are chosen arbitrarily, (1) follows.

The proofs of (2) and (3) are exactly the same as those in [22, Lemma 4.3].

Recall that, when A has only one eigenvalue �D�1 and is written in the block diagonal
form AD Œ�In0

; �In1
CN; : : : ; �Inr

CN � with r �1, we denote lADmaxfn1; : : : ; nr g.

Lemma 5.6 Suppose kA D 1 and lA D 2. Then lB D 2 and for � D �=�:

(1) A and �B have the same real part Jordan form.

(2) The map F W .Rn;D�
A
/! .Rn;DB/ is a K–quasisimilarity, where K depends

only on A, B and �.

Proof (1) By Lemma 5.4 (2), H. � ;y/W .Rn�n0�r ;DA.1//! .Rn�m0�s;DB.1// is
�–quasisymmetric for each y2Rn0Cr . Since lAD2, all Jordan blocks of A have size 2

and A.1/D �Ir . Now Lemma 5.2 applied to H. � ;y/ implies that B.1/D �Ir . It
follows that all Jordan blocks of B also have size 2, and hence lBD 2 and B.1/D�Is .
So we have r D s . That is, A and B have the same number of 2� 2 Jordan blocks.
Now (1) follows.

(2) The proof of (2) is very similar to the arguments in [20, Section 4] and [22]. We will
only indicate the differences here. First we notice that GW .Rn0Cr ; j � j/! .Rm0Cs; j � j/

is also quasisymmetric, and hence is differentiable ae. Since F W
�
Rn;D�

A

�
! .Rn;DB/
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is �1 –quasisymmetric, the arguments in [20, Section 4] and [22] imply that there
is a constant K1 depending only on �1 , such that for every y 2 Rn0Cr where
GW .Rn0Cr ; j � j/! .Rm0Cs; j � j/ is differentiable, we have 0< lG.y/<1 and the map

H. � ;y/W
�
Rn�n0�r ;D�

A.1/

�
! .Rn�m0�s;DB.1//

is a K1 –quasisimilarity with constant lG.y/.

Now let y;y0 2 Rn0Cr be two points where G is differentiable. We will show that
lG.y/ and lG.y

0/ are comparable. Let x 2 Rn�n0�r and choose x0 2 Rn�n0�r so
that DA.1/.x;x

0/� jy0 � yj1=� . Let .ui ; vi/ be as in the proof of Lemma 5.5. Let
x00i DxiCui , x000i Dx0iCui (1� i�r ), and set x00D .x00

1
; : : : ;x00r /, x000D .x000

1
; : : : ;x000r /.

Then
DA..x;y/; .x

00;y0//DDA..x
0;y/; .x000;y0//D jy0�yj1=�:

Now the generalized triangle inequality implies

DA..x
00;y0/; .x0;y//�M

˚
DA..x

00;y0/; .x;y//CDA..x;y/; .x
0;y//

	
� 2MDA..x;y/; .x

0;y//:

By the quasisymmetry condition we have

DB.F.x
00;y0/;F.x0;y//� �.2M /DB.F.x;y/;F.x

0;y//:

Similarly, DB.F.x
00;y0/;F.x000;y0//� �.2M /DB.F.x

00;y0/;F.x0;y//. So we have

DB.F.x
00;y0/;F.x000;y0//� .�.2M //2DB.F.x;y/;F.x

0;y//:

This together with the quasisimilarity properties of H. � ;y/ and H. � ;y0/ mentioned
above implies that

lG.y
0/D�

A.1/.x
00;x000/�K2

1.�.2M //2lG.y/D
�
A.1/.x;x

0/:

Since DA.1/.x
00;x000/ D DA.1/.x;x

0/, we have lG.y
0/ � K2

1
.�.2M //2lG.y/. By

symmetry, we also have lG.y/�K2
1
.�.2M //2lG.y

0/. Now fix y and set C D lG.y/.
Then at every y0 where G is differentiable, H. � ;y0/ is a K2 –quasisimilarity with
constant C , where K2DK3

1
.�.2M //2 . Now a limiting argument shows that this is true

for every y0 2Rn0Cr . The arguments in [22, Section 4] (using Lemma 5.5 from above
instead in [22, Lemma 4.3]) then show that there is a constant K3 DK3.K2; �1/ such
that GW .Rn0Cr ; j � j1=�/! .Rm0Cs; j � j1=�/ and all H. � ;y/ are K3 –quasisimilarities
with constant C .

The final difference is in finding a lower bound for DB.F.x;y/;F.x
0;y0//. If

D�
A..x;y/; .x

0;y0//� .2M /�jy0�yj1=�;
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then

DB.F.x;y/;F.x
0;y0//� jG.y0/�G.y/j1=� �

C

K3

jy0�yj1=�

�
C

.2M /�K3

D�
A..x;y/; .x

0;y0//:

Now assume D�
A
..x;y/; .x0;y0//� .2M /�jy0�yj1=� . Let .ui ; vi/ be as in the above

paragraph. Let x00i D x0i�ui and set x00D .x00
1
; : : : ;x00r /. Then D�

A
..x00;y/; .x0;y0//D

jy0�yj1=� . The generalized triangle inequality implies

1

2M
�

DA..x;y/; .x
00;y//

DA..x;y/; .x0;y0//
� 2M:

Now the quasisymmetric condition implies

DB.F.x;y/;F.x
0;y0//�

1

�.2M /
DB.F.x;y/;F.x

00;y//

�
C

K3�.2M /
D�

A..x;y/; .x
00;y//

�
C

.2M /�K3�.2M /
D�

A..x;y/; .x
0;y0//:

So we have found a lower bound for DB.F.x;y/;F.x
0;y0//. The rest of the proof

is the same as in [22, Section 4]. We notice that the constant M depends only on A,
and � depends only on A and B . Hence F is a K–quasisimilarity with K depending
only on A, B and �.

Lemma 5.7 Suppose kA D 1 and lA � 2. Then for � D �=�:

(1) A and �B have the same real part Jordan form.

(2) The map F W
�
Rn;D�

A

�
! .Rn;DB/ is a K–quasisimilarity, where K depends

only on A, B and �.

Proof We induct on lA . The basic step lAD 2 is Lemma 5.6. Now assume lAD l � 3

and that the lemma holds for lAD l�1. For any y 2Rn0Cr , the induction hypothesis ap-
plied to the �–quasisymmetric map H. � ;y/W .Rn�n0�r ;DA.1//! .Rn�m0�s;DB.1//

implies that for � D �=�:

(a) A.1/ and �B.1/ have the same real part Jordan form.

(b) H. � ;y/W
�
Rn�n0�r ;D�

A.1/

�
! .Rn�m0�s;DB.1// is a K–quasisimilarity with

K depending only on A.1/, B.1/ and �.
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Now (1) follows from (a), and (2) follows from (b), Lemma 5.5 and the arguments
in [22, Section 4]; see the proof of Lemma 5.6 (2).

Lemma 5.8 Suppose kA � 2. Then kB � 2 and
�P

i di�i

�
=�kA

D
�P

j ej�j

�
=�kB

.

Proof Lemma 5.1 implies kB � 2. Suppose
�P

i di�i

�
=�kA

>
�P

j ej�j

�
=�kB

.
Pick any Q with

�P
i di�i

�
=�kA

>Q>
�P

j ej�j

�
=�kB

. Let � W .Rn;DB/!WkB

be the projection onto WkB
, and � 0W WkB

! R a coordinate function on WkB
. Set

uD � 0 ı� . By Lemma 4.5 we have VQ;�.K /.ujF.E//D 0 for all sufficiently large K

and all Euclidean balls E � .Rn;DA/. Lemma 4.1 implies VQ;K .u ı F jE/ D 0.
This contradicts Lemma 4.2 since Q <

�P
i di�i

�
=�kA

and the function u ı F is
nonconstant. Similarly there is a contradiction if

�P
i di�i

�
=�kA

<
�P

j ej�j

�
=�kB

.
The lemma follows.

Recall that (see Section 3), if kA � 2, then the restriction of DA to each affine
subspace H parallel to

Q
i<kA

Vi agrees with DA0 , where A0 D ŒA1; : : : ;AkA�1�.

Lemma 5.9 Denote k D kA and k 0 D kB . Suppose k � 2. Then each affine
subspace H of Rn parallel to

Q
i<k Vi is mapped by F onto an affine subspace parallel

to
Q

j<k0 Wj . Furthermore, F jH W .H;DA0/! .F.H /;DB0/ is �–quasisymmetric,
and F induces an �–quasisymmetric map GW .Vk ;DAk

/! .Wk0 ;DBk0
/ such that

F
��Q

i<k Vi

�
� fyg

�
D
�Q

j<k0 Wj

�
� fG.y/g.

Proof As in the proof of Lemma 5.3, to establish the first claim it suffices to show that
each affine subspace parallel to

Q
i<k Vi is mapped into an affine subspace parallel

to
Q

j<k0 Wj . By Lemma 5.8 we have
�P

i di�i

�
=�k D

�P
j ej�j

�
=�k0 . Pick any Q

with P
i di�i

�k

<Q<min
�P

i di�i

�k�1

;

P
j ej�j

�k0�1

�
:

Suppose there is an affine subspace H parallel to
Q

i<k Vi such that F.H / is not
contained in any affine subspace parallel to

Q
j<k0 Wj . Let � W

Q
j Wj ! Wk0 be

the canonical projection. Then there is some coordinate function � 0W Wk0!R such
that u ı F is not constant on H , where u D � 0 ı � . As Q >

�P
j ej�j

�
=�k0 ,

Lemma 4.5 implies VQ;�.K /.ujF.E//D0 for all sufficiently large K and all rectangular
boxes E� .Rn;DA/. By Lemma 4.1 VQ;K .uıF jE/D 0. This contradicts Lemma 4.4
since Q<

�P
i di�i

�
=�k�1 and we can choose a rectangular box E such that u ıF

is not constant on H \E .

Since by assumption F is �–quasisymmetric, it follows from the remark preceding
the lemma that F jH W .H;DA0/! .F.H /;DB0/ is �–quasisymmetric.
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The first claim implies there is a map GW Vk !Wk0 such that F
��Q

i<k Vi

�
�fyg

�
D�Q

j<k0 Wj

�
� fG.y/g for any y 2 Vk . That GW .Vk ;DAk

/ ! .Wk0 ;DBk0
/ is �–

quasisymmetric follows from (3-2), (3-3) and the arguments of [22, page 10].

Lemma 5.10 Suppose kA D 2. Then kB D 2 and for � D �1=�1 :

(1) A and �B have the same real part Jordan form.

(2) The map F W
�
Rn;D�

A

�
! .Rn;DB/ is a K–quasisimilarity, where K depends

only on A, B and �.

Proof Let H be an affine subspace of Rn parallel to
Q

i<kA
Vi . By Lemma 5.9 F.H /

is an affine subspace parallel to
Q

j<kB
Wj , and F jH W .H;DA0/! .F.H /;DB0/ is

�–quasisymmetric. Since kA D 2, we have kA0 D 1. Now Lemma 5.1 applied
to F jH implies kB0 D 1, so kB D kB0 C 1 D 2. Now the �–quasisymmetric map
F jH W .H;DA0/! .F.H /;DB0/ becomes .V1;DA1

/! .W1;DB1
/, and Lemmas 5.7

and 5.2 imply that A1 and �1B1 have the same real part Jordan form, where �1D�1=�1 .
By Lemma 5.9 F induces an �–quasisymmetric map GW .V2;DA2

/! .W2;DB2
/,

and hence Lemmas 5.7 and 5.2 again imply that A2 and �2B2 have the same real part
Jordan form, where �2 D �2=�2 . Lemma 5.9 also implies d1 D e1 and d2 D e2 . Now
Lemma 5.8 implies �1=�1 D �2=�2 . Hence (1) holds.

To prove (2), we consider two cases. First assume that A1 D �1I and A2 D �2I .
In this case, (2) follows from (1) and Theorem 3.5. Next we assume that either
A1 6D�1I or A2 6D�2I holds. Then Lemma 5.7 implies that either F jH W

�
H;D�

A1

�
!

.F.H /;DB1
/ is a K1 –quasisimilarity with K1 depending only on A1 , B1 and �,

or GW
�
V2;D

�
A2

�
! .W2;DB2

/ is a K2 –quasisimilarity with K2 depending only
on A2 , B2 and �. Then the arguments similar to those in the proof of Lemma 5.6 (2)
(also compare with [20, Section 4]) show that F W

�
Rn;D�

A

�
! .Rn;DB/ is a K–

quasisimilarity with K depending only on A, B and �.

Lemma 5.11 Suppose kA � 2. Then for � D �1=�1 :

(1) A and �B have the same real part Jordan form.

(2) The map F W
�
Rn;D�

A

�
! .Rn;DB/ is a K–quasisimilarity, where K depends

only on A, B and �.

Proof We induct on kA . The basic step kA D 2 is Lemma 5.10. Now we assume
kA D k � 3 and that the lemma holds for kA D k � 1. For each affine subspace H

of Rn parallel to
Q

i<kA
Vi , the induction hypothesis applied to F jH W .H;DA0/!

.F.H /;DB0/ implies that for � D �1=�1 :
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(a) A0 and �B0 have the same real part Jordan form.

(b) The map F jH W
�
H;D�

A0

�
! .F.H /;DB0/ is a K–quasisimilarity, where K

depends only on A0 , B0 and �.

The statement (a) implies in particular kA� 1D kB � 1 (hence kA D kB ), �i D ��i

and ei D di for i < kA . Now it follows from Lemma 5.8 that �kA
D ��kA

. If AkA
is

a multiple of I , then (1) follows from Lemmas 5.9 and 5.2. If AkA
is not a multiple

of I , then Lemmas 5.9 and 5.7 (1) imply that AkA
and �BkB

have the same real part
Jordan form. Hence (1) holds as well in this case.

If AkA
is a multiple of I , then (2) follows from the statement (b) above and the argu-

ments in the proof of Lemma 5.6 (2). If AkA
is not a multiple of I , then Lemma 5.7 (2)

implies that GW
�
Vk ;D

�
Ak

�
! .Wk0 ;DBk0

/ is a K1 –quasisimilarity with K1 depending
only on AkA

, BkB
and �. In this case, (2) follows from this, (b) and the arguments in

the proof of Lemma 5.6 (2).

Next we will finish the proofs of the main theorems. So let A;B be two arbitrary n�n

matrices whose eigenvalues have positive real parts. Let GA , GB be equipped with
arbitrary admissible metrics. Then there are nonsingular matrices P , Q such that GA

is isometric to GPAP�1 (equipped with the standard metric) and GB is isometric
to GQBQ�1 (equipped with the standard metric). Hence below in the proofs we will
replace .Rn;DA/ and .Rn;DB/ with .Rn;DPAP�1/ and .Rn;DQBQ�1/ respectively.
There also exist nonsingular matrices P0 , Q0 such that GP0AP�1

0
and GQ0BQ�1

0
have

pinched negative sectional curvature. We may choose the same P0AP�1
0 for all

conjugate matrices A. Denote by J and J 0 the real part Jordan forms of A and B

respectively. By Proposition 3.1, there are bilipschitz maps fJ W GP0AP�1
0
! GJ

and fP W GP0AP�1
0
! GPAP�1 . Then Corollary 3.2 implies their boundary maps

@fJ W .R
n;DP0AP�1

0
/! .Rn;DJ / and @fP W .R

n;DP0AP�1
0
/! .Rn;DPAP�1/ are

also bilipschitz. Similarly, there are bilipschitz maps fJ 0 W GQ0BQ�1
0
! GJ 0 and

fQW GQ0BQ�1
0
!GQBQ�1 , whose boundary maps @fJ 0 W .R

n;DQ0BQ�1
0
/!.Rn;DJ 0/

and @fQW .R
n;DQ0BQ�1

0
/! .Rn;DQBQ�1/ are also bilipschitz.

Completing the proof of Theorem 1.1 The “if” part follows from Proposition 3.1
since the boundary map of a quasi-isometry between Gromov hyperbolic spaces is
quasisymmetric. We will prove the “only if” part. So we suppose .Rn;DPAP�1/ and
.Rn;DQBQ�1/ are quasisymmetric. Since the four maps @fP , @fJ , @fQ and @fJ 0 are
bilipschitz, we see that .Rn;DJ / and .Rn;DJ 0/ are quasisymmetric. Now it follows
from Lemmas 5.2, 5.7 (1) and 5.11 (1) that J and �J 0 have the same real part Jordan
form, where �D�1=�1 . Hence A and �B also have the same real part Jordan form.
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Theorem 5.12 Let A and B be n� n matrices whose eigenvalues all have positive
real parts, and let GA and GB be equipped with arbitrary admissible metrics. Denote
by �1 and �1 the smallest real parts of the eigenvalues of A and B respectively, and
set � D �1=�1 . If the real part Jordan form of A is not a multiple of the identity
matrix In , then for every �–quasisymmetric map F W .Rn;DA/! .Rn;DB/, the map
F W

�
Rn;D�

A

�
! .Rn;DB/ is a K–quasisimilarity, where K depends only on �, A, B

and the metrics on GA , GB .

Completing the proof of Theorem 5.12 Let F W .Rn;DPAP�1/! .Rn;Dqbq�1/ be
an �–quasisymmetric map. Notice that the bilipschitz constant of the map @fJ depends
only on A (actually the conjugacy class of A) as the same P0AP�1

0
is chosen for

all matrices A in the same conjugate class. However, the bilipschitz constant of @fP

depends on P and hence on the admissible metric on GA . Hence @fJ ı @f
�1

P
is

L1 –bilipschitz for some constant L1 depending only on A and the admissible metric
on GA . Similarly, @fJ 0 ı @f

�1
Q

is L2 –bilipschitz for some constant L2 depending
only on B and the admissible metric on GB . It follows that

G WD .@fJ 0 ı @f
�1

Q / ıF ı .@fJ ı @f
�1

P /�1
W .Rn;DJ /! .Rn;DJ 0/

is �1 –quasisymmetric, where �1 depends only on L1 , L2 and �. Now Lemmas 5.7 (2)
and 5.11 (2) imply that G is a K–quasisimilarity, where K depends only on J , J 0

and �1 . Consequently, F is a KL1L2 –quasisimilarity.

6 Proof of the corollaries

In this section we prove the corollaries from the introduction and also derive a local
version of Theorem 1.1.

Let M be a Hadamard manifold with pinched negative sectional curvature, �0 2 @M ,
and x0 2M a base point. Let  be the geodesic with  .0/ D x0 and  .1/ D �0 .
Let hM D �B W M ! R, where B is the Busemann function associated with  .
Set Ht D h�1

M
.t/. A parabolic visual quasimetric D�0

on @M nf�0g is defined as
follows. For �; � 2 @M nf�0g, D�0

.�; �/D et if and only if ��0 \Ht and ��0 \Ht

have distance 1 in the horosphere Ht .

Let N be another Hadamard manifold with pinched negative sectional curvature, and
f W M ! N a quasi-isometry. For any � 2 @M and x 2M , we set � 0 D @f .�/ and
x0D f .x/. Let  0 be the geodesic with  0.0/D x0

0
and  0.1/D � 0

0
. Set hN D�B 0 ,

where B 0 is the Busemann function associated with  0 . Denote H 0t Dh�1
N
.t/. Let D�0

0

be the parabolic visual quasimetric on @N nf� 0
0
g with respect to the base point x0

0
.
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Lemma 6.1 Let s > 0. Then the following three conditions are equivalent.

(1) There is a constant C �0 such that the Hausdorff distance HD.f .Ht /;H
0
st /�C

for all t .

(2) The boundary map @f W .@M nf�0g;Ds
�0
/! .@N nf� 0

0
g;D�0

0
/ is bilipschitz.

(3) There exists a constant C � 0 such that s � d.x;y/ � C � d.f .x/; f .y// �

s � d.x;y/CC for all x;y 2M:

Proof The arguments in the proof of [20, Lemma 6.4] shows (2))(1), while the argu-
ments at the end of [20, proof of Corollary 1.2] yield (1))(3). We shall prove (3))(1)
and (1))(2).

(1))(2): Suppose (1) holds. Let � 6D � 2 @M nf�0g. Assume D�0
.�; �/ D et and

D�00
.� 0; �0/ D et 0 . Let � be the geodesic joining � and �0 with �.0/ 2 H0 and

�.1/D �0 . By [20, Lemma 6.2], �.t/ is a C1 –quasicenter of � , �, �0 , and �0.t 0/
is a C1 –quasicenter of � 0 , �0 , � 0

0
, where C1 depends only on the curvature bounds

of M and N . Since f is a quasi-isometry, f .�.t// is a C2 –quasicenter of � 0 , �0 , � 0
0

,
where C2 depends only on C1 , the quasi-isometry constants of f and the curvature
bounds of N . It follows that d.f .�.t//; �0.t

0// � C3 , where C3 depends only
on C1 , C2 and the curvature bounds of N . By condition (1), the point f .�.t// is
within C of H 0st . It follows that �0.t 0/ 2H 0t 0 is within C CC3 of H 0st so jt 0� st j �

C CC3 . Therefore, e�.CCC3/est �D�00
.� 0; �0/D et 0 � eCCC3est .

(3))(1): Suppose (3) holds. Let !W R ! M be any geodesic with !.0/ 2 H0

and !.1/D �0 . Then f ı! is a .L1;C1/–quasigeodesic in N , where L1 and C1

depend only on s and C . By the stability of quasigeodesics in a Gromov hyperbolic
space, there is a constant C2 depending only on L1;C1 and the Gromov hyperbolicity
constant of N , and a complete geodesic !0 in N with one endpoint � 0

0
such that the

Hausdorff distance between !0.R/ and f ı!.R/ is at most C2 . Let t1 < t2 . Then it
follows from condition (3) and the triangle inequality that

jhN .f .!.t2///� hN .f .!.t1///� s.t2� t1/j � C3;

where C3 depends only on C , C2 and the Gromov hyperbolicity constant of N . In
particular, this applied to ! D  , t2 D t and t1 D 0 (or t2 D 0 and t1 D t if t < 0)
implies jhN .f . .t///� st j � C3 .

Let x 2 Ht be arbitrary. Let !1 be the geodesic with !1.t/ D x and !1.1/ D �0 .
Pick any t2 � t with d. .t2/; !1.t2//� 1. By condition (3),

jhN .f . .t2///� hN .f .!1.t2///j � d.f . .t2//; f .!1.t2///� sCC:
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The discussion from the preceding paragraph implies

jhN .f .!1.t2///� hN .f .!1.t///� s.t2� t/j � C3;

jhN .f . .t2///� hN .f . .t///� s.t2� t/j � C3:

These inequalities together with the one at the end of last paragraph imply

jhN .f .!1.t///� st j � C4 WD 3C3C sCC:

Hence f .x/ D f .!1.t// is within C4 of H 0st . This shows f .Ht / lies in the C4 –
neighborhood of H 0st . By considering a quasi-inverse of f , we see that the Hausdorff
distance HD.f .Ht /;H

0
st / � C5 , where C5 depends only on s , C and the Gromov

hyperbolicity constants of M and N .

A local version of Theorem 1.1 also holds.

Theorem 6.2 Let A, B be n� n matrices whose eigenvalues have positive real parts,
and let GA and GB be equipped with arbitrary admissible metrics. Let U � .Rn;DA/,
V � .Rn;DB/ be open subsets, and F W .U;DA/! .V;DB/ an �–quasisymmetric
map. Then A and sB have the same real part Jordan form for some s > 0.

Proof By Corollary 3.2 and the discussion before the proof of Theorem 1.1 we may
assume A and B are in real part Jordan form. Fix a base point x 2U . We may assume
both x and F.x/ are the origin o. Then there is some constant a> 1 and a sequence
of distinct triples .xk ;yk ; zk/ from U satisfying xk D o, DA.xk ;yk/! 0 and

DA.xk ;yk/

DA.xk ; zk/
;
DA.yk ;xk/

DA.yk ; zk/
;
DA.zk ;xk/

DA.zk ;yk/
2 .1=a; a/:

Such a triple can be chosen from the eigenspace of �1 (the smallest eigenvalue of A)
so that xk D o is the middle point of the segment ykzk . Since F is �–quasisymmetric,
there is a constant b > 0 depending only on a and � such that

DB.F.xk/;F.yk//

DB.F.xk/;F.zk//
;
DB.F.yk/;F.xk//

DB.F.yk/;F.zk//
;
DB.F.zk/;F.xk//

DB.F.zk/;F.yk//
2 .1=b; b/:

Assume DA.xk ;yk/ D e�tk and DB.F.xk/;F.yk// D e�t 0
k . Then we have that

etkAW .U; etk DA/! .etkAU;DA/ is an isometry. Hence the sequence of pointed metric
spaces .U; etk DA; o/ converges (as k!1) in the pointed Gromov–Hausdorff topol-
ogy towards .Rn;DA/. Similarly, the sequence of pointed metric spaces .V; et 0

k DB; o/

converges (as k!1) in the pointed Gromov–Hausdorff topology towards .Rn;DB/.
On the other hand, the sequence of maps Fk DF W .U; etk DA/! .V; et 0

k DB/ are all �–
quasisymmetric, and the triples .xk ;yk ; zk/ 2 .U; e

tk DA/, .F.xk/;F.yk/;F.zk// 2

Geometry & Topology, Volume 18 (2014)



Large scale geometry of negatively curved Rn Ì R 861

.V; et 0
k DB/ are uniformly separated and uniformly bounded. Now the compact-

ness property of quasisymmetric maps implies that a subsequence of fFkg con-
verges in the pointed Gromov–Hausdorff topology towards an �–quasisymmetric
map F 0W .Rn;DA/! .Rn;DB/. Now the theorem follows from Theorem 1.1.

Lemma 6.3 Let F W @GA ! @GB be a quasisymmetric map, where @GA and @GB

are equipped with visual metrics. Let �0 2 @GA; �
0
0
2 @GB be the points corresponding

to upward-oriented vertical geodesic rays. If the real part Jordan form of A is not a
multiple of the identity matrix, then F.�0/D �

0
0

.

Proof The proof is similar to that of [22, Proposition 3.5]. Suppose F.�0/ 6D �
0
0

. By
the relation between visual metrics and parabolic visual metrics [20, Section 5], the
map

F W .Rn
nfF�1.� 00/g;DA/! .Rn

nfF.�0/;DB/

is locally quasisymmetric. By Theorem 6.2, A and sB have the same real part Jordan
form for some s > 0. In particular, we have kB D kA ; the fibers of �A and �B have
the same dimension if kA D 1, and the subspaces

Q
i<kA

Vi and
Q

j<kB
Wj have the

same dimension if kA � 2. If kAD 1, let H be a fiber of �A not containing F�1.� 0
0
/;

if kA � 2, then let H be an affine subspace parallel to
Q

i<kA
Vi and not containing

F�1.� 0
0
/. Let m be the topological dimension of H . Then H [ f�0g � @GA is an

m–dimensional topological sphere. Since F.�0/ 6D �
0
0

and F�1.� 0
0
/ 62H , the image

F.H [f�0g/ is a m–dimensional topological sphere in RnD @GBnf�
0
0
g. In particular,

F.H [f�0g/ (and hence F.H /) is not contained in any fiber of �B (if kAD 1) or any
affine subspace parallel to

Q
j<kB

Wj (if kA � 2). Now the arguments of Lemmas 5.3
and 5.9 yield a contradiction. Hence F.�0/D �

0
0

.

Now Corollary 1.3 follows from Proposition 3.1, Lemma 6.3, Theorem 1.1 and the fact
that a quasi-isometry between Gromov hyperbolic spaces induces a quasisymmetric
map between the ideal boundaries.

Proofs of Corollaries 1.4 and 1.5 We use the notation introduced before the proof of
Theorem 1.1. Let f W GPAP�1 !GQBQ�1 be a quasi-isometry. By Lemma 6.3, f in-
duces a boundary map @f W .Rn;DPAP�1/! .Rn;DQBQ�1/, which is quasisymmetric.
By Theorem 1.2, there is some s > 0 such that @f W .Rn;Ds

PAP�1/! .Rn;DQBQ�1/

is bilipschitz. Since @fP and @fQ are also bilipschitz, we have that the boundary map
@.f �1

Q ıf ıfP /W .R
n;Ds

P0AP�1
0
/! .Rn;DQ0BQ�1

0
/ of f �1

Q ıf ıfP W GP0AP�1
0
!

GQ0BQ�1
0

is bilipschitz. Since GP0AP�1
0

and GQ0BQ�1
0

have pinched negative sec-
tional curvature, Lemma 6.1 implies the map f �1

Q ı f ı fP is height-respecting and is
an almost similarity. By Proposition 3.1 and Corollary 3.2 the two maps fP and fQ

Geometry & Topology, Volume 18 (2014)



862 Xiangdong Xie

are height-respecting and are almost similarities. Hence f is height-respecting and is
an almost similarity.

The proof of Corollary 1.6 is the same as in [20, Corollary 1.3].

Next we give a proof of Corollary 1.7. Recall that a group G of quasisimilarity maps
of .Rn;DA/ is a uniform group if there is some K � 1 such that every element of G is
a K–quasisimilarity. Dymarz and Peng have established the following theorem; see [6]
for the definition of almost homotheties.

Theorem 6.4 [6] Let A be a square matrix whose eigenvalues all have positive real
parts, and G be a uniform group of quasisimilarity maps of .Rn;DA/. If the induced
action of G on the space of distinct couples of Rn is cocompact, then G can be
conjugated by a bilipschitz map into the group of almost homotheties.

Proof of Corollary 1.7 Let G be a group of quasimöbius maps of .@GA; d/ such that
every element of G is �–quasimöbius, where d is a fixed visual metric on @GA . Let
�0 2@GA be the point corresponding to vertical geodesic rays. Since the real part Jordan
form of A is not a multiple of the identity matrix, Lemma 6.3 implies that the point �0
is fixed by all quasisymmetric maps @GA! @GA . Hence G restricts to a group of
quasisymmetric maps of .Rn;DA/. For any three distinct points �1; �2; �3 2 Rn D

@GAnf�0g, the quasimöbius condition applied to the quadruple Q D .�1; �2; �3; �0/

implies that every element of G is an �–quasisymmetric map of .Rn;DA/. Now
Theorem 1.2 implies that there is some K � 1 such that every element of G is a K–
quasisimilarity. In other words, G is a uniform group of quasisimilarities of .Rn;DA/.

Since the induced action of G on the space of distinct triples of .@GA; d/ is cocompact,
there is some ı > 0 such that for any distinct triple .�1; �2; �3/, there is some g 2G

such that d.g.�i/;g.�j //� ı for all 1� i 6D j � 3. Now let � 6D �2 2RnD @GAnf�0g

be any distinct couple. Then there is an element g 2G as above corresponding to the
triple .�0; �1; �2/. Since g.�0/D �0 , there are two constants a; b > 0 depending only
on ı such that DA.g.�1/; o/� b , DA.g.�2/; o/� b and DA.g.�1/;g.�2//� a. This
shows that G acts cocompactly on the space of distinct couples of .Rn;DA/.

Now the corollary follows from the theorem of Dymarz and Peng.

7 QS maps in the Jordan block case

In this section we describe all the quasisymmetric maps on the ideal boundary in the
case when A is a Jordan block.
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Theorem 7.1 Let Jn D InCN be the n� n (n� 2) Jordan block with eigenvalue 1.
Then a bijection F W .Rn;DJn

/! .Rn;DJn
/ is a quasisymmetric map if and only of

there are constants a0 6D 0; a1; : : : ; an�2 2 R, a vector v 2 Rn and a Lipschitz map
C W R!R such that

F.x/D .a0InC a1N C � � �C an�2N n�2/xC vC zC .x/

for all x D .x1; : : : ;xn/
T 2Rn , where zC .x/D .C.xn/; 0; : : : ; 0/

T . Here T indicates
matrix transpose.

We first prove that every map of the indicated form is actually bilipschitz. Notice that the
map F described in the theorem decomposes as F DF1ıF2ıF3 , with F1.x/DxCv ,
F2.x/DxC zC1.x/ and F3.x/D .a0InCa1NC� � �Can�2N n�2/x , where C1W R!R
is defined by C1.t/DC.t=a0/. Since DJn

is invariant under Euclidean translations, F1

is an isometry. We shall prove that F2 and F3 are bilipschitz in the next two lemmas.

For an n � n matrix M D .mij /, set Q.M / D
P

i;j m2
ij . We will use the fact

kM k �Q.M /1=2 , where kM k denotes the operator norm of M .

Lemma 7.2 Suppose C W R! R is L–Lipschitz for some L > 0. Then we have
F2W .R

n;DJn
/! .Rn;DJn

/, F2.x/D xC zC .x/ is L0–bilipschitz, where L0 depends
only on L and the dimension n.

Proof Let x D .x1; : : : ;xn/
T and x0 D .x0

1
; : : : ;x0n/

T be two arbitrary points in Rn .
Then F2.x/D .x1CC.xn/;x2; : : : ;xn/

T and F2.x
0/D .x0

1
CC.x0n/;x

0
2
; : : : ;x0n/

T .
Assume DJn

.x;x0/D et and DJn
.F2.x/;F2.x

0//D es . We need to show that there
is some constant a depending only on L and n such that jt � sj � a.

Since DJn
.x;x0/ D et , we have et D je�tN .x0 � x/j; see Section 3. Similarly,

DJn
.F2.x/;F2.x

0//Des gives esDje�sN .F2.x
0/�F2.x//j. Note F2.x

0/�F2.x/D

.x0 � x/Cw , where w D .C.x0n/� C.xn/; 0; : : : ; 0/
T . The only nonzero entry in

e�tNw is C.x0n/�C.xn/. So we have

je�tNwj D jC.x0n/�C.xn/j �Ljx0n�xnj:

On the other hand, the last entry in e�tN .x0�x/ is .x0n�xn/, hence

je�tNwj �Ljx0n�xnj �Lje�tN .x0�x/j DLet :

We write

e�sN .F2.x
0/�F2.x//De.t�s/N e�tN Œ.x0�x/Cw�De.t�s/N Œe�tN .x0�x/Ce�tNw�:
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Now

es
D je�sN .F2.x

0/�F2.x//j D je
.t�s/N Œe�tN .x0�x/C e�tNw�j

� ke.t�s/N
k � je�tN .x0�x/C e�tNwj � ke.t�s/N

k � fje�tN .x0�x/jC je�tNwjg

� ke.t�s/N
k � fet

CLet
g � et .1CL/

q
Q.e.t�s/N /:

From this we derive es�t � .1 C L/
p

Q.e.t�s/N /. Notice that Q.e.t�s/N / is a
polynomial of degree 2.n� 1/ in t � s that depends only on n. It follows that there is
a constant a depending only on n and L such that s� t � a. Since the inverse of F2

is F�1
2
.x/ D x C .�C.xn/; 0; : : : ; 0/

T , the above argument applied to F�1
2

yields
t � s � a. Hence js� t j � a, and we are done.

Lemma 7.3 Let F3W .R
n;DJn

/! .Rn;DJn
/ be given by

F3.x/D .a0InC a1N C � � �C an�1N n�1/x;

where a0 6D 0; a1; : : : ; an�1 2R are constants. Then F3 is L–bilipschitz for some L

depending only on n and a0; a1; : : : ; an�1 .

Proof The proof is similar to that of Lemma 7.2. Let x;x0 2Rn be arbitrary. Assume
DJn

.x;x0/D et and DJn
.F3.x/;F3.x

0//D es . Then we have et D je�tN .x0 � x/j

and es D je�sN .F3.x
0/�F3.x//j. We need to find a constant a that depends only

on n and the numbers a0 , � � � , an�1 such that js� t j � a.

Set B1D e.t�s/N and B2Da0InCa1NC� � �Can�1N n�1 . Notice that B2 commutes
with N . We have

es
D je�sN .F3.x

0/�F3.x//j D je
.t�s/N e�tN B2.x

0
�x/j

D jB1B2e�tN .x0�x/j � kB1k � kB2k � je
�tN .x0�x/j

�
p

Q.B1/
p

Q.B2/ et :

Hence es�t �
p

Q.B1/Q.B2/. Since Q.B1/Q.B2/ is a polynomial in t � s that
depends only on n and the numbers a0; : : : ; an�1 , there is some constant a > 0

depending only on n and a0; : : : ; an�1 such that s� t � a.

Notice that F�1
3
.x/D B�1

2
x . Set

ˇ D�

�
a1

a0

N C � � �C
an�1

a0

N n�1

�
:

Then ˇn D 0. We have B2 D a0.I �ˇ/ and B�1
2
D a�1

0
.I CˇCˇ2C � � �Cˇn�1/.

It follows that B�1
2

has the expression B�1
2
D a�1

0
I C b1N C � � � C bn�2N n�2 C
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bn�1N n�1 , where b1; : : : ; bn�1 are constants depending only on a0; : : : ; an�1 . Now
the preceding paragraph implies that t � s � a0 for some constant a0 depending
only on n and a�1

0
; b1; : : : ; bn�1 , hence only on n and a0; : : : ; an�1 . Therefore

js� t j �maxfa; a0g, and the proof of Lemma 7.3 is complete.

To prove that every quasisymmetric map has the described type, we induct on n. The
basic step nD 2 is given by Theorem 3.6. Now we assume n� 3 and that Theorem 7.1
holds for Jn�1 .

Let F W .Rn;DJn
/! .Rn;DJn

/ be a quasisymmetric map. Let Fi (i D 1; : : : ; n� 1)
be the foliation of Rn consisting of affine subspaces parallel to the linear subspace

Hi WD fx D .x1; : : : ;xn/
T
2Rn

j xiC1 D � � � D xn D 0g:

Then the proof of Theorem 1.2 shows that the foliation Fi is preserved by F . To be
more precise, if H is an affine subspace parallel to Hi , then F.H / is also an affine
subspace parallel to Hi . In particular, F maps every line parallel to the x1 –axis (that is,
parallel to H1 ) to a line parallel to the x1 –axis, and maps every horizontal hyperplane
(that is, parallel to Hn�1 ) to a horizontal hyperplane. It follows that there is a map
GW Rn�1!Rn�1 such that for any y 2Rn�1 , F.R� fyg/DR� fG.y/g. For each
y 2Rn�1 , there is a map H. � ;y/W R!R such that F.x1;y/D .H.x1;y/;G.y//.

Arguments similar to the proofs of Lemmas 3.3 and 3.4 show the following:

(1) For each y 2Rn�1 , the restriction of DJn
to R�fyg agrees with the Euclidean

distance on R.

(2) For any two y1;y2 2Rn�1 , the Hausdorff distance with respect to DJn
satisifes

HD.R� fy1g;R� fy2g/DDJn�1
.y1;y2/.

(3) For any p D .x1;y1/ 2 R�Rn�1 , y2 2 Rn�1 , we have DJn
.p;R� fy2g/D

DJn�1
.y1;y2/.

Hence each H. � ;y/W .R; j � j/ ! .R; j � j/ is quasisymmetric, and the arguments
of [22, page 11] shows that GW .Rn�1;DJn�1

/!.Rn�1;DJn�1
/ is also quasisymmetric.

The induction hypothesis applied to G establishes constants a0 6D 0, a1 , : : : ; an�3 , bi

(2� i � n/ and a Lipschitz map gW R!R such that

G

0BBB@
x2

x3
:::

xn

1CCCAD
0BBBBB@

a0x2C a1x3C � � �C an�3xn�1C b2Cg.xn/

a0x3C a1x4C � � �C an�3xnC b3
:::

a0xn�1C a1xnC bn�1

a0xnC bn

1CCCCCA :
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Notice that the horizontal hyperplane Rn�1 � fxng at height xn is mapped by F

to the horizontal hyperplane Rn�1 � fa0xn C bng at height a0xn C bn . Since the
restriction of DJn

to a horizontal hyperplane agrees with DJn�1
(Lemma 3.3), the

map
F W .Rn�1

� fxng;DJn�1
/! .Rn�1

� fa0xnC bng;DJn�1
/

is quasisymmetric. Now the induction hypothesis, the fact F.x1;y/D .H.x1;y/G.y//

and the expression of G imply that

H.x1;y/D a0x1C a1x2C � � �C an�3xn�2C c1.xn/C c2.xn�1;xn/;

where c1W R! R and c2W R
2! R are two maps and for each fixed v , c2.u; v/ is

Lipschitz in u. Since F is a homeomorphism, c1 and c2 are continuous. Define
c3W R

2! R by c3.u; v/D c1.v/C c2.u; v/. After composing F with a map of the
described type, we may assume F has the following form

F.x1;x2; : : : ;xn/D .x1C c3.xn�1;xn/;x2Cg.xn/;x3; : : : ;xn/:

We need to show that there are constants an�2 , d2 and a Lipschitz map C W R! R
such that g.xn/D an�2xnC d2 and c3.xn�1;xn/D an�2xn�1CC.xn/.

Lemma 7.4 There is a constant L such that the following holds for all u; v; v0 2R:ˇ̌˚
c3.uC .v

0
� v/ ln jv0� vj; v0/� c3.u; v/

	
� ln jv0� vjfg.v0/�g.v/g

ˇ̌
�Ljv0� vj

Proof Let u; v; v0 2R. Let x 2Rn with xn�1 D u, xn D v . Set t D ln jv0� vj and
let y D .y1; : : : ;yn/

T be the unique solution of e�tN y D .0; : : : ; 0; v0 � v/T . Let
x0 D xCy . Notice yn D v

0� v , yn�1 D .v
0� v/ ln jv0� vj, x0n D v

0 and

x0n�1 D xn�1Cyn�1 D uC .v0� v/ ln jv0� vj:

Notice also that t is the smallest solution for etDje�tN .x0�x/j and so DJn
.x;x0/Det .

Suppose DJn
.F.x/;F.x0//Des . Then esDje�sN.F.x0/�F.x//j. By Theorem 1.2, F

is L1 –bilipschitz for some L1 � 1. Hence et=L1 � es � L1et . It follows that
jt � sj � ln L1 . Now we write the following:

e�sN .F.x0/�F.x//

D e�sN .x0�x/C e�sN

0BBBBB@
c3.x

0
n�1

;x0n/� c3.xn�1;xn/

g.x0n/�g.xn/

0
:::

0

1CCCCCA
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De.t�s/N e�tN .x0�x/Ce.t�s/N e�tN

0BBBBB@
c3.x

0
n�1

;x0n/� c3.xn�1;xn/

g.x0n/�g.xn/

0
:::

0

1CCCCCA

D e.t�s/N

0BBBBBBB@

fc3.x
0
n�1

;x0n/� c3.xn�1;xn/g� tfg.x0n/�g.xn/g

g.x0n/�g.xn/

0
:::

0

x0n�xn

1CCCCCCCA
Set

� D fc3.x
0
n�1;x

0
n/� c3.xn�1;xn/g� tfg.x0n/�g.xn/g:

The first entry of e�sN .F.x0/�F.x// is

q WD � C .t � s/fg.x0n/�g.xn/gC
.t � s/n�1

.n� 1/!
.x0n�xn/:

We have
jqj � je�sN .F.x0/�F.x//j D es

�L1et
DL1jv

0
� vj:

Recall that g is L2 –Lipschitz for some L2 � 0. Hence,

jg.x0n/�g.xn/j �L2jx
0
n�xnj DL2jv

0
� vj:

Now it follows from jt � sj � ln L1 and the triangle inequality that

j� j �

�
L1CL2 ln L1C

.ln L1/
n�1

.n� 1/!

�
jv0� vj:

Recall that the map g is Lipschitz and for each fixed v , c3.u; v/ is Lipschitz in u.
Hence g is differentiable ae, and for each fixed v , the partial derivative @c3=@u exists
for ae u.

Lemma 7.5 Let v be any point such that g0.v/ exists. Then c3.u; v/ D c3.0; v/C

g0.v/u for all u.

Proof Fix an arbitrary u2R. Let a> 0. For any positive integer n, define .y0; z0/D

.u; v/ and .yi ; zi/D .uCi.a=n/ ln.a=n/; vCi.a=n// (1� i�n). Applying Lemma 7.4
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to yi�1; zi�1; zi we obtainˇ̌̌
fc3.yi ; zi/� c3.yi�1; zi�1/g� ln

�a

n

�
fg.zi/�g.zi�1/g

ˇ̌̌
�L

a

n
:

Now let k D k.n/ be the integer part of n=ln.n=a/. Then .k=n/ ln.a=n/ ! �1

as n!1. Combining the above inequalities for 1 � i � k and using the triangle
inequality, we obtainˇ̌̌

fc3.yk ; zk/� c3.u; v/g� ln
�a

n

�
fg.zk/�g.v/g

ˇ̌̌
�L

ak

n
:

Now divide both sides by .ak=n/ ln.n=a/ (which converges to a as n!1), we getˇ̌̌̌
fc3.yk ; zk/� c3.u; v/g

.ak=n/ ln.n=a/
C
fg.zk/�g.v/g

.ak=n/

ˇ̌̌̌
�

L

ln.n=a/
:

As n!1, we have zk D vC .ak=n/! v , yk ! u� a. Also, since g0.v/ exists,
we have

fg.zk/�g.v/g

.ak=n/
! g0.v/:

Consequently,
c3.u� a; v/� c3.u; v/

a
Cg0.v/D 0:

Hence c3.u� a; v/� c3.u; v/D�ag0.v/ for all u 2R and all a> 0. It follows that
c3.u; v/D c3.0; v/Cg0.v/u for all u.

Lemma 7.6 Suppose g is differentiable at v1 and v2 . Then g0.v1/D g0.v2/.

Proof By Lemma 7.5, we have c3.u; v1/D c3.0; v1/Cug0.v1/ and

c3.uC Œv2� v1� ln jv2� v1j; v2/D c3.0; v2/C .uC Œv2� v1� ln jv2� v1j/g
0.v2/

for all u. Now Lemma 7.4 applied to u; v1 , v2 implies that
ˇ̌
u.g0.v2/�g0.v1//

ˇ̌
� C

holds for all u, where C is a quantity independent of u. Thus g0.v2/�g0.v1/D 0.

Completing the proof of Theorem 7.1 Lemma 7.6 implies that g is an affine function
and hence there are constants a; b such that g.v/ D av C b . It now follows from
Lemma 7.5 that for any v we have c3.u; v/ D c3.0; v/C au. To finish the proof
of Theorem 7.1, it remains to show that c3.0; v/ is Lipschitz in v . This follows
immediately from Lemma 7.4 after plugging in the formulas for g and c3 .

Now the proof of Theorem 7.1 is complete.
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8 A Liouville-type theorem

In this section we prove a Liouville-type theorem for GA in the case when A is a
Jordan block: every conformal map of the ideal boundary of GA extends to an isometry
of GA .

Let X and Y be quasimetric spaces with finite Hausdorff dimension. Denote by HX

and HY their Hausdorff dimensions and by HX and HY their Hausdorff measures.
We say a quasisymmetric map f W X ! Y is conformal if

(1) Lf .x/D lf .x/ 2 .0;1/ for HX –almost every x 2X ,

(2) Lf �1.y/D lf �1.y/ 2 .0;1/ for HY –almost every y 2 Y .

We now describe some isometries of GA . For any g D .x; t/ 2 GA D Rn Ì R, the
Lie group left translation Lg is an isometry. If g D .x; 0/, then the boundary map
@LgW Rn!Rn of Lg is translation by x . If gD .0; t/, then the boundary map of Lg

is the similarity etA . Let � 0W GA!GA be given by � 0.x; t/D .�x; t/. Then � 0 is an
isometry, and its boundary map is � W Rn!Rn , �.x/D�x .

Theorem 8.1 Let Jn be the n� n (n � 2) Jordan matrix with eigenvalue 1. Then
every conformal map F W .Rn;DJn

/! .Rn;DJn
/ is the boundary map of an isometry

GJn
!GJn

.

We first prove the case nD 2.

Lemma 8.2 Every conformal map F W .R2;DJ2
/! .R2;DJ2

/ is the boundary map
of an isometry GJ2

!GJ2
.

Proof Since F is conformal, it is quasisymmetric in particular. By Theorem 7.1, F

has the following form: F.x;y/D .axC c.y/; ayCb/, where a 6D 0, b are constants
and cW R!R is a Lipschitz map. By composing F with the boundary maps of the
isometries described before Theorem 8.1, we may assume aD 1 and b D 0; that is, F

has the form F.x;y/D .xC c.y/;y/. We shall prove that c.y/ is a constant function.

Since cW R! R is a Lipschitz function, it is differentiable ae. We shall show that
c0.y/D 0 for ae y 2R. By the definition of a conformal map, LF .x;y/D lF .x;y/ for
ae .x;y/ 2R2 with respect to the Lebesgue measure in R2 . It follows from Fubini’s
Theorem that for ae y 2R, the derivative c0.y/ exists and LF .x;y/D lF .x;y/ for
ae x 2R. Let y0 be an arbitrary such point and x0 2R be such that LF .x0;y0/D

lF .x0;y0/. We will show c0.y0/D 0.
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By precomposing and postcomposing with Euclidean translations if necessary, we may
assume that .x0;y0/ D .0; 0/ and c.y0/ D 0. We need to show c0.0/ D 0. We will
suppose c0.0/ 6D 0 and get a contradiction. Notice that F.x; 0/D .x; 0/ for all x 2R.
It follows that LF .0; 0/ � 1 and lF .0; 0/ � 1. Combining this with the assumption
LF .0; 0/ D lF .0; 0/, we obtain LF .0; 0/ D lF .0; 0/ D 1. First suppose c0.0/ > 0.
Then c.y/ > 0 for sufficiently small y > 0. Let p D .0; 0/ and q D .r C r ln r; r/

with r > 0. Then F.p/ D p and F.q/ D .r C r ln r C c.r/; r/. One calculates
D.p; q/D r and D.F.p/;F.q//D rC c.r/. It follows that LF .p; r/� rC c.r/ and
hence LF .p/� 1C c0.0/ > 1, contradicting LF .0; 0/D 1. If c0.0/ < 0, then letting
q D .�r C r ln r; r/ one similarly obtains a contradiction.

Proof of Theorem 8.1 Let F W .Rn;DJn
/! .Rn;DJn

/ be a quasisymmetric map.
After composing with the boundary maps of isometries described before Theorem 8.1,
we may assume F has the following form

F.x/D .I C a1N C � � �C an�2N n�2/xC .C.xn/; 0; : : : ; 0/
T ;

where C W R!R is Lipschitz. We will prove the following statement by inducting on n:

If F as above is conformal, then a1 D � � � D an�2 D 0 and C is constant.

The basic step n D 2 is Lemma 8.2. Now we assume n � 3 and that the statement
holds for Jordan matrices with sizes less than or equal to n� 1. Notice that F maps
every horizontal hyperplane H.xn/ WD Rn�1 � fxng to itself. By Lemma 3.3 the
restriction of DJn

on H.xn/ agrees with the metric DJn�1
. It now follows from

Fubini’s Theorem that for ae xn 2R, the restricted map

F jH .xn/W .H.xn/;DJn�1
/! .H.xn/;DJn�1

/

is also conformal. Now the induction hypothesis applied to F jH .xn/ implies that aiD 0

for 1� i � n� 2. It remains to show C is constant.

Suppose C is not constant. Then there is some u 2 R such that C 0.u/ 6D 0 and
LF .p/D lF .p/ for some p 2H.u/. After precomposing and postcomposing with
Euclidean translations, we may assume u D 0, C.0/ D 0 and p is the origin o.
Notice that the restriction of F to the x1 –axis is the identity, so LF .o/D lF .o/D 1.
Now for any xn > 0, choose x1; : : : ;xn�1 such that x D .x1; : : : ;xn/

T satisfies
e�tN x D .0; : : : ; 0;xn/

T , where t D ln xn . It follows that DJn
.o;x/ D et D xn .

Suppose DJn
.F.o/;F.x//D es . Then es D je�sN F.x/j. We calculate as before that

e�sN F.x/D

�
C.xn/C

.t � s/n�1

.n� 1/!
xn;

.t � s/n�2

.n� 2/!
xn; : : : ; .t � s/xn;xn

�T

:
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Since LF .o/D lF .o/D 1, we must have es=et DDJn
.F.x/;F.o//=DJn

.x; o/! 1

as xn! 0 and hence t � s! 0. Now

es
D
ˇ̌
e�sN F.x/

ˇ̌
D xn

ˇ̌̌̌�
C.xn/

xn
C
.t � s/n�1

.n� 1/!
;
.t � s/n�2

.n� 2/!
; : : : ; .t � s/; 1

�T ˇ̌̌̌
:

Since xn D et , we have

es�t
D

ˇ̌̌̌�
C.xn/

xn
C
.t � s/n�1

.n� 1/!
;
.t � s/n�2

.n� 2/!
; : : : ; .t � s/; 1

�T ˇ̌̌̌
:

Now as xn! 0, the right hand side converges toˇ̌
.C 0.0/; 0; : : : ; 0; 1/T

ˇ̌
D

q
1C .C 0.0//2;

which is greater than 1 since C 0.0/ 6D 0. However, the left-hand side converges to 1.
The contradiction shows C must be a constant function.
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