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Grothendieck ring of semialgebraic formulas
and motivic real Milnor fibers

GEORGES COMTE

GOULWEN FICHOU

We define a Grothendieck ring for basic real semialgebraic formulas, that is, for
systems of real algebraic equations and inequalities. In this ring the class of a
formula takes into consideration the algebraic nature of the set of points satisfying
this formula and this ring contains as a subring the usual Grothendieck ring of real
algebraic formulas. We give a realization of our ring that allows us to express a class
as a ZŒ1

2
�–linear combination of classes of real algebraic formulas, so this realization

gives rise to a notion of virtual Poincaré polynomial for basic semialgebraic formulas.
We then define zeta functions with coefficients in our ring, built on semialgebraic
formulas in arc spaces. We show that they are rational and relate them to the topology
of real Milnor fibers.

14P10; 14B05, 14P25

Introduction

Let us consider the category SA.R/ of real semialgebraic sets, the morphisms being
the semialgebraic maps. We denote by .K0.SA.R//;C; � /, or simply K0.SA.R//, the
Grothendieck ring of SA.R/, that is to say the free ring generated by all semialgebraic
sets A, denoted by ŒA� as viewed as element of K0.SA.R//, in such a way that for all
objects A;B of SA.R/ one has ŒA�B�D ŒA� � ŒB� and for all closed semialgebraic
sets F in A one has ŒA nF �C ŒF �D ŒA� (this implies that for all semialgebraic sets
A;B one has ŒA[B�D ŒA�C ŒB�� ŒA\B�).

When an equivalence relation for semialgebraic sets is also considered when defining
K0.SA.R//, one has to be aware that the induced quotient ring, still denoted by
K0.SA.R// for simplicity, may dramatically collapse. For instance, let us consider
the equivalence relation A � B if and only if there exists a semialgebraic bijection
from A to B . In this case we simply say that A and B are isomorphic. Then for the
definition of K0.SA.R//, starting from classes of isomorphic sets instead of simply
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964 Georges Comte and Goulwen Fichou

sets, one obtains a quite trivial Grothendieck ring, namely K0.SA.R//D Z. Indeed,
denoting ŒR� by L and Œf�g� by P , from the fact that f�g� f�g � f�g, one gets

Pk
D P ; 8k 2N�

and from the fact that R D ��1; 0 Œ[f0g[ �0;C1Œ and that intervals of the same
type are isomorphic, one gets

LD�P :

On the other hand, by the semialgebraic cell decomposition theorem, we obtain that
a real semialgebraic set is a finite union of disjoint open cells, each of which is
isomorphic to Rk with k 2 N (with the convention that R0 D f�g). It follows that
K0.SA.R// D hP i, the ring generated by P . At this point, the ring hP i could be
trivial. But one knows that the Euler–Poincaré characteristic with compact supports
�c W SA.R/! Z is surjective. Let us recall that the Euler–Poincaré characteristic with
compact supports is a topological invariant defined on locally compact semialgebraic
sets and uniquely extended to an additive invariant on all semialgebraic sets (see for
instance Coste [4, Theorem 1.22]). Since �c is additive, multiplicative and invariant
under isomorphisms it factors through K0.SA.R//, giving a surjective morphism of
rings and finally an isomorphism of rings, still denoted by �c for simplicity (cf also
Quarez [17]):

SA.R/

��

�c // Z

hP i DK0.SA.R//
�c

88

The characteristic �c.A/ of a semialgebraic set A is in fact defined in the same way,
so we obtain the equality K0.SA.R//D hP i, that is from a specific cell decomposition
of A, where hP i is replaced by �c.f�g/D 1. The difficulty in the definition of �c is
then to show that �c is independent of the choice of the cell decomposition of A (it
technically consists in showing that the definition of �c.A/ does not depend on the
isomorphism class of A; see van den Dries [9] for instance).

When one starts from the category of real algebraic varieties VarR or from the category
of real algebraic sets RVar, as we do not have algebraic cell decompositions, we could
expect that the induced Grothendieck ring K0.VarR/ is no longer trivial. This is indeed
the case, since for instance the virtual Poincaré polynomial morphism factors through
K0.VarR/ and has image ZŒu� (see McCrory and Parusiński [15]).
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Grothendieck ring of semialgebraic formulas 965

The first part of this article is devoted to the construction of nontrivial Grothendieck
ring K0.BSAR/ associated to SA.R/, with a canonical inclusion

K0.VarR/ ,!K0.BSAR/

that gives rise to a notion of virtual Poincaré polynomial for basic real semialgebraic
formulas extending the virtual Poincaré polynomial of real algebraic sets and that
allows factorization of the Euler–Poincaré characteristic of real semialgebraic sets of
points satisfying the formulas.

To be more precise, we first construct K0.BSAR/, the Grothendieck ring of basic real
semialgebraic formulas (which are quantifier free real semialgebraic formulas or simply
systems of real algebraic equations and inequalities) where the class of basic formulas
without inequality is considered up to algebraic isomorphism of the underlying real
algebraic varieties. In general a class in K0.BSAR/ of a basic real semialgebraic
formula depends strongly on the formula itself rather than only on the geometry of the
real semialgebraic set of points satisfying this formula. This construction is achieved
in Section 2.

In order to make some computations more convenient we present a realization, denoted
by �, of the ring K0.BSAR/ in the somewhat more simple ring K0.VarR/˝ZŒ1

2
�, that

is a morphism of rings � WK0.BSAR/!K0.VarR/˝ZŒ1
2
� that restricts to the identity

map on K0.VarR/ ,!K0.BSAR/. The morphism � provides an explicit computation
(see Proposition 2.2), presenting a class of K0.BSAR/ as a ZŒ1

2
�–linear combination of

classes of K0.VarR/. When one wants to further simplify the computation of a class of
a basic real semialgebraic formula, one can shrink the original ring K0.BSAR/ a little
bit more from K0.VarR/˝ZŒ1

2
� to K0.RVar/˝ZŒ1

2
�, where for instance algebraic

formulas with empty set of real points have trivial class. However, as noted in point
(2) of Remark 2.5, the class of a basic real semialgebraic formula with empty set of
real points may be not trivial in K0.RVar/˝ZŒ1

2
�. The ring K0.BSAR/ is not defined

with an a priori notion of isomorphism relation, contrary to the ring K0.VarR/ where
algebraic isomorphism classes of varieties are generators. Nevertheless we indicate a
notion of isomorphism for basic semialgebraic formulas that factors through K0.BSAR/

(see Proposition 2.8). This is done in Section 2.

The realization � W K0.BSAR/ ! K0.VarR/ ˝ ZŒ1
2
� naturally allows us to define

in Section 4 a notion of virtual Poincaré polynomial for basic real semialgebraic
formulas: For a class ŒF � in K0.BSAR/ that is written as a ZŒ1

2
�–linear combinationPq

iD1
ai ŒAi � of classes ŒAi �2K0.VarR/ of real algebraic varieties Ai , we simply define

the virtual Poincaré polynomial of F as the corresponding ZŒ1
2
�–linear combinationPq

iD1
aiˇ.Ai/ of virtual Poincaré polynomials ˇ.Ai/ of the varieties Ai . The virtual
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966 Georges Comte and Goulwen Fichou

Poincaré polynomial of F is thus a polynomial ˇ.F / in ZŒ1
2
� Œu�. It is then shown

that the evaluation at �1 of ˇ.F / is the Euler–Poincaré characteristic of the real
semialgebraic set of points satisfying the basic formula F (Proposition 3.4).

These constructions are summed up in the following commutative diagram:

VarR

�� ((

� � // BSAR

�c

��

rr
K0.VarR/

ˇ

��

� � //
� u

((

K0.BSAR/

�
��

�

))

K0.VarR/˝ZŒ1
2
�

ˇ
��

// K0.RVar/˝ZŒ1
2
�

ˇvv
ZŒu� �

� // ZŒ1
2
� Œu�

uD�1 // Z

The second and last part of this article concerns the real Milnor fibers of a given
polynomial function f 2 RŒx1; : : : ;xd �. As geometrical objects, we consider real
semialgebraic Milnor fibers of the following types: f �1.˙c/\ xB.0; ˛/, f �1.�0;˙cŒ/\
xB.0; ˛/, f �1.�0;˙1Œ/\S.0; ˛/, for 0 < jcj � ˛� 1, xB.0; ˛/ the closed ball of
Rd of center 0 and radius ˛ and S.0; ˛/ the sphere of center 0 and radius ˛ . The
topological types of these fibers are easily comparable, and in order to present a
motivic version of these real semialgebraic Milnor fibers we define appropriate zeta
functions with coefficients in .K0.VarR/˝ZŒ1

2
�/ŒL�1� (the localization of the ring

K0.VarR/˝ZŒ1
2
� with respect to the multiplicative set generated by L). As in the

complex context (see Denef and Loeser [5; 6]), we prove that these zeta functions are
rational functions expressed in terms of an embedded resolution of f (see Theorem 4.2).
For a complex hypersurface f , the rationality of the corresponding zeta function allows
the definition of the motivic Milnor fiber Sf as the negative of the limit at infinity
of the rational expression of the zeta function. In the real semialgebraic case, the
same definition makes sense but we obtain a class Sf in K0.VarR//˝ZŒ1

2
� having a

realization under the Euler–Poincaré characteristic of greater combinatorial complexity
in terms of the data of the resolution of f than in the complex case. Indeed, all the
strata of the natural stratification of the exceptional divisor of the resolution of f appear
in the expression of �c.Sf / in the real case. Nevertheless we show that the motivic
real semialgebraic Milnor fibers have for value under the Euler–Poincaré characteristic
morphism the Euler–Poincaré characteristic of the corresponding set-theoretic real
semialgebraic Milnor fibers (Theorem 4.12).
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Grothendieck ring of semialgebraic formulas 967

In what follows we sometimes simply say measure for the class of an object in a given
Grothendieck ring. The term inequation refers to the symbol 6D, and the term inequality
refers to the symbol >.

1 The Grothendieck ring of basic semialgebraic formulas

1.1 Affine real algebraic varieties

By an affine algebraic variety over R we mean an affine reduced and separated scheme
of finite type over R. The category of affine algebraic varieties over R is denoted by
VarR . An affine real algebraic variety X is then defined by a subset of An together
with a finite number of polynomial equations. Namely, there exist Pi 2RŒX1; : : : ;Xn�

for i D 1; : : : ; r , such that the real points X.R/ of X are given by

X.R/D fx 2An
j Pi.x/D 0; i D 1; : : : ; rg:

A Zariski-constructible subvariety Z of An is similarly defined by real polynomial
equations and inequations. Namely there exist Pi ;Qj 2RŒX1; : : : ;Xn� for iD1; : : : ;p

and j D 1; : : : ; q , such that the real points Z.R/ of Z are given by

Z.R/D fx 2An
j Pi.x/D 0; Qj .x/¤ 0; i D 1; : : : ;p; j D 1; : : : ; qg:

As an abelian group, the Grothendieck ring K0.VarR/ of affine real algebraic varieties
is formally generated by isomorphism classes ŒX � of Zariski-constructible real algebraic
varieties, subject to the additivity relation

ŒX �D ŒY �C ŒX nY �

in case Y � X is a closed subvariety of X. Here X nY is the Zariski-constructible
variety defined by combining the equations and inequations that define X together
with the equations and inequations obtained by reversing the equations and inequations
that define Y . The product of constructible sets induces a ring structure on K0.VarR/.
We denote by L the class of A1 in K0.VarR/.

1.2 Real algebraic sets

The real points X.R/ of an affine algebraic variety X over R form a real algebraic set
(in the sense of [3]). The Grothendieck ring K0.RVar/ of affine real algebraic sets [15]
is defined in a similar way to that of real algebraic varieties over R. Taking the real
points of an affine real algebraic variety over R gives a ring morphism from K0.VarR/

to K0.RVar/. A great advantage of K0.RVar/ from a geometrical point of view is

Geometry & Topology, Volume 18 (2014)



968 Georges Comte and Goulwen Fichou

that the additivity property implies that the measure of an algebraic set without real
points is zero in K0.RVar/.

We already know some realizations of K0.RVar/ in simpler rings, such as the Euler
characteristics with compact supports in Z or the virtual Poincaré polynomial in ZŒu�
(cf [15]). We obtain therefore similar realizations for K0.VarR/ by composition with
the realizations of K0.VarR/ in K0.RVar/.

1.3 Basic semialgebraic formulas

Let us now specify the definition of the Grothendieck ring K0.BSAR/ of basic semi-
algebraic formulas. This definition is inspired by [7]. The ring K0.BSAR/ will
contain K0.VarR/ as a subring (Proposition 1.3) and will be projected on the ring
K0.VarR/˝ZŒ1

2
� (Theorem 2.3) by an explicit computational process.

A basic semialgebraic formula A in n variables is defined as a finite number of
equations, inequations and inequalities, namely there exist Pi ;Qj ;Rk 2RŒX1; : : : ;Xn�

for i D 1; : : : ;p , j D 1; : : : ; q and k D 1; : : : ; r such that A.R/ is equal to the set of
points x 2An such that

Pi.x/D 0; i D 1; : : :p;

Qj .x/¤ 0; j D 1; : : : ; q;

Rk.x/ > 0; k D 1; : : : ; r:

The relations Qj .x/¤ 0 are called inequations and the relations Rk.x/ > 0 are called
inequalities. We will simply denote a basic semialgebraic formula by

AD fPi D 0; Qj ¤ 0; Rk > 0 j i D 1; : : : ;p; j D 1; : : : ; q; k D 1; : : : ; rg:

In particular A is not characterized by its real points A.R/, that is by the real solutions
of these equations, inequations and inequalities, but by the equations, inequations and
inequalities themselves.

We will consider basic semialgebraic formulas up to algebraic isomorphisms, when the
basic semialgebraic formulas are defined without inequality.

Remark 1.1 In the sequel, we will allow ourselves to use the notation fP < 0g for the
basic semialgebraic formula f�P > 0g and similarly fP > 1g instead of fP � 1> 0g,
where P denotes a polynomial with real coefficients. Furthermore given two basic
semialgebraic formulas A and B , the notation fA;Bg will denote the basic formula
with equations, inequations and inequalities coming from both A and B .
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We define the Grothendieck ring K0.BSAR/ of basic semialgebraic formulas as the free
abelian ring generated by basic semialgebraic formulas ŒA�, up to algebraic isomorphism
when the formula A has no inequality, and subject to the three following relations:

(1) (Algebraic additivity)

ŒA�D ŒA;S D 0�C ŒA; fS ¤ 0g�;

where A is a basic semialgebraic formula in n variables and S 2RŒX1; : : : ;Xn�.

(2) (Semialgebraic additivity)

ŒA;R¤ 0�D ŒA;R> 0�C ŒA;�R> 0�;

where A is a basic semialgebraic formula in n variables and R2RŒX1; : : : ;Xn�.

(3) (Product) The product of basic semialgebraic formulas, defined by taking the
conjunction of the formulas with disjoint sets of free variables, induces the ring
product on K0.BSAR/. In other words we consider the relation

ŒA;B�D ŒA� � ŒB�

for basic real semialgebraic formulas A and B with disjoint sets of variables.

Remark 1.2 (1) Contrary to the Grothendieck ring of algebraic varieties or alge-
braic sets, we do not consider isomorphism classes of basic real semialgebraic
formulas in the definition of K0.BSAR/. As a consequence the realization we
are interested in does depend in a crucial way on the description of the basic
semialgebraic set as a basic semialgebraic formula. For instance fX � 1 > 0g

and fX > 0;X � 1> 0g will have different measures.

(2) One may decide to enlarge the basic semialgebraic formulas with nonstrict
inequalities by imposing, by convention, that the measure of fA;R � 0g for
a basic semialgebraic formula A in n variables and R 2RŒX1; : : : ;Xn� is the
sum of the measures of fA;R> 0g and of fA;RD 0g.

Proposition 1.3 The natural map i from K0.VarR/ that associates to an affine real al-
gebraic variety its value in the Grothendieck ring K0.BSAR/ of basic real semialgebraic
formulas is an injective morphism

i W K0.VarR/ �!K0.BSAR/:

We therefore identify K0.VarR/ with a subring of K0.BSAR/.

Proof We construct a left inverse j of i as follows. Let a 2K0.BSAR/ be a sum of
products of measures of basic semialgebraic formulas. If there exist Zariski constructible
real algebraic sets Z1; : : : ;Zm such that ŒZ1�C� � �CŒZm� is equal to a in K0.BSAR/,
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970 Georges Comte and Goulwen Fichou

then we define the image of a by j to be

j .a/D ŒZ1�C � � �C ŒZm� 2K0.VarR/:

Otherwise, the image of a by j is defined to be zero in K0.VarR/. The map j

is well defined. Indeed, if Y1; : : : ;Yl are other Zariski constructible sets such that
ŒY1�C � � �C ŒYl � is equal to a in K0.BSAR/, then

ŒY1�C � � �C ŒYl �D ŒZ1�C � � �C ŒZm�

in K0.BSAR/. This equality still holds in K0.VarR/ by definition of the structure ring
of K0.VarR/ and the fact that j defines a left inverse of i is immediate.

Remark 1.4 Note however that the map j constructed in the proof of Proposition 1.3
is not a group morphism. For instance j .ŒX >0�/D j .ŒX <0�/D0 while j .ŒX ¤0�/D

L� 1.

2 A realization of K0.BSAR/

An example of a ring morphism from K0.BSAR/ to Z is the Euler characteristic
with compact supports �c . We construct in this section a realization for elements
in K0.BSAR/ with values in the ring of polynomials with coefficient in ZŒ1

2
�. This

realization specializes to the Euler characteristic with compact supports. To this aim,
we construct a ring morphism from K0.BSAR/ to the tensor product of K0.VarR/

with ZŒ1
2
�.

2.1 The realization

We define a morphism � from the ring K0.BSAR/ to the ring K0.VarR/˝ZŒ1
2
� as

follows. Let A be a basic semialgebraic formula without inequalities. We assign to A

its value �.A/D ŒA� in K0.VarR/ as a constructible set. We proceed now by induction
on the number of inequalities in the description of the basic semialgebraic formulas.
Assuming that we have defined � for basic semialgebraic formulas with at most k

inequalities, k 2N , let A be a basic real semialgebraic formula with n variables and at
most k inequalities and let us consider R 2RŒX1; : : : ;Xn�. Define �.ŒA;R> 0�/ by

�.ŒA;R> 0�/ WD 1
4

�
�.ŒA;Y 2

DR�/��.ŒA;Y 2
D�R�/

�
C

1
2
�.ŒA;R¤ 0�/;

where fA;Y 2D˙Rg is a basic real semialgebraic formula with nC1 variables and at
most k inequalities and fA;R¤ 0g is a basic semialgebraic formula with n variables
and at most k inequalities.
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Remark 2.1 The way of defining � may be seen as an average of two different natural
ways of understanding a basic semialgebraic formula as a quotient of algebraic varieties.
Namely, for a basic semialgebraic formula in n variables of the form fR> 0g, we may
see its set of real points as the projection, with two-point fibers, of fY 2 DRg minus
the zero set of R, or as the complement of the projection of Y 2 D�R. The algebraic
average of these two possible points of view is

1
2

�
.1

2
ŒY 2
DR�� ŒRD 0�/C .Ln

�
1
2
ŒY 2
D�R�/

�
;

which, considering that Ln � ŒRD 0�D ŒR 6D 0�, gives for �.R > 0/ the expression
just defined above.

We give below the general formula that computes the measure of a basic semialgebraic
formula in terms of the measure of real algebraic varieties.

Proposition 2.2 Let Z be a constructible set in Rn and take Rk 2 RŒX1; : : : ;Xn�,
with k D 1; : : : ; r . For a subset I � f1; : : : ; rg of cardinal ]I D i and " 2 f˙1gi , we
denote by RI;" the real constructible set defined by

RI;" D fY
2

j D "j Rj .X /; Rk.X /¤ 0; j 2 I; k … Ig:

Then �.ŒZ;Rk > 0; k D 1; : : : ; r �/ is equal to

rX
iD0

1

2rCi

X
I�f1;:::;rg;
]IDi

X
"2f˙1gi

�Y
j2I

"j

�
ŒZ;RI;"�:

Proof If r D 1, this follows from the definition of �. We prove the general result by
induction on r 2N . Assume ZDRn to simplify notation. Take Rk 2RŒX1; : : : ;Xn�,
with k D 1; : : : ; r C 1. Denote by A the formula R1 > 0; : : : ;Rr > 0. By definition
of � we obtain

�.ŒA;RrC1 > 0�/

D
1
4

�
�.ŒA;Y 2

DRrC1�/��.ŒA;Y
2
D�RrC1�/

�
C

1
2
�.ŒA;RrC1 ¤ 0�/:

Now we can use the induction assumption to express the terms in the right-hand side
of the formula upstairs as

rX
iD0

1

2rCi

X
I�f1;:::;rg;
]IDi

X
"2f˙1gi

�Y
j2I

"j

��
1
4
.ŒRI;";Y

2
DRrC1�� ŒRI;";Y

2
D�RrC1�/

C
1
2
ŒRI;";RrC1 ¤ 0�

�
:

Geometry & Topology, Volume 18 (2014)
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Choose a subset I � f1; : : : ; rg of cardinal ]I D i and " 2 f˙1gi . Then we obtain
from the definition of � that

1
4

�
ŒRI;";Y

2
DRrC1�� ŒRI;";Y

2
D�RrC1�

�
C

1
2
ŒRI;";RrC1 ¤ 0�

D
1
4

�
ŒRI[frC1g;"C �� ŒRI[frC1g;"� �

�
C

1
2
ŒRzI ;"�;

where "C D ."1; : : : ; "r ; 1/, "� D ."1; : : : ; "r ;�1/ and zI denotes I as a subset of
f1; : : : ; r C 1g. Therefore

1
2rCi

�Y
j2I

"j

�
ŒRrC1 > 0;RI;"�

D
1

2.rC1/C.iC1/

�Y
j2I

"j

��
ŒRI[frC1g;"C �� ŒRI[frC1g;"� �

�
C

1
2.rC1/Ci

�Y
j2I

"j

�
ŒRzI ;"�;

which gives the result.

The morphism � is then defined on K0.BSAR/.

Theorem 2.3 The map

�W K0.BSAR/ �!K0.VarR/˝ZŒ1
2
�

is a ring morphism that is the identity on K0.VarR/�K0.BSAR/.

Proof We must prove that the given definition of � is compatible with the algebraic
and semialgebraic additivities. However the semialgebraic additivity follows directly
from the definition of �. Indeed, if A is a basic semialgebraic formula and R a real
polynomial, then the sum of �.ŒA;R> 0�/ and �.ŒA;�R> 0�/ is equal to

1
4

�
�.ŒA;Y 2

DR�/��.ŒA;Y 2
D�R�/

�
C

1
2
�.ŒA;R¤ 0�/

C
1
4

�
�.ŒA;Y 2

D�R�/��.ŒA;Y 2
DR�/

�
C

1
2
�.ŒA;�R¤ 0�/

D �.ŒA;�R¤ 0�/:

The algebraic additivity as well as the multiplicativity follow from Proposition 2.2,
which enables us to express the measure of a basic semialgebraic formula in terms
of algebraic varieties for which additivity and multiplicativity hold. We conclude by
noting that we may construct a left inverse to � restricted to K0.VarR/ in the same
way as in the proof of Proposition 1.3.

Example 2.4 (1) A half-line defined by X > 0 has measure in K0.VarR/˝ZŒ1
2
�

half of the value of the line minus one point, as expected, since by definition

�.ŒX > 0�/D 1
4
.L�L/C 1

2
.L� 1/D 1

2
.L� 1/:
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However, if we add one more inequality, like fX > 0;X > �1g, then the measure has
more complexity. We will see in Section 3.1 that, evaluated in the polynomial ring
ZŒ1

2
� Œu�, we obtain in that case

ˇ.ŒX > 0;X > �1�/D
5u� 11

16
:

(2) Using the multiplicativity, we find the measure of the half-plane and the measure
of the quarter plane, as expected, to be

�.ŒX1 > 0�/D 1
2
.L2
�L/ and �.ŒX1 > 0;X2 > 0�/D 1

4
.L� 1/2:

Remark 2.5 (1) Let R 2RŒX1; : : : ;Xn� be odd. Then

�.ŒR> 0�/D �.ŒR< 0�/D 1
2
ŒR¤ 0�:

Indeed, the varieties Y 2 D R.X / and Y 2 D �R.X / are isomorphic via X 7! �X,
and the result follows from the definition of �.

(2) The ring morphism from K0.VarR/ to K0.RVar/ gives a realization from the ring
K0.BSAR/ to the ring K0.RVar/˝ZŒ1

2
� for which the measure of a real algebraic

variety without real point is zero. This is why it is often convenient to push the
computations to the ring K0.RVar/˝ ZŒ1

2
� rather than staying at the higher level

of K0.VarR/˝ ZŒ1
2
�. However we have to notice that the measure of a basic real

semialgebraic formula without real points is not necessarily zero in K0.RVar/˝ZŒ1
2
�.

For instance, let us compute the measure of X 2 C 1 > 0 in K0.RVar/˝ZŒ1
2
�. By

definition of � we obtain that �.ŒX 2C 1> 0�/ is equal to

1
4

�
�.ŒY 2

DX 2
C 1�/��.ŒY 2

D�X 2
� 1�/

�
C

1
2
�.ŒX 2

C 1¤ 0�/

D
1
4
.L� 1/C 1

2
LD 1

4
.3L� 1/:

By additivity we have

�.ŒX 2
C 1< 0�/D �.ŒX 2

C 1 6D 0�/��.ŒX 2
C 1> 0�/

D L��.ŒX 2
C 1D 0�/��.ŒX 2

C 1> 0�/:

But since �.ŒX 2C 1D 0�/D 0 in K0.RVar/˝ZŒ1
2
�, we obtain that the measure of

fX 2C 1< 0g in K0.RVar/˝ZŒ1
2
�, whose set of real points is empty, is

�.ŒX 2
C 1< 0�/D 1

4
.LC 1/:

(3) In a similar way, the basic semialgebraic formula fP > 0;�P > 0g with P .X /D

1CX 2 , whose set of real points is empty, has measure

�.ŒP > 0;�P > 0�/D 1
8
.LC 1/:
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2.2 Isomorphism between basic semialgebraic formulas

In this section we give a condition for two basic semialgebraic formulas to have the
same realization by �. It deals with the complexification of the algebraic liftings of
the basic semialgebraic formulas.

Let X be a real algebraic subvariety of Rn , defined by Pi 2 RŒX1; : : : ;Xn� for
i D 1; : : : ; r . The complexification XC of X is defined to be the complex algebraic
subvariety of Cn defined by the same polynomials P1; : : : ;Pr . We define similarly
the complexification of a real algebraic map.

Let Y�Rn be a Zariski constructible subset of Rn and takeR1; : : : ;Rr 2RŒX1; : : : ;Xn�.
Let A denote the basic semialgebraic formula of Rn defined by Y together with the
inequalities R1 > 0; : : : ;Rr > 0 and V denote the Zariski constructible subset of
RnCr defined by

V D fY; Y 2
1 DR1; : : : ; Y 2

r DRr g:

Note that V is endowed with an action of f˙1gr , defined by multiplication by �1 on
the indeterminates Y1; : : : ;Yr .

Let Z �Rn be a Zariski constructible subset of Rn and take similarly S1; : : : ;Sr 2

RŒX1; : : : ;Xn�. Let B denote the basic semialgebraic formula of Rn defined by
Z together with the inequalities S1 > 0; : : : ;Sr > 0 and W denote the Zariski
constructible subset of RnCr defined by

W D fZ; Y 2
1 D S1; : : : ; Y 2

r D Sr g:

Definition 2.6 We say that the basic semialgebraic formulas A and B are isomorphic
if there exists a real algebraic isomorphism �W V ! W between V and W that is
equivariant with respect to the action of f˙1gr on V and W , and whose complexifi-
cation �C induces a complex algebraic isomorphism between the complexifications
VC and WC of V and W .

Remark 2.7 Let us consider first the particular case Y D Rn , Z D Rn and r D 1.
Change moreover the notation as follows. Put V C D V and W C DW , and define
V � D fy2 D�R.x/g and W � D fy2 D�S.x/g.

Then the complex points V CC and V �C of V C and V � are isomorphic via the complex
(and not real) isomorphism .x;y/ 7! .x; iy/. Now, suppose that the basic semialgebraic
formula fR>0g is isomorphic to fS>0g. Let �D .f;g/W .x;y/ 7! .f .x;y/;g.x;y//

be the real isomorphism involved in the definition (that is f and g are defined by real
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equations, and moreover f .x;�y/D f .x;y/ and g.x;�y/D�g.x;y/). Then the
diagram

V CC

.x;y/ 7!.x;iy/

��

.f;g/ // W CC

.x;y/ 7!.x;iy/

��
V �C W �C

induces a complex isomorphism .F;G/ between V �C and W �C given by

.x;y/ 7! .f .x;�iy/; ig.x;�iy//:

In fact, this isomorphism is defined over R since

F.x;y/D f .x;�iy/D f .x;�iy/D f .x; iy/D f .x;�iy/D F.x;y/;

G.x;y/D ig.x;�iy/D�ig.x;�iy/D�ig.x; iy/D ig.x;�iy/DG.x;y/;

where the bar denotes complex conjugation. Therefore it induces a real algebraic
isomorphism between V � and W � .

Moreover g.x; 0/D�g.x; 0/ so g.x; 0/D 0 and then the real algebraic sets fRD 0g

and fS D 0g are also isomorphic.

Proposition 2.8 If the basic semialgebraic formulas A and B are isomorphic, then
�.ŒA�/D �.ŒB�/.

Proof Thanks to Proposition 2.2, we only need to prove that the real algebraic
varieties RI;" corresponding to A and B are isomorphic two by two, which is a direct
generalization of Remark 2.7.

3 Virtual Poincaré polynomial

3.1 Polynomial realization

The best realization known (with respect to the highest algebraic complexity of the
realization ring) of the Grothendieck ring of real algebraic varieties is given by the
virtual Poincaré polynomial [15]. This polynomial, whose coefficients coincide with
the Betti numbers with coefficients in Z=2Z when sets are compact and nonsingular,
has coefficients in Z. As a corollary of Theorem 2.3 we obtain the following realization
of K0.BSAR/ in ZŒ1

2
� Œu�.
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Proposition 3.1 There exists a ring morphism

ˇW K0.BSAR/ �! ZŒ1
2
� Œu�

whose restriction to K0.VarR/�K0.BSAR/ coincides with the virtual Poincaré poly-
nomial.

The interest of such a realization is that it enables us to make concrete computations.

Example 3.2 (1) The virtual Poincaré polynomial of the open disc X 2
1
CX 2

2
< 1 is

equal to

1
4

�
ˇ.ŒY 2

D 1� .X 2
1 CX 2

2 /�/�ˇ.ŒY
2
DX 2

1 CX 2
2 � 1�/

�
C

1
2
ˇ.ŒX 2

1 CX 2
2 ¤ 1�/

D
1
4
.u2
C 1�u.uC 1//C 1

2
.u2
�u� 1/D 1

4
.2u2

� 3u� 1/:

(2) Let us compute the measure of the formula X > a;X > b with a¤ b 2 R. By
Proposition 2.2, we are lead to compute the virtual Poincaré polynomial of the real
algebraic subsets of R3 defined by fy2 D˙.x� a/; z2 D˙.x� b/g. These sets are
isomorphic to fy2˙ z2 D˙.a� b/g, and we recognize either a circle, a hyperbola or
the empty set.

In particular, using the formula in Proposition 2.2, we obtain

ˇ.ŒX > a;X > b�/

D
1

16
.2.u� 1/� .uC 1//C 1

8
.2u� 2u/C 1

8
.2� 2/C 1

4
.u� 2/D

5u� 11

16
:

Remark 3.3 In case the set of real points of a basic semialgebraic formula is a real
algebraic set (or even an arc symmetric set [13; 10]), its virtual Poincaré polynomial
does not coincide in general with the virtual Poincaré polynomial of the real algebraic
set. For instance, the basic semialgebraic formula X 2C1>0, considered in Remark 2.5,
has virtual Poincaré polynomial equal to 1

4
.3u� 1/, whereas its set of points is a real

line whose virtual Poincaré polynomial equals u as a real algebraic set.

Evaluating u at an integer gives another realization, with coefficients in ZŒ1
2
�. The

virtual Poincaré polynomial of a real algebraic variety, evaluated at uD�1, coincides
with its Euler characteristic with compact supports [15]. Indeed, evaluating the virtual
Poincaré polynomial of a basic semialgebraic formula gives also the Euler characteristic
with compact supports of its set of real points, and therefore has its values in Z.

Proposition 3.4 The virtual Poincaré polynomial ˇ.A/ of a basic semialgebraic
formula A is equal to the Euler characteristic with compact supports of its set of real
points A.R/ when evaluated at uD�1. In other words,

ˇ.A/.�1/D �c.A.R//:
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Proof We recall that in Proposition 2.2 we explain how to express the class of A as a
linear combination of classes of real algebraic varieties for which the virtual Poincaré
polynomial evaluated at uD�1 coincides with the Euler characteristic with compact
supports. At each step of our inductive process to obtain such a linear combination, we
introduce a new variable and a double covering of the set of points satisfying one less
inequality. The inductive formula

�.ŒB;R> 0�/ WD 1
4

�
�.ŒB;Y 2

DR�/��.ŒB;Y 2
D�R�/

�
C

1
2
�.ŒB;R¤ 0�/

used at this step to eliminate one inequality by replacing the system fB;R > 0g by
other systems fB;Y 2 DRg; fB;Y 2 D�Rg; fB;R¤ 0g is compatible with the Euler
characteristic of the underlying sets of points, that is to say that our induction formula
is true for �D �c . The geometric reason for this fact is explained in Remark 2.1, and
is the intuitive motivation for defining the realization � by induction precisely as it is
defined.

3.2 Homogeneous case

We propose some computations of the virtual Poincaré polynomial of basic real semi-
algebraic formulas of the form fR > 0g, where R is homogeneous. Looking at its
Euler characteristic with compact supports, it is equal to the product of the Euler
characteristics with compact supports of fX > 0g with fRD 1g. We investigate the
case of virtual Poincaré polynomial. A key point in the proofs will be the invariance of
the virtual Poincaré polynomial of constructible sets under regular homeomorphisms
(see [16, Proposition 4.3]).

Proposition 3.5 Let R 2RŒX1; : : : ;Xn� be a homogeneous polynomial of degree d .
Assume d is odd. Then

ˇ.ŒR> 0�/D ˇ.ŒX > 0�/ˇ.ŒRD 1�/:

Proof The algebraic varieties defined by Y 2 DR.X / and Y 2 D�R.X / are isomor-
phic since R.�X /D�R.X /, therefore

ˇ.ŒR> 0�/D 1
2
ˇ.ŒR¤ 0�/:

The map .�;x/ 7! �x from R��fRD 1g to R¤ 0 is a regular homeomorphism with
inverse y 7! .R.y/1=d ;y=R.y/1=d /, therefore

ˇ.ŒR¤ 0�/D ˇ.R�/ˇ.ŒRD 1�/

so that
ˇ.ŒR> 0�/D 1

2
ˇ.R�/ˇ.ŒRD 1�/D ˇ.ŒX > 0�/ˇ.ŒRD 1�/:
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The result is no longer true when the degree is even. However, in the particular case of
the square of a homogeneous polynomial of odd degree, the relation of Proposition 3.5
remains valid.

Proposition 3.6 Let P 2RŒX1; : : : ;Xn� be a homogeneous polynomial of degree k .
Assume k is odd, and define R 2RŒX1; : : : ;Xn� by RD P2 . Then

ˇ.ŒR> 0�/D ˇ.ŒX > 0�/ˇ.ŒRD 1�/:

Proof Note first that fY 2�Rg can be factorized as .Y �P /.Y CP / therefore the
virtual Poincaré polynomial of Y 2�R is equal to

ˇ.Y �P D 0/Cˇ.Y CP D 0/�ˇ.P D 0/:

However the algebraic varieties Y �P D 0 and Y CP D 0 are isomorphic to a n–
dimensional affine space, whereas Y 2CRD 0 is isomorphic to P D 0 since RD P2

is positive, so that the virtual Poincaré polynomial of R> 0 is equal to

1
4
.2ˇ.Rn/� 2ˇ.ŒP D 0�//C 1

2
ˇ.ŒP ¤ 0�/D ˇ.ŒP ¤ 0�/:

To compute ˇ.ŒP ¤ 0�, note that the map .�;x/ 7! �x from R��fP D 1g to fP ¤ 0g

is a regular homeomorphism with inverse y 7! .R.y/1=k ;y=R.y/1=k/, therefore

ˇ.ŒP ¤ 0�/D ˇ.R�/ˇ.ŒP D 1�/:

We achieve the proof by noticing that R� 1D .P � 1/.P C 1/ so that ˇ.ŒP D 1�/D
1
2
ˇ.ŒRD 1�/, because the degree of the homogeneous polynomial P is odd. Finally

ˇ.ŒR> 0�/D 1
2
ˇ.R�/ˇ.ŒRD 1�/

and the proof is achieved.

More generally, for a homogeneous polynomial R of degree twice a odd number, we
can express the virtual Poincaré polynomial of ŒR > 0� in terms of that of ŒR D 1�,
ŒRD�1� and ŒR¤ 0� as follows.

Proposition 3.7 Let k 2 N be odd and put d D 2k . Let R 2 RŒX1; : : : ;Xn� be a
homogeneous polynomial of degree d . Then

ˇ.ŒR> 0�/D 1
4
ˇ.R�/.ˇ.ŒRD 1�/�ˇ.ŒRD�1�//C 1

2
ˇ.ŒR¤ 0�/:

Example 3.8 We cannot do better in general as illustrated by the following examples.
For R1 DX 2

1
CX 2

2
we obtain

ˇ.ŒR1 > 0�/D 3
2
ˇ.ŒX > 0�/ˇ.ŒR1 D 1�/
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whereas for R2 DX 2
1
�X 2

2
we have

ˇ.ŒR2 > 0�/D ˇ.ŒX > 0�/ˇ.ŒR2 D 1�/:

The proof of Proposition 3.7 is a direct consequence of the next lemma.

Lemma 3.9 Let k 2 N be odd and put d D 2k . Let R 2 RŒX1; : : : ;Xn� be a
homogeneous polynomial of degree d . Then

ˇ.ŒY 2
DR�/D ˇ.ŒRD 0�/Cˇ.R�/ˇ.ŒRD 1�/:

Proof Note first that the algebraic varieties Y 2 D R and Y d D R have the same
virtual Poincaré polynomial. Indeed the map .x;y/ 7! .x;yk/ realizes a regular
homeomorphism between Y 2 DR and Y d DR, whose inverse is given by .x;y/ 7!
.x;y1=k/. However the polynomial Y d �R being homogeneous, we obtain a regular
homeomorphism

R� � .fRD 1g\ fY d
DRg/ �! fR¤ 0g\ fY d

DRg

defined by .�;x;y/ 7! .�x; �y/. As a consequence

ˇ.ŒY d
�RD 0�/D ˇ.ŒRD 0�/Cˇ.R�/ˇ.ŒRD 1�/:

4 Zeta functions and motivic real Milnor fibers

We apply in this section the construction of �W K0.BSAR/! K0.VarR/˝ZŒ1
2
� to

define, for a given polynomial f 2RŒX1; � � � ;Xd �, zeta functions whose coefficients
are classes in .K0.VarR/˝ZŒ1

2
�/ŒL�1� of real semialgebraic formulas. We then show

that these zeta functions are deeply related to the topology of some corresponding
set-theoretic real semialgebraic Milnor fibers of f .

4.1 Semialgebraic zeta functions and real Denef–Loeser formulas

Let f W Rd !R be a polynomial function with coefficients in R sending 0 to 0. We
denote by L or L.Rd ; 0/ the space of formal arcs 
 .t/D .
1.t/; � � � ; 
d .t// in Rd ,
with 
j .0/D 0 for all j 2 f1; � � � ; dg, by Ln or Ln.Rd ; 0/ the space of truncated arcs
L=.tnC1/ and by �nW L! Ln the truncation map. More generally, for M a variety
and W a closed subset of M, L.M;W / (resp. Ln.M;W /) will denote the space of
arcs in M (resp. the nth jet-space on M ) with endpoints in W .
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Let � be one of the symbols in the set fnaive;�1; 1; >;<g. For such a symbol � ,
via the realization of K0.BSAR/ in K0.VarR/ ˝ ZŒ1

2
�, we define a zeta function

Z�
f
.T / 2 .K0.VarR/˝ZŒ1

2
�/ŒL�1� ŒŒT �� by

Z�
f .T / WD

X
n�1

ŒX �
n;f �L

�ndT n;

where X �
n;f

is defined in the following way:

� X naive
n;f
D f
 2 Ln j f .
 .t//D atnC � � � ; a 6D 0g

� X�1
n;f
D f
 2 Ln j f .
 .t//D atnC � � � ; aD�1g

� X 1
n;f
D f
 2 Ln j f .
 .t//D atnC � � � ; aD 1g

� X>
n;f
D f
 2 Ln j f .
 .t//D atnC � � � ; a> 0g

� X<
n;f
D f
 2 Ln j f .
 .t//D atnC � � � ; a< 0g

Note that X �
n;f

is a real algebraic variety for �D�1 or 1, a real algebraic constructible
set for � D naive and a semialgebraic set, given by an explicit description involving
one inequality, for � being the symbol > or the symbol <. Consequently, Z�

f
.T / 2

K0.VarR/ŒL
�1� ŒŒT �� for � 2 fnaive;�1; 1g and Z�

f
.T /2 .K0.VarR/˝ZŒ1

2
�/ŒL�1� ŒŒT ��

for � 2 f>;<g.

We show in this section that Z�
f
.T / is a rational function expressed in terms of

the combinatorial data of a resolution of f . To define those data let us consider a
proper birational map � W .M; ��1.0//! .Rd ; 0/ which is an isomorphism over the
complement of ff D 0g in .Rd ; 0/, such that f ı� and the jacobian determinant jac �
are normal crossings and ��1.0/ is a union of components of the exceptional divisor.
We denote by Ej , for j 2 J , the irreducible components of .f ı�/�1.0/ and assume
that Ek are the irreducible components of ��1.0/ for k 2K�J . For j 2J we denote
by Nj the multiplicity multEj f ı� of f ı� along Ej and for k 2K by �k the number
�k D 1CmultEk

jac � . For any I � J , we put E0
I
D .

T
i2I Ei/ n .

S
j2J nI Ej /.

These sets E0
I

are constructible sets and the collection .E0
I
/I�J gives a canonical

stratification of the divisor f ı� D 0, compatible with � D 0, such that in some affine
open subvariety U in M we have f ı�.x/D u.x/

Q
i2I xNi

i , where u is a unit, that
is to say a rational function which does not vanish on U , and x D .x0; .xi/i2I / are
local coordinates.

Finally for � 2 f�1; 1; >;<g and I � J , we define eE0;�

I as the gluing along E0
I

of
the sets

R�
U D f.x; t/ 2 .E

0
I \U /�R j tm

�u.x/ ?� g;

where ?� is D�1, D 1, > 0 or < 0 in case � is �1; 1; > or < and mD gcd
i2I

.Ni/.
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Remark 4.1 Up to isomorphism, the definition of the R�
U

is independent of the
choice of the coordinates as well as the gluing of the R�

U
: In another coordinate

system z D z.x/D .z0; .zi/i2I / in a Zariski neighborhood of E0
I

we have f ı�.z/D
v.z/

Q
i2I zNi , and there exist nonvanishing functions ˛i so that zi D ˛i.z/ �xi . We

thus obtain v.z/
Q

i2I ˛
Ni
i .z/D u.x/, and the transformation

f.x; t/ 2 .E0
I \U /�R j tm

�u.x/ ?�g ! f.z; s/ 2 .E
0
I \U /�R j sm

� v.z/ ?�g;

.x; t/ 7!

�
z; s D t

Y
i2I

˛i.z/
Ni=m

�
is an isomorphism in case ?� is D 1 or D�1, and induces an isomorphism between the
associate double covers R�

U
D f.x; t;y/ 2 .E0

I
\U /�R�R j tm �u.x/ �y2 D �.�/g

and R0�
U
D f.z; s; w/2 .E0

I
\U /�R�R j sm �v.z/ �w2D �.�/g, with �.�/D 1 when

� is the symbol > and �.�/D�1 when � is the symbol <; the induced isomorphism
is simply

R�U !R0�U ; .x; t;y/ 7! .z; s; w D y/:

Also notice that eE 0;�

I is a constructible set when � is �1 or 1 and a semialgebraic set
with explicit description over the constructible set E0

I
when � is < or >.

We can thus define the class Œ eE 0;�

I � 2 �.K0.BSAR// as follows. Choosing a finite
covering .Ul/l2L of M by affine open subvarieties Ul , for l 2L, we set� eE 0;�

I

�
D

X
S�L

.�1/jS jC1
�
R�T

s2S Us

�
:

The class Œ eE 0;�

I � does not depend on the choice of the covering thanks to Remark 4.1
and the algebraic additivity in K0.BSAR/.

With this notation one can give an expression of Z�
f .T / in terms of Œ eE 0;�

I �, as for in-
stance in Denef and Loeser [5; 6; 8] or Looijenga [14], essentially using the Kontsevitch
change of variables formula in motivic integration (see [6; 12] for instance).

Theorem 4.2 With the notation above, one has

Z�
f .T /D

X
I\K 6D∅

.L� 1/jI j�1Œ eE 0;�

I �
Y
i2I

L��i T Ni

1�L��i T Ni

for � being �1; 1; > or <.

Remark 4.3 Classically, the right-hand side of equality of Theorem 4.2 does not de-
pend, as a formal series in .K0.VarR/˝ZŒ1

2
�/ŒL�1� ŒŒT ��, on the choice of the resolution

� as the definition of Z�
f
.T / does not depend itself on any choice of resolution.
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To prove this theorem, we first start with a lemma that needs the following notation.
We denote by

��W L.M; ��1.0//! L.Rd ; 0/;

�n;�W Ln.M; ��1.0//! Ln.R
d ; 0/; n 2N

the natural mappings induced by � W .M; ��1.0//! .Rd ; 0/. Let

Y �n;f D �
�1
n .X �

n;f /:

Then Y �n;f ı� Df
 2L.M; ��1.0// j f .�.�n.
 ///.t/D atnC� � � ; a ?�g, where ?� is
D�1, D 1, > 0 or < 0 in case � is �1; 1; > or <, and Y �n;f ı� D �

�1
� .Y �n;f /. Finally

for e � 1, let

�e D f
 2 L.M; ��1.0// j multt .jac �/.
 .t//D eg;

Y �e;n;f ı� D Y �n;f ı� \�e:

Lemma 4.4 With the notation above, there exists c 2N such that

Z�
f .T /

D Ld
X
n�1

T n
X

e�cn

L�e
X
I 6D∅

L�.nC1/d ŒLn.M;E0
I \ �

�1.0//\�n.�e/\X �
n;f ı� �:

Proof As usual in motivic integration, the class of the cylinder Y �n;f D�
�1
n .X �

n;f /, n�

1, is an element of .K0.VarR/˝ZŒ1
2
�/ŒL�1�, the localization of the ring K0.VarR/˝

ZŒ1
2
� with respect to the multiplicative set generated by L, and defined by ŒY �n;f � WD

L�.nC1/d ŒX �
n;f �, since the truncation morphisms �kC1;k W LkC1.R

d ; 0/!Lk.R
d ; 0/,

k � 1, are locally trivial fibrations with fiber Rd . Hence Z�
f
.T /DLd

P
n�1ŒY

�
n;f �T

n .

Take now 
 2 ��1
� .Y �n;f / and let I � J such that 
 .0/ 2E0

I
. In some neighborhood

of E0
I

, one has coordinates such that f ı �.x/ D u.x/
Q

i2I xNi
i and jac.�/.x/ D

v.x/
Q

i2I x�i�1
i , with u and v units. If one denotes 
 D .
1; � � � ; 
d / in these

coordinates, with ki the multiplicity of 
i at 0 for i 2 I , then we have multt .f ı � ı


 .t//D
P

i2I kiNi D n. Now

multt .jac �/.
 .t//D
X
i2I

ki.�i � 1/�max
i2I

��i � 1

Ni

�X
i2I

Niki Dmax
i2I

��i � 1

Ni

�
n:

Therefore if one sets c Dmax
i2I

.�i�1
Ni

/, one has

Y �n;f ı� D
[
e�1

Y �e;n;f ı� D
[

1�e�cn

Y �e;n;f ı�
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as disjoint unions. Now we can apply the change of variables theorem (see [6; 12]) to
compute ŒY �n;f � in terms of ŒY �e;n;f ı� �:

ŒY �n;f �D
X

e�cn

L�e ŒY �e;n;f ı� �;

and summing over the subsets I of J , as Y �e;n;f ı� is the disjoint union[
I 6D∅

Y �e;n;f ı� \�
�1
0 .E0

I \ �
�1.0//;

we obtain

Z�
f .T /

D Ld
X
n�1

ŒY �n;f �T
n

D Ld
X
n�1

T n
X

e�cn

L�e
X
I 6D∅

ŒY �e;n;f ı� \�
�1
0 .E0

I \ �
�1.0//�

D Ld
X
n�1

T n
X

e�cn

L�e
X
I 6D∅

L�.nC1/d Œ�n.Y
�
e;n;f ı� \�

�1
0 .E0

I \ �
�1.0///�

D Ld
X
n�1

T n
X

e�cn

L�e
X
I 6D∅

L�.nC1/d ŒLn.M;E0
I \ �

�1.0//\�n.�e/\X �
n;f ı� �:

Proof of Theorem 4.2 Considering the expression of Z�
f
.T / given by Lemma 4.4,

we have to compute the class of ŒLn.M;E0
I
\ ��1.0//\�n.�e/\X �

n;f ı� �. For this
we notice that on some neighborhood U of the end point 
 .0/ 2 E0

I
\ ��1.0/, one

has coordinates such that

f ı �.x/D u.x/
Y
i2I

x
Ni

i and jac.�/.x/D v.x/
Y
i2I

x
�i�1
i ;

with u and v units. As a consequence Ln.M;E0
I
\U \ ��1.0//\�n.�e/\X �

n;f ı�

is isomorphic to�

 2 Ln.M; ��1.0//

ˇ̌̌̌

 .0/ 2E0

I \U \ ��1.0/;
X
i2I

Niki D n;X
i2I

ki.�i � 1/D e; f ı �.
 .t//D atn
C � � � ; a ?�

�
;
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where ?� is D�1, D 1, > 0 or < 0 in case � is �1; 1; > or < and ki is the multiplicity
of 
i for i 2 I . Now denoting by A.I; n; e/ the set

A.I; n; e/ WD

�
k D .k1; � � � ; kd / 2Nd

ˇ̌̌̌X
i2I

Niki D n;
X
i2I

ki.�i � 1/D e

�
and identifying for simplicity x and ..xi/i 62I ; .xi/i2I /, the set

Ln

�
M;E0

I \U \ ��1.0/
�
\�n.�e/\X �

n;f ı�

is isomorphic to the product

.Rn/d�jI j

�

[
k2A.I;n;e/

�
x 2

�
E0

I \U \ ��1.0/
�
� .R�/jI j

ˇ̌̌̌
u..xi/i 62I ; 0/

Y
i2I

x
Ni

i ?�

�
�

Y
i2I

.Rn�ki /:

Indeed, denoting an arc 
 D .
1; : : : ; 
d / of Ln.M;E0
I
\U \ ��1.0// by 
i.t/ D

ai;0C� � �Cai;ntn for i 62 I and 
i.t/D ai;ki
tki C � � �C ai;ntn for i 2 I , the first factor

of the product comes from the free choice of the coefficients ai;j , i 62 I , j D 1; : : : ; n,
the last factor of the product comes from the free choice of the coefficients ai;j , i 2 I ,
j D ki C 1; : : : ; n and the middle factor of the product comes from the choice of the
coefficients ai;0 2 E0

I
\U \ ��1.0/, i 62 I , and from the choice of the coefficients

ai;ki
, i 2 I , subject to the condition

f ı �.
 .t//D u.
 .t//
Y
i2I



Ni

i .t/

D u..ai;0/i 62I ; 0/
�Y

i2I

a
Ni

i;ki

�
tn
C � � � D atn

C � � � ; a ?�:

We now choose ni 2 Z such that
P
i2I

niNi DmD gcd
i2I

.Ni/ and consider the two
semialgebraic sets

W �
U D

�
x 2

�
E0

I \U \ ��1.0/
�
� .R�/jI j

ˇ̌̌̌
u..xi/i 62I ; 0/

Y
i2I

x
Ni

i ?�

�
;

W
0�

U D

�
.x0; t/ 2

�
E0

I \U \ ��1.0/
�
� .R�/jI j �R�ˇ̌̌̌

u..x0i/i 62I ; 0/t
m ?�;

Y
i2I

x
0Ni=m
i D 1

�
;
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where ?� is D �1, D 1, > 0 or < 0 in case � is �1; 1; > or <. In case ?� D 1

or ?� D�1, the mapping

W
0�

U !W �
U ;

.x0; t/ 7! x D
�
.x0i/i 62I ; .t

ni x0i/i2I

�
is an isomorphism with inverse

W �
U !W

0�
U ;

x 7!

�
x0 D

�
.xi/i 62I ;

��Y
`2I

x
N`=m

`

��ni

xi

�
i2I

�
; t D

Y
`2I

x
N`=m

`

�
:

In the semialgebraic case, this isomorphism induces a natural isomorphism on the
double covers W�

U
and W 0�

U
associated to W �

U
and W

0�
U

and defined by

W �
U D

�
.x;y/2

�
E0

I \U \��1.0/
�
�.R�/jI j�R

ˇ̌̌̌
y2u..x0i/i 62I ; 0/

Y
i2I

x
Ni

i D �.�/

�
;

W 0�
U D

�
.x; t; w/ 2

�
E0

I \U \ ��1.0/
�
� .R�/jI j �R� �Rˇ̌̌̌

w2u..x0i/i 62I ; 0/t
m
D �.�/;

Y
i2I

x
0Ni=m
i D 1

�
;

where �.�/ D 1 when � is the symbol > and �.�/ D �1 when � is the symbol <.
In consequence, ŒW �

U
� D ŒW

0�
U
� in the algebraic case (� D �1 or 1) as well as in

the semialgebraic case (� D< or >) considering our realization formula for basic
semialgebraic formulas in K0.VarR/˝ZŒ1

2
�. Now we observe in the case where �

is �1 or 1 that W
0�

U
is isomorphic to R�

U
� .R�/jI j�1 (see [8, Lemma 2.5]) whereas

in the case where � is < or >, we obtain that the class of W
0�

U
is equal to the class

of R�
U
� .R�/jI j�1 , considering again the double coverings associated to the basic

semialgebraic formulas defining these two sets.

We finally obtain�
Ln

�
M;E0

I \ �
�1.0/

�
\�n.�e/\X �

n;f ı�

�
D

X
k2A.I;n;e/

Lnd�
P

i2I ki ŒW
0�

U �

D

X
k2A.I;n;e/

Lnd�
P

i2I ki � ŒR�
U �� .L� 1/jI j�1:
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Summing over the charts U , the expression of Z�
f
.T / given by Lemma 4.4 is now:

Z�
f .T /

D

X
I\K 6D∅

Ld
X
n�1

T n
X

e�cn

L�e.L� 1/jI j�1L�.nC1/d
�eE0;�

I

� X
k2A.I;n;e/

Lnd�
P

i2I ki

D

X
I\K 6D∅

.L� 1/jI j�1
�eE0;�

I

�X
n�1

T n
X

e�cn

X
k2A.I;n;e/

L�e�
P

i2I ki

Noticing that the .ki/i2I such that k D ..ki/i 62I ; .ki/i2I / 2
S

e�cn;n�1 A.I; n; e/ are
in bijection with N�jI j , we have:

Z�
f .T /D

X
I\K 6D∅

.L� 1/jI j�1
�eE0;�

I

� X
.ki /i2I2NjIj

Y
i2I

�
L��i T Ni

�ki

D

X
I\K 6D∅

.L� 1/jI j�1
�eE0;�

I

�Y
i2I

L��i T Ni

1�L��i T Ni

4.2 Motivic real Milnor fibers and their realizations

We can now define a motivic real Milnor fiber by taking the constant term of the rational
function Z�

f
.T / viewed as a power series in T �1 . This process formally consists in

letting T going to 1 in the rational expression of Z�
f
.T / given by Theorem 4.2 and

using the usual computation rules as in the convergent case (see for instance [5; 8]).

Definition 4.5 Let f W Rd!R be a polynomial function and � be one of the symbols
naive, 1, �1, > or <. Consider a resolution of f as above and let us adopt the same
notation .E0

I
/I for the stratification of the exceptional divisor of this resolution, leading

to the notation eE 0;�

I . The real motivic Milnor �–fiber S�
f

of f is defined as (see [8]
for the complex case)

S�f WD � lim
T!1

Z�
f .T / WD �

X
I\K 6D∅

.�1/jI j
� eE 0;�

I

�
.L� 1/jI j�1

2K0.VarR/˝ZŒ1
2
�:

It does not depend on the choice of the resolution � .

For � being the symbol 1 for instance, we have S1
f
2K0.VarR/. We can consider, first

in the complex case, the realization of S1
f

via the Euler–Poincaré characteristic ring
morphism �c W K0.VarC/!Z. Note that in the complex case, the Euler characteristics
with and without compact supports are equal. For f W Cd !C , since �c.L� 1/D 0,
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we obtain

�c.S
1
f /D

X
jI jD1;I�K

�c

� eE 0;1

I

�
D

X
jI jD1;I�K

NI ��c

�
E0

I \ �
�1.0/

�
:

Now denote by F the set-theoretic Milnor fiber of the fibration

fjB.0;˛/\f �1.D�� /
W B.0; ˛/\f �1.D�� / �!D�� ;

with B.0; ˛/ the open ball in Cd of radius ˛ centered at 0, D� the disc in C of radius
� centered at 0 and D�� DD�nf0g, with 0<��˛�1. Compare the above expression
�c.S

1
f
/D

P
jI jD1;I�K NI ��c.E

0
I
/ with the following A’Campo formula of [1] for the

first Lefschetz number of the iterates of the monodromy M W H�.F;C/!H�.F;C/
of f , that is for the Euler–Poincaré characteristic of the fiber F :

�c.F /D
X

jI jD1;I�K

NI ��c

�
E0

I \ �
�1.0/

�
We simply observe that

�c.S
1
f /D �c.F /:

Let xF be the closure f �1.c/\ xB.0; ˛/, 0< jcj � ˛� 1, of the Milnor fiber F and
note that the boundary of xF is the odd-dimensional compact manifold f �1.c/\S.0; ˛/.
Then �c.f

�1.c/\S.0; ˛//D 0 and we finally have

�c.S
1
f /D �c.F /D �c. xF /:

Remark 4.6 There is a priori no hint in the definition of Z�
f .T / that the opposite of

the constant term S1
f of the power series in T �1 induced by the rationality of Z�

f .T /

could be the motivic version of the Milnor fiber of f (as well as, for instance, there
is no evident hint that the expression of Z�

f in Theorem 4.2 does not depend on the
resolution � ). As mentioned above, in the complex case, we just observe that the
expression of �c.S

1
f / is the expression of �c.F / provided by the A’Campo formula.

Exactly in the same way there is no a priori reason for �c.S
�
f /, regarding the definition

of Z�
f , to be so accurately related to the topology of f �1.�jcj/\B.0; ˛/. Nevertheless

we prove that it is actually the case (Theorem 4.12).

In order to establish this result we start with a geometric proof of the formula in the
complex case (compare with [1] where only ƒ.M 0/ is considered, M k being the k th

iterate of the monodromy M W H�.F;C/!H�.F;C/ of f ). We will then extend to
the reals this computational proof in the proof of Theorem 4.12, allowing us interpret
the complex proof as the first complexity level of its real extension.
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Remark 4.7 Note that in the complex case a proof of the fact that ƒ.M k/D�c.X
1
k;f
/

for k � 1 is given in [11] without the help of resolution of singularities, that is to say
without help of A’Campo’s formulas (see [11, Theorem 1.1.1]). As a direct corollary
it is thus proved that �c.S

1
f
/D �c.F / in the complex case, without using A’Campo

formulas.

Realization of the complex motivic Milnor fiber under �c The fiber

F D ff D cg\B.0; ˛/

is homeomorphic to the fiber F D ff ı � D cg \ ��1.B.0; ˛//, with ��1.S.0; ˛//

viewed as the boundary of a tubular neighborhood of ��1.0/ D
S

E0
J
���1.0/E0

J
,

keeping the same notation .E0
J
/J as before for the natural stratification of the strict

transform ��1.ff D 0g/ of f D 0. Now the formula may be established for F in
some chart of M \��1.B.0; ˛//, by additivity. In such a chart, where f ı� is normal
crossing, we consider:

� The set EJ D
T

i2J Ei � �
�1.0/, given by xi D 0, i 2 J .

� A closed small enough tubular neighborhood VJ in M of
S

J�K ;K 6DJ E0
K

,
that is a tubular neighborhood of all the E0

K
bounding E0

J
, such that E0

J
nVJ

is homeomorphic to E0
J

.

� �J the projection onto EJ along the xj coordinates, for j 2 J .

� An open neighborhood EJ of E0
J
nVJ in ��1.B.0; ˛// given by ��1

J
.E0

J
nVJ /,

jxj j � �J , j 2 J , with �J > 0 small enough.

Remark 4.8 For I D fig, we remark that F \ EI is homeomorphic to Ni copies
of E0

I
\ EI , and thus to Ni copies of E0

I
. Indeed, assuming f ı � D u.x/xNi

i in
EI , we observe that the family .ft /t2Œ0;1� with ft D u..xj /j 62I ; t � xi/x

Ni
i � c has

homeomorphic fibers fft D 0g\ EJ , t 2 Œ0; 1� by Thom’s isotopy lemma, since

@ft

@xi
.x/D t

@u

@xi
.x/x

Ni

i Cu.x/x
Ni�1
i D 0

would imply

t
@u

@xi
.x/xi Cu.x/D 0:

But the first term in this sum goes to 0 as xi goes to 0, since the derivatives of u are
bounded on the compact cl.EI / by a nonzero constant, since u is a unit. Finally, as
ff1 D 0g\ EI is homeomorphic to ff0 D 0g\ EI and ff0 D 0g\ EI is a Ni –graph
over E0

I
\ EI , F \ EI is homeomorphic to Ni copies of E0

I
.
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By this remark, F covers maximal dimensional stratum E0
I

, jI j D 1, I �K , with Ni

copies of a leaf FI of F . To be more accurate, with the notation introduced above, FI

covers the neighborhood E0
I
\ EI of E0

I
nVI . Moreover the FI overlap in F over

the open set E0
J
\ EJ of the strata E0

J
that bound the E0

I
for jI j D 1, jJ j D 2 and

I � J in bundles over the E0
J
\ EJ of fiber C� . Those subleaves FJ of F overlap

in turn over the open E0
Q\EQ of the strata E0

Q , jQj D 3;J �Q, that bound the E0
J

,
in bundles over the E0

Q\ EQ of fibers .C�/2 and so forth. . . For instance when

f ı � D u.x/
Y
i2I

xNi
i in EI , I D fig;

f ı � D v.x/xNi
i xNj

j in EJ , J D fi; j g,

the Ni leaves FI , homeomorphic to the Ni copies xNi
i D c=u.x/ of E0

I
, overlap

over E0
J
\ EJ in subleaves FJ of FI , given by v.x/xNi

i xNj
j D c , fibering over E0

J

with fiber gcd.fNi ;Nj g/ copies of .C�/jJ j�1 and so forth (see Figure 1).

FI 0

E0
K

FK

FJ

E0
J

f ı � D c

E0
I

FI

Figure 1

Remark 4.9 Note that the topology of F D ff ı � D cg\ ��1.B.0; ˛// is the same
as the topology of

S
J\K 6D0 FJ (that is the topology of F above the strata E0

J
of

��1.0/) since the retraction of F onto
S

J\K 6D∅FJ , as ˛ goes to 0, induces a
homeomorphism from F to

S
J\K 6D∅FJ .

From Remark 4.9, by additivity, it follows that the Euler–Poincaré characteristic of F
(in our chart) is the sum

(�)
X

jI jD1;I�K

NI ��c

�
E0

I \ �
�1.0/

�
CL;
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where L is some Z–linear combination of Euler–Poincaré characteristics of bundles
over the open sets EJ \ E0

J
, jJ j> 1, of fiber a power of tori C� . Now the A’Campo

formula
�c.F /D

X
jI jD1;I�K

NI ��c

�
E0

I \ �
�1.0/

�
for the Milnor number follows from the fact that �c.C�/D 0 implies LD 0.

Realization of the real motivic Milnor fibers under �c The partial covering of F
by the pieces FJ , for J \K 6D ∅, over the strata of the stratification .E0

J
/J\K 6D∅

of ��1.0/ allows us to compute the Euler–Poincaré characteristic of the Milnor fiber
F in terms of the Euler–Poincaré characteristic of the strata E0

J
, in the complex as

well as in the real case. In the complex case, as noted above, for J with jJ j> 1, one
has �c.FJ /D 0. This cancellation provides a quite simple formula for �c.F /: Only
the strata of the maximal dimension of the divisor ��1.0/ appear in this formula, as
expected from the A’Campo formula.

In the real case one does not have such cancellations: On one hand the expression of
�c.F / in terms of �c. eE 0;�

J / is no more trivial (the remaining term L of Equation (�)
is not zero and consequently terms �c. eE 0;�

J / for jJ j > 1 and Ej \ �
�1.0/ 6D ∅

appear) and on the other hand the expression of �c.S
�
f
/ given by the real Denef–Loeser

formula in Definition 4.5 has terms 2jJ j�1�c. eE 0;�

J / for jJ j> 1 and J \K 6D∅ (since
�c.L� 1/D�2 in the real case).

Nevertheless, in the real case we show that �c.S
�
f
/ is again �c. xF /, justifying the

terminology of motivic real semialgebraic Milnor fiber of f at 0 for S�
f

. The formula
stated in Theorem 4.12 below is the real analogue of the A’Campo–Denef–Loeser
formula for complex hypersurface singularities and thus appears as the extension to the
reals of this complex formula, or, in other words, the complex formula is the notably
first level of complexity of the more general real formula.

Notation 4.10 Let f W Rd ! R be a polynomial function such that f .0/ D 0 and
with isolated singularity at 0, that is gradf .x/ D 0 only for x D 0 in some open
neighborhood of 0. Let 0<��˛ be such that the topological type of f �1.c/\B.0; ˛/

does not depend on c and ˛ for 0< c < � or for �� < c < 0.

� Let us denote, for � 2 f�1; 1g and � � c > 0, this topological type by F� , by xF�
the topological type of the closure of the Milnor fiber F� and by Lk.f / the link
f �1.0/\S.0; ˛/ of f at the origin. We recall that the topology of Lk.f / is the same
as the topology of the boundary f �1.c/\S.0; ˛/ of the Milnor fiber xF� when f has
an isolated singularity at 0.
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� Let us denote, for � 2 f<;>g, the topological type of f �1.�0; c� Œ/\B.0; ˛/ by
F� , and the topological type of f �1.�0; c� Œ/\ xB.0; ˛/ by xF� , where c< 2 � � �; 0 Œ

and c> 2 �0; �Œ.

� Let us denote, for � 2 f<;>g, the topological type of ff x� 0g \S.0; ˛/ by G� ,
where x� is � when � is < and x� is � when � is >.

Remark 4.11 When d is odd, Lk.f / is a smooth odd-dimensional submanifold
of Rd and consequently �c.Lk.f // D 0. For � 2 f�1; 1; <;>g, we thus have in
�c.F�/D �c. xF�/ this situation. This is the situation in the complex setting. When d

is even and for � 2 f�1; 1g, since xF� is a compact manifold with boundary Lk.f /,
one knows that

�c. xF�/D��c.F�/D
1
2
�c.Lk.f //:

For general d 2N and for � 2 f�1; 1; <;>g, we thus have

�c. xF�/D .�1/dC1�c.F�/:

On the other hand we recall that for � 2 f<;>g

�c.G�/D �c. xFı� /;

where ı> is 1 and ı< is �1 (see [2; 18]).

Theorem 4.12 With Notation 4.10 we have, for � 2 f�1; 1; <;>g,

�c.S
�
f /D �c. xF�/D .�1/dC1�c.F�/

and for � 2 f<;>g,
�c.S

�
f /D��c.G�/:

Proof Assume first that � 2 f�1; 1g. We denote by F the fiber ��1.F�/ and recall
that F and F� have the same topological type. Let us denote xK the set of multi-indices
J � I such that xEJ \�

�1.0/ 6D∅, with xEJ the closure of EJ D
T

i2J Ei . In what
follows only J 2 xK are concerned, since we study the local Milnor fiber at 0. The
proof consists in the computation of the Euler–Poincaré characteristic of F using the
decomposition of F by the overlapping components FI introduced just before Figure 1
and illustrated there. We simply count the number of these overlapping components in
the decomposition of F they provide. Note that a connected component of E0

J
(still

denoted E0
J

for simplicity in the sequel) for J � J is covered by nJ WDMJ � 2
jJ j�1

connected components G of F , where MJ is 0, 1 or 2 depending on the fact that the
multiplicity mJ D gcdj2J .Nj / defining eE 0;�

J is odd or even, and on sign condition on
c (remember from Figure 1 how E0

J
is covered by FJ ; here the term covered simply
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means that one can naturally project the component FJ onto E0
J

). Note furthermore
that MJ is the degree of the covering eE 0;�

J of E0
J

. Now expressing a connected
component G of F as the union [

jI jD1;FI�G

FI ;

where the (connected) leaves FI cover (the open subset E0
I
\E0

I
of E0

I
homeomorphic

to) E0
I

, and using the additivity of �c , one has that �c.G/ is expressed as a sum of
characteristics of the overlapping connected subleaves FJ of the FI , each of them with
sign coefficient sJ WD .�1/jJ j�1 . Note that (a connected component of) E0

J
is covered

by nJ copies of such a FJ , coming from the nJ connected components of F above
E0

J
\ E0

J
, and that a connected subleaf FJ has the topology of .E0

J
\ E0

J
/�RjJ j�1 .

We denote by tJ the characteristic tJ WD �c.RjJ j�1/D .�1/jJ j�1 .

With this notation, summing over all the connected components G of F , one gets

�c.F/D
X
J2xK

sJ � nJ ��c.E
0
J /� tJ

D

X
J2xK

.�1/jJ j�1
� 2jJ j�1MJ ��c.E

0
J /� .�1/jJ j�1

D

X
J2xK

2jJ j�1�c

�eE0;�

J

�
D

X
J\K 6D∅

2jJ j�1�c

�eE0;�

J

�
C

X
J\KD∅;

J2xK

2jJ j�1�c

�eE0;�

J

�

D �c.S
�
f /C

X
J\KD∅;J2xK

2jJ j�1�c

�eE0;�

J

�
D �c.S

�
f /C�c

� [
J\KD∅;J2xK

FJ

�
:

Note that the subleaves FJ for J\KD∅ and J 2 xK cover the set ff ı�D cg\ yS.0; ˛/

for � � c > 0, where yS.0; ˛/ is a neighborhood ��1.S.0; ˛/��0; ˇ Œ/ of ��1.S.0; ˛//

with 0< ˇ� ˛ . It follows that

�c

� [
J\KD∅;J2xK

FJ

�
D �c

�
F� \

�
S.0; ˛/��0; ˇŒ

��
D �c

�
Lk.f /��0; ˇŒ

�
D��c.Lk.f //:

We finally obtain

�c.F�/D �c.S
�
f /��c.Lk.f //;

�c. xF�/D �c.F�/C�c.Lk.f //D �c.S
�
f /:

This proves the first equality of our statement, the equality �c. xF�/D .�1/dC1�c.F�/

being proved in Remark 4.11.
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Assume now that � 2 f<;>g and denote ı< WD �1 and ı> WD 1, like in Remark 4.11.
With this notation xF� D xFı���0; 1Œ, and by the formula proved above in the case
� 2 f�1; 1g, we obtain

�c. xF�/D �c. xFı� /�c

�
�0; 1Œ

�
D��c. xFı� /D��c

�
S
ı�
f

�
D�

X
J\K 6D∅

2jJ j�1�
� eE 0;ı�

J

�
:

But since eE 0;�

J D
eE 0;ı�

J �RC , it follows that

�c. xF�/D
X

J\K 6D∅

2jJ j�1�
� eE 0;ı�

J

�
�c.RC/D

X
J\K 6D∅

2jJ j�1�
� eE 0;�

J

�
D �c.S

�
f /:

This proves the first equality of our statement. The equality �c. xF�/D .�1/dC1�c.F�/

is the consequence of �c. xF�/D �c. xFı� /�c.�0; 1Œ/, �c.F�/D �c.Fı� /�c.�0; 1Œ/ and
�c. xFı� /D .�1/dC1�c.Fı� /.

To finish, equality �c.S
�
f
/D��c.G�/ comes from the equality �c.G�/D �c. xFı� /

recalled in Remark 4.11 and from �c. xF�/D��c. xFı� /, �c.S
�
f
/D �c. xF�/.

Remark 4.13 As stated in Theorem 4.12, the realization via �c of the motivic Milnor
fiber S�

f
for � 2 f�1; 1; <;>g gives the Euler–Poincaré characteristic of the corre-

sponding set theoretic semialgebraic closed Milnor fiber xF� . Nevertheless it is worth
noting that this equality is in general not true at the higher level of �.K0ŒBSAR�/. Even
computed in K0.VarR/˝ZŒ1

2
�, we may have S�

f
6D ŒAf;� �, for a given semialgebraic

formula Af;� with real points xF� . Let us illustrate this remark by the following quite
trivial example.

Example 4.14 Let us consider the simple case where f W R2 ! R is given by
f .x;y/D xy . After one blowing-up � W M !R2 of the origin of R2 , the situation
is as required by Theorem 4.2. We denote by E1 the exceptional divisor ��1.0/

(which is isomorphic to P1 ) and by E2;E3 the irreducible components of the strict
transform ��1.ff D0g/. The induced stratification of E1 is given by E0

1;2
DE1\E2 ,

E0
1;3
DE1\E3 and the two connected components E

00
1
;E
000
1

of E1 n .E2 [E3/.
We consider a chart .X;Y / of M such that �.X;Y / D .x D Y;y D XY /. In this
chart, .f ı �/.X;Y /DXY 2 . The multiplicity of f ı � along E1 is N1 D 2 and the
multiplicity of jac � along E1 is 1, thus �1 D 2. Assuming that E

00
1

corresponds to
X > 0 and E

000
1

corresponds to X < 0, it follows that

eE00;�1 D
˚
.X; t/

ˇ̌
X 2E

00
1 ; t 2R;Xt2?�

	
;eE000;�1 D

˚
.X; t/

ˇ̌
X 2E

000
1 ; t 2R;Xt2?�

	
;
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where ?� is D 1, D �1, > or < 0 in case � is 1, �1, > or <. In case � D 1 we
obtain � eE 00;11

�
D L� 1 and

� eE 000;11

�
D 0

since eE 00;11 has a one-to-one projection onto f.X;Y / jX D 0; Y 6D 0g and eE 000;11 is
empty. Now in a neighborhood of E0

1;2
, f ı�.X;Y /DXY 2 , giving N1D 1, N2D 2

and mD gcd.N1;N2/D 1. We also have �1 D 2 and �2 D 1. It follows that

eE 0;1

1;2 D f.0; t/ j t 2R; t D 1g thus
� eE 0;1

1;2

�
D 1:

In the same way, using another chart, one finds� eE 0;1

1;3

�
D 1:

By Theorem 4.2 we then have

Z1
f .T /D .L� 1/1�1.L� 1/

 
L�2T 2

1�L�2T 2

!
C 2.L� 1/2�1

 
L�2T 2

1�L�2T 2

! 
L�1T

1�L�1T

!
;

Z1
f .T /D

L� 1

.LT �1� 1/2
;

S1
f D�.L� 1/:

Of course we find that �c.Sf /D �c.ff D cg\ xB.0; 1//D 2, 0< c� 1.

Now let us for instance choose fxy D c; 1� x2 � y2 > 0g for 0 < c� 1 as a basic
semialgebraic formula to represent the open Milnor fiber of f D 0 and let us compute
ˇ.Œxy D c; 1� x2 � y2 > 0�/ (rather than Œxy D c; 1� x2 � y2 > 0� itself, since we
use regular homeomorphisms in our computations). By definition of the realization
ˇW K0.BSAR/! ZŒ1

2
� Œu�, we have

ˇ
�
Œxy D c; 1�x2

�y2 > 0�
�
D

1
4
ˇ
�
Œxy D c; z2

D 1�x2
�y2�

�
�

1
4
ˇ
�
Œxy D c; z2

D x2
Cy2

� 1�
�

C
1
2
ˇ
�
Œxy D c; 1�x2

�y2
6D 0�

�
:

Projecting the algebraic set fxyDc; z2D1�x2�y2g orthogonally to the plane xD�y

with coordinates .X D 1p
2
.x�y/; z/ one finds twice the quadric z2C 2X 2 D 1� 2c ,

that is, up to regular homeomorphism, two circles. A circle having class uC 1, we
have

ˇ
�
Œxy D c; z2

D 1�x2
�y2�

�
D 2.uC 1/:
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Projecting the algebraic set fxy D c; z2 D x2Cy2� 1g to the plane x D�y with co-
ordinates .X D 1p

2
.x � y/; z/ one finds twice the hyperbola 2X 2 � z2 D 1 � 2c .

Projecting orthogonally again the hyperbola onto one of its asymptotic axes we see
that this hyperbola has class u� 1. It gives

ˇ
�
Œxy D c; z2

D x2
Cy2

� 1�
�
D 2.u� 1/:

Finally the constructible set fxy D c; 1�x2�y2 6D 0g being the hyperbola without 4

points, we have

ˇ
�
Œxy D c; 1�x2

�y2 > 0�
�
D

1
2
.uC 1/� 1

2
.u� 1/C 1

2
.u� 1/� 2D

u� 3

2
:

Of course, �c.�.Œxy D c; 1�x2�y2 > 0�//D �c.ff D cg\B.0; 1//D�2.

The simple semialgebraic formula representing the set theoretic closed Milnor fiber is
fxyDc; 1�x2�y2�0g, it has class ˇ.ŒxyDc; 1�x2�y2>0�/C4ˇ.Œf�g�/D 1

2
.uC5/

in ZŒ1
2
� Œu�. But although

�c

�
�
�
Œxy D c; 1�x2

�y2
� 0�

��
D �c.S

1
f /D �c

�
ff D cg\ xB.0; 1/

�
D 2

as expected from Theorem 4.12, we observe that

uC 5

2
D ˇ

�
Œxy D c; 1�x2

�y2
� 0�

�
6D ˇ.S1

f /D�.u� 1/:

As a final consequence, we certainly cannot have this equality between

�
�
Œxy D c; 1�x2

�y2
� 0�

�
and S1

f

at the level of K0.VarR/˝ZŒ1
2
�.
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