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Rational curves and special metrics on twistor spaces

MISHA VERBITSKY

A Hermitian metric ! on a complex manifold is called SKT or pluriclosed if
ddc! D 0 . Let M be a twistor space of a compact, anti-selfdual Riemannian
manifold, admitting a pluriclosed Hermitian metric. We prove that in this case M

is Kähler, hence isomorphic to CP 3 or a flag space. This result is obtained from
rational connectedness of the twistor space, due to F Campana. As an aside, we prove
that the moduli space of rational curves on the twistor space of a K3 surface is Stein.
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To Professor H Blaine Lawson on his 70th birthday

1 Introduction

1.1 Special Hermitian metrics on complex manifolds

The world of non-Kähler complex geometry is infinitely bigger than that inhabited
by Kähler manifolds. For instance, as shown by Taubes [29] (see also Panov and
Petrunin [24]), any finitely-generated group can be realized as a fundamental group of a
compact complex manifold. On the contrary, the Kähler condition puts big restrictions
on the fundamental group.

However, there are not many constructions which lead to explicit non-Kähler complex
manifolds. There are many homogeneous and locally homogeneous manifolds (such as
complex nilmanifolds), which are known to be non-Kähler. The locally conformally
Kähler manifolds are non-Kähler by a theorem of Vaisman [30]. Kodaira class VII
surfaces (forming a vast and still not completely understood class of complex surfaces)
are never Kähler. Finally, the twistor spaces, as shown by Hitchin, are never Kähler,
except two examples: CP3 , being a twistor space of S4 , and the flag space, being a
twistor space of CP2 ; see Hitchin [17].

There are many ways to weaken the Kähler condition d! D 0. Given a Hermitian
form ! on a complex n–manifold, one may consider an equation d.!k/ D 0. For
1 < k < n� 1, this equation is equivalent to d! D 0, but the equation d.!n�1/ is
quite nontrivial. Such metrics are called balanced. All twistor spaces are balanced (see
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Mourougane [22]); also, all Moishezon manifolds are balanced (see Alessandrini and
Bassanelli [3]). Another way to weaken the Kähler condition is to consider the equation
ddc.!k/D 0, where dc D�IdI ; this equation is nontrivial for all 0< k < n. When
k D 1, a metric satisfying ddc! D 0 is called pluriclosed, or strong Kähler torsion
(SKT) metric; such metrics are quite important in physics and in generalized complex
geometry. A Hermitian metric satisfying ddc.!n�1/ D 0 is called Gauduchon. As
shown by P Gauduchon [14], every Hermitian metric is conformally equivalent to a
Gauduchon metric, which is unique in its conformal class up to a constant multiplier.

Since a twistor space has complex dimension 3, and is balanced, the only nontrivial
metric condition (among those mentioned above) for the twistor space is ddc.!/D 0.

The main result of this paper is the following theorem, which can be considered as a
generalization of Hitchin’s theorem on non-Kählerianity of twistor spaces.

Theorem 1.1 Let M be a twistor space of a compact 4–dimensional anti-selfdual
Riemannian manifold. Assume that M admits a pluriclosed Hermitian form ! :
ddc.!/D 0. Then M is Kähler.

Proof See Corollary 3.4.

1.2 Strongly Gauduchon and symplectic Hermitian metrics

The Gauduchon, pluriclosed and all the rest of the ddc.!k/D 0 Hermitian metrics
have an interesting variation of a cohomological nature.

Definition 1.2 Let .M; I/ be a complex manifold, and ! a Hermitian form. We say
that !k is strongly pluriclosed if either of the following equivalent conditions are
satisfied:

(i) d.!k/ is ddc –exact.

(ii) !k is the .k; k/–part of a closed 2k –form.

Notice that either of these conditions easily implies ddc.!k/D 0, but these conditions
are significantly stronger.

For k D 1 and n � 1 this condition is especially interesting. When a pluriclosed
Hermitian form ! is the .1; 1/–part of a closed (and hence symplectic) form z! , ! is
called taming or Hermitian symplectic, and when .!/n�1 is the .n� 1; n� 1/–part of
a closed form, ! is called strongly Gauduchon; see Popovici [26].
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In [28] Streets and Tian have constructed a parabolic flow of pluriclosed metrics,
analogous to the Kähler–Ricci flow. If the initial condition is Hermitian symplectic, it is
easy to see that the solution also remains Hermitian symplectic. Streets and Tian asked
whether there exists a compact complex Hermitian symplectic manifold not admitting
a Kähler structure. This question was considered by Enrietti, Fino and Grantcharov
in [11] and by Enrietti, Fino and Vezzoni in [12] for complex nilmanifolds. In [12]
it was shown that complex nilmanifolds cannot admit Hermitian symplectic metrics.
However, the pluriclosed metrics exist on many complex nilmanifolds.

The present paper grew as an attempt to answer the Streets–Tian question for twistor
spaces. However, it was found that the twistor spaces are not only never Hermitian
symplectic, they never admit a pluriclosed metric unless they are Kähler.

1.3 Rational curves and pluriclosed metrics

The results of the present paper are based on the study of the moduli of rational curves.
Unlike many complex nonalgebraic manifolds, the twistor spaces are very rich in curves:
there exists a smooth rational curve passing through any finite subset of a twistor space;
see Claim 2.8.

For an almost complex structure I equipped with a taming symplectic form, all
components of the space of complex curves are compact, by Gromov’s compactness
theorem [15; 4]. I will show that the same is true for pluriclosed metrics if I is
integrable; see Corollary 2.19. This is used to prove that a twistor space admitting a
pluriclosed metric is actually Moishezon; see Theorem 2.23. However, Moishezon
varieties satisfy the ddc –lemma. This is used to show that any pluriclosed metric is
in fact Hermitian symplectic. Finally, by using the Peternell’s theorem from [25], we
prove that no Moishezon manifold can be Hermitian symplectic; see Corollary 3.4.
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2 Twistor spaces for 4–dimensional Riemannian manifolds
and the space of rational curves

2.1 Twistor spaces for 4–dimensional Riemannian manifolds: Definition
and basic results

Definition 2.1 Let M be a Riemannian 4–manifold. Consider the action of the Hodge
�–operator, �W ƒ2M !ƒ2M . Since �2 D 1, the eigenvalues are ˙1, and one has
a decomposition ƒ2M D ƒCM ˚ƒ�M onto selfdual (��D �) and anti-selfdual
(��D��) forms.

Remark 2.2 If one changes the orientation of M , leaving metric the same, ƒCM

and ƒ�M are exchanged. Therefore, dimƒ2M D 6 implies dimƒ˙.M /D 3.

Remark 2.3 Using the isomorphism ƒ2M D so.TM /, we interpret � 2ƒ2
mM as

endomorphisms of TmM . Then the unit vectors � 2 ƒCmM correspond to oriented,
orthogonal complex structures on TmM .

Definition 2.4 Let Tw.M / WD SƒCM be the set of unit vectors in ƒCM . At each
point .m; s/2Tw.M /, consider the decomposition Tm;s Tw.M /DTmM˚TsSƒCmM

induced by the Levi-Civita connection. Let Is be the complex structure on TmM

induced by s , ISƒ
C
mM the complex structure on SƒCmM DS2 induced by the metrics

and orientation, and IW Tm;s Tw.M /! Tm;s Tw.M / be equal to Is˚ ISƒ
C
mM . The

almost complex manifold .Tw.M /; I/ is called the twistor space of M .

The following results about twistor spaces are well known (see eg Besse [5]).

Theorem 2.5 The almost complex structure on .Tw.M /; I/ is a conformal invariant
of M . Moreover, one can reconstruct the conformal structure on M from the almost
complex structure on Tw.M / and its anticomplex involution .m; s/! .m;�s/.

Theorem 2.6 The almost complex manifold .Tw.M /; I/ is a complex manifold if
and only if W C D 0, where W C (“self-dual conformal curvature”) is an autodual
component of the curvature tensor. Such manifolds are called conformally half-flat or
ASD (anti-selfdual).
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2.2 Rational curves on Tw.M /

Definition 2.7 An ample rational curve on a complex manifold M is a smooth curve
S Š CP1 �M such that NSD

Ln�1
kD1 O.ik/ with ik > 0. It is called a quasiline if

all ik D 1.

Claim 2.8 Let M be a compact complex manifold containing a an ample rational line.
Then any N points z1; : : : ; zN can be connected by an ample rational curve.

Proof This fact is well known in algebraic geometry; see Kollár [21]. However, its
proof is valid for all complex manifolds.

Claim 2.9 Let M be a Riemannian 4–manifold, Tw.M /
�
! M its twistor space,

m 2M a point and Sm WD �
�1.m/ D SƒCm.M / the corresponding S2 in Tw.M /.

Then Sm is a quasiline.

Proof Since the claim is essentially infinitesimal, it suffices to check it when M is
flat. Then Tw.M /D Tot.O.1/˚2/ŠCP3nCP1 and Sm is a section of O.1/˚2 .

Corollary 2.10 Any N points z1; : : : ; zN on a twistor space can be connected by an
smooth, ample rational curve

2.3 Rational curves and plurinegative metrics

For other applications of Gromov’s compactness theorem on manifolds with pluriclosed
metrics, please see Ivashkovich [18].

Definition 2.11 Let S be a complex curve on a Hermitian manifold .M; I;g; !/.
Define the Riemannian volume as Vol.S/ WD

R
S ! .

Definition 2.12 A Hermitian form ! is called plurinegative (pluripositive) if the
(2,2)–form ddc! is negative (positive).

Example 2.13 As shown by Kaledin and the author in [20, (8.12)], a standard Her-
mitian form on a twistor space of a hyperkähler manifold is pluripositive.

Remark 2.14 It is interesting to ask for a meaningful differential-geometric condition
on a Riemannian manifold M which can insure pluripositivity or plurinegativity of
a form @x@! on its twistor space Tw.M /, where ! is the standard Hermitian form
on twistors. Some computations in this direction were done by Mourougane in [23].
However, the only example they have is the one obtained in [20, (8.12)] (rediscovered
independently). As follows from Corollary 2.25, on a compact twistor manifold any
plurinegative metric is pluriclosed.
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Remark 2.15 The notion of “positive .k; k/–form” comes in two flavours: weakly
positive and strongly positive; see Demailly [9]. When k D 1 or k D dimCM � 1,
these two notions coincide. Since in the present paper we are interested mostly in
3–dimensional complex manifolds, this distinction becomes irrelevant. For the sake
of a definition, we shall consider, in the present paper, “positive” as a synonym to
“strongly positive”.

Of course, pluriclosed Hermitian metrics are both pluripositive and plurinegative.

Claim 2.16 Let X be a component of the moduli of complex curves on a given
complex manifold, zX the set of pairs fS 2X; z 2 S �M g, (“the universal family”),
and �M W

zX ! M , �X W
zX ! X the forgetful maps. Then the volume function

VolW X !R>0 can be expressed as VolD .�X /��
�
M
! .

Remark 2.17 Since the pullback and pushforward of differential forms commute
with d , dc , this gives ddc VolD .�X /��

�
M
.ddc!/ (see eg [20, (8.12)], the author [31,

Theorem 2.10] or Ivashkovich [19, Proposition 1.9]). Therefore, �Vol is plurisubhar-
monic on X whenever ! is plurinegative.

Theorem 2.18 (Gromov) Let M be a compact Hermitian almost complex mani-
fold, X the space of all complex curves on M and VolW X!R>0 the volume function.
Then Vol is proper (that is, preimage of a compact set is compact).

Proof See [15; 4].

Corollary 2.19 Let M be a complex manifold, equipped with a plurinegative Hermit-
ian form ! and X a component of the moduli of complex curves. Then the function
VolW X !R>0 is constant, and X is compact.

Proof Since Vol > 0, the set Vol�1.��1;C �/ is compact for all C 2R, hence �Vol
has a maximum somewhere in X . However, a plurisubharmonic function which has a
maximum is necessarily constant by E Hopf’s strong maximum principle. Therefore,
Vol is constant: VolDA. Now compactness of X DVol�1.A/ follows from Gromov’s
theorem.

2.4 Quasilines and Moishezon manifolds

Let M be a compact complex manifold, and S �M an ample rational curve. Assume
that the space of deformations of S in M is compact. From Campana [6, Theorem 3]
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it follows that M is Moishezon; see Campana [7, Remark 3.2 and Theorem 4.5]. For
the convenience of the reader, I will give an independent proof of this result here.

Recall that a quasiline is a smooth rational curve S �M such that its normal bundle
is isomorphic to O.1/n . A neighbourhood of a quasiline shares many properties with
a neighbourhood of a line in CPn . Heuristically, this can be stated as follows.

An imprecise statement Let S �M be a quasiline. Then, for an appropriate tubular
neighbourhood U �M of S , “for every two points x;y 2U close to S and far from
each other, there is a unique deformation of S containing x and y .”

More precisely, we have the following.

Claim 2.20 Let S � M be a quasiline. Then, for any sufficiently small tubular
neighbourhood U �M of S , there exists a smaller tubular neighbourhood W � U ,
satisfying the following condition. Let �S be the image of the diagonal embedding
�S W S ! W �W . Then there exists an open neighbourhood V of �S , properly
contained in W �W , such that for any pair .x;y/ 2W �W nV , there exists a unique
deformation S 0 � U of S containing x and y .

Claim 2.21 A small deformation S 0 � U of S passing through z 2 S is uniquely
determined by a 1–jet of S 0 at z .

Both of these claims follow from a general results of deformation theory: the first
cohomology of the normal bundle NS vanishes, hence there are no obstructions to a
deformation, and the deformation space is locally modeled on the space of sections
of NS . However, since NSDO.1/n , any section is uniquely determined by its values
in two different points, or by its 1–jet at any given point.

Further on, we shall need the following simple lemma.

Lemma 2.22 Let X ! Y be a dominant map of complex varieties, which is finite at
a general point. Assume that X is Moishezon. Then Y is also Moishezon.

Proof Replacing X by its ramified covering, we may assume that outside of its
singularities, the map X ! Y is a Galois covering, with the Galois group G . Then
X=G ! Y is bimeromorphic. Replacing X by its resolution, we can also assume
that X is projective. Then X=G is also projective, by Noether’s theorem on invariant
rings.

Now we can prove the main result of this subsection (see also [6, Theorem 3]).
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Theorem 2.23 Let M be a complex manifold, S �M a quasiline and W its defor-
mation space. Assume that W is compact. Then M is Moishezon.

Proof Step 1 Let z 2M be a point, containing a quasiline S 2W , Wz the set of
all curves S1 2W containing z , and �Wz , the set of all pairs fx 2 S1;S1 2Wzg. From
Claim 2.20, it follows that the map �Wz!M , .S;x/! x is surjective and finite at a
generic point.

Step 2 By Lemma 2.22, it would suffice to prove that �Wz is Moishezon.

Step 3 After an appropriate bimeromorphic transform, we may assume that �Wz!Wz

is a smooth, proper map with rational, 1–dimensional fibers. Then �Wz is Moishezon
if and only if Wz is Moishezon. Indeed, the space of cycles in a Moishezon manifold
is Moishezon.

Step 4 By Claim 2.21, the map from Wz to PTzM mapping a quasiline to its 1–jet
is also generically finite to its image. Therefore, Wz is Moishezon.

Corollary 2.24 Let M be a twistor space admitting a pluriclosed (or plurinegative)
Hermitian metric. Then M is Moishezon.

Corollary 2.25 Let M be a twistor space, and ! a plurinegative metric on M .
Then ! is pluriclosed.

Proof By Corollary 2.24, M is Moishezon. This implies that M admits a positive
Kähler current ‚ (see eg Demailly and Paun [10]), that is, a positive, closed (1,1)–
current satisfying ‚> "! for some " > 0. Then

R
M ddc!^‚D 0, because ddc! is

exact and ‚ closed. However, this integral can be nonzero only if ddc! D 0.

3 Pluriclosed and Hermitian symplectic metrics on twistor
spaces

Recall the following classical theorem of Harvey and Lawson [16].

Theorem 3.1 Let M be a compact, complex n–manifold. Then the following condi-
tions are equivalent:

(i) M does not admit a Kähler metric.

(ii) M has a nonzero, positive .n� 1; n� 1/–current ‚ which is the .n� 1; n� 1/–
part of an exact current.
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The same argument, applied to pluriclosed or taming metrics, gives the following (see
also Alessandrini and Bassanelli [2]).

Theorem 3.2 Let M be a compact, complex n–manifold. Then:

(a) M admits no Hermitian symplectic metrics if and only if M admits a positive,
exact, nonzero .n� 1; n� 1/–current.

(b) M admits no pluriclosed metrics if and only if M admits a positive, nonzero,
ddc –exact .n� 1; n� 1/–current.

Proof (a) Let A�ƒ2.M / be the cone of real 2–forms � such that the .1; 1/–part
�1;1 is strictly positive. Then A\ker dD0 is equivalent, by the Hahn–Banach theorem,
to existence of a .2n� 2/–current vanishing on ker d (hence, exact) and positive on
A, hence of type .n� 1; n� 1/ and positive.

(b) Let A be the same as above. Then A\ker ddcD 0 is equivalent, by Hahn–Banach,
to existence of a .2n� 2/–current ‚ positive on A (hence, of type .n� 1; n� 1/ and
positive) and vanishing on ker ddc . A positive ddc –exact .n�1; n�1/–current clearly
vanishes on ker ddc . It remains to show, conversely, that ‚ is ddc –exact whenever ‚
vanishes on ker ddc .

Since ker ddc contains the space ker d , the current ‚ is exact. Let

H
n�1;n�1
BC

.M;R/ WD
ker d jƒn�1;n�1.M /

ddc.ƒn�2;n�2.M //

be the Bott–Chern cohomology group, and

H
1;1

AE
.M;R/ WD

ker ddcjƒ1;1.M /

im d \ƒ1;1.M /

be the Aeppli cohomology; see Aeppli [1] and Schweitzer [27]. The exterior multipli-
cation induces a pairing between these two groups, and it is not hard to see that they are
dual. Since ‚ vanishes on ker ddc , the pairing with its Bott–Chern cohomology class
hŒ‚�; � iW H

1;1
AE
.M;R/!R vanishes. Therefore, the class of ‚ in H

n�1;n�1
BC

.M;R/
is equal zero, hence � 2 im ddc . Theorem 3.2 is proved.

This leads to the following useful proposition.

Proposition 3.3 Any Moishezon space which admits a pluriclosed metric also admits
a Hermitian symplectic structure. In particular, any twistor space M which admits a
pluriclosed metric also admits a Hermitian symplectic structure.
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Proof By Corollary 2.24, M is Moishezon. Then Deligne, Griffiths, Morgan and
Sullivan [8] imply that M satisfies ddc –lemma. Therefore, any exact (2,2)-current is
ddc –exact. Applying Theorem 3.2, we obtain that M is Hermitian symplectic.

Corollary 3.4 Let M be a twistor space admitting a pluriclosed (or Hermitian sym-
plectic) metric. Then M is Kähler.

Proof Peternell [25, Corollary 2.3] has shown that any compact non-Kähler Moishezon
n–manifold admits an exact, positive .n� 1; n� 1/–current. Therefore, it is never
Hermitian symplectic Theorem 3.2. By Proposition 3.3, M cannot be pluriclosed.

Appendix: Rational lines on the twistor space of a K3 surface

For a complex manifold Z equipped with a pluripositive Hermitian form, the same
argument as used in Corollary 2.19 implies that any component of the moduli of curves
on Z is pseudoconvex. In particular, this is true on twistor spaces of hyperkähler
manifolds [20; 23]. For a twistor space of K3, a stronger result can be achieved.

Theorem A.1 Let M be a K3 surface equipped with a hyperkähler metric and
Tw.M / its twistor space. Denote by X a connected component of the moduli of
rational curves on Tw.M /. Then X is Stein.

Proof The proof is based on the following useful theorem of Fornæss–Narasimhan.

Definition A.2 Let X be a complex variety (possibly singular), and 'W X! Œ�1;1Œ

an upper semicontinuous function. We say that ' is plurisubharmonic (in the weak
sense) if for any holomorphic map f W D ! X from a disc in C , the composition
f ı'W D!R is plurisubharmonic (or identically �1). This function is called strongly
plurisubharmonic if any perturbation of ' which is small in C 2 –topology remains
plurisubharmonic.1

Theorem A.3 Let X be a complex variety admitting an exhaustion function which is
strictly plurisubharmonic. Then X is Stein.

Proof See Fornæss and Narasimhan [13, Theorem 6.1].
1To define precisely what it means “small in C 2 –topology”, we embed an open subset U �X in Cn .

Suppose that there exists " > 0 such that for any function f on Cn with jf jC 2 < " , the sum 'Cf jU is
plurisubharmonic. Then ' is called strongly plurisubharmonic in U . If X admits a covering by such U ,
then ' is called strongly plurisubharmonic on X .
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Now we can prove Theorem A.1. By Gromov’s compactness theorem (Theorem 2.18),
VolW X !R is exhaustion, and by [20] it is plurisubharmonic. It remains to show that
this function is strictly plurisubharmonic.

Let ! be the standard Hermitian form on Tw.M / DM �CP1 . Denote by !CP1

the Fubini–Study 2–form on CP1 and let ��!CP1 be its lifting to Tw.M /, where
� W Tw.M /!CP1 is the twistor projection. Then ddc! D ! ^��!CP1 [20, (8.12)].

Let v 2 ZxX be a vector from the Zariski tangent cone of X . The strict plurisub-
harmonicity of Vol would follow if the second derivative

p
�1 Liev Liexv Vol were

positive for all v ¤ 0.

Now, let x D ŒS � 2 X be a point represented by a curve S . Then ZxX is a sub-
space of H 0.NS/, where NS is the normal sheaf of S . A priori, S can have several
irreducible components, some of them sitting in the fibers of the twistor projection
� W Tw.M /!CP1 , others transversal to these fibers. However, all components sitting
in the fibers of � are fixed, because the rational curves on K3 are fixed. Therefore, v
in nontrivial along the fibers of � . Now,
p
�1 Liev Liexv VolD ddc Vol.v; xv/D

Z
S

.ddc!/.v; xv/>
Z

S

��!CP1 �!.v; xv/:

The last integral is positive, because v vanishes on those components of S which
belong to the fibers of � , hence v ¤ 0 on a component S1 which is transversal to � .
Then, Z

S

��!CP1 �!.v; xv/>
Z

S1

��!CP1 �!.v; xv/;

but this integral is positive, because ��!CP1 is positive on each transversal component
of S . This proves that

p
�1 Liev Liexv Vol > 0, implying strict plurisubharmonicity

of Vol.

Remark A.4 The variety X , which is shown to be Stein in Theorem A.1, could be
singular (a complex variety is Stein if it admits a closed holomorphic embedding to Cn ).
However, there is not a single known example of a singular point in any component of
the space S.M / of rational curves on Tw.M /, when M is a K3. It is not hard to see
that S.M / is smooth when M is a compact torus. It is not entirely impossible that it
is also smooth for a K3.
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