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Brauer groups and étale cohomology
in derived algebraic geometry

BENJAMIN ANTIEAU

DAVID GEPNER

In this paper, we study Azumaya algebras and Brauer groups in derived algebraic
geometry. We establish various fundamental facts about Brauer groups in this setting,
and we provide a computational tool, which we use to compute the Brauer group in
several examples. In particular, we show that the Brauer group of the sphere spectrum
vanishes, which solves a conjecture of Baker and Richter, and we use this to prove
two uniqueness theorems for the stable homotopy category. Our key technical results
include the local geometricity, in the sense of Artin n–stacks, of the moduli space
of perfect modules over a smooth and proper algebra, the étale local triviality of
Azumaya algebras over connective derived schemes and a local to global principle
for the algebraicity of stacks of stable categories.

14F22, 18G55; 14D20, 18E30

1 Introduction

1.1 Setting

Derived algebraic geometry is a generalization of classical Grothendieck-style algebraic
geometry aimed at bringing techniques from geometry to bear on problems in homotopy
theory, and used to unify and explain many disparate results about categories of sheaves
on schemes. It has been used by Arinkin and Gaitsgory [3] to formulate a precise
version of the geometric Langlands conjecture, by Ben-Zvi, Francis and Nadler [9] to
study integral transforms and Hochschild homology of coherent sheaves, by Lurie and
others to study topological modular forms, by Toën and Vaquié [58] to study moduli
spaces of complexes of vector bundles and by Toën [57] to study derived Azumaya
algebras. Moreover, the philosophy of derived algebraic geometry is closely related to
noncommutative geometry and to the idea of hidden smoothness of Kontsevich.

The basic objects in derived algebraic geometry are “derived” versions of commutative
rings. There are various things this might mean. For instance, it could mean simply
a graded commutative ring, or a commutative differential-graded ring, such as the
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de Rham complex ��.M / of a manifold M . Or, it could mean a commutative ring
spectrum, which is to say a spectrum equipped with a coherently homotopy commutative
and associative multiplication. The basic example of such a commutative ring spectrum
is the sphere spectrum S , which is the initial commutative ring spectrum, and hence
plays the role of the integers Z in derived algebraic geometry. Commutative ring
spectra are in a precise sense the universal class of derived commutative rings. We
work throughout this paper with connective commutative ring spectra, their module
categories and their associated schemes.

While a substantial portion of the theory we develop in this paper has been studied
previously for simplicial commutative rings, it is important for applications to homotopy
theory and differential geometry to have results applicable to the much broader class
of commutative (or E1 ) ring spectra, as the vast majority of the rings which arise
in these contexts are only of this more general form. Simplicial commutative rings
are special cases of commutative differential graded rings, and an E1–ring spectrum
admits an E1–dg model if and only if it is a commutative algebra over the Eilenberg–
Mac Lane spectrum HZ. To give an idea of how specialized a class this is, note that
an arbitrary spectrum M is an HZ–module precisely when all of its k –invariants
are trivial, meaning that it decomposes as a product of spectra †nH�nM , or that it
has no nontrivial extensions in its “composition series” (Postnikov tower). Rather,
the basic E1–ring is the sphere spectrum S , which is the group completion of the
symmetric monoidal category of finite sets and automorphisms (as opposed to only
identities, which yields Z) and captures substantial information from differential
and F1 –geometry and contains the homological complexity of the symmetric groups.
Similarly, the algebraic K–theory spectra, as well as other important spectra such as
those arising from bordism theories of manifolds, in the study of the mapping class
group and the Mumford conjecture, or in topological Hochschild or cyclic homology,
tend not to exist in the differential graded world.

Nevertheless, an E1–ring spectrum R should be regarded as a nilpotent thickening of
its underlying commutative ring �0R, in much the same way as the Grothendieck school
successfully incorporated nilpotent elements of ordinary rings into algebraic geometry
via scheme theory. Of course, this relies upon the “local” theory of homotopical
commutative algebra, which, thanks to the efforts of many mathematicians, is now
well established. In particular, there is a good notion of étale map of commutative
ring spectra, and so the basic geometric objects in our paper will be glued together, in
this topology, from commutative ring spectra. We adopt Grothendieck’s “functor of
points” perspective; specifically, we fix a base E1–ring R and consider the category of
connective commutative R–algebras, CAlg cn

R . A sheaf is then a space-valued functor
on CAlg cn

R which satisfies descent for the étale topology in the appropriate homotopical
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sense. For instance, if S is a commutative R–algebra, there is the representable sheaf
Spec S whose space of T –points is the mapping space map.S;T / in the 1–category
of connective commutative R–algebras.

Just as in ordinary algebraic geometry, one is really only interested in a subclass of
sheaves which are geometric in some sense. An important feature of derived algebraic
geometry is the presence of higher versions of Artin stacks, an idea due to Simpson [53];
roughly, this is the smallest class of sheaves which contain the representables Spec S

and is closed under formation of quotients by smooth groupoid actions. By restricting
attention to these sheaves, it is possible to prove many EGA-style statements. The
situation is entirely analogous to the classes of schemes or algebraic spaces in ordinary
algebraic geometry, which can be similarly expressed as the closure of the affines under
formation of Zariski or étale quotients, respectively. The difference is that we allow our
sheaves to take values in spaces, a model for the theory of higher groupoids, and that
we require the larger class which is closed under smooth actions, so that it contains
objects such as the deloopings BnA of a smooth abelian group scheme A. These are
familiar objects: the Artin 1–stack BA is the moduli space of A–torsors, and the Artin
2–stack B2A is the moduli space of gerbes with band A.

One of the main goals of this paper is to study Azumaya algebras over these derived
geometric objects. Historically, the notion of Azumaya algebra, due to Auslander and
Goldman [5], arose from an attempt to generalize the Brauer group of a field. It was
then globalized by Grothendieck [31], who defined an Azumaya algebra A over a
scheme X as a sheaf of coherent OX –algebras that is étale locally a matrix algebra. In
other words, there is a surjective étale map pW U !X such that p�AŠMn.OU /. The
Brauer group of a scheme classifies Azumaya algebras up to Morita equivalence, that
is, up to equivalence of their stacks of modules. The original examples of Azumaya
algebras are central simple algebras over a field k ; by Wedderburn’s Theorem, these
are precisely the algebras Mn.D/, where D is a division algebra of finite dimension
over its center k . The algebra of quaternion numbers over R is thus an example of an
Azumaya R–algebra, and represents the generator of Br.R/Š Z=2.

In more geometric settings, the first example of an Azumaya algebra is the endomor-
phism algebra of a vector bundle, though these have trivial Brauer class. Locally,
any Azumaya algebra is the endomorphism algebra of a vector bundle, but the vector
bundles do not generally glue to a vector bundle on the total space. However, every
Azumaya algebra is the endomorphism algebra of a twisted vector bundle, a perspective
that has recently gained a great deal of importance. For instance, in the theory of
moduli spaces of vector bundles, there is always a twisted universal vector bundle, and
the class of its endomorphism algebra in the Brauer group is precisely the obstruction
to the existence of a universal (nontwisted) vector bundle on the moduli space. Brauer
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groups and Azumaya algebras play an important role in many areas of mathematics, but
especially in arithmetic geometry, algebraic geometry and applications to mathematical
physics. In arithmetic geometry, they are closely related to Tate’s conjecture on l –adic
cohomology of schemes over finite fields, and they play a critical role in studying
rational points of varieties through, for example, the Brauer–Manin obstructions to
the Hasse principle. In algebraic geometry, Azumaya algebras arise naturally when
studying moduli spaces of vector bundles, and Brauer classes appear when considering
certain constructions motivated from physics in homological mirror symmetry. The
Brauer group was also used by Artin and Mumford [4] to construct one of the first
examples of a nonrational unirational complex variety.

As an abstract group, defined via the above equivalence relation, the Brauer group is
difficult to compute directly. Instead, one introduces the cohomological Brauer group
of a scheme, Br0.X / D H2

Ket.X;Gm/tors . There is an inclusion Br.X / � Br0.X /. A
first critical problem, posed by Grothendieck, is whether this inclusion is an equality.
Unfortunately, the answer is “no” in general, although de Jong has written a proof [36] of
a theorem of O Gabber that equality holds if X is quasiprojective, or more generally has
an ample line bundle. However, by expanding the notion of Azumaya algebra to derived
Azumaya algebra, as done in Lieblich [39, Chapter 3] and Toën [57], the answer to the
corresponding question is “yes,” at least for quasicompact and quasiseparated schemes.
This was shown by Toën, who also shows that the result holds for quasicompact
and quasiseparated derived schemes built from simplicial commutative rings. One of
the purposes of the present paper is to generalize this theorem to quasicompact and
quasiseparated derived schemes based on connective commutative ring spectra, which
is necessary for our applications to homotopy theory. To any class ˛ 2 Br0.X / there
is an associated category Mod˛X of complexes of quasicoherent ˛–twisted sheaves.
When this derived category is equivalent to ModA for an ordinary Azumaya algebra A,
then ˛ 2 Br.X /. However, even when this fails, as long as X is quasicompact and
quasiseparated, there is a derived Azumaya algebra A such that Mod˛X 'ModA . Hence
derived Azumaya algebras are locally endomorphisms algebras of complexes of vector
bundles, and not just vector bundles, and therefore the appropriate notion of Morita
equivalence is based on tilting complexes instead of bimodules.

One of the main features of this category Mod˛X 'ModA of quasicoherent ˛–twisted
sheaves is that it allows us to define the ˛–twisted K–theory spectrum K˛.X / of X

as the K–theory of the subcategory of perfect objects (see Definition 6.5). The reason
this is sensible is that, given an Azumaya OX –algebra A, there is an Azumaya OX –
algebra B such that ModA˝ModB'ModX ; moreover, B can be taken to be the oppo-
site OX –algebra Aop and ModAop'Mod�˛X . Note that because Br0.X /DH2

Ket.X IGm/,
this is entirely analogous to what happens topologically, where the twists are typically
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given by elements of the cohomology group H2.X IC�/Š H3.X IZ/ in the complex
case and elements of H2.X IR�/ in the real case; see the authors and Gómez [2].
While we do not study the twisted K–theory of derived schemes in this paper, the
basic structural features (such as additivity and localization) follow from the untwisted
case as in [57], using the fact that our categories of ˛–twisted sheaves Mod˛X 'ModA

admit global generators with endomorphism algebra A.

1.2 Summary

We now give a detailed summary of the paper. By definition, an R–algebra A is
Azumaya if it is a compact generator of the 1–category of R–modules and if the
multiplication action

A˝R Aop
�! EndR.A/

of A˝R Aop on A is an equivalence. This definition is due to Auslander and Gold-
man [5] in the case of discrete commutative rings, and it has been studied in the settings
of schemes by Grothendieck [31], E1–ring spectra by Baker, Richter and Szymik [8],
and derived algebraic geometry over simplicial commutative rings by Toën [57]. In a
slightly different direction, it has also been studied in the setting of higher categories
by Borceux and Vitale [15] and Johnson [35]. All of these variations ultimately rely
on the idea of an Azumaya algebra as an algebra whose module category is invertible
with respect to a certain “Morita” symmetric monoidal structure.

Although we restrict to Azumaya algebras over commutative ring spectra, we note
that the notion of Azumaya algebra makes sense over any E3 –ring spectrum. The
reason for this is that if R is an E3 –ring, then ModR is naturally a E2 –monoidal 1–
category, and so its 1–category of modules is naturally E1 –monoidal. The theory of
Azumaya algebras is closely related to the notions of smoothness and properness
in noncommutative geometry, which have been studied extensively starting from
Kapranov [37]. These and related ideas have been used to great success to prove
theorems in algebraic geometry. For instance, van den Bergh [10] uses noncommutative
algebras to give a proof of the Bondal–Orlov conjecture, showing that birational smooth
projective 3–folds are derived equivalent.

One of main points of the paper is to establish the following theorem, which says that
all Azumaya algebras over the sphere spectrum are Morita equivalent. This proves a
conjecture of Baker and Richter.

Corollary 7.17 The Brauer group of the sphere spectrum is zero.
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The proof of the theorem highlights the differences between our approach and the
approaches of Baker, Richter and Szymik [8] and Toën [57]. While Brauer groups
of commutative ring spectra were introduced in [8], they are impossible to compute
without identifying them with cohomological objects; this is what we do for connective
commutative ring spectra. This transition is similar to the move from the algebraic
Brauer group of Auslander and Goldman [5] to the cohomological Brauer group of
Grothendieck [31]. On the other hand, Toën has a similar cohomological philosophy
in [57], but a key point in his proof fails dramatically for connective ring spectra in
general, and hence requires a radically different proof; see Section 6.

This theorem follows from several other important results, which we now outline.

Theorem 3.15 Let C be a compactly generated R–linear category (a stable pre-
sentable 1–category enriched in R–modules). Then

(1) C is dualizable in CatR;! if and only if C is equivalent to ModA for a smooth
and proper R–algebra A,

(2) C is invertible in CatR;! if and only if C is equivalent to ModA for an Azumaya
R–algebra A.

The analogous results were proved for simplicial commutative rings in [57]. A final
algebraic ingredient is the fact that smooth and proper R–algebras are compact. In
particular, Azumaya algebras are compact algebras. This is a key point later in our
analysis of the geometricity of the sheaf of perfect modules for an Azumaya algebra.
To establish it requires showing that the 1–category of spectra Sp is compact in the
1–category of all compactly generated S–linear categories, which does not follow
immediately from the fact that it is the unit object in this symmetric monoidal 1–
category. The theory of smooth and proper algebras is also fundamental in the theory
of noncommutative motives, and has been studied in that setting by Cisinski and
Tabuada [18] and Blumberg, Gepner and Tabuada [12].

Suppose that R is an Ek –ring spectrum for 3� k �1. Then, the characterization of
Azumaya algebras above lets us define the Brauer space of R as the Picard space

Bralg.R/D Pic.CatR;!/

of the Ek�2 –monoidal 1–category of compactly generated R–linear categories. This
space is a grouplike Ek�2 –space, and so is, in particular, a .k � 2/–fold loop space.
The Brauer group is the abelian group

�0 Bralg.R/:
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When k D1, it follows that there is a Brauer spectrum bralg.R/. One strength of
this definition is that it generalizes well to other settings, such as arbitrary compactly
generated Ek�2 –monoidal stable 1–categories. We do not develop this theory in our
paper, instead working only with E1–ring spectra, but it is closely related to ideas
about Brauer groups of 2–categories.

Let us take a moment to place this idea in context. We can describe the space Bralg.R/

as follows. The 0–simplices are 1–categories ModA where A is an Azumaya R–
algebra. A 1–cell from A to B is an equivalence ModA ' ModB ; these may be
identified with certain right Aop˝R B –modules. A 2–cell is the data of an equivalence
between bimodules, and so forth. When R is an ordinary ring, there is no interesting
data in degree higher than 2. However, when R is a derived ring, the higher homotopy
groups appear in the homotopy of Bralg.R/; see (1) below. Thus, our Brauer space can
be viewed as a generalization of the Brauer 3–group of Gordon, Power and Street [28]
and Duskin [21], and as a generalization of the approach to Brauer groups by Vitale
in [60] and [15].

The subject of derived algebraic geometry is increasingly important due to its utility
in proving theorems in homotopy theory and algebraic geometry. As we will see in
this paper, even to derive purely homotopy-theoretic results about modules over the
sphere spectrum, we will need to employ derived algebraic geometry in an essentially
nontrivial way. Such methods are essential even in ordinary algebra. For instance, the
classical proof (see Grothendieck [33]) that the Brauer group of the integers vanishes
employs geometric methods and cohomology.

In order to utilize cohomological methods to compute Brauer groups of derived schemes,
it is necessary to show that Azumaya algebras are locally Morita equivalent to the base.
This local triviality holds in the étale topology, but not in the Zariski topology (as is
shown by the quaternions over R). This is not easy to prove and uses the geometry of
smooth higher Artin sheaves. Higher Artin sheaves are built inductively out of affine
schemes by taking iterated quotients by smooth equivalence relations. We study these
sheaves in Section 4, and we prove the following theorem.

Theorem 4.47 If pW X!Y is a smooth locally geometric morphism that is surjective
on geometric points, then for every S –point Spec S ! Y there exists an étale cover
Spec T ! Spec S and a T –point Spec T !X such that

Spec T //

��

X

��

Spec S // Y

commutes.
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Briefly, the theorem says that if f W X ! Spec R is a smooth surjection, where R is a
connective commutative ring spectrum and X is filtered by higher Artin stacks, then f
has étale local sections. This extends the classical result about smooth morphisms
of schemes to derived algebraic geometry, and has been established in other contexts
by Toën and Vezzosi [59]. To use this result on sections of smooth morphisms, we
first need to establish the following theorem, showing that a certain moduli sheaf is
sufficiently geometric; it is due to [58] in the simplicial commutative setting.

Theorem 5.8 Let A be a compact R–algebra. Then, the stack MA is locally geometric
and locally of finite presentation, and the functor � W MA!MR is locally geometric
and locally of finite presentation.

Compact R–algebras are those R–algebras that admit a finite presentation in the 1–
category AlgR . This class includes the smooth and proper R–algebras, but is much
bigger. After we finished our paper, we were informed that Pandit had established this
result when A is smooth and proper in his thesis [49].

This is the case in particular for CDModA when A is an Azumaya algebra, in which
case the subsheaf MorA �MA that classifies Morita equivalences from A to R is
smooth and surjective over Spec R. This is used to prove the following theorem.

Theorem 5.11 Let R be a connective E1 ring spectrum, and let A be an Azumaya
R–algebra. Then, there is a faithfully flat étale R–algebra S such that A˝R S is
Morita equivalent to S .

For nonconnective commutative ring spectra the question of étale-local triviality is
more subtle: there are examples where it fails. One possibility is to use Galois descent
instead of étale descent. This is the subject of current work by the second author and
Lawson [26].

In Section 6, we study families of linear categories over sheaves in order to establish
the following key result regarding the existence of compact generators.

Theorem 6.1 (Local-global principle) Let C be an R–linear category with descent,
and suppose that R! S is an étale cover such that C˝R S has a compact generator.
Then, C has a compact generator.

This local-global principle is proved by establishing analogous statements for Zariski
covers, for finite flat covers and for Nisnevich covers. The method for showing the
Zariski local-global result follows work of Thomason and Trobaugh [56], Bökstedt and
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Neeman [13], Neeman [47] and Bondal and van den Bergh [14] on derived categories
of schemes. The local-global principle for finite flat covers is straightforward. The
real work is in establishing the principle for étale covers. Lurie proves in [43, The-
orem 2.9] that the Morel–Voevodsky Theorem, which reduces Nisnevich descent to
affine Nisnevich excision, holds for connective E1–ring spectra. Thus, we show a
local-global principle for affine Nisnevich squares. This idea parallels work of Lurie
on a local-global principle for the compact generation of linear categories (as opposed,
in our work, for compact generation by a single object). Toën [57] proves a similar
local-global principle for fppf covers in the setting of simplicial commutative rings,
but his proofs both of the étale and the fppf local-global principles do not obviously
generalize to E1–ring spectra because it is typically not the case that there are algebra
structures on module-theoretic quotients of ring spectra.

The local-global principle shows that if C is a linear category with descent over a
quasicompact and quasiseparated derived scheme such that C is étale locally equivalent
to modules over an Azumaya algebra, then C is globally equivalent to modules over
an Azumaya algebra. This solves the BrD Br0 problem of Grothendieck for derived
schemes.

Theorem 7.2 For any quasicompact and quasiseparated derived scheme X , we have
Br.X /D Br0.X /.

The local-global principle has another interesting application: if X is a quasicompact
and quasiseparated derived scheme over the p–local sphere, then the 1–category
LK.n/ModX of K.n/–local objects is compactly generated.

In Section 7, we define a Brauer sheaf Br. If X is an étale sheaf, the Brauer space
Br.X / of X is the space of maps from X to Br in the 1–topos ShvKet

R . In the case
of an affine scheme Spec R, combining the étale-triviality of Azumaya algebras and
the étale local-global principle, we find that Bralg.R/' Br.Spec R/. One advantage
of using the Brauer sheaf Br is that it is a delooping of the Picard sheaf: �Br' Pic.
This allows us to compute the homotopy sheaves of Br:

�kBr'

8̂̂̂<̂
ˆ̂:

0 if k D 0;

Z if k D 1;

�0O� if k D 2;

�k�2O if k � 3;

where O denotes the structure sheaf of ShvKet
R . We introduce a computation tool, a

descent spectral sequence

Ep;q
2
D Hp.X; �qBr/) �q�pBr.X /;
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which converges if X is affine or has finite étale cohomological dimension. When
X D Spec R, the spectral sequence collapses, and we find that

(1) �kBr.R/Š

8̂̂̂̂
<̂
ˆ̂̂:

H1
Ket.Spec�0R;Z/�H2

Ket.Spec�0R;Gm/ if k D 0;

H0
Ket.Spec�0R;Z/�H1

Ket.Spec�0R;Gm/ if k D 1;

�0R� if k D 2;

�k�2R if k � 3:

In particular, we recover [8, Corollary 6.2], one of the main results of that paper, which
establishes the existence of many Azumaya algebras over commutative ring spectra.
That is, the splitting when k D 0, establishes a map Br.�0R/! �0Br.R/.

It follows that the Brauer group vanishes in many interesting cases; for example

�0Br.ko/D 0; �0Br.ku/D 0; �0Br.MU/D 0; �0Br.tmf /D 0:

For examples of nonzero Brauer groups, we find that

�0Br.SŒ 1
p
�/' Z=2;

and for the p–local sphere spectrum, the Brauer group fits into an exact sequence

0! �0Br.S.p//! Z=2˚
M

p

Q=Z!Q=Z! 0:

Note that the p–inverted sphere and the p–local sphere give examples of non-Eilenberg–
Mac Lane E1–ring spectra with nonzero Brauer groups. By (1), if R is a connec-
tive E1–ring spectrum, we can compute the homotopy groups of Br.R/ whenever
we can compute the relevant étale cohomology groups of Spec�0R. For example,
�0Br.R/D 0 if R is any connective E1–ring spectrum such that �0RŠ Z or Wk ,
the ring of Witt vectors over Fpk .

We state as theorems two consequences of the vanishing of the Brauer group of the
sphere spectrum. These theorems follow immediately from the fact that Br.S/D 0 and
Theorems 3.15 and 7.2.

Theorem 1.1 Let C be a compactly generated stable presentable 1–category, and
suppose that there exists a stable presentable 1–category D such that C˝D'ModS ,
the 1–category of spectra. Then, C'ModS .

Theorem 1.2 Let C be a stable presentable 1–category such that there exists a
faithfully flat étale S–algebra T such that C˝ModT 'ModT . Then, C'ModS .
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The first theorem says that if C is compactly generated and invertible as a ModS –
module, then C is already equivalent to ModS . The second theorem says that if C

is étale locally equivalent to spectra, then C is already equivalent to the 1–category
of spectra. These give strong uniqueness, or rigidity, results for S–modules. Such
statements have a long history, and are related to the conjecture of Margolis, which gives
conditions for a triangulated category to be equivalent to the stable homotopy category.
The conjecture was proven for triangulated categories with models by Schwede and
Shipley [51]. Our results extend theirs and also those of Schwede [50].

We briefly outline the contents of our paper. We start in Section 2 by giving some
background on rings, modules, and the étale topology in the context of derived algebraic
geometry. In Section 3, we consider the module categories of R–algebras A under
various conditions, including compactness, properness, and smoothness. We prove
there the characterization that A is Azumaya (resp. smooth and proper) if and only if
ModA is invertible (resp. dualizable) in a certain symmetric monoidal 1–category of
R–linear categories. We develop the theory of higher Artin sheaves in derived algebraic
geometry in Section 4. In Section 5, we harness the notion of geometric sheaves to
study the moduli space of A–modules for nice R–algebras A. Specializing to the case
of Azumaya algebras, we prove that the sheaf of Morita equivalences from A to R

is smooth and surjective over Spec R, and hence has étale-local sections. It follows
that Azumaya R–algebras are étale locally trivial. We consider the problem of when a
stack of linear categories over a stack admits a perfect generator in Section 6. In the
final section, Section 7, we study the Brauer group, define the Brauer spectral sequence,
and give the computations, including the important theorem that the Brauer group of
the sphere spectrum vanishes.

Acknowledgements Much of this paper is based on ideas of Lieblich and Toën, and
the technical framework is supported on the work of Jacob Lurie We thank Tyler
Lawson and Jacob Lurie for various comments and suggestions. Finally, we want
to even more specifically cite the work of Toën as influencing ours. For simplicial
commutative rings, the key insights on moduli spaces of objects, the étale local triviality
of Azumaya algebras, and gluing of generators are due to Toën [57] and Toën and
Vaquie [58]. Most of the work of Sections 5 and 6 is a recapitulation of these ideas in
the setting of ring spectra.

2 Ring and module theory

In this section of the paper, we give some background on ring spectra and their module
categories, compactness, Grothendieck topologies on commutative ring spectra, and
Tor-amplitude.
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2.1 Rings and modules

Lurie [45] gives good notions of module categories for ring objects in symmetric
monoidal 1–categories. We refer to that book for details on the construction of the
objects introduced in the rest of this section. If C is a symmetric monoidal1–category,
and if A is an algebra object, by which we mean an E1 –algebra in C, then there is an
1–category ModA.C/ of right A–modules in C; similarly there is an 1–category
of left A–modules AMod.C/ ' ModAop.C/. Given two algebras A and B , there
is an 1–category AModB.C/ of .A;B/–bimodules in C, which is equivalent to
ModAop˝B.C/. The Ek –algebras in C form an 1–category AlgEk

.C/. When k D 1,
we write Alg.C/ for this 1–category, and when k D1, we write CAlg.C/. When
CD Sp, the 1–category of spectra with the smash product tensor structure, we will
write more simply AlgEk

, Alg, CAlg, ModA , AMod, AModB and so forth for the
1–categories of Ek –ring spectra, associative ring spectra, commutative ring spectra,
etc. When A is a discrete associative ring, then the 1–category of right modules
ModHA over the Eilenberg–Mac Lane spectrum of HA is equivalent to the1–category
of chain complexes on A.

2.2 Compact objects and generators

We introduce the notion of compactness, which will play a crucial role in everything
that follows.

Definition 2.1 Let C denote an 1–category which is closed under �–filtered colim-
its [41, Section 5.3.1]. A functor f W C!D is said to be �–continuous if f preserves
�–filtered colimits. In the special case that f preserves !–filtered colimits, we simply
say that f is continuous.

Definition 2.2 Let C denote an1–category which is closed under �–filtered colimits.
An object x of C is said to be �–compact if the mapping space functor

mapC.x;�/W C �! S

is �–continuous, where S is the 1–category of spaces. We say that x is compact if it
is !–compact.

Definition 2.3 Let C be an 1–category which is closed under geometric realizations
(in other words, colimits of simplicial diagrams). An object x of C is said to be
projective if the mapping space functor

mapC.x;�/W C �! S

preserves geometric realizations.
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A compact projective object x of an 1–category C corepresents a functor which
preserves both filtered colimits and geometric realizations. Both filtered colimits and
the simplicial indexing category �op are examples of sifted colimits (that is, colimits
indexed by simplicial sets K such that the diagram K!K �K is cofinal), and x is
compact projective if and only if mapC.x;�/ preserves sifted colimits (see [41, Corol-
lary 5.5.8.17]).

An 1–category with all small colimits is said to be �–compactly generated if the
natural map Ind�.C�/ ! C is an equivalence, where Ind� denotes the �–filtered
cocompletion [41, Section 5.3.5]. By definition, a presentable 1–category is an 1–
category that is �–compactly generated for some infinite regular cardinal � . When C

is !–compactly generated, we say simply that it is compactly generated. If C is
compactly generated, and if D is a full subcategory of C! such that the closure of D

in C under finite colimits and retracts is equivalent to C! , then we say that C is
compactly generated by D.

Lemma 2.4 A stable presentable 1–category C is compactly generated by a set X

of compact objects if for any object y 2 C, MapC.x;y/' 0 for all x 2X if and only
if y ' �.

Proof See the proof of [52, Lemma 2.2.1].

Returning to the algebraic situation of the previous section, if A is an E1 –ring spectrum,
then ModA is a stable presentable 1–category. Presentability follows from [45, Corol-
lary 4.2.3.7.(1)] and stability is straightforward. In particular, ModA admits all small
colimits. Moreover, ModA is compactly generated by the single object A. We will
often refer to compact objects of ModA as perfect modules, in keeping with the usual
terminology of algebraic geometry.

Definition 2.5 A connective A–module P is projective if it is projective as an object
of Mod cn

A , the 1–category of connective A–modules.

The following argument shows why there are no nonzero projective objects of ModA

in general. Suppose that M is a projective object of ModR . For any R–module N ,
we can write the suspension of N as the geometric realization

†N '
ˇ̌̌
0   N   

 N ˚N   
  � � �

ˇ̌̌
:

Then, by stability,

mapR.†
�1M;N /'mapR.M; †N /' jmap.M;N˚n/j ' BmapR.M;N /:
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In particular, �0mapR.†
�1M;N /D 0 for all R–modules N , so that idM ' 0. Thus,

M ' 0.

We record here a few facts about projective and compact modules.

Proposition 2.6 Let A be a connective E1 –ring spectrum.

(1) A connective right A–module P is projective if and only if it is a retract of a
free right A–module.

(2) A connective right A–module P is projective if and only if for every surjective
map M !N of right A–modules the map

map.P;M /!map.P;N /

is surjective.

(3) A right A–module P is compact if and only if it is dualizable: there exists a left
A–module P_ such that the composition

ModA

˝AP_

����! Sp
�1

���! S

is equivalent to the functor corepresented by P . In this case, P_ is a compact
left A–module.

(4) If P is a nonzero compact right A–module, then P has a bottom nonzero
homotopy group; that is, there exists some integer N such that

�nP D 0

for n � N and �NC1P ¤ 0. Moreover, �NC1P is finitely presented as a
�0A–module.

Proof Part (1) is [45, Proposition 8.2.2.7]. The proof of part (2) is the same as in the
discrete case. Part (3) is [45, Proposition 8.2.5.4]. Part (4) is [45, Corollary 8.2.5.5].

The following lemma will be used later in the paper.

Lemma 2.7 Let R be a commutative ring spectrum, A an R–algebra, and P and Q

compact right A–modules. Then, for any commutative R–algebra S , the natural map

(2) MapA.P;Q/˝R S !MapA˝RS .P ˝R S;Q˝R S/

is an equivalence of S –modules.
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Proof The statement is clear when P is a suspension of the free A–module A. We
prove the lemma by induction on the cells of P . So, suppose that we have a cofiber
sequence of compact modules

†nA!N ! P

such that

(3) MapA.N;Q/˝R S !MapA˝RS .N ˝R S;Q˝R S/

is an equivalence. We show that (2) holds. We obtain a morphism of cofiber sequences

MapA.†
nA;Q/˝R S //

��

MapA˝RS .†
nA˝R S;Q˝R S/

��

MapA.N;Q/˝R S //

��

MapA˝RS .N ˝R S;Q˝R S/

��

MapA.P;Q/˝R S // MapA˝RS .P ˝R S;Q˝R S/:

Since the left two vertical arrows are equivalences, the right arrow is an equivalence.
To finish the proof, we show that if (3) holds for N and if P is a retract of N , then (2)
holds. If N ' P ˚M , then there is a commutative square of equivalences

MapA.N;Q/˝R S //

��

MapA.P;Q/˝R S ˚MapA.M;Q/˝R S

��

MapA˝RS .N ˝R S;Q˝R S/ // MapA˝RS .P ˝R S;Q˝R S/

˚MapA˝RS .M ˝R S;Q˝R S/:

It follows (by looking for instance at cofibers of the vertical maps) that (2) holds.

The following form of the Morita Theorem is used frequently to show that certain
1–categories are categories of modules over some E1 –ring spectrum.

Theorem 2.8 (Morita theory) Let C be a stable presentable 1–category, and let P

be an object of C. Then, C is compactly generated by P if and only if

(4) C
MapC.P;�/
�������!ModEndC.P/op

is an equivalence.
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Proof One direction is the theorem of Schwede and Shipley, in the form found in
Lurie [45, Theorem 8.1.2.1]. So, suppose that (4) is an equivalence. The functor
MapC.P;�/ automatically preserves filtered colimits because it is an equivalence, so
we see that P is compact in C. Since MapC.P;�/ is conservative, it follows from
Lemma 2.4 that C is compactly generated by P .

2.3 Topologies on affine connective derived schemes

Fix an E1–ring R, and denote by CAlg cn
R the1–category of connective commutative

R–algebras. Set Aff cn
R D .CAlg cn

R /
op , the 1–category of affine connective derived

schemes over Spec R. We make extensive use of 1–topoi arising from Grothendieck
topologies on Aff cn

R . For details on the construction of these 1–topoi see [41, Chap-
ter 6] and [42, Section 5]. All of these topologies arise from pretopologies consisting
of special classes of flat morphisms, a notion we now define.

Definition 2.9 A morphism f W S ! T of commutative ring spectra is called flat if

�0.f /W �0S ! �0T

is a flat morphism of discrete rings and if f induces isomorphisms

�kS ˝�0S �0T
'
! �kT

for all integers k .

It is useful to use flatness to give a definition of many other properties of morphisms of
E1–ring spectra.

Definition 2.10 If P is a property of flat morphisms of discrete commutative rings,
such as being faithful or étale, then a morphism f W R! T of commutative rings is
said to be P if f is flat in the sense of Definition 2.9 and if �0.f / is P.

The Zariski topology on Aff cn
R is the Grothendieck topology generated by Zariski open

covers. Here, a map Spec T ! Spec S is a Zariski open cover if the associated map on
ring spectra S ! T is flat and induces a Zariski open cover Spec�0T ! Spec�0S .
The associated 1–topos of Zariski sheaves is denoted by ShvZar

R . Similarly, there is
an étale topology on Aff cn

R and an associated étale 1–topos ShvKet
R . We say a map

Spec T !Spec S is étale if S!T is flat and étale. Both of these Grothendieck topolo-
gies are constructed, explicitly, via the method of [42, Proposition 5.1]; see [42, Propo-
sition 5.4] for how to do this for the flat topology.
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2.4 Tor-amplitude

Most of the material below on Tor-amplitude and perfect modules was developed
in [11, Exposé I]. We refer also to the exposition in [56]. In the simplicial commutative
setting, this is treated in Toën and Vaquié [58]. Throughout this section, R is a
connective commutative ring spectrum. We refer to compact R–modules as perfect
R–modules. This is to agree with the terminology in the references. Over a scheme X ,
a complex of quasicoherent OX –modules is called perfect if its restriction to any affine
subscheme is perfect, or, equivalently, compact. While the perfect and compact modules
agree for affine schemes, on a general scheme X not every perfect module is compact.

Definition 2.11 An R–module P has Tor-amplitude contained in the interval Œa; b�
if for any �0R–module M (any module, not any complex of modules),

Hi.P ˝R M /D 0

for i 62 Œa; b�. If such integers a; b exist, then P is said to have finite Tor-amplitude.

If P is an R–module, then P has Tor-amplitude contained in Œa; b� if and only if
P ˝R �0R is a complex of �0R–modules with Tor-amplitude contained in Œa; b� in
the ordinary sense. Note, however, that our definition differs from that in [11, I 5.2]
simply in that we work with homology instead of cohomology.

The next proposition is used in the proof of the proposition that follows, but it seems
interesting in its own right.

Proposition 2.12 The functor

�0W Ho.Modproj
R
/!Modproj

�0R

is an equivalence, where the decoration proj denotes the full subcategory of projective
modules.

Proof This is a special case of [45, Corollary 8.2.2.19]. The analogous map on free
modules is an equivalence. Since projectives are summands of free modules, we deduce
that the functor �0 above is fully faithful.

Let P be a projective �0R–module. Then, there exists a free �0R–module F and an
idempotent homomorphism eW F!F such that P is the image of e . By definition, P

is also the filtered colimit of

F
e
�! F

e
�! F ! � � �
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in Mod�0R . Lift the diagram to a diagram of free R–modules F 0 , and let P 0 be the
filtered colimit. The R–module P 0 is projective because we can construct a splitting
of F 0! P 0 by mapping F 0 to each F 0 in the diagram via the idempotent e0 . Then,
�0.P

0/ is isomorphic to P . So, the functor is essentially surjective, and hence an
equivalence of categories.

The following proposition provides the technical results needed on perfect modules
over connective E1–ring spectra. In particular, parts (4)–(7) will be the key to giving
certain inductive proofs about the moduli of objects in module categories in Section 5.
We emphasize again that it was the insight of Toën and Vaquié [58] that suggests this
approach to studying perfect objects in the context of simplicial commutative rings.

Proposition 2.13 Let P and Q be R–modules.

(1) If P is perfect, then P has finite Tor-amplitude.

(2) If R0 is a connective commutative R–algebra, and if P is an R–module with
Tor-amplitude contained in Œa; b�, then P ˝R R0 is an R0–module with Tor-
amplitude contained in Œa; b�.

(3) If P has Tor-amplitude contained in Œa; b� and Q has Tor-amplitude contained
in Œc; d �, then P ˝R Q has Tor-amplitude contained in ŒaC c; bC d �.

(4) If P and Q have Tor-amplitude contained in Œa; b�, then for any morphism
P !Q, the cofiber has Tor-amplitude contained in Œa; bC 1�. Dually, the fiber
has Tor-amplitude contained in Œa� 1; b�.

(5) If P is a perfect R–module with Tor-amplitude contained in Œ0; b�, with 0� b ,
then P is connective, and �0P D H0.P ˝R �0R/.

(6) If P is perfect and has Tor-amplitude contained in Œa; a�, then P is equivalent to
†aM for a finitely generated projective R–module M .

(7) If P is perfect and has Tor-amplitude contained in Œa; b�, then there exists a
morphism

†aM ! P

such that M is a finitely generated projective R–module and the cofiber is
perfect and has Tor-amplitude contained in ŒaC 1; b�.

Proof Part (1) follows from [56, Propositions 2.2.12, 2.3.1.(d)]. That the notions of
perfection in Thomason, Trobaugh and Lurie agree is explained by [56, Theorem 2.4.4],
which is applicable here as the modules which appear in ModR are all quasicoherent,
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and so have quasicoherent homology. Parts (2) and (3) are [11, Proposition 5.6]. If C

is the cofiber of P !Q, and if M is a �0R–module, then

P ˝R M !Q˝R M ! C ˝R M

is a cofiber sequence in Mod�0R . The case of a fiber is dual. Thus, part (4) follows
immediately from the long exact sequence in homology.

Consider the Tor spectral sequence

E2
p;q D Tor��R

p .��P; �0R/q) �pCq.P ˝R �0R/D HpCq.P ˝R �0R/

with differentials dr
p;q of degree .�r; r � 1/ constructed by Elmendorf, Kriz, Mandell

and May in [23]. If P is a nontrivial perfect R–module with Tor-amplitude contained
in Œ0; b�, then the abutment of the spectral sequence is 0 when pC q < 0. We know
that P has a bottom homotopy group, say �k . That is, �kP is nonzero, and �j P D 0

for j < k . Calculating the graded tensor product, we see that E2
0;k

is the coequalizer ofM
iCjDk

�iP ˝�0R �j R � �kP

in the category of graded �0R–modules. So, E2
0;k
D �kP as a �0R–module. But, by

our hypothesis on k , no nonzero differential may hit E2
0;k

. All differentials out are
zero for degree reasons. It follows that �k.P ˝R �0R/¤ 0. Therefore, k � 0, and P

is connective. This proves the first statement of part (5), and the second statement
follows easily from the same argument.

To prove part (6), we may assume that aD 0. By [56, Proposition 2.3.1.(d)], we may
assume that P ˝R �0R is a bounded complex of finitely generated projective �0R–
modules. Because the kernel of a surjective map of finitely generated projective modules
is finitely generated projective, by induction, the good truncation ��0P ˝R �0R

�
!

P ˝R �0R is a bounded complex of finitely generated projective �0R–modules that
is concentrated in nonnegative degrees. We show now that �0P is a projective �0R–
module. By part (5), �0P ŠH0.P˝R�0R/. Since the homology is zero above degree
0, the good truncation ��0P ˝R �0R is a resolution of the finitely presented �0R–
module H0.P ˝R �0R/ by finitely generated projective �0R–modules. It suffices
to show that H0.P ˝R �0R/ is flat by Matsumura [46, Theorem 7.12]. If M is a
�0R–module, the Tor spectral sequence computing H�.P ˝R �0R˝�0R M / is

E2
p;q D Tor�0R

p .H�.P ˝R �0R/;M /q) HpCq.P ˝R �0R˝�0R M /:

But, for q > 0, E2
p;q D 0, so that for p > 0

Tor�0R
p .H0.P ˝R �0R/;M /Š Hp.P ˝R M /D 0;
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by the Tor-amplitude of P . Thus, H0.P ˝R �0R/ is flat.

Thus, by the previous theorem and the connectivity of P , there is a natural map

Q! P;

where Q is a finitely generated projective R–module and �0QŠ �0P . It suffices to
show that the cofiber C of this map is equivalent to zero. The R–module C is perfect
and has the property that C ˝R �0R is zero. Let �kC be the first nonzero homotopy
group of C . Then, †�kC is connective with Tor-amplitude contained in Œ0; 0�. By
part (5), �kC D H0.†

�kC ˝R �0R/D 0, a contradiction. Thus, C ' 0.

To prove part (7), we assume that aD 0. If b D 0, the statement follows from part (6).
Thus, assume that b>0, and consider P˝R�0R, which is a perfect complex over �0R

with bounded homology. As above, we may assume that P˝R�0R is in fact a bounded
complex of finitely generated projective �0R–modules concentrated in nonnegative
degrees. Thus, there is a natural morphism of complexes Z0 ! P ˝R �0R which
induces a surjection in degree 0 homology. Lift Z0 to a finitely generated projective
R–module M , by Proposition 2.12. We can write Z0 as a split summand of �0Rn ,
and hence M as a split summand of Rn . Since P is connective by part (5), the
composition

�0Rn
!Z0! P ˝R �0R

lifts to a map Rn! P . Composing with M !Rn , we obtain a map M ! P which
is a surjection on H0 . By the long exact sequence in homology, the cofiber has Tor-
amplitude contained in Œ1; b� (remembering that b> 0). Moreover, the cofiber is perfect
by the two out of three property for perfect modules [56, Proposition 2.2.13.(b)].

2.5 Vanishing loci

We show that the complement of the support of a perfect complex on an affine derived
scheme is a quasicompact open subscheme. Recall that a morphism of schemes X!Y

is quasicompact if for every open affine Spec R of Y , the pullback X �Y Spec R is
quasicompact; see Grothendieck [29, Definition I 6.1.1]. The following result is due to
Thomason [55] in the ordinary setting of discrete rings, and to Toën and Vaquié [58]
for simplicial commutative rings.

Proposition 2.14 Let R be a connective commutative ring spectrum, and let P be a
perfect R–module. The subfunctor VP � Spec R of points R! S such that P ˝R S

is quasi-isomorphic to zero is a quasicompact Zariski open immersion.
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Proof If R is discrete, the proposition is [55, Lemma 3.3.c]. To prove the proposition
when R is a connective commutative ring spectrum, let Q D P ˝R �0R, which
is a perfect complex of �0R–modules. Let VQ be the quasicompact Zariski open
subscheme of Spec�0R specified by the vanishing of Q by the discrete case. Choose
elements f1; : : : ; fn 2 �0R such that VQ is the union of the Spec�0RŒ1=fi �. We
claim that VP is the union V of the Spec RŒ1=fi � in Spec R. But, because P is a
perfect R–module, given an S –point Spec S ! V � Spec R of V , then

.P ˝R S/˝S �0S ' 0

if and only if
P ˝R S ' 0:

Indeed, P ˝R S has a bottom homotopy group, say of degree k , and it follows from
the proof of Proposition 2.13(5) that

�kP ˝R S Š Hk..P ˝R S/˝S �0S/:

3 Module categories and their module categories

In this section, we examine the algebra of module categories of E1–ring spectra,
viewed as E1–monoids in the 1–category of stable presentable 1–categories. This
leads to an important module-theoretic characterization of Azumaya R–algebras for
an E1–ring spectrum R: an R–algebra A is Azumaya if and only if ModA is an
invertible ModR –module.

3.1 R–linear categories

In [41, Chapter 5], Lurie constructs the 1–category Pr L of presentable 1–categories
and colimit preserving functors. We refer to Lurie’s book for the precise definition and
properties of presentable 1–categories. For us, the main points are that a presentable
1–category is closed under small limits and colimits and is �–compactly generated
for some infinite regular cardinal � . Moreover, the 1–category Pr L is also closed
under small limits and colimits, and there is a symmetric monoidal structure on Pr L

with unit object the 1–category of pointed spaces [45, Section 6.3].

A critical fact about Pr L is that if R is an Ek –ring spectrum (1 � k � 1), then
the 1–category of right R–modules ModR is an Ek�1 –monoidal stable presentable
1–category with unit R (where 1� 1D1). We can equivalently view ModR as
an Ek�1 –algebra in Pr L by [45, Proposition 8.1.2.6] in this case. This decrease in
coherent commutativity is the analogue of the usual fact that there is no tensor product
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of right A–modules when A is an associative ring. Thus, by [45, Corollary 6.3.5.17],
when 2 � k �1 we may build an 1–category CatR of (right) ModR –modules in
Pr L . In the notation of [45],

CatR DModModR
.Pr L/:

This 1–category is Ek�2 –monoidal and is closed under small limits and colimits.
Moreover, the Ek�2 –monoidal structure is closed; see [45, Remark 6.3.1.17] and the
beginning of the next section. The dual of C is

DRCD FunL
R.C;ModR/;

the functor category of left adjoint R–linear functors from C to ModR . When R is
the sphere spectrum, CatR is also denoted by Pr L

st ; it is the 1–category of stable
presentable 1–categories and colimit preserving functors. Since ModR is stable,
we could also define CatR as ModModR

.Pr L
st /. We will refer to the objects of CatR

as R–linear categories. An R–linear category is thus a stable 1–category with an
enrichment in ModR : there are functorial R–module mapping spectra MapC.x;y/

for x;y in C.

We may also consider the1–category Pr L
st;! of compactly generated stable presentable

1–categories with morphisms the colimit preserving functors that preserve compact
objects. Then, Pr L

st;! inherits a symmetric monoidal structure from Pr L
st , as one can

check by using the proof of [45, 6.3.1.14] in the !–compactly generated situation.
The 1–category ModR is again an Ek�1 –monoid in Pr L

st;! , and so we can consider
the 1–category CatR;! of compactly generated R–linear categories and colimit
preserving functors that preserve compact objects. The natural map CatR;!! CatR is
an Ek�2 –monoidal map of 1–categories.

There is a natural equivalence

IndW Catperf
1 � Pr L

st;! W.�/
!

of symmetric monoidal 1–categories, where Catperf
1 is the symmetric monoidal 1–

category of small idempotent complete stable 1–categories and exact functors. One
may also view 1–category Catperf

1 as the localization of the 1–category of spectrally
enriched categories CatSp given by inverting the maps A!Mod!A for all (compact)
spectral categories A. For details, see [12]. If R is an Ek –ring, this equivalence
sends the Ek�1 –algebra ModR to Mod!R in Catperf

1 . Thus, it induces an equivalence
between CatR;! and ModMod!

R
.Catperf

1 /.

In the rest of this section, we prove some technical results relating algebras and their
module categories, which we will need later in the paper. While the statements are true
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for Ek –ring spectra with 3� k �1, for simplicity we treat only E1–ring spectra.
Fix an E1–ring R. Let

Mod�W AlgR! .CatR/ModR=

be the symmetric monoidal functor which sends an R–algebra A to the R–linear
category of right A–modules ModA with basepoint A. We abuse notation and
write ModA for the object .ModA;A/ of .CatR/ModR= . There are analogous func-
tors Mod�;! W AlgR ! .CatR;!/ModR= , and we can forget the basepoint to obtain
ModW AlgR! CatR and Mod! W AlgR! CatR;! .

There is an adjunction

Mod�W AlgR � .CatR/ModR= WEnd

where the right adjoint End takes a pointed R–linear category and sends it to the
R–algebra of endomorphisms of the distinguished object.

Proposition 3.1 For an E1–ring R, the functors Mod�W AlgR! .CatR/ModR= and
Mod�;! W AlgR! .CatR;!/ModR= are fully faithful.

Proof To check the first statement, for R–algebras A and B , consider the fiber
sequence

mapModR=
.ModA;ModB/!mapR.ModA;ModB/!mapR.ModR;ModB/:

Since ModA is dualizable with dual ModAop and using that the symmetric monoidal
structure on CatR is closed, we can rewrite the fiber sequence as

mapModR=
.ModA;ModB/!Modeq

Aop˝RB
!Modeq

B
:

The fiber of the map over B is equivalent to the space of Aop˝R B –module structures
compatible with the B –module structure on B , which is simply

mapAlgR
.A;EndB.B//'mapAlgR

.A;B/:

So, the functor is fully faithful.

To check the second statement, simply note that there is a pullback square

map!
R
.ModA;ModB/ //

��

map!
R
.ModR;ModB/

��

mapR.ModA;ModB/ // mapR.ModR;ModB/:

of mapping spaces, so the fibers are equivalent.
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Corollary 3.2 If A is an R–algebra, then the fiber over a compact R–module P of
the forgetful map

map!R.ModA;ModR/!Modeq
R

is naturally equivalent to mapAlgR
.A;EndR.P //.

Despite the fact that ModR is the unit of the symmetric monoidal structure on CatR;! ,
it is not formal that ModR is a compact object in CatR;! . The fact that it is compact
is essential in deducing that Azumaya algebras are compact R–algebras (and not just
compact as R–modules).

Theorem 3.3 The unit ModR is a compact object of CatR;! .

Proof We begin by showing that the 1–category of spectra is compact in Pr L
st;! .

Equivalently, we must show that the functor map.Sp;�/W Pr L
st;! ! S preserves fil-

tered colimits. Since �0 is a compact object of Cat1 , the underlying space functor
Cat1! S preserves filtered colimits, and we see that it is enough to show that

FunL;!.S;�/W Pr L
st;!! Cat1

preserves filtered colimits. By [41, Proposition 5.5.7.11], we have that the forgetful
functor CatRex.!/

1 !Cat1 preserves filtered colimits where CatRex.!/
1 denotes the 1–

category of finitely cocomplete 1–categories and finite colimit-preserving functors.
Recall that taking compact objects .�/! identifies Pr L

st;! with the full subcategory
Catperf
1 �CatRex.!/

1 consisting of the stable and idempotent-complete objects. Moreover,
this inclusion admits a left adjoint

Stab.Ind.�//! W CatRex.!/
1 ! Catperf

1 ;

and the functor .�/! W Pr L
st;!!Catperf

1 admits a left-adjoint Ind given by ind-completion.

Let colimi Ci ' C be a filtered colimit in Pr L
st;! . It follows that the canonical map

colimi C!i ! C! is an idempotent completion, so it is fully faithful and any object P

in C! is a retract of an object Q in colimi C!i . In particular, there is an idempotent
e 2 �0 end.Q/ such that P is the cofiber of

(5)
1M

kD0

Q
1�s.e/
����!

1M
kD0

Q;

where s.e/ is the map which on the k th component maps Q to the .kC1/st component
via e . Since the colimit colimi C!i is computed in Cat1 , it follows that Q is the image
of an object Qi in C!i for some i . Write Qj for the image of Qi in Cj . Because
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mapping spaces in filtered colimits of 1–categories are given as the filtered colimit of
the mapping spaces, there is a natural equivalence

colim
j�i

end.Qj /' end.Q/:

It follows that we may lift e to an idempotent ej of Qj for some j � i . Define Pj

to be the summand of Qj split off by this idempotent as in (5). Then, Pj is compact
object of Cj which maps to P in the colimit. It follows that colimi C!i ! C! is
essentially surjective and hence an equivalence.

To deduce that, in general, ModR is a compact object of CatR;! , it suffices to note that
the forgetful functor CatR;! 'ModModR

.Pr L
st;!/! Pr L

st;! preserves filtered colimits.
This follows from [45, Corollary 3.4.4.6], which is applicable because Pr L

st;! ' Catperf
1 ,

as a symmetric monoidal 1–categories and the symmetric monoidal structure is closed
by [12, Theorem 2.14].

From the theorem, we deduce an important fact about the endomorphism functor.

Lemma 3.4 The right adjoint EndW .CatR;!/ModR=! AlgR of Mod� preserves fil-
tered colimits.

Proof A map ModR! C in CatR;! classifies a compact object of C, ie, a pointed
R–linear category. Let colimi Ci ' C be a colimit of pointed compactly generated
R–linear categories. Let Xi be the image of R in Ci , and let X be the image of R

in C. Consider the map of R–algebras

colim
i

EndCi
.Xi/ �! EndC.X /:

Since the forgetful functors

AlgR!ModR! Sp
�1†n

�����! Spaces

preserve filtered colimits and taken together they detect filtered colimits in AlgR , it is
enough to show that

colim
i

endC!
i
.Xi/! endC! .X /

is an equivalence. This follows because we know that the filtered colimit of pointed
compactly generated R–linear categories agrees with the filtered colimit as com-
pactly generated R–linear categories with the obvious basepoint and, by the theorem,
colimi C!i ' C! in Cat1 .

We now prove the important fact that compactness of an R–algebra A is detected
purely through the module category of A.
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Proposition 3.5 Let A be an R–algebra. Then, A is compact in AlgR if and only if
ModA is compact in CatR;! .

Proof Assume first that A is compact in AlgR , and let C be a filtered colimit of a
diagram fCigi2I in CatR;! . Because End preserves filtered colimits by the previous
lemma, it is clear that Mod�W AlgR ! .CatR;!/ModR= preserves compact objects.
Every object M 2 colimi map.ModR;Ci/'map.ModR;C/ comes from a collection
of objects Mi of Ci for i sufficiently large. For any such M there is a map of fiber
sequences

(6)

colimi mapAlgR
.A;EndCi

.Mi// //

��

mapAlgR
.A;EndC.M //

��

colimi map.ModA;Ci/ //

��

map.ModA;C/

��

colimi map.ModR;Ci/ // map.ModR;C/;

where the top sequence is a fiber sequence because filtered colimits commute with
finite colimits by [41, Proposition 5.3.3.3]. Since ModR is compact in CatR;! and A

is compact in AlgR , the left and right vertical arrows are equivalences. Since this
is true for every point of map.ModR;C/, the middle arrow is an equivalence. Thus,
ModA is compact in CatR;! .

Now, assume that ModA is compact in CatR;! . Using (6) and the adjunction

mapModR=
.ModA;C/'mapAlgR

.A;EndC.M //;

it is easy to see that ModA , with basepoint A, is also compact in .CatR;!/ModR= . Let
B D colim Bi be a filtered colimit of R–algebras. Then, there are equivalences,

colim mapAlgR
.A;Bi/' colim mapAlgR

.A;EndModBi
.Bi//

' colim mapModR=
.ModA;ModBi

/

'mapModR=
.ModA;ModB/

'mapAlgR
.A;B/:

That is, A is a compact object in AlgR .

Corollary 3.6 Compactness is a Morita-invariant property of R–algebras.
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3.2 Smooth and proper algebras

If C is an object of CatR , then the dual of C is the functor category

DRCD FunL
R.C;ModR/

in ModR . There is a functorial evaluation map

C˝R DRC
ev
�!ModR:

The R–linear category C is dualizable if there exists a coevaluation map

ModR
coev
��! DRC˝R C;

which classifies C as a DRC˝R C–module, such that both maps

C
C˝Rcoev
������! C˝R DRC˝R C

ev˝RC
�����! C;

DRC
coev˝DRC
�������! DRC˝R C˝R DRC

DRC˝ev
������! DRC;

are equivalent to the identity.

Lemma 3.7 An object C is dualizable in CatR;! if and only if it is dualizable in
CatR and the evaluation and coevaluation morphisms of its duality data in CatR are
morphisms in CatR;! .

Proof Dualizability is detected on the monoidal homotopy category, and the duality
data for C in Ho.CatR;!/ must coincide with the duality data in Ho.CatR/ by unique-
ness.

Definition 3.8 A compactly generated R–linear category C is proper if its evaluation
map is in CatR;! ; it is smooth if it is dualizable and its coevaluation map is in CatR;! .

If A is an R–algebra, then ModA is proper if and only if A is a perfect R–module.
Indeed, in this case, the evaluation map is the map

ModA˝RAop 'ModA˝R ModAop !ModR

that sends A˝R Aop to A. We say in this case that A is a proper R–algebra. Similarly,
ModA is smooth if and only if the coevaluation map ModR !ModAop˝RA , which
sends R to A, considered as an Aop˝R A–module, exists and is in CatR;! . So we
see that ModA is smooth if and only if A is perfect as an Aop˝R A–module. Again,
we say in this case that A is a smooth R–algebra. In fact, every smooth R–linear
category is equivalent to a module category.
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Lemma 3.9 Suppose that C is a smooth R–linear category. Then, C ' ModA for
some R–algebra A.

Proof See [57, Lemma 2.6]. The morphism

ModR
coev
��! DRC˝R C

is in CatR;! by hypothesis. Thus, R is sent by coev to a compact object of DRC˝R C.
The compact objects of this category are the smallest idempotent complete stable
subcategory of DRC ˝R C containing the objects of the form MapC.a;�/ ˝R b ,
where a and b are compact objects of C. This is because C is compactly generated,
so the compact objects of DRC are precisely the duals of the compact objects of C.
We can thus write coev.R/ as the result of taking finitely many shifts, cones, and
summands of MapC.ai ;�/˝R bi , for i D 1; : : : ; n. The identity map

C
C˝Rcoev
������! C˝R DRC˝R C

ev˝RC
�����! C

sends c 2 C to the same diagram built out of MapC.ai ; c/˝R bi . It follows that if
MapC.ai ; c/ ' 0 for i D 1; : : : ; n, then c ' 0. Thus, the ai form a set of compact
generators for C. Letting AD EndC.

L
i ai/

op , we get C'ModA as desired.

Definition 3.10 An R–linear category is of finite type if there exists a compact R–
algebra A such that C is equivalent to ModA .

The condition of being smooth and proper is a strong one for R–algebras: it implies
compactness in the 1–category of R–algebras; see [58, Corollary 2.13] for the dg–
statement.

Proposition 3.11 If C is a smooth and proper R–linear category, then C is of finite
type.

Proof Let A be an R–algebra such that C ' ModA . To show that A is compact
as an R–algebra, it suffices by Proposition 3.5 to show that C is compact in CatR;! .
To this end, fix a filtered colimit DD colimi2I Di in CatR;! ; we must show that the
natural map

colim
i2I

mapCatR;! .C;Di/!mapCatR;! .C;D/

is an equivalence. The dualizability of C in CatR;! gives natural equivalences

(7) mapCatR;! .C;D/'mapCatR;! .ModR;DRC˝R D/;
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and as ModR is compact as a compactly generated R–linear category, the result follows
from the equivalences

colim
i

DRC˝R Di 'DRC˝R colim
i

Di 'DRC˝R D:

The following result is due to Toën and Vaquié [58] in the dg–setting, and the arguments
are essentially the same. The result is part of the philosophy of hidden smoothness due
to Kontsevich.

Theorem 3.12 An R–linear category of finite type is smooth.

Proof It suffices to show that if A is a compact R–algebra, then it is perfect as a
right Aop˝R A–module. There is a fiber sequence

�A=R!Aop
˝R A!A;

where �A=R is the Aop˝R A–module of differentials (see Lazarev [38]). So, it is
enough to show that �A=R is a perfect Aop ˝R A–module when A is a compact
R–algebra. This follows from the adjunction

mapAop˝RA.�A=R;M /'map.AlgR/=A
.A;A˚M /;

together with the fact that, since A is a compact R–algebra, then A is compact in
.AlgR/=A .

3.3 Azumaya algebras

Let R be an E1–ring spectrum. The following definition is due to Auslander and
Goldman [5]. In the derived setting, it and variations on it have been considered by
Lieblich [39], Baker and Lazarev [7], Toën [57], Johnson [35] and Baker, Richter and
Szymik [8]. Our definition is the same as that of [8].

Definition 3.13 An R–algebra A is an Azumaya R–algebra if A is a compact
generator of ModR and if the natural R–algebra map giving the bimodule structure
on A

A˝R Aop
! EndR.A/

is an equivalence of R–algebras.

Note that if A is an Azumaya R–algebra, then, by definition, A˝R Aop is Morita
equivalent to R. The standard example of an Azumaya algebra is the endomorphism
algebra EndR.P / of a compact generator of ModR . These algebras are not so interest-
ing as they are already Morita equivalent to R. The Brauer group will be the group
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of Morita equivalence classes of Azumaya algebras, so these endomorphism algebras
will represent the trivial class. For more examples and various properties, we refer
to [8]. In particular, we will use the fact that if S is an E1–R–algebra, then A˝R S

is Azumaya if A is [8, Proposition 1.5]. One main goal of this paper is to show that
if R is a connective commutative ring spectrum, then Azumaya algebras are étale
locally Morita equivalent to R, which Toën established in the connective commutative
dg–setting [57]. The first fact we need is the following theorem.

Theorem 3.14 (Toën [57]) If RDHk , where k is an algebraically closed field, then
every Azumaya R–algebra is Morita equivalent to R.

We prove now a characterization of Azumaya algebras and smooth and proper algebras.
The corresponding statement for dg–algebras is [57, Proposition 2.5].

Theorem 3.15 Let C be a compactly generated R–linear category. Then

(1) C is dualizable in CatR;! if and only if C is equivalent to ModA for a smooth
and proper R–algebra A,

(2) C is invertible in CatR;! if and only if C is equivalent to ModA for an Azumaya
R–algebra A.

Proof If A is smooth and proper, then ModA is dualizable in CatR;! since the
evaluation and coevaluation maps are in CatR;! by hypothesis. If C is smooth and
proper, then C ' ModA for an R–algebra A which is, by definition, smooth and
proper.

Suppose that C is invertible. Then, it follows that it is dualizable in CatR;! , and thus
that it is equivalent to ModA where A is a smooth and proper R–algebra. So, it suffices
to show that ModA is invertible if and only if A is Azumaya. The evaluation map

ModA˝RAop !ModR

is an equivalence if and only if A is invertible. This map sends A˝R Aop to A, and it
is contained in CatR;! if and only if A is a compact R–module. The evaluation map
is essentially surjective if and only if A is a generator of ModR . Finally, it is fully
faithful if and only if

A˝R Aop
' EndA˝RAop.A˝R Aop/! EndR.A/

is an equivalence.

We see that we might define the Brauer space of an E1–ring spectrum R to be the
grouplike E1–space Cat�R;! . Instead, we will later give an equivalent definition that
generalizes more readily to derived schemes.
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4 Sheaves

We give in this section preliminaries we will need about sheaves of spaces and 1–
categories. In particular, we study smoothness for morphisms of sheaves of spaces, and
we show that under mild hypotheses smooth surjective morphisms admit étale local
sections.

4.1 Stacks of algebra and module categories

Roughly speaking, if X is an 1–topos and C is a complete 1–category, then a
C–valued sheaf on X is a functor Xop! C which satisfies descent.

Definition 4.1 Let C be a complete 1–category. A C–valued sheaf on X is a limit-
preserving functor Xop ! C. The 1–category ShvC.X/ is the full subcategory of
Fun.Xop;C/ consisting of the C–valued sheaves on X.

In the cases we care about, X will be the1–topos associated to a Grothendieck topology
on an 1–category A. In this case a C–valued sheaf on X is determined by its values
on A, because every object in X is a colimit of representable functors. Moreover, we
will typically be in an even more special situation, where the Grothendieck topology
is given by a pretopology satisfying the conditions of [42, Propositions 5.1, 5.7]. In
this case, a functor F W Aop! C is a sheaf if and only if for every covering morphism
X ! Y in A, the map

F.Y /! lim
�

F.X�/

is an equivalence in D, where X� is the simplicial object associated to the cover.
Similarly, F is a hypercomplete sheaf, or hypersheaf, if for every hypercovering
V�! Y in A, the map

F.Y /! lim
�

F.V�/

is an equivalence; see [42, Section 5] for details. In particular, Lurie proves that the
collection of faithfully flat morphisms in .CAlgR/

op satisfies the necessary conditions.
Thus, the collection of faithfully flat étale morphisms (Section 2.3) in .CAlg cn

R /
op does

as well.

In practice, our sheaves will be one of the following three types: sheaves of 1–
groupoids (spaces), which we call sheaves; sheaves of spectra; or, sheaves of (not
necessarily small) 1–categories, which we call stacks. Thus, for instance, a stack
on an 1–topos X is a limit-preserving functor Xop!bCat1 . We will also consider
sheaves of ring spectra and stacks of symmetric monoidal 1–categories. A presheaf of
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symmetric monoidal 1–categories is a stack if and only if the underlying presheaf of
1–categories is a stack. Indeed, the forgetful functor CAlg.bCat1/!bCat1 preserves
and detects limits [45, Corollary 3.2.2.5].

The conventions spelled out in the previous paragraph might cause some confusion. We
have chosen to emphasize the 1–categorical notion that groupoids are spaces in our
definitions. As a result, we end up saying “sheaf of Morita equivalences,” “classifying
sheaf,” or “Deligne–Mumford sheaf,” instead of the more comfortable “stack of Morita
equivalences,” “classifying stack,” and “Deligne–Mumford stack.” Our stacks will be
sheaves of 1–categories. This approach is justified by the fact that the three examples
just given are actually objects of the underlying 1–topoi. Since the objects of the
1–topos themselves are sheaves of spaces, there is no longer any need to have a
separate notion of a sheaf of groupoids.

From a stack, we can produce a sheaf of (not necessarily small) spaces as follows.
There is a pair of adjoint functors

i W bGpd1� bCat1 W.�/eq;

where the left adjoint i is the natural inclusion, and .�/eq sends an1–category C to its
maximal subgroupoid Ceq . If MW Xop!bCat1 is a stack, then the associated sheaf Meq

is the composition of M with .�/eq , which is a sheaf because .�/eq preserves limits.

In the remainder of the section, we will recall some facts about étale (hyper)descent.
Let R be a connective E1–ring, and let ShvKet

R denote the big étale 1–topos on R.
Given any commutative R–algebra U, connective or not, there is a presheaf XDSpec U

whose values on an R–algebra S are given by

X.S/DmapCAlgR
.U;S/:

This presheaf is in fact a sheaf, which says that the étale topology on Aff cn
R is sub-

canonical, though much more is true [42, Theorem 5.14].

Proposition 4.2 For any commutative R–algebra U , the presheaf Spec U is an étale
hypersheaf.

Proof Indeed, let S ! T � be an étale hypercovering. This determines a map
N.�C/! CAlgR , which is a limit diagram by [42, Lemma 5.13].

Let ModW .Aff cn
R /

op D CAlg cn
R ! CAlg.Pr L/ be the presheaf of symmetric monoidal

1–categories that sends S to ModS . By [42, Theorem 6.1], this presheaf satisfies
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descent for étale hypercovers. It follows that we may uniquely extend Mod to a
hyperstack on all of ShvKet

R . Concretely, when X is an object of ShvKet
R , we let

ModX D lim
Spec S!X

ModS

be the stable presentable symmetric monoidal 1–category of modules over X . We
are actually keeping track of the symmetric monoidal structure on ModS , and hence
on ModX by forming the limit in the 1–category CAlg.Pr L/. However, the forgetful
functor CAlg.Pr L/! Pr L preserves limits, so we choose to ignore the intricacies of
symmetric monoidal 1–categories and suppress the symmetric monoidal structure
from the notation.

By composing ModW ShvKet
R! CAlg.Pr L/ with the limit-preserving functor

AlgW CAlg.Pr L/! CAlg.Pr L/

that sends a presentable symmetric monoidal1–category to the1–category of algebra
objects (which is also presentable by [45, Corollary 3.2.3.5] and symmetric monoidal
by [45, Proposition 3.2.4.3 and Example 3.2.4.4]), we obtain the hyperstack of algebras
Alg on ShvKet

R . There is a substack Az of Azumaya algebras: an algebra A over X is
Azumaya if its restriction to any affine scheme is Azumaya.

Recall that if C is a symmetric monoidal 1–category, then its space of units Pic.C/
is the grouplike E1–space consisting of invertible elements of C and equivalences.
When C is presentable, then Pic.C/ is a small space, as proven in [1, Theorem 8.9].
Thus, there is a functor

PicW CAlg.Pr L/! CAlggp.S/;

where CAlggp.S/ denotes the full subcategory of CAlg.S/ of grouplike E1–spaces.

Proposition 4.3 If we have that M is a hyperstack of presentable symmetric monoidal
1–categories, then the presheaf Pic.M/ is a hypersheaf.

Proof By [1, Theorem 8.10], Pic is a right adjoint, so it preserves limits.

Applying the lemma to the particular stack Mod on ShvKet
R , we obtain the Picard sheaf

Pic, and we let pic be the associated sheaf of spectra.

Now, we introduce a stack of R–linear categories, Catdesc
R

, which classifies R–linear
categories satisfying étale hyperdescent. Let CatRW .Aff cn

R /
op D CAlg cn

R !
bCat1 be

the composite functor

CatRW .Aff cn
R /

op
D CAlg cn

R

Mod
! CAlg.Pr L/

Mod
! bCat1
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whose value at S is the 1–category CatS of S –linear 1–categories (equivalently,
ModS –modules in the symmetric monoidal 1–category Pr L ).

Say that an R–linear category C satisfies étale hyperdescent if for each connective
commutative R–algebra S and each étale hypercover S ! T � , the canonical map

C˝R S ! lim
�

C˝R T �

is an equivalence. We write Catdesc
S �CatS for the full subcategory of CatS consisting

of the S –linear 1–categories with étale hyperdescent and Catdesc
R
� CatR for the full

subfunctor of R–linear categories with étale hyperdescent.

Example 4.4 If A is an R–algebra, then ModA is an R–linear category that satisfies
étale hyperdescent. Indeed, in this case ModA is dualizable in CatR with dual ModAop .
Therefore, if S is a connective E1–R–algebra, then

ModA˝R S ' DRDRModA˝R S ' FunR.DRModA;ModS /

in CatR . Because functors out of DRModA commutes with limits, ModA is an R–
linear category with hyperdescent. More generally, every compactly generated R–linear
category satisfies étale hyperdescent by [43, Corollary 6.11].

The important fact about Catdesc
R

that we need is that it satisfies étale hyperdescent
itself.

Proposition 4.5 The functor Catdesc
R

is an étale hyperstack on Aff cn
R .

Proof Lurie proves in [43, Theorem 7.5] that the prestack of R–linear categories
satisfying flat hyperdescent is a flat hyperstack. The same proof works here.

4.2 The cotangent complex and formal smoothness

We consider notions of smoothness for maps pW X!Y of sheaves in ShvKet
R . References

for this material include [58] and Lurie [40; 44].

Definition 4.6 Let pW X ! Y be a map of sheaves. Then, for any point x 2 X.S/

and any connective S –module M , the space of derivations derp.x;M / is the fiber of
the canonical map

X.S ˚M /!X.S/�Y .S/ Y .S ˚M /

over the point corresponding to x and the map Spec S ˚M ! Spec S
x
�! X ! Y ,

where the first map is induced by the map .id; 0/W S ! S ˚M . If Y ' Spec R is a
terminal object, write derX .�;�/ for derp.�;�/.
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Definition 4.7 Let pW X!Y be a map of sheaves. An object L of ModX is a relative
cotangent complex for p if there exist equivalences

mapS .x
�L;M /' derp.x;M /

which are natural in x and connective modules M . When L exists and is unique up
to equivalence then we write Lp and refer to this as the cotangent complex of p . We
will often abuse notation and write LX=Y for Lp when no confusion will result. When
Y ' Spec R is a terminal object, we write LX in place of LX=Y .

Note that if L is a cotangent complex for p , then the space of derivations derp.x;M /

is never empty. If S is a ring spectrum, an S –module M is almost connective if it is
k –connective for some integer k . If X is a sheaf, an object M of ModX is almost
connective, if its restriction to any xW Spec S !X is almost connective.

Lemma 4.8 If pW X ! Y has at least one cotangent complex L that is almost con-
nective, then all cotangent complexes are equivalent, so Lp exists.

Proof Suppose that L and L0 are two cotangent complexes for p , and suppose that L
is almost connective. Let xW Spec S ! X be an S –point. We show that there is an
equivalence x�L0 ! x�L, natural in x . Suppose that †nx�L is connective. Then,
using the chain of equivalences

mapS .x
�L;x�L0/'�nmapS .x

�L; †nx�L/

'�nderp.x; †nx�L/

'�nmapS .x
�L0; †nx�L/

'mapS .†
nx�L0; †nx�L/;

we see there is a unique map x�L0 ! x�L corresponding to the identity on x�L,
which does not depend on n, and so is natural in x . If there exists an integer k such
that �kx�L0 ! �kx�L is not an isomorphism, then †kx�L0 ! †kx�L is not an
equivalence. So,

�kmapS .x
�L;M /!�kmapS .x

�L0;M /

is not an equivalence, which is a contradiction. Thus, L0! L is an equivalence.

Monomorphisms of sheaves always have cotangent complexes, which vanish.

Lemma 4.9 Let f W X ! Y be a monomorphism of sheaves. Then, Lf ' 0.
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Proof Suppose that xW Spec S ! X is a point and that M is an S –module, and
consider the diagram

X.S ˚M / // X.S/�Y .S/ Y .S ˚M / //

��

Y .S ˚M /

��

X.S/ // Y .S/

in which the square is a pullback. The bottom horizontal arrow is a monomorphism. So,
the map X.S/�Y .S/ Y .S ˚M /! Y .S ˚M / is a monomorphism. The composite
X.S˚M /! Y .S˚M / is also a monomorphism. Therefore, the map X.S˚M /!

X.S/�Y .S/ Y .S ˚M / is a monomorphism, and hence the fibers are either empty or
contractible. But, the space of derivations

derf .x;M /

is the fiber over xW Spec S!X and Spec S˚M ! Y , with the latter induced by the
composition

Spec S ˚M ! Spec S
x
�!X

f
�! Y:

It follows that the composite Spec S ˚M ! X is in the fiber, so it is contractible.
Hence, 0 corepresents derivations.

The following two lemmas can be proved with straightforward arguments using only
the definition of the space of derivations.

Lemma 4.10 If f W X ! Y is a map of sheaves, and if LX and LY exist, then there
is a cofiber sequence

f �LY ! LX ! Lf

in ModX . In particular the cotangent complex of f exists.

Lemma 4.11 Let fXig be a diagram of sheaves in ShvR indexed by a simplicial set I ,
and let X be the limit. Suppose that the cotangent complex LXi

exists for each i

in I , and write LX for the colimit of the diagram fLXi
jX g in ModX . If LX is almost

connective, then LX is a cotangent complex for X .

The inclusion functor ��nCAlg cn
R ! CAlg cn

R induces a functor

���nW ShvKet
R ' ShvKet.CAlg cn

R /! ShvKet.��nCAlg cn
R /:
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If S is a connective commutative R–algebra, then ���n Spec S ' Spec ��nS . Indeed,
if T is any n–truncated connective commutative R–algebra, then the natural map

map.��nS;T /!map.S;T /

is an equivalence.

Lemma 4.12 If f W X ! Y is a morphism of sheaves with a cotangent complex Lf
such that ���nf is an equivalence, then ��nLf ' 0.

Proof We sketch the proof. The proof is the same as for the affine case, the details of
which can be found in [45, Lemma 8.4.3.17]. In fact, the natural map

��n.f
�LY /! ��nLX

is an equivalence. To check this, it is enough to map into an n–truncated OX –
module M . By the universal property of the cotangent complex, we check that
the morphism

mapCAlgR=OX
.OX ;OX ˚M /!mapCAlgR=f�OX

.OY ; f�OX ˚f�M /

is an equivalence, which follows from the fact that

mapCAlgR=��nOX
.OX ; ��nOX ˚M /!mapCAlgR=��nf�OX

.OY ; ��nf�OX ˚f�M /

is an equivalence, since ��nOY ! ��nf�OX is an equivalence by hypothesis.

Let R be a commutative ring spectrum. Then, the forgetful functor CAlgR!ModR

has a left adjoint
SymRW ModR! CAlgR:

If M is an R–algebra, then SymR.M / is called the symmetric R–algebra on M .
For the existence of the functor SymR , see [45, Section 3.1.3]. We can compute the
cotangent complexes of the affine schemes of these symmetric algebras, which provides
the essential step in showing that all maps between connective affine schemes have
cotangent complexes.

Lemma 4.13 Let M be an almost connective R–module, and let S D SymR.M /.
Then the cotangent complex LSpec S of Spec S ! Spec R exists and is equivalent to
the S –module M ˝R S .

Proof See [45, Proposition 8.4.3.14]. For any S –module N , there is a sequence of
equivalences:

mapS .M˝RS;N /'mapR.M ;N /'mapR=S .M ;S˚N /'map.CAlgR/=S
.S;S˚N /
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Thus, M ˝R S is an almost connective cotangent complex for Spec S , and therefore
the unique cotangent complex.

Proposition 4.14 If S ! T is a map of connective commutative R–algebras, then
LSpec T=Spec S exists and is connective.

Proof We can write T as a colimit colimi Ti of symmetric algebras TiDSymS S˚ni

so that Spec T is a limit of Spec Ti . By Lemma 4.11, the cotangent complex LT is the
colimit of the restrictions of LTi

to Spec T . By Lemma 4.13, each LTi
is connective.

Since colimits of connective T –modules are connective, LT is connective.

A map of connective commutative R–algebras �W zS ! S is a nilpotent thickening if
�0.�/W �0

zS ! �0S is surjective and if the kernel of �0.�/ is a nilpotent ideal. Note
that if S is a connective commutative R–algebra, then the maps ��mS ! ��nS for
m� n in the Postnikov tower of S are nilpotent thickenings.

Definition 4.15 A map of sheaves pW X!Y is formally smooth if for every nilpotent
thickening zS ! S the induced map

(8) X. zS/!X.S/�Y .S/ Y . zS/

is surjective (that is, surjective on �0 ). We say pW X ! Y is formally étale if the maps
in (8) are isomorphisms on �0 .

We need the following nontrivial proposition from [42].

Proposition 4.16 [42, Proposition 7.26] If S and T are connective commutative R–
algebras, then a map Spec T ! Spec S is formally smooth if and only if LSpec T=Spec S

is a projective T –module.

To consider the stronger notion of smoothness, we need to consider the notion of
compactness for commutative algebras, and we will need to know later that this notion
agrees with the usual notion of finite presentation for ordinary commutative rings.

Definition 4.17 A map S ! T of connective commutative ring spectra is locally of
finite presentation if T is a compact object of CAlgS [45, Definition 8.2.5.26].

If T is a connective commutative S –algebra that is compact in CAlgS , then it
is compact in CAlg cn

S . Since truncation preserves compact objects by [41, Corol-
lary 5.5.7.4(iii)], it follows that ��0T is compact in ��0CAlg cn

S .
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Lemma 4.18 Let R be a discrete commutative ring, and let S be a discrete commuta-
tive R–algebra. Then, S is compact as a discrete commutative R–algebra if and only
if S is finitely presented.

Proof Suppose that S is finitely presented, so it can be written as a quotient RŒX �=I ,
where X is a finite set, and I is a finitely generated ideal. We can write S as the
pushout

SymR I //

��

RŒX �

��

R // S

of R–algebras. But, this means that if RŒY �! SymR I exhibits SymR I as a finitely
generated R–algebra, the following square is also a pushout square:

RŒY � //

��

RŒX �

��

R // S

Since RŒY �, RŒX � and R are compact, it follows that S is compact as well.

Now, suppose that S is a compact (discrete) commutative R–algebra. Then, S is a
retract of a finitely presented commutative R–algebra RŒX �=I . Indeed, we can write S

as a filtered colimit of finitely presented commutative R–algebras; by compactness,
the identity map on S factors through a finite stage. It suffices to show that the kernel
of RŒX �=I ! S is finitely generated. We proceed by Noetherian induction. Let � be
the composition

RŒX �=I ! S !RŒX �=I:

We may write I D .p1.X /; : : : ;pk.X //, an ideal generated by k polynomials in X .
Let R0 be the subring of R generated over Z by the coefficients appearing in the pi ’s
and in the polynomials �.xi/ for xi 2 X . This is a finitely generated commutative
Z–algebra, so it is in particular Noetherian. By our choice of R0 , we can define
an ideal I0 of R0ŒX � generated by the same polynomials. Moreover, � defines a
morphism �0W R0ŒX �=I0!R0ŒX �=I0 . Let S0 be the image of �0 , which is a subring
of R0ŒX �=I0 . There is an exact sequence of R0 –modules

0! J0!R0ŒX �=I0! S0! 0:

Since S0 is finitely generated and R0ŒX �=I0 is Noetherian, it follows that S0 is finitely
presented, and that J0 is finitely generated. Tensoring with R over R0 , we obtain an
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exact sequence

J0˝R0
R!RŒX �=I ! S ! 0:

The kernel J0 is finitely generated, and it surjects onto the kernel J of RŒX �=I ! S .
It follows that J is finitely generated, and hence that S is finitely presented.

The previous lemma implies that the next definition agrees with the usual definition of
smooth maps between ordinary affine schemes.

Definition 4.19 A map Spec T ! Spec S is smooth if it is formally smooth and
S ! T is locally of finite presentation.

At first glance, the condition that Spec T ! Spec S is surjective in the next lemma
might seem strange. But, we will show in Theorem 4.47 that this is satisfied if
Spec T ! Spec S is smooth, and if the map Spec�0T ! Spec�0S is a surjective
map of ordinary schemes.

Lemma 4.20 Let R! S ! T be maps of connective commutative algebras. If T is
locally of finite presentation over R and over S , and if Spec T !Spec S is a surjective
map in ShvKet

R , then S is locally of finite presentation over R.

Proof First, note that the maps �0R! �0S ! �0T satisfy the same hypotheses
by Lemma 4.18. Thus, by Grothendieck [30, Proposition I.1.4.3(v)], �0S is a �0R–
algebra that is locally of finite presentation. Now, by [45, Theorem 8.4.3.18], it is
enough to show that LS D LR=S is a perfect S –module. There is a fiber sequence

LS ˝S T ! LT ! LS=T

of cotangent complexes. Again, by [45, Theorem 8.4.3.18], LT and LS=T are perfect
since R! T and S ! T are locally of finite presentation. It follows that LS ˝S T

is perfect. Since Spec T ! Spec S is surjective in ShvKet
R , there are étale local sections.

Thus, there is a faithfully flat étale S –algebra P and maps S ! T ! P . Since
LS˝S T is perfect, the U –module LS˝S U is perfect. But, by faithfully flat descent,
it follows that LS is perfect (to see this, one can either refer forward to Lemma 5.4, or
use the fact that an S –module is perfect if and only if it is dualizable and the fact that
dualizability data can be constructed étale locally by Example 4.4).

The following example will be used later in the paper.
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Example 4.21 The sheaf of R–module endomorphisms of R˚n is representable by
an affine monoid scheme Mn , where

Mn D Spec SymR EndR.R
˚n/:

Given a commutative R–algebra S , an element of Mn.S/ is a commutative R–algebra
map

SymR EndR.R
˚n/! S:

But these are equivalent to the R–module maps

R˚n2

' EndR.R
˚n/! S;

which by adjunction is the S –module

S˚n2

' EndS .S
˚n/:

Since the space of S –module endomorphisms of S˚n has a natural monoid structure,
this shows that Mn is a monoid scheme. We can invert the determinant element
of �0Mn , so the sheaf of S –module automorphisms of S˚n is representable by an
affine group scheme GLn . Because the cotangent complex of Mn at an S –point is
S˚n2

, which is a projective S –module, the affine schemes Mn and GLn are smooth
over R.

4.3 Geometric sheaves

Let R be a connective commutative ring spectrum. The goal of this section is to study
certain geometric classes of sheaves in ShvKet

R built inductively from the representable
sheaves by forming smooth quotients. The notions of n–stack here have been studied
extensively by Simpson [53], Toën and Vezzosi [59] and Lurie [40], and we base our
approach on theirs.

We define n–geometric morphisms and smooth n–geometric morphisms inductively
as follows.

� A morphism f W X ! Y in ShvKet
R is 0–geometric if for any Spec S ! Y , the

fiber product X �Y Spec S is equivalent to
`

i Spec Ti for some connective
commutative R–algebras Ti .

� A 0–geometric morphism f is smooth if X �Y Spec S! Spec S is smooth for
all Spec S ! Y . To be clear, if X �Y Spec S '

`
i Spec Ti , then this means

that each morphism Spec Ti! Spec S is smooth in the sense of Definition 4.19.
� A morphism X ! Y in ShvKet

R is n–geometric if for any Spec S ! Y , there is
a smooth surjective .n�1/–geometric morphism U !X �Y Spec S , where U

is a disjoint union of affines.
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� An n–geometric morphism f W X ! Y is smooth if for every Spec S ! Y

we may take the above map U ! X �Y Spec S such that the composition
U !X �Y Spec S ! Spec S is a smooth 0–geometric morphism.

We say that an n–geometric morphism X ! Y is an n–submersion if it is smooth
and surjective. If, moreover, X is a disjoint sum of representables, then we call
such a morphism an n–atlas. A 1–geometric sheaf with a Zariski atlas is a derived
scheme. What this means is that a 1–geometric sheaf X has an atlas

`
i Spec Ti!X

which is a 0–geometric morphism, and, for every point Spec S ! X , the pullback
Spec Ti �X Spec S ! Spec S is Zariski open. Similarly, a 1–geometric sheaf with an
étale atlas is a Deligne–Mumford stack.

Any 0–geometric sheaf X is a disjoint union of sheaves
`

i2I Spec Si , where the Si are
connective commutative R–algebras. If I is finite, then we call the sheaf representable.
In this case X D

`n
iD1 Spec Si ' Spec.S1 � � � � �Sn/.

A 0–geometric sheaf is quasicompact if it is representable, and a 0–geometric morphism
f W X ! Y is quasicompact if, for all Spec S ! Y , the pullback X �Y Spec S is
representable. Inductively, an n–geometric sheaf X if quasicompact if there exists
an .n � 1/–geometric quasicompact submersion of the form Spec S ! X , and an
n–geometric morphism f W X ! Y is quasicompact if for each map Spec S ! Y , the
fiber X �Y Spec S is a quasicompact n–geometric sheaf. Finally, an n–geometric
morphism f W X ! Y is quasiseparated if the diagonal X !X �Y X is quasicompact.

Definition 4.22 An n–geometric sheaf X is locally of finite presentation over Spec R

if it has an .n� 1/–atlas a
i

Spec Si!X

such that each Si is a connective commutative R–algebra that is locally of finite
presentation. An n–geometric morphism X ! Y is locally of finite presentation if for
every S –point of Y , X �Y Spec S is locally of finite presentation over Spec S . By
definition, a smooth n–geometric morphism is locally of finite presentation.

It is important to have a theory of sheaves that are only locally geometric. A sheaf
X ! Spec S is locally geometric if it can be written as a filtered colimit

X ' colim
i

Xi ;

where each sheaf Xi is ni –geometric for some ni and where the maps Xi !X are
monomorphisms. If we can furthermore take the Xi to be locally of finite presentation,
we say that X is locally geometric and locally of finite presentation. A morphism
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f W X!Y is locally geometric (locally of finite presentation) if for every Spec S!Y ,
the pullback X �Y Spec S is locally geometric (locally of finite presentation) over
Spec S .

We say that a locally geometric morphism X!Y which is locally of finite presentation
is smooth if for every Spec S ! Y , the pullback X �Y Spec S ! Spec S has a
cotangent complex of Tor-amplitude contained in Œ�n; 0� for some nonnegative integer n

(depending on S ).

Note the following easy but important facts.

Lemma 4.23 If f W X !Z is an n–geometric morphism (resp. smooth n–geometric
morphism), and if Y !Z is any morphism, then the pullback fY W X �Z Y ! Y is
n–geometric (resp. n–geometric and smooth).

Lemma 4.24 A morphism f W X ! Y is n–geometric if and only if for every map
Spec S ! Y , the morphism X �Y Spec S ! Spec S is n–geometric.

The following lemma can be found in [40]. We include a proof for the reader’s
convenience.

Lemma 4.25 Suppose that X
f
�! Y

g
�!Z are composable morphisms of sheaves.

(1) If f and g are n–geometric (resp. smooth and n–geometric), then g ı f is
n–geometric (resp. smooth and n–geometric).

(2) If f is an n–submersion and g ı f is .nC 1/–geometric, then g is .nC 1/–
geometric.

(3) If g ıf is n–geometric and g is .nC 1/–geometric, then f is n–geometric.

Proof We prove (1) by induction on n. Using Lemma 4.24, it suffices to suppose
that Z is representable. Assume that n D 0. Then, the fact that g is 0–geometric
implies that Y is representable, and the fact that f is 0–geometric then implies
that Z is representable. Evidently any morphism of representables is 0–representable,
and compositions of smooth morphisms of representables are smooth. Now assume
the statement (1) for .n � 1/–geometric morphisms. Since we assume that Z is
representable, it suffices to find an .n� 1/–submersion U !X where U is a disjoint
union of representables. Since g is n–representable, there is an .n� 1/–submersion
V ! Y where V is a sum of representables. Constructing the pullback X �Y V ,
we know by the n–geometricity of f and the formal representability of V that there
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is an .n� 1/–submersion U ! X �Y V with U a sum of representables. This is
summarized in the following diagram:

U
.n�1/–sub

// X �Y V

.n�1/–sub
��

// V

.n�1/–sub
��

X
f

// Y
g

// Z

Since, by the induction hypothesis, composition of .n� 1/–submersions are .n� 1/–
submersions, the inductive step follows.

To prove (2), it is again enough to assume that Z is representable. Then, there is an
n–atlas uW U !X since g ı f is .nC 1/–geometric. Since f is an n–submersion,
the composition f ıu is an n–atlas by part (1). Hence, g is .nC 1/–geometric.

To prove (3), suppose that p W Spec S ! Y is a point of Y . Consider the diagram

X �Y Spec S //

��

Spec S

��

V

n–atlas
ww

U
.n�1/–atlas

//

22

X �Z Spec S //

��

Y �Z Spec S //

��

Spec S

gıp

��p
ww

X
f

// Y
g

// Z;

where the squares are all pullback squares, U!X�Z Spec S is an .n�1/–atlas (or the
identity map if nD 0) and V ! Y �Z Spec S is an n–atlas. Since V ! Y �Z Spec S

is surjective, up to refining U , we may assume that the composite U ! Y �Z Spec S

factors through V . The map U ! V is thus 0–geometric. By part (1), the map
U ! Y �Z Spec S is n–geometric. By part (2), X �Z Spec S ! Y �Z Spec S is
n–geometric. Therefore, X �Y Spec S ! Spec S is n–geometric, and we conclude
by Lemma 4.24 that f is n–geometric.

Remark 4.26 The previous lemma goes through as stated with the additional assump-
tions and conclusions of quasicompactness.

Lemma 4.27 Suppose that X is an n–geometric sheaf that is locally of finite pre-
sentation. If U D

`
i Spec Ti

p
�! X is any atlas, then each Ti is locally of finitely

presentation over R.
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Proof Let V D
`

i Spec Si

q
�! X be an atlas where each Si is locally of finite

presentation over R. Since V ! X is a surjection of sheaves, we may assume,
possibly by refining U , that there is a factorization of p as U ! V

q
�! X . Now,

consider the fiber product U �X V , which is a smooth .n� 1/–geometric sheaf over
either U or V . Let W D

`
i Spec Pi ! U �X V be an atlas. Since U �X V ! U

is surjective, we may arrange indices so that the composition W ! U is a coproduct
of smooth surjections of the form Spec Pi ! Spec Ti . Assume also that in the map
U ! V we have Spec Ti ! Spec Si . Then, there is a composition of commutative
ring maps Si ! Ti ! Pi . The composite is locally of finite presentation since it is
smooth, the map Ti ! Pi is locally of finite presentation for the same reason, and
by construction the map Spec Pi ! Spec Ti is surjective. Thus, the conditions of
Lemma 4.20 are satisfied. It follows that Ti is locally of finite presentation over Si .
Since Si is locally of finite presentation over R, it follows that Ti is locally of finite
presentation over R.

Now we prove an analogue of [40, Principle 5.3.5].

Lemma 4.28 Suppose that P is a property of sheaves. Suppose that every disjoint
union of affines has property P, and suppose that whenever U ! X is a surjective
morphism of sheaves such that U k

X
D U �X � � � �X U has property P for all k � 0,

then X has property P. Then, all n–geometric sheaves have property P.

Proof Let X be an n–geometric sheaf. Then, there exists a smooth .n�1/–geometric
surjection U !X , where U is a disjoint union of affines. Each product U k

X
is .n�1/–

geometric. So, it suffices to observe that the statement follows by induction.

Lemma 4.29 Let X ! Y be a surjection of sheaves. Suppose that X and X �Y X

are n–geometric stacks and that the projections X �Y X !X are n–geometric and
smooth. Then, Y is an .nC 1/–geometric stack. If, in addition, X is quasicompact
and X ! Y is a quasicompact morphism, then Y is quasicompact. Finally, if X is
locally of finite presentation, then so is Y .

Proof Let a
i

Spec Si!X
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be an atlas for X . For any i and j , we have a diagram of pullbacks

Spec Si �Y Spec Sj
//

��

Spec Si �Y X //

��

Spec Si

��

X �Y Spec Sj
//

��

X �Y X //

��

X

��

Spec Sj
// X // Y:

We will show that the composite
`

i Spec Si ! X ! Y is an n–submersion. The
surjectivity follows by hypothesis. To check that Spec Si ! X is smooth and n–
geometric, it is enough to check on the fiber of Spec Sj for all j . Since X �Y X !X

and Spec Si!X are smooth and n–geometric, Spec Si�Y Spec Sj !X �Y Spec Sj

and X �Y Spec Sj ! Sj are smooth and n–geometric. Therefore, the composite
is as well, which completes the proof of the first statement. To prove the second
statement, note that we can take

`
i Spec Si to be a finite disjoint union, since X is

quasicompact. Then, since
`

i Spec S !X and X ! Y are quasicompact, it follows
that the composition is quasicompact by Remark 4.26. The third statement is immediate,
since

`
i Spec Si can be chosen so that each Si is locally of finite presentation.

Lemma 4.30 Suppose that f W X ! Y is a morphism of sheaves where X is an
n–geometric sheaf and the diagonal Y ! Y �Spec R Y is n–geometric. Then, f is
n–geometric. Moreover, if f is smooth and surjective, then Y is .nC 1/–geometric.

Proof Since X is n–geometric, there is an .n� 1/–submersion
`

i Spec Ti ! X .
Suppose that Spec S ! Y is arbitrary. Form the fiber products X �Y Spec S and`

i Spec Ti �Y Spec S , and note that the mapa
i

Spec Ti �Y Spec S !X �Y Spec S

is an .n� 1/–submersion. The mapa
i

Spec Ti �Y Spec S !
a

i

Spec Ti ˝R S

is n–geometric because it is the pullback of
`

i Spec Ti �Spec R Spec S! Y �Spec R Y

along the diagonal map Y ! Y � Spec R. Therefore
`

i Spec Ti �Y Spec S admits
an .n� 1/–submersion from a disjoint union of affines

`
i;j Spec Uij . We obtain the
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following diagram:`
Spec Ui;j

.n�1/–sub
//
`

Spec Ti �Y Spec S
.n�1/–sub

//

��

n–geometric

tt

X �Y Spec S //

��

Spec S

��`
Spec Ti ˝R S

`
Spec Ti

.n�1/–sub
// X

f
// Y

By Lemma 4.25, the composition of the top two horizontal maps is also an .n� 1/–
submersion from a disjoint union of affines, establishing that f is n–geometric. The
second claim is clear.

Lemma 4.31 If X is n–geometric, and if pW Spec S ! X is a point of X , then
�pX DSpec S�X Spec S!Spec S is an .n�1/–geometric morphism. The projection
X Sm

! X induced by choosing a point in the m–sphere is an .n�m/–geometric
map.

Proof We use the equivalent description of �pX as the pullback in the diagram

�pX //

��

Spec S �Spec R Spec S

.p;p/

��

X // X �Spec R X:

Since the diagonal of X is .n� 1/–geometric, it follows that the composite

�pX ! Spec S �Spec R Spec S ! Spec S

is also .n� 1/–geometric. To prove the second statement, it suffices to note that the
fiber of the projection map over a point pW Spec S !X is the m–fold iterated loop
space �m

p X . So, this follows from the first part of the lemma.

Example 4.32 If G is a smooth n–geometric stack of groups (ie, grouplike A1–
spaces), then BG is a pointed smooth .nC1/–geometric stack. Indeed, the loop space
of BG at the canonical point is just G . Therefore, the point Spec R! BG is an
n–submersion. Using Lemma 4.25(2), the claim follows.

For the next two lemmas, fix a base sheaf Z in ShvKet
R , and consider the 1–topos

ShvKet
=Z

of objects over Z . Let Shvn
=Z be the full subcategory of ShvKet

=Z
consisting of

the n–geometric morphisms Y !Z .

Lemma 4.33 The full subcategory Shvn
=Z of ShvKet

=Z
is closed under finite limits

in ShvKet
=Z

.
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Proof As Shvn
=Z has a terminal object which agrees with the terminal object of ShvKet

=Z
,

it is enough to check the case of pullbacks. Suppose that X ! Y and W ! Y are
two morphisms in Shvn

=Z . In order to check that X �Y W is in Shvn
=Z it suffices to

check that X �Y W is in Shvn
=Y since Y ! Z is n–geometric. Moreover, we can

obviously reduce to the case that Y ' Spec S is representable. Then, X and W are
n–geometric stacks over S . Taking an n–atlas U !X and an n–atlas V !W , the
fiber product U �Y V is an n–atlas for X �Y W by using the stability of geometricity
and smoothness under pullbacks.

Lemma 4.34 The full subcategory of ShvKet
=Z

consisting of quasicompact 0–geometric
sheaves over Z is closed under all limits in ShvKet

=Z
.

Proof It suffices to note that arbitrary limits of representables are representable, since
the 1–category of connective commutative R–algebras has all colimits.

Lemma 4.35 A finite limit of n–geometric morphisms (locally of finite presentation)
is n–geometric (and locally of finite presentation).

Proof The proof is by induction on n. The base case nD 0 simply follows because
finite limits of representable sheaves are representable, and finite limits distribute
over coproducts. Suppose the lemma is true for k –geometric sheaves for all k < n,
and let fi W Xi! Yi be a finite diagram of n–geometric morphisms (locally of finite
presentation). Let f W X ! Y be the limit. Let Spec S! Y be an S –point. Then, we
may construct an atlas for the pullback X�Y Spec S as the (finite) limit of a compatible
family of atlases for the pullbacks Xi �Yi

Spec S . The morphism from this atlas to
X �Y Spec S is .n� 1/–geometric by the inductive hypothesis. It is also clear that
it is a submersion. If the maps are locally of finite presentation, then the atlases over
each Xi �Yi

Spec S may be chosen to be locally of finite presentation, and hence their
(finite) limit is again locally of finite presentation.

Lemma 4.36 Let X � be a cosimplicial diagram of quasiseparated n–geometric
sheaves over Z . Then, the limit X D lim�X � is n–geometric over Z .

Proof By Goerss and Jardine [27, Proposition VII.1.7], there is pushout diagram for
any m,

��m � @�
m //

��

skm�1�
�

��

��m ��
m // skm�

�;
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of cosimplicial spaces. Given X � we obtain a pullback diagram of sheaves

map.skm�
�;X �/ //

��

map.��m ��
m;X �/'X m

��

map.skm�1�
�;X �/ // map.��m � @�

m;X �/' .X m/S
m�1

:

By Lemma 4.31, the map .X m/S
m�1

! X m is .n�m� 1/–geometric. Since X m

is n–geometric, Lemma 4.25(3) implies that the left-hand vertical maps above are
.n�m� 2/–geometric. Thus, if m � n� 2, we see that the left-hand vertical maps
above are 0–geometric. Moreover, by hypothesis, each diagonal X m!X m �Z X m

is quasicompact, so, pulling back, we see that each of the maps

.X m/S
m�1

! .X m/S
m�2

! � � � ! .X m/S
1

!X m

is quasicompact, so the composite .X m/S
m�1

!X m and the section X m!.X m/S
m�1

are as well by Remark 4.26. We conclude that the left-hand vertical map is 0–geometric
and quasicompact. As we have equivalences

lim
�

X � ' lim
m

map.skm�
�;X �/' lim

m�n�2
map.skm�

�;X �/;

lim�X � is a limit of quasicompact 0–geometric morphisms over map.skn�2�
�;X �/,

which, as a finite limit of n–geometric sheaves over Z , is n–geometric over Z . Hence,
by Lemma 4.34, the limit is n–geometric.

Proposition 4.37 If Y is a retract of a sheaf X over Z , and if X is quasiseparated
and n–geometric over Z , then Y is n–geometric over Z .

Proof We refer to [41, Section 4.4.5] for details about retracts in 1–categories . In
particular, any retract in ShvKet

=Z
is given as the limit of a diagram zX W Idem! ShvKet

=Z
,

where Idem is an 1–category with only one object � and with finitely many simplices
in each degree. Let X D zX .�/. It follows that the cosimplicial replacement (see
Bousfield and Kan [16, XI 5.1]) of p is a cosimplicial sheaf X � which in degree k is
a finite product of copies of X . Thus, if p takes values in quasiseparated n–geometric
sheaves over Z , then each X k is still quasiseparated and n–geometric. By Lemma 4.36,
the retract of X classified by zX is n–geometric.

Lemma 4.38 If X is a quasiseparated n–geometric sheaf that is locally of finite
presentation, and if Y is a retract of X , then Y is locally of finite presentation.
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Proof By the previous lemma, Y is itself n–geometric. Let U D
`

i Spec Ti! Y be
an atlas, and let V D

`
i Spec Si!X �Y U be an atlas for the fiber product. Since the

composition V !X �Y U !X is an .n�1/–geometric submersion, it follows that V

is an atlas for X . By Lemma 4.27, each Si is locally of finite presentation over R.
Taking the pullback of X �Y U ! X over Y ! X , we get U ! X �Y U , since
Y !X!Y is the identity. Possibly by refining U , we can assume that U !X �Y U

factors through the surjection V ! X �Y U . We thus have shown that each Ti is a
retract of Sj for some j . Since Sj is locally of finite presentation over R, it follows
that Ti is as well.

We now prove in two lemmas that images of smooth n–geometric morphisms are Zariski
open. This is a generalization of the fact that images of smooth maps of schemes are
Zariski open. Restricting a sheaf in ShvKet

R to discrete connective commutative rings
induces a geometric morphism of1–topoi ��

0
W ShvKet

R!ShvKet
�0R . Note that ��

0
Spec S

is equivalent to Spec�0S .

Lemma 4.39 Let S be a connective commutative R–algebra. Then, a subobject Z

of Spec S is Zariski open if and only if ��
0

Z is Zariski open in Spec�0S .

Proof The necessity is trivial. So, suppose that ��
0

Z is Zariski open. Because ��
0

admits a left adjoint, we see that ��
0

preserves .�1/–truncated objects and finite limits.
Thus, ��

0
preserves subobjects, so ��

0
Z is a subobject of Spec�0S . Let F be the set

of f 2 �0S such that Spec S Œf �1�! Spec S factors through Z . Note that f 2 F if
and only if Spec�0S Œf �1�! Spec�0S factors through ��

0
Z . By construction, there

is a monomorphism over Spec S

W WD
[
f 2F

Spec S Œf �1�!Z:

Since ��
0

Z is Zariski open, it follows that ��
0

W D ��
0

Z . The counit map of the
adjunction

��0 W ShvKet
R � ShvKet

�0R W�0�

gives a map Z! �0��
�
0

Z D �0��
�
0

W . Now, we can recover W from �0��
�W as

the pullback
W //

��

Spec S

��

�0��
�
0

W // �0��
�
0

Spec S:

Geometry & Topology, Volume 18 (2014)



Brauer groups and étale cohomology in derived algebraic geometry 1199

Indeed, since W is open, it is a union of Spec S Œf �1
i �. This is clear when W is a

basic open subscheme Spec S Œf �1�, and the general case follows from the fact that ��
0

induces an equivalence between the small Zariski site of Spec S and (the nerve of) the
small Zariski site of Spec�0S . Thus, there are maps W !Z and

Z! �0��
�
0 Z ��0� Spec�0S Spec S

�
!W

over Spec S . Since W and Z are subobjects of Spec S , it follows that they are
equivalent. Thus, Z is Zariski open.

The image of a map f W X ! Y of sheaves is defined as the epi-mono factorization
X � im.f /� Y . In particular, the morphism im.f /� Y is a monomorphism.

Lemma 4.40 Let f W X ! Y be a smooth n–geometric morphism. Then, the map
im.f /! Y is a Zariski open immersion.

Proof We may assume without loss of generality that Y DSpec S for some connective
commutative R–algebra S . Then, by hypothesis, there is a smooth .n� 1/–geometric
chart a

i

Spec Ti!X

such that the compositions gi W Spec Ti! Spec S are smooth, and thus have cotangent
complexes Lgi

which are projective. By [45, Proposition 8.4.3.9], �0Lgi
is the

cotangent complex of ��
0
.gi/W Spec�0Ti! Spec�0S , and it is projective. Since gi

is locally of finite presentation, by Lemma 4.18, ��
0
.gi/ is locally of finite presentation,

and hence smooth. Since smooth morphisms of discrete schemes are flat by [30, Theo-
rem 17.5.1], the image of ��

0
.gi/ has an open image in Spec�0S . By the previous

lemma, it follows that the image of gi in Spec S is open.

4.4 Cotangent complexes of smooth morphisms

In this section, we show that n–geometric morphisms have cotangent complexes, and
we give a criterion for an n–geometric morphism to be smooth in terms of formal
smoothness and the cotangent complex.

Let S be a connective commutative R–algebra, and let M be a connective S –module.
Then, a small extension of S by M over R is a connective commutative R–algebra zS
together with an R–algebra section d of S ˚†M ! S such that zS is equivalent to
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the pullback
zS //

��

S

��

S
d
// S ˚†M:

The 1–category of small extensions CAlgsmall
R=S

is the full subcategory of CAlg cn
R=S

spanned by small extensions of S over R.

Lemma 4.41 There is a natural equivalence CAlgsmall
R=S
' .�>0ModS /LR=S= . The

composite
CAlgsmall

R=S ' .�>0ModS /LR=S=! �>0ModS

is given by taking the cofiber †M of zS ! S .

Proof By adjunction, the space of R–algebra sections of S˚†M !S is equivalent
to the space of S –module maps LR=S !†M .

The previous lemma allows us to compute the cotangent complex of a small extension.

Lemma 4.42 Let zS ! S be a small extension of S by M . Then, the cotangent
complex Li of i W Spec S ! Spec zS is naturally equivalent to †M .

Proof By the previous lemma, it suffices to show that zS is an initial object of CAlgsmall
zS=S

.
It is easy to check that zS is a small extension of S over zS . As

zS ! S

is the initial object of CAlg cn
zS=S

, it follows that it is an initial object of CAlgsmall
zS=S

.

A sheaf X is infinitesimally cohesive if for all R–algebras S and all small extensions
zS ' S �S˚†M S of S by an S –module M the natural map

X. zS/!X.S/�X .S˚†M /X.S/

is an equivalence.

Lemma 4.43 Let X be an infinitesimally cohesive sheaf with a cotangent complex LX ,
let uW Spec S ! X be a point and let zS ! S be a small extension of S by M

classified by a class x 2 �0mapS .LSpec S ; †M /. Then, u extends to zuW Spec zS !X

if and only if the image of x vanishes under the map induced by u�LX ! LSpec S ,
�0mapS .LSpec S ; †M /! �0mapS .u

�LX ; †M /.

Geometry & Topology, Volume 18 (2014)



Brauer groups and étale cohomology in derived algebraic geometry 1201

Proof Since X is infinitesimally cohesive, there is a cartesian square

Xu. zS/ //

��

�

.u;0/

��

�
˛

// Xu.S ˚†M /;

where Xu. zS/;Xu.S ˚†M / are the fibers of X. zS/!X.S/;X.S ˚†M /!X.S/

over u, and ˛ is induced by Spec d W Spec S ˚M ! Spec S . By definition of the
cotangent complex, Xu.S ˚†M /'mapS .u

�LX ; †M /. So, Xu. zS/ is nonempty if
and only if the point ˛ of mapS .u

�LX ; †M / is 0. But, d is classified by x , so that ˛
is the image of x in mapS .u

�LX ; †M /, as claimed.

A sheaf X is nilcomplete if for any connective commutative R–algebra S the canonical
map

X.S/! lim
n

X.��nS/

is an equivalence. If T is any commutative R–algebra, then X DSpec T is nilcomplete.
Indeed, if S is a connective commutative R–algebra, then

X.S/DmapCAlgR
.T;S/' lim

n
mapCAlgR

.T; ��nS/D lim
n

X.��nS/:

A map of sheaves pW X ! Y is nilcomplete if for all connective commutative R–
algebras S and all S –points of Y the fiber product X �Y Spec S is nilcomplete.

Remark 4.44 Suppose that S
�
! lim˛ S˛ is a limit diagram of connective commutative

R–algebras such that each map S ! S˛ induces an isomorphism on �0 . In this case,
the underlying small étale 1–topoi of S and each S˛ are equivalent. Given a sheaf X

in ShvKet
R , let XS (resp. XS˛ ) denote the restriction of X to the small étale site of S .

Thus, for instance, the space of global sections XS˛ .S/ is equivalent to X.S˛/. In
order for X.S/! lim˛ X.S˛/ to be an equivalence, it suffices to show that XS is
equivalent to lim˛ XS˛ .

As we now show, all n–geometric morphisms have cotangent complexes, and we
use this to show that the property of smoothness for n–geometric morphisms can be
detected via a Tor-amplitude condition on the cotangent complex. The proof of the next
proposition is a mix of several proofs in [40], particularly Propositions 5.1.5 and 5.3.7.

Proposition 4.45 An n–geometric morphism f W X ! Y is infinitesimally cohesive,
nilcomplete, and has a .�n/–connective cotangent complex Lf . If f is smooth,
then Lf is perfect of Tor-amplitude contained in Œ�n; 0�. Finally, if f is smooth, then
it is formally smooth.
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Proof We prove the proposition by induction on n. We may assume moreover that
Y D Spec S , and prove the statements for X and LX . When X is a disjoint union of
affines, it is automatically infinitesimally cohesive and nilcomplete, since maps out
of a commutative ring commute with limits. The other statements in the base case
nD 0 follow from Propositions 4.14 and 4.16. Thus, suppose the proposition is true
for k –geometric morphisms with k < n. Then, since X is n–geometric, we fix an
.n� 1/–submersion pW U ! X where U is a disjoint union of affines

`
i Spec Ti .

Write pi for the composition Spec Ti! U !X .

To prove the statements about infinitesimal cohesiveness and nilcompleteness, we
apply Lemma 4.28 and use Remark 4.44. Let X be an n–geometric sheaf, and let
U !X be a surjection of sheaves. Let S

�
! lim˛ S˛ be a limit diagram of connective

commutative R–algebras such that each map S ! S˛ induces an isomorphism on �0 .
Consider the simplicial object obtained by taking iterated fiber products of the map

lim̨ US˛ ! lim̨ XS˛ :

By using identifications of the form

US˛ �XS˛
US˛ ' .U �X U /S˛ ;

the simplicial objected induces a .�1/–truncated map from the geometric realization
j lim˛ US˛;�j to lim˛ XS˛ . We obtain a commutative diagram

XS
// lim˛ XS˛

jUS;�j

OO

// j lim˛ US˛;�j;

OO

where the bottom map is an equivalence, the left vertical map is an equivalence and
the right vertical map is .�1/–truncated. To show the top map is an equivalence, it is
enough to show that for any étale S –algebra T the map lim˛ U.T˛/! lim˛ X.T˛/

is surjective, where T˛ D S˛˝S T .

Infinitesimal cohesiveness We specialize the above considerations to where S is a
small extension of S0 by M :

S //

��

S0

��

S0
// S0˚†M
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Set S1 D S0˚†M . We want to show that for any étale S –algebra T , the natural
map

lim
i

U.Ti/! lim
i

X.Ti/

is surjective, where Ti D Si ˝S T . It suffices to prove this when the value of
Spec.T1/ ! X at the terminal object lifts to U . To show that the map on limits
is surjective, it suffices to show that for any point x0 of X.T0/ that maps to x1

in X.T1/, and for any lift of x1 to y1 in U.T1/, there exists y0 in U.T0/ mapping
to y1 and x0 (for either of the maps T0! T1 ). This surjectivity follows from the fact
that the cotangent complex of U !X exists, which is due to the inductive step of the
proof. The surjectivity follows from Lemma 4.43 because the cotangent complex of U

over X is perfect and its dual is connective.

Nilcompleteness The proof of nilcompleteness is similar to that of infinitesimal co-
hesiveness, and is left to the reader.

Existence Fix a T –point xW Spec T ! X . Since pW U ! X is surjective, we can
assume that x factors through p . Let yW Spec T ! U be such a factorization. Then,
there is a natural morphism

F W derf ıp.y;M /! derf .x;M /:

The 0–point of derf .x;M / is the point in the fiber of X.T ˚M /! X.T /�Y .T /

Y .T ˚M / corresponding to Spec T ˚M ! Spec T !X . The fiber over 0 of F is
naturally equivalent to derp.y;M /. Thus, we have a natural fiber sequence

mapT .Lp;M /!mapT .Lf ıp;M /! derf .x;M /:

By the formal smoothness of the smooth .n� 1/–geometric morphism p , the map of
spaces F is surjective. It follows that we can identify derf .x;M / with the fiber of the
delooped map

BmapT .Lp;M /! BmapT .Lf ıp;M /:

Therefore, the fiber of Lf ıp ! Lp is a cotangent complex for f . The connectivity
statement is immediate.

Tor-amplitude Now, suppose that X ! Spec S is smooth. Then, we may assume
that Spec Ti is smooth over Spec S ; in particular Spec Ti is locally finitely presented
and LTi

is finitely generated projective. By Lemma 4.10, there is a cofiber sequence

p�i LX ! LSpec Ti
! LSpec Ti=X :

By the inductive hypothesis, LSpec Ti=X is perfect and has Tor-amplitude contained
in Œ�nC 1; 0�. Therefore, LX is perfect and has Tor-amplitude contained in Œ�n; 0�.
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Formal smoothness Let K be the class of nilpotent thickenings uW zT ! T that
satisfy the left lifting property with respect to f . Since f has a cotangent complex, K

contains all trivial square-zero extensions T ˚M ! T . To see that K contains all
small extensions of T by M , we use the fact that

X. zT /'X.T /˝X .T˚†M /X.T /:

Therefore, to check that the projection

X. zT /'X.T /˝X .T˚†M /X.T /!X.T /

is surjective, it suffices to note that

�0X.T /��0X .T˚†M / �0X.T /! �0X.T /��0X .T / �0X.T /D �0X.T /

is surjective, because the map of pullback diagrams admits a section induced by the
inclusion �0X.T /!�0X.T˚†M /. Finally, that K contains all nilpotent thickenings
follows from the method of the proof of [42, Proposition 7.26], which decomposes
such a thickening as a limit of small extensions.

The fact that smooth n–geometric morphisms have perfect cotangent complexes with
Tor-amplitude contained in Œ�n; 0� characterizes smooth morphisms, at least if we
include the assumption that the morphism be locally of finite presentation.

Proposition 4.46 An n–geometric morphism f W X ! Y is smooth if and only if it is
locally of finite presentation and Lf is a perfect complex with Tor-amplitude contained
in Œ�n; 0�.

Proof We may assume that Y D Spec S . Let U D
`

i Spec Ti ! X be a smooth
.n�1/–submersion onto X . Then, each composition Spec Ti!Spec S is smooth, and
hence locally of finite presentation. Therefore, f is locally of finite presentation. The
fact that Lf is perfect with Tor-amplitude contained in Œ�n; 0� follows from the previous
proposition. Suppose now that f is n–geometric, locally of finite presentation, and
that Lf has Tor-amplitude contained in Œ�n; 0�. Take a chart pW U D

`
i Spec Ti!X

where the Spec Ti are all locally of finite presentation over Spec S . The pullback
sequence

p�LX ! LU ! Lp

of cotangent complexes, together with the facts that p�LX and LU are perfect com-
plexes with Tor-amplitude contained in Œ�n; 0� and Œ�nC 1; 0�, respectively, shows
that LU is perfect with Tor-amplitude contained in Œ�n; 0�. But, since U is a disjoint
union of affines, LU is connective. Thus, LU is equivalent to a finitely generated
projective module, so that each Spec Ti! Spec S is smooth, as desired.
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4.5 Étale-local sections of smooth geometric morphisms

The theorem in this section says that smooth morphisms that are surjective on geometric
points are in fact surjections of étale sheaves.

Theorem 4.47 If pW X!Y is a smooth locally geometric morphism that is surjective
on geometric points, then for every S –point Spec S ! Y there exists an étale cover
Spec T ! Spec S and a T –point Spec T !X such that

Spec T //

��

X

��

Spec S // Y

commutes.

Proof We may assume without loss of generality that Y D Spec S , and it then suffices
to prove that X ! Spec S has étale local sections. Write X as a filtered colimit

X ' colim
i

Xi

of ni –geometric sheaves, such that each Xi!X is a monomorphism. By Lemma 4.9,
the cotangent complex LXi=X vanishes. Suppose that the cotangent complex of X

has Tor-amplitude contained in Œ�n; 0�. Then, for i sufficiently large, it follows that
Xi! Spec S is a smooth ni –geometric morphism. Since Spec S is quasicompact, and
since the image of Xi in Spec S is open by Lemma 4.40, it follows that for some i ,
Xi ! Spec S is a smooth ni –geometric morphism that is surjective on geometric
points. There exists an .n � 1/–submersion U ! Xi such that U is the disjoint
union of smooth affine S –schemes. Let ��

0
U ! Spec�0S be the associated map

of ordinary schemes. By hypothesis, this morphism is smooth and is surjective on
geometric points. By [30, Corollaires IV.17.16.2, IV.17.16.3(ii)], there exists an étale
cover Spec�0T !Spec�0S and a factorization Spec�0T !��

0
U!Spec�0S . The

étale map �0S ! �0T determines a unique connective commutative S –algebra T

by [45, Theorem 8.5.0.6]. We would like to lift the �0T –point of ��
0

U to a T –
point of U . Since U is a disjoint union of affines, it is nilcomplete. Therefore,
U.T / ' limn U.��nT /, so it suffices to show that U.��nT /! U.��n�1T / is sur-
jective. This is true since U is formally smooth and ��nT ! ��n�1T is a nilpotent
thickening.
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5 Moduli of objects in linear 1–categories

We study moduli spaces of objects in R–linear categories. This extends the work of
Toën and Vaquié [58] to the setting of commutative ring spectra. We give some results
on local moduli, which form the basis of an important geometricity statement for global
moduli sheaves. As a corollary, we show in the final section that if A is an Azumaya
algebra over R, the sheaf of Morita equivalences from A to R is smooth over Spec R,
and hence has étale local sections.

5.1 Local moduli

In this section we prove the geometricity of the sheaf corepresented by a free com-
mutative R–algebra SymR.P / where P is a perfect R–module, and we show that
when P has Tor-amplitude contained in Œ�n; 0�, then this sheaf is smooth. These facts
are nontrivial precisely because SymR.P / is not necessarily connective. This turns out
to be the main step in understanding the geometricity of more general moduli problems.

Let ProjR denote the sheaf of finite rank projective modules.

Proposition 5.1 The sheaf ProjR is equivalent to
`

n B GLn . In particular, ProjR is
locally 1–geometric and locally of finite presentation.

Proof A projective module is locally free by Proposition 2.12. Hence, the sheaf
of projective rank n modules is equivalent to B GLn . This sheaf has a 0–atlas
Spec R! B GLn , which shows it is 1–geometric and locally of finite presentation.

Theorem 5.2 Let P be a perfect R–module with Tor-amplitude contained in Œa; b�
with a�0. Then, the sheaf Spec SymR.P / is a quasicompact and quasiseparated .�a/–
geometric stack that is locally of finite presentation. Moreover, the cotangent complex
of Spec SymR.P / at an S –point xW Spec S ! Spec SymR.P / is the S –module

LSpec SymR.P/;x
' P ˝R S:

Therefore, if b � 0, Spec SymR.P / is smooth.

Proof We prove all of the statements except for quasiseparatedness by induction
on �a. If a D 0, then P is connective by Proposition 2.13, so that SymR.P / is
connective as well. Thus, Spec SymR.P / is 0–geometric and quasicompact. It is
locally of finite presentation since the R–module P is perfect. Now, assume that P

has Tor-amplitude contained in Œa; b� where a < 0. By Proposition 2.13, we can
write P as the fiber of some map Q! †aC1N , where Q is a perfect R–module
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with Tor-amplitude contained in ŒaC 1; b� and N is a finitely generated projective
R–module. The fiber sequence induces a fiber sequence of sheaves

Spec SymR.†
aC1N /! Spec SymR.Q/! Spec SymR.P /! Spec SymR.†

aN /;

where, inductively, both Spec SymR.†
aC1N / and Spec SymR.Q/ are .�a � 1/–

geometric stacks that are locally of finite presentation. The map

(9) Spec SymR.Q/! Spec SymR.P /

is surjective, because if S is a connective commutative R–algebra, we get a fiber
sequence of spaces

mapR.†
aC1N;S/!mapR.Q;S/!mapR.P;S/

!mapR.†
aN;S/' BmapR.†

aC1N;S/;

which shows that mapR.Q;S/ is the total space of a principal bundle over mapR.P;S/.
The map (9) is also quasicompact, since the fiber Spec SymR.†

aC1N / is quasicompact.
Note that

Spec SymR.Q/�Spec SymR.P/
Spec SymR.Q/

' Spec.SymR.Q/˝SymR.P/
SymR.Q//

' Spec SymR.Q˚P Q/:

Using that the natural map given by an inclusion followed by the codiagonal

Q!Q˚P Q!Q

is the identity, it follows that Q˚P Q'Q˚†aC1N . Therefore,

Spec SymR.Q˚P Q/' Spec SymR.Q/�Spec R Spec SymR.†
aC1N /:

It follows that the projection Spec SymR.Q˚P Q/!Spec SymR.Q/ is the pullback of
a .�a�1/–geometric morphism, and so is itself .�a�1/–geometric. The projection is
smooth because Spec SymR.†

aC1N / is smooth. Therefore, by all of the statements of
Lemma 4.29, Spec SymR.P / is a quasicompact .�a/–geometric stack that is locally of
finite presentation. Finally, by Lemma 4.13, the cotangent complex of Spec SymR.P /

is P ˝R SymR.P /, so Spec SymR.P / is smooth by Proposition 4.45 if b � 0.

It remains to show that Spec SymR.P / is quasiseparated. Let Q be the cofiber of the
diagonal morphism P ! P ˚P . Then, the fiber of the diagonal morphism

Spec SymR.P /! Spec SymR.P /�Spec R Spec SymR.P /' Spec SymR.P ˚P /

is equivalent to Spec SymR.Q/, which is quasicompact by the first part of the proof.
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Remark 5.3 If P is a perfect R–module with Tor-amplitude contained in Œa; b� and
a� 0, then it also has Tor amplitude contained in Œ0; b�, and the proposition implies
that Spec SymR.P / is a 0–geometric stack.

5.2 The moduli sheaf of objects

In this section, we apply the study of local moduli above to global moduli sheaves of
objects. The main theorems in this section, Theorems 5.6 and 5.8, are generalizations
of results of [58] to connective E1–ring spectra.

Let C be a compactly generated R–linear 1–category. Define a functor

MCW .Aff cn
R /

op
!bCat1

whose value at Spec S is the full subcategory of DRC˝R ModS ' FunL
R.C;ModS /

consisting of those objects f such that for every compact object x of C, the value f .x/
is a compact object of ModS . Put another way, we can define MC as the pullback

MC
//

��

FunL
R.C;Mod/

��Q
x2�0C! Mod! //

Q
x2�0C! Mod;

where Mod! is the functor of compact objects Mod! W .Aff cn
R /

op!bCat1 given by

Mod!.Spec S/DMod!S :

Lemma 5.4 For any compactly generated R–linear 1–category C, the functor MC

satisfies étale hyperdescent.

Proof It is clear that FunL
R.C;Mod/ satisfies étale hyperdescent since Mod is an étale

hyperstack. Moreover, we claim that the functor of compact objects Mod! also satisfies
étale hyperdescent. It suffices to check that Mod!S ! lim� Mod!T � is an equivalence
for any étale hypercover S ! T � . But this follows from the commutative diagram

Mod!S //

��

lim� Mod!T �

��

ModS
// lim� ModT � :

The vertical arrows are fully faithful, and the bottom arrow is an equivalence. It follows
that the top arrow is fully faithful. It is also essentially surjective for the following
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reason. The compact objects of ModS are precisely the dualizable ones. But, the
property of being dualizable can be checked étale locally. Thus, Mod! satisfies étale
hyperdescent. Now, by the pullback definition of MC above, it follows that MC satisfies
étale hyperdescent.

Because it satisfies étale hyperdescent, the functor MC extends uniquely to a limit
preserving functor ShvKet

R!
bCat1 . We abuse notation and write MC for the resulting

stack. Let MC D M
eq
C be the sheaf of equivalences in MC . We call this the moduli

sheaf (or moduli space) of objects in C. It is a sheaf of small spaces because C! is
small. If C is ModA for some R–algebra A, we also write MA for MModA

. This sheaf
classifies left A–module structures on perfect S –modules.

Definition 5.5 Let MŒa;b�
R

be the full subsheaf of MR whose S –points consist of
perfect S –modules with Tor-amplitude contained in Œa; b�. Note that this makes sense
since Tor-amplitude is stable under base change by Proposition 2.13. By the same
proposition, there is an equivalence

colim
a�b

MŒa;b�
R

�
!MR;

and each map MŒa;b�
R
!MR is a monomorphism.

Theorem 5.6 The sheaf MR is locally geometric and locally of finite presentation.

Proof By the definition of local geometricity, it suffices to show that each MŒa;b�
R

is
.nC 1/–geometric and locally of finite presentation where nD b� a. To begin, we
show that each diagonal map

(10) MŒa;b�
R
!MŒa;b�

R
�Spec R MŒa;b�

R

is .b�a/–geometric and locally of finite presentation. Given a map from Spec S to the
product classifying two perfect S –modules P and Q, the pullback along the diagonal
is equivalent to Eq.P;Q/, the sheaf over Spec S classifying equivalences between P

and Q. This is a Zariski open subsheaf of Spec SymS .P ˝S Q_/. Since P ˝S Q_

has Tor-amplitude contained in Œa�b; b�a�, by Theorem 5.2, Eq.P;Q/! Spec S is
.b� a/–geometric. Therefore, the diagonal map (10) is .b� a/–geometric, as desired.

We now proceed by induction on nD b� a. When nD 0, a–fold suspension induces
an equivalence

ProjR!MŒa;a�
R

:

By Example 4.21, ProjR is 1–geometric and locally of finite presentation. Now,
suppose that MŒaC1;b�

R
is .b � a/–geometric and locally of finite presentation. The
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general outline of the induction is as follows. We construct a sheaf U that admits a
0–geometric smooth map to MŒaC1;b�

R
�Spec R MŒaC1;aC1�

R
and use this to show that U

is a .b � a/–geometric sheaf locally of finite presentation. Then, we show that U

submerses onto MŒa;b�
R

. By Lemma 4.30, this is enough to conclude that MŒa;b�
R

is
.b� aC 1/–representable and locally of finite presentation.

Let U be defined as the pullback of sheaves

U //

p

��

Fun.�1;Mod!R/
eq

��

MŒaC1;b�
R

�Spec R MŒaC1;aC1�
R

// Fun.@�1;Mod!R/
eq:

Suppose that Spec S!MŒaC1;b�
R

�Spec R MŒaC1;aC1�
R

is a point classifying a perfect S –
module Q of Tor-amplitude contained in ŒaC 1; b� and a perfect S –module †aC1M

of Tor-amplitude contained in ŒaC 1; aC 1�. The fiber of p at this point is simply the
local moduli sheaf

Spec SymS .Q˝S †
�a�1M /:

As Q˝S †
�a�1M has Tor-amplitude contained in Œ0; b � a � 1�, it follows that

this local moduli sheaf is 0–geometric and locally of finite presentation because
SymS Q˝S†

�a�1M is a compact commutative S –algebra (because Q˝S†
�a�1M

is compact). Therefore, p is 0–geometric and locally of finite presentation. Moreover,
MŒaC1;b�

R
�Spec R MŒaC1;aC1�

R
is a .b�a/–geometric sheaf locally of finite presentation

by the inductive hypothesis. So, U is .b � a/–geometric by Lemma 4.25, and it is
locally of finite presentation.

Let qW U !MŒa;b�
R

be the map that sends an object of U to the fiber of the map it
classifies in Fun.�1;Mod!R/

eq , which has the asserted Tor-amplitude by part (5) of
Proposition 2.13. Since U is .b� a/–geometric and because the diagonal of MŒa;b�

R
is

.b � a/–geometric, it follows from Lemma 4.30 that q is .b � a/–geometric. If we
prove that q is smooth and surjective, it will follow that MŒa;b�

R
is .b�aC1/–geometric

by Lemma 4.30.

The surjectivity of q is immediate from part (7) of Proposition 2.13. To check smooth-
ness, consider a point Spec S ! MŒa;b� , which classifies a compact S –module P

of Tor-amplitude contained in Œa; b�. Let Z be the fiber product of this map with
U ! MŒa;b� . The T –points of the sheaf Z may be described as ways of writing
P˝S T as a fiber of a map Q!†aC1M , where M is a finitely generated projective
T –module, and Q is a T –module with Tor-amplitude contained in ŒaC1; b�. Possibly
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after passing to a Zariski cover of Spec T , we may assume that M ' T˚r is finitely
generated and free. In other words, the sheaf Z decomposes as

Z '
a
r�0

Zr ;

where Zr classifies maps †aS˚r ! P with cofiber having Tor-amplitude con-
tained in ŒaC 1; b�. Since Spec SymS .†

a.P_/˚r / classifies all maps †aS˚r ! P ,
we see that Zr consists of the points of Spec SymS .†

a.P_/˚r / classifying maps
†aS˚r ! P that are surjective on �a . Since by Proposition 2.6, �aP is finitely
generated, this surjectivity condition is open, because the vanishing of the cokernel
of �0S˚r ! �aP can be detected on fields by Nakayama’s Lemma. As the perfect
module .P_/˚r has Tor-amplitude contained in Œa� b; 0�, Spec SymS .†

a.P_/˚r /

is smooth by Theorem 5.2. Thus, Zr is smooth, and hence the morphism U !MŒa;b�

is smooth, which completes the proof.

To analyze MA for other rings A, we use subsheaves MŒa;b�
A

of MA which are induced
by the corresponding subsheaves of MR : specifically, define MŒa;b�

A
to be the pullback in

MŒa;b�
A

� Œa;b�
//

��

MŒa;b�
R

��

MA

�
// MR:

Since the filtration fMŒ�a;a�
R

ga�0 exhausts MR , it follows that fMŒ�a;a�
A

ga�0 ex-
hausts MA .

Proposition 5.7 Let ModA be an R–linear category of finite type, so that A is a
compact R–algebra. Then, the natural morphism � W MŒa;b�

A
! MŒa;b�

R
is .b � a/–

geometric and locally of finite presentation.

Proof It is easy to see using Corollary 3.2 that the space of T –points of the fiber
of � Œa;b� at a point Spec S!MŒa;b�

R
classifying a perfect S –module P is equivalent to

mapAlgT
.A˝R T;EndT .P ˝S T //:

We will write map.A˝R S;EndS .P // for the resulting sheaf over Spec S . Now,
since A˝R S is of finite presentation as an S –algebra, A˝R S is a retract of a
finite colimit of the free S –algebra Shti. It follows from Lemmas 4.35 and 4.38 and
Proposition 4.37 that to prove that map.A˝R S;EndS .P // is .b � a/–geometric
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and locally of finite presentation, it suffices to show that map.Shti;EndS .P // is a
quasiseparated .b� a/–geometric sheaf that is locally of finite presentation. But,

mapAlgS
.Shti;EndS .P //'mapModS

.S;EndS .P //' Spec SymS .EndS .P /
_/:

Since EndS .P /
_'P_˝S P is perfect and has Tor-amplitude contained in Œa�b; b�a�,

it follows from Theorem 5.2 that the fiber is .b� a/–geometric, quasiseparated, and
locally of finite presentation.

Given the proposition, it is now straightforward to prove the following theorem. After
we completed the first version of this paper, we were pointed to the thesis of Pandit [49],
which establishes the result in the case where A is smooth and proper using other
methods, namely the representability theorem of Lurie.

Theorem 5.8 Let A be a compact R–algebra. Then, the stack MA is locally geometric
and locally of finite presentation, and the functor � W MA!MR is locally geometric
and locally of finite presentation.

Proof By the previous proposition, MŒa;b�
A
!MŒa;b�

R
is .b�a/–geometric and locally

of finite presentation. Since MŒa;b�
R

is .b � aC 1/–geometric and locally of finite
presentation, it follows from Lemma 4.25, that MŒa;b�

A
is also .b� aC 1/–geometric

and locally of finite presentation. It follows that MA is locally geometric and locally of
finite presentation. To prove the second statement, let Spec S!MR classify a perfect
S –module P , which has Tor-amplitude contained in some Œa; b�. The fiber of � over
this point is equivalent to the fiber of � Œa;b� over P , which by the previous proposition
is .b� a/–geometric and locally of finite presentation.

Note that, in the proof, the fiber is not only locally geometric, but .b� a/–geometric.
However, the geometricity of the fibers changes from point to point.

Corollary 5.9 Let A be a compact R–algebra, and let Spec S ! MA classify a
perfect S –module P with a left A–module structure. Then, the cotangent complex
of MA at the point P is the S –module

LMA;P '†
�1 EndAop˝RS .P /

_:

Proof By Lemma 4.9 and Proposition 4.45, the cotangent complex LMA
exists.

Consider the loop sheaf �P MA . By Lemma 4.11, the cotangent complex of this sheaf
at the basepoint � is simply

L�P MA;� '†LMA;P :
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Thus, it suffices to compute L�P MA;� . The stack �P MA is described by

�P MA.T /' autAop˝RT .P ˝S T /��1 EndAop˝RT .P ˝S T /

'mapS .S;EndAop˝RT .P ˝S T //

'mapS .S;EndAop˝RS .P /˝S T /

'mapS .EndAop˝RS .P /
_;T /

'map.Spec T;Spec SymS .EndAop˝RS .P /
_//;

where the equivalence between the second and third lines is by Lemma 2.7. The
inclusion is Zariski open, and hence the computation of Theorem 5.2 says that

L�P MA;� ' EndAop˝RS .P /
_;

which completes the proof.

5.3 Étale local triviality of Azumaya algebras

Let R be a connective E1–ring spectrum, and let A be an Azumaya R–algebra. We
prove now that the stack of Morita equivalences from A to R is smooth and surjective
over Spec R. As a corollary, we obtain one of the major theorems of the paper: the
étale local triviality of Azumaya algebras.

Since A is compact as an R–module, the space MA.S/ of S –points is equivalent to
the space

MA.S/' FunCatS;! .ModA˝RS ;ModS /
eq

of (compact object preserving) functors between compactly generated S –linear cat-
egories. We define the full subsheaf MorA � MA of Morita equivalences from A

to R by restricting the S –points to the full subspace of MA.S/ consisting of the
equivalences ModA˝RS 'ModS .

Proposition 5.10 Suppose that R is a connective E1–ring and that A is an Azumaya
algebra. The sheaf MorA! Spec R of Morita equivalences is locally geometric and
smooth.

Proof We show that MorA�MA is quasicompact and Zariski open. Fix an S –valued
point of MA classifying an Aop˝R S –module P which is compact as an S –module.
The bimodule P defines an adjoint pair of functors

�˝A P W ModA˝RS � ModS WMapS .P;�/:
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To show that MorA �MA is open, it suffices to check that the subsheaf of points of
Spec S on which the unit

�.A/W A!MapS .P;A˝A P /

and counit
�.S/W MapS .P;S/˝A P ! S

morphisms are equivalences is open in Spec S , since the unit and counit transformations
are equivalences if and only if they are equivalences on generators. As A is a perfect
S –module by the Azumaya hypothesis, Proposition 2.14 implies that the cofibers of
these maps vanish on quasicompact Zariski open subschemes of Spec S . Taking the
intersection of these two open subschemes yields the desired quasicompact Zariski
open subscheme of Spec S on which P defines a Morita equivalence. It follows that
MorA is locally geometric and locally of finite presentation.

Given a point P W Spec S !MorA , the cotangent complex at P is

LMorA;P '†
�1 EndA˝RS .P /'†

�1S;

a perfect S –module with Tor-amplitude contained in Œ�1;�1�. Thus, by definition,
MorA is a smooth locally geometric sheaf.

The following theorem is a generalization of [57, Proposition 2.14] to connective
E1–ring spectra.

Theorem 5.11 Let R be a connective E1 ring spectrum, and let A be an Azumaya
R–algebra. Then, there is a faithfully flat étale R–algebra S such that A˝R S is
Morita equivalent to S .

Proof The theorem follows immediately from the previous proposition, Theorems 3.14
and 4.47.

Proposition 5.12 If R is a connective E1–ring spectrum and A is an Azumaya
R–algebra, then the sheaf of Morita equivalences MorA is a Pic–torsor. In particular,
it is 1–geometric and smooth.

Proof The action of Pic on MorA is simply by tensoring Aop –modules with line
bundles. Étale-locally, MorA is equivalent to the space of equivalences ModS 'ModS

by the theorem. This is precisely Pic over Spec S .
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6 Gluing generators

The main result of the previous section shows that Azumaya algebras over connective
E1–rings are étale locally trivial. In this section, we want to show that certain étale
cohomological information on derived schemes X can be given by Azumaya algebras.
In other words we want to prove that “Br.X / D Br0.X /” in various cases. This is
established once we prove the following theorem.

Theorem 6.1 (Local-global principle) Let C be an R–linear category with descent,
and suppose that R! S is an étale cover such that C˝R S has a compact generator.
Then, C has a compact generator.

In fact, we prove a version of this theorem for quasicompact and quasiseparated derived
schemes. The result we prove expands on [43, Theorem 6.1], which is about a similar
statement for the property of being compactly generated.

The proof breaks up into several parts. First, we prove a local-global statement for
Zariski covers. This is used in two ways: to reduce the problem from schemes to affine
schemes and to help prove Nisnevich descent. Second, we prove a local-global statement
for étale covers, following [43, Section 6]. The main insight there is to use the fact that
a presheaf is an étale sheaf if and only if it is a sheaf for the Nisnevich and finite étale
topologies. Then, by using a theorem of Morel and Voevodsky (see [43, Theorem 2.9]),
we can reduce the proof of Nisnevich local-global principle to certain special squares,
which we analyze directly using techniques that, essentially, go back to Thomason and
Trobaugh [56] and Bökstedt and Neeman [13]. Proof of a local-global principle for
finite étale covers is subsumed in a more general statement for finite and flat covers,
which is purely 1–categorical.

This theorem has applications to the module theory of perfect stacks, as is developed
in [9; 43], and is related to questions about when derived categories are compactly
generated, and has been studied by Thomason and Trobaugh [56], Neeman [47; 48],
Bökstedt and Neeman [13] and Bondal and van den Bergh [14].

With two major exceptions, the outline of the proof is already contained in [57]. First,
our proof differs significantly from Toën’s when it comes to the étale local-global
principle. Since Toën works with simplicial commutative rings, he is able to use some
concrete constructions based on work of Gabber [25] to reduce to the finite étale case.
These constructions, which involve algebras of invariants of symmetric groups acting
on polynomial rings and quotient algebras, simply fail in the case of E1–ring spectra.
Thus, we use Lurie’s idea of using the Morel–Voevodsky result to prove the étale
local-global principle. Second, we cannot prove the fppf version contained in [57].
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Because of the lack of E1–structures on quotient rings, we do not know how to show
that the stack of quasisections used in the proof of [57, Proposition 4.13]. Hence, we
work everywhere in the étale topology. For the cases of interest to us, this restriction is
not a problem.

6.1 Azumaya algebras and Brauer classes over sheaves

Fix a connective E1–ring spectrum R. In Section 4, we introduced the étale hyper-
stacks Alg, AlgAz and Catdesc

R
. Let Alg, Az, and Pr be the associated underlying

(large) étale hypersheaves. There are natural maps Alg! Pr and Az! Pr. Let Mr
and Br be the étale hypersheafifications of the images of these maps. To be precise, for
every connective commutative R–algebra S , there is a map Alg.S/! Pr.S/, and the
image of this map is full subspace of Pr.S/ consisting of those points of Pr.S/ in the
image of Alg.S/. As S varies, these images determine a presheaf of spaces, and Mr
is the étale sheafification of this presheaf. The story for Br is similar, but with Az in
place of Alg.

Definition 6.2 Let X be an object of ShvKet
R .

(1) A quasicoherent algebra over X is a morphism X ! Alg.
(2) An Azumaya algebra over X is a morphism X ! Az.
(3) A Morita class over X is a morphism X !Mr.
(4) A Brauer class over X is a morphism X ! Br.
(5) A linear category with descent over X is a morphism X ! Pr.

Note that of the above, only Az and Br are actually sheaves of small spaces.

A Brauer class over X is thus a linear category over X which is étale locally equivalent
to modules over some Azumaya algebra. The rest of this section will prove that every
Brauer class (resp. Morita class) over X lifts to an Azumaya algebra (resp. algebra)
when X is a quasicompact and quasiseparated derived scheme.

If ˛W Spec S ! Pr is a linear category with descent over Spec S , let Mod˛S denote
the ModS –module classified by ˛ by the Yoneda lemma. The following construction
is studied extensively in [9; 43].

Definition 6.3 Let ˛W X ! Pr be a linear category with descent over X . Then, the
1–category of ˛–twisted X –modules is

Mod˛X D lim
f WSpec S!X

Mod˛ıf
S

:

This limit exists and Mod˛X is stable and presentable, because Pr L
st is closed under

limits.
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We describe this construction as the right Kan extension of .Aff cn
=X
/op'CAlg cn

R !Pr L ,
the functor which sends f W Spec S!X to Mod˛ıf

S
, evaluated at X . As a particularly

important case, let ˛W X ! Pr be the linear category with descent over X which sends
a point xW Spec S ! X to Modx�˛

S DModS . Then, by definition, Mod˛X is simply
ModX , which is an E1–algebra in Pr L . When X is a (nonderived) scheme, then the
homotopy category of ModX recovers the usual derived category Dqc.X / of complexes
of OX –modules with quasicoherent cohomology sheaves.

The construction of the stable 1–category of ˛–twisted modules commutes with
colimits.

Lemma 6.4 Let I ! ShvKet
R be a small diagram of sheaves Xi with colimit X , let

˛W X ! Pr be a linear category with descent over X , and let ˛i be the restriction of X

to Xi . Then, the canonical map

Mod˛X ! lim
I

Mod˛i

Xi

is an equivalence.

Proof This follows from our definition of Mod˛X as a right Kan extension.

To attack our main theorem, the local-global principle, we require some additional
terminology.

Definition 6.5 Let ˛W X ! Pr be a linear category with descent over X .
(1) An object P of Mod˛X is called perfect if for every point xW Spec S!X , x�P

is a compact object of Modx�˛
S .

(2) An object P of Mod˛X is a perfect generator if for every point xW Spec S !X ,
the pullback x�P is a compact generator of Modx�˛

S .
(3) An object P is a global generator of Mod˛X if it is a compact generator and a

perfect generator.

Note that while perfect objects are preserved automatically by any pullback induced
by a map � W X ! Y in ShvKet

X , it is not the case that compact objects are preserved
by pullbacks. For instance, if X is not quasicompact over the base Spec R, then
ModR!ModX sends R to OX , which is perfect but might not be compact. It is for
this reason why perfect objects play such an important role. However, in most cases of
interest, it is possible to show that the perfect and compact objects do coincide; see,
for example, [9, Section 3].

When X is affine, the next lemma shows that there is no difference between the notions
of compact generators and perfect generators of Mod˛X . In particular, every perfect
generator is automatically a global generator.
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Lemma 6.6 If ˛W Spec S ! Pr is a linear category with descent, then an object P of
Mod˛S is a compact generator if and only if it is a perfect generator.

Proof If P is a perfect generator, then P is a compact generator of Mod˛S by
definition. So, suppose that P is a compact generator of Mod˛S . We must show that
for any f W Spec T ! Spec S , where T is a connective E1–S –algebra, then P˝S T

is a compact generator of Mod˛T . There is a commutative diagram of equivalences

Mod˛S ˝S ModT
//

Map.P;�/
��

Modf
�˛

T

��

ModEnd.P/op ˝S ModT
// ModEnd.P/op˝S T ;

in which the left-hand equivalence is Morita theory (Theorem 2.8) and the right-hand
equivalence is induced from the other three. By commutativity, the object P ˝S T

in the upper-left corner is sent to End.P /op˝S T in the lower-right corner, which is
indeed a compact generator.

The following lemma will be used below to detect when an object is a compact generator
of Mod˛S by passing to Mod˛T for an étale cover S ! T .

Lemma 6.7 If S ! T is an étale cover, and if ˛W Spec S ! Pr is an linear category
with descent, then a compact object P of Mod˛S is a compact generator of Mod˛S if
and only if P ˝S T is a compact generator of Mod˛T .

Proof One direction is clear: if P is a compact generator of Mod˛S , then by the
lemma above, it is a perfect generator, so that P ˝S T is a compact generator of
Mod˛T . So, suppose that P is a compact object of Mod˛S such that P ˝S T is
a compact generator of Mod˛T . Let A D EndS .P /

op , and let ModA be the stable
1–category of A–modules. Write T � for the cosimplicial commutative S –algebra
associated to the cover S ! T . Consider commutative diagram

Mod˛S //

Map.P;�/
��

lim� Mod˛T �

Map.P˝S T �;�/

��

ModA
// lim� ModA˝S T � :

The horizontal maps are equivalences since both Mod˛S and ModA satisfy étale descent,
the latter by Example 4.4. On the other hand, since P ˝S T is a compact generator
of Mod˛T , the right vertical map is an equivalence, since it is the limit of a levelwise
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equivalence of simplicial 1–categories. It follows that the left vertical map is an
equivalence. In particular, if Map.P;M /' 0, then M ' 0 in Mod˛S . Thus, P is a
compact generator of Mod˛S .

As we now see, the linear categories with descent over X that possess perfect generators
are exactly those which are1–categories of modules for quasicoherent algebras over X .
Our strategy in proving the local-global principle is then to construct perfect generators.

Proposition 6.8 A linear category with descent ˛W X !Pr factors through Alg!Pr
if and only if Mod˛X possesses a perfect generator.

Proof Suppose that ˛W X ! Pr factors as

X
A
�! Alg! Pr:

Then, there is an algebra object A in Mod˛X , which restricts to an S –algebra A˝S

over each affine Spec S ! X , and which is a compact generator of the S –linear
category Mod˛S 'ModA˝S . Hence, A is a perfect generator. Now, suppose that P

is a perfect generator of Mod˛X . By hypothesis, for any point xW Spec S ! X , the
object P of Modx�˛

S induces an equivalence

Map.P;�/W Modx�˛
S !ModEnd.P/op˝S :

In other words, we obtain a natural equivalence of functors

Mod˛Spec�=X !ModEnd.P/op˝�:

Therefore, End.P /op classifies a lift of ˛ through Alg! Pr.

6.2 The Zariski local-global principle

There is a long history to the arguments in this section. On the one hand, the ideas about
lifting compact objects along localizations goes back to Thomason and Trobaugh [56]
and Neeman [47, Theorem 2.1]. On the other hand, the arguments about Zariski
gluing appeared in Bökstedt and Neeman [13, Section 6], in an argument about derived
categories of quasicoherent sheaves. They were further used in [48, Proposition 2.5]
and [14, Theorem 3.1.1] before being used by Toën [57, Proposition 4.9] for module
categories over quasicoherent sheaves of algebras.

Given a colimit-preserving functor F W C! D of stable presentable 1–categories,
the kernel of F is full subcategory of C consisting of those objects which become
equivalent to 0 in D. Since the 1–category of stable presentable 1–categories has
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limits which are computed in bCat1 , we see that the kernel of F is stable, presentable,
and equipped with a colimit-preserving inclusion into C.

In this section, when U is a quasicompact open subscheme of a derived scheme X ,
we will write Mod˛X ;Z for the kernel of Mod˛X !Mod˛U , where Z is the complement
of U in X . Of course, this complement will usually not exist as a derived scheme, but
only as a closed subspace of X .

The following proposition, which appears essentially in [13], is one of the major points
of “derived” geometry in our proof that Br.X / D Br0.X /. The generator K in the
proof is truly a derived object, and thus produces, even in the case of ordinary schemes,
a derived Azumaya algebra.

Proposition 6.9 [13, Proposition 6.1; 57, Proposition 3.9] Let j W U�XDSpec S

be a quasicompact open subscheme with complement Z , and let ˛W X ! Pr be a
S –linear category such that Mod˛X has a compact generator P . Then, the restriction
functor j �W Mod˛X !Mod˛U is a localization whose kernel Mod˛X ;Z is generated by a
single compact object L in Mod˛X .

Proof Note that under these hypotheses, it is enough to treat the special case in
which ˛ classifies ModS . Indeed, in this case, we have a localization sequence

ModX ;Z !ModX !ModU :

Since Mod˛X is dualizable (it admits a compact generator), tensoring with Mod˛X
preserves limits, and we obtain the localization sequence

Mod˛X ;Z !Mod˛X !Mod˛U :

To complete the proof, it suffices to show that ModX ;Z has a compact generator. Write

U D

r[
iD1

Spec S Œf �1
i �;

and let Ki be the cone of S
fi
�! S . Then, K DK1˝S � � �˝S Kr is a compact object

of Mod˛X , and j �L ' 0. We claim that K is a compact generator of the kernel of
ModX ;Z . Suppose that Map.K;M /' 0 and j �.M /' 0. Then,

Map.K1;Map.K2˝S � � � ˝S Kr ;M /'Map.K;M /' 0;
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where we are using the fact that Ki is self-dual up to a shift. It follows that f1 acts
invertibly on Map.K2˝S � � � ˝S Kr ;M /, so that

Map.K2˝S � � � ˝S Kr ;M /'Map.K2˝S � � � ˝S Kr ;M /˝S S Œf �1
1 �

'Map.K2˝S � � � ˝S Kr ;M ˝S S Œf �1
1 �/' 0;

where the last equivalence follows from the fact that j �M ' 0 and that Spec S Œf �1
1
�

is contained in U . By induction, it follows that

Map.Kr ;M /' 0;

and thus that
M 'M ˝S S Œf �1

r �' 0:

Therefore, K is a compact generator of ModX ;Z .

We also need the following K–theoretic characterization, due to [56] in the case of
schemes and [47] more generally, of when an object lifts through a localization. Recall
that if C is a compactly generated stable 1–category, then K0.C/ is the Grothendieck
group of the compact objects of C. That is, it is the free abelian group on the set of
compact objects of C, modulo the relation ŒM �D ŒL�C ŒN � whenever there is a cofiber
sequence L!M !N . Note that K0.C/ depends only on the triangulated homotopy
category Ho.C/.

Proposition 6.10 Let ˛W X ! Pr be a linear category such that Mod˛X is compactly
generated, where X is a derived scheme over R which can be embedded as a quasicom-
pact open subscheme of an affine Spec S 2 Aff cn

R , and let U �X be a quasicompact
open subscheme. Then, a compact object P of Mod˛U lifts to Mod˛X if and only if it is
in the image of K0.Mod˛X /! K0.Mod˛U /.

Proof This follows from Neeman’s localization theorem [47, Theorem 2.1] and its
corollary [47, Corollary 0.9]. The only thing to check is that Mod˛X ;Z is compactly
generated by a set of objects that are compact in Mod˛X . For this, we refer to the begin-
ning of the proof of Lemma 6.13, which shows that the inclusion Mod˛X ;Z !Mod˛X
preserves compact objects.

We are now ready to state and prove our Zariski local-global principle, which is a
generalization of the arguments of [13, Section 6] and the theorems [14, Theorem 3.1.1]
and [57, Proposition 4.9].
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Theorem 6.11 Let X be a quasicompact, quasiseparated derived scheme over R, and
let ˛W X ! Pr be a linear category with descent over X . If there exists Zariski cover
f W Spec S !X such that Modf

�˛
S

has a compact generator, then there exists a global
generator of Mod˛X .

Proof The proof is by induction on n, the number of affines in an open cover of X

over which there are compact generators. If Mod˛X has a compact generator when
X D Spec S , then it has a global generator by Lemma 6.6. Now, assume that for all
quasicompact, quasiseparated derived schemes Y and all ˇW Y ! Pr, if

na
iD1

Spec Si

`
fi
���! Y

is a Zariski cover such that Mod
f �

i
ˇ

Si
has a compact generator for i D 1; : : : ; n, then

Modˇ
Y

has a global generator. Let
nC1a
iD1

Spec Ti

`
gi
���!X

be a Zariski cover such that each Mod
g�

i
˛

Ti
has a compact generator. The proof will be

complete if we produce a global generator of Mod˛X .

Let Y be the union of Spec Ti , i D 1; : : : ; n in X , let Z D Spec TnC1 , and let
W D Y \Z . So, there is a pushout square of sheaves

W //

��

Z

��

Y // X:

By Lemma 6.4, it follows that

(11)

Mod˛X //

��

Mod˛Z

��

Mod˛Y // Mod˛W

is a pullback square of stable presentable 1–categories. By the induction hypothesis,
there exists a global generator PY of Mod˛Y . The restriction of PY ˚†PY to W

lifts to a compact object of Mod˛Z by Proposition 6.10. Since PY ˚†PY is also a
compact generator of Mod˛Y , we can assume in fact that the restriction PW of PY

to W lifts to a compact object PZ of Mod˛Z . The cartesian square (11) says that there
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is an object PX of Mod˛X that restricts to PW , PY , and PZ over W , Y , and Z ,
respectively. The object PX is in fact compact, because for any MX in Mod˛X , the
mapping space map.PX ;MX / is computed as the pullback

mapX .PX ;MX / //

��

mapZ .PZ ;MZ /

��

mapY .PY ;MY / // mapW .PW ;MW /:

Since finite limits commute with filtered colimits, since the restriction functors preserve
colimits, and since PZ , PY , and PW are compact, it follows that PX is compact.

Because Z is affine and W �Z is quasicompact, by Proposition 6.9, the restriction
functor

Mod˛Z !Mod˛W

is a localization, which kills exactly the stable subcategory of Mod˛Z generated by
a compact object QZ of Mod˛Z . We may lift QZ to an object QX of Mod˛X that
restricts to 0 over Y using (11). The object QX is compact for the same reason
that PX is compact. Then, LX D PX ˚QX is a compact object of Mod˛X , which we
claim is a global generator of Mod˛X .

Suppose that MX is an object of Mod˛X such that MapX .LX ;MX / ' 0. Then,
MapX .PX ;MX / ' 0 and MapX .QX ;MX / ' 0. For any N in Mod˛X , we have a
cartesian square

MapX .NX ;MX / //

��

MapZ .NZ ;MZ /

��

MapY .NY ;MY /' 0 // MapW .NW ;MW /:

When we have that NX DQX , the bottom mapping spaces are trivial, and so we have
0 'MapX .QX ;MX / 'MapZ .QZ ;MZ /. It follows that MZ is supported on W .
On the other hand, 0 ' MapX .PX ;MX / ' MapY .PY ;MY / since in that case, the
right-hand vertical map is an equivalence as MZ is supported on W . As PY is a
compact generator of Mod˛Y , the restriction of M to U is trivial. But, the support
of MZ is contained in W � U , so M is trivial. Therefore, L is a compact generator
of Mod˛X .

To prove that LX is a perfect generator of Mod˛X , it suffices to show that LY is a
perfect generator of Mod˛Y and that LZ is a compact generator of Mod˛Z (since Z is
affine). Indeed, given any affine V D Spec S mapping into X , we can intersect it with
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the affine hypercover determined by the Ti . Write S! T for this map. By hypothesis,
L˝T is a compact generator for Mod˛T . By Lemma 6.7, it follows that L˝S is a
compact generator of Mod˛S .

That LY is a global generator of Mod˛Y is trivial, since QY ' 0 and so LY ' PY

was chosen to be a global generator of Mod˛Y . If M is an object of Mod˛Z such that
MapZ .LZ ;M /' 0, then MapZ .QZ ;M /' 0 so that M is supported on W . Thus,

0'MapZ .PZ ;M /'MapW .PW ;M /'MapY .PY ;M /:

But, PY is a global generator of Mod˛Y , and Mod˛W !Mod˛Y is fully faithful. Thus,
M ' 0.

6.3 The étale local-global principle

In this section, we adapt an idea of Lurie to show that for R–linear 1–categories, the
property of having a compact generator is local for the étale topology. The context of
this section is slightly different from that of the rest of Section 6: we do not require that
our R–linear categories to satisfy étale hyperdescent. As every R–linear 1–category
satisfies étale descent by [43, Theorem 5.4] (not étale hyperdescent), this is a natural
hypothesis to drop when considering étale covers. So, instead of studying morphisms
X!Pr, we instead fix an R–linear category C. If S is a commutative R–algebra, we
write ModS .C/ for the1–category of S –modules in C. In particular, ModR.C/'C,
and more generally ModS .C/' C˝R S . For a general étale sheaf X , we define

ModX .C/D lim
Spec S!X

ModS .C/:

If C is a linear category with étale hyperdescent arising from a map ˛W Spec R! Pr,
then these definitions agree with our definitions of Mod˛X above.

Lemma 6.12 Let F W C�D WG be a pair of adjoint functors between stable presentable
1–categories such that the right adjoint G is conservative and preserves filtered
colimits. If P is a compact generator of C, then F.P / is a compact generator of D.

Proof Since G preserves filtered colimits, F preserves compact objects, so that F.P /

is compact. Suppose that M is an object of D such that MapD.F.P /;M / ' 0.
Then, MapC.P;G.M //' 0. Since P is a compact generator of C, this implies that
G.M /' 0. The conservativity of G implies that M ' 0, so that F.P / is a compact
generator of D.

Following Lurie, we let Test�0R be the category of (nonderived) �0R–schemes X

which admit a quasicompact open immersion X ! Spec�0S , where �0S is an étale
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�0R–algebra. There is a Grothendieck topology on Test�0R that extends the Nisnevich
topology [43, Proposition 2.7]. Lurie proves [43, Theorem 2.9] a version of the theorem
of Morel and Voevodsky which says that for a presheaf F on Test�0R , being a Nisnevich
sheaf is equivalent to satisfying affine Nisnevich excision. Recall that F satisfies affine
Nisnevich excision if F.∅/ is contractible and for all affine morphisms X 0!X and
quasicompact open subschemes U �X such that X 0�U 0!X�U is an isomorphism,
where U 0 DX 0 �X U , the diagram

F.X / //

��

F.X 0/

��

F.U / // F.U 0/

is a pullback square of spaces.

Let CAlgKet
R denote the 1–category of étale R–algebras. There is a fully faithful

embedding CAlgKet
R ! N.Testop

�0R
/ given by sending S to Spec�0S . Given an R–

linear category C, we extend the construction that sends an étale R–algebra S to
ModS .C/ to Test�0R by right Kan extension. In other words, if X is an object of
Test�0R ,

ModX .C/D lim
Spec�0S!X

ModS .C/;

where the limit runs over all étale R–algebras S and all maps Spec�0S !X .

If j W U � X is a quasicompact open immersion in Test�0R with complement Z ,
viewed as a �0R–scheme with its reduced scheme structure, then we let ModX ;Z .C/

be the full subcategory of ModX .C/ consisting of those objects M such that j �M ' 0

in ModU .C/. Roughly speaking, these are the quasicoherent OX –modules in C with
support contained in Z .

Lemma 6.13 Let X be an object of Test�0R , and let j W U !X be a quasicompact
open immersion with complement Z . If there exists a compact object Q in ModX .C/

such that ModU .C/ is generated by j �Q and if ModX ;Z .C/ has a compact generator
P , then i!P˚Q is a compact generator of ModX .C/, where i! is the inclusion functor
from ModX ;Z .C/ into ModX .C/.

Proof Since Q is compact by hypothesis, to show i!P ˚Q is compact, we must
show that i!P is compact. In fact, we show that i! preserves compact objects. To see
this, consider the right adjoint i ! of i! , which is defined as the fiber of the natural unit
natural transformation

i !
! idModX .C/! j�j

�;
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where j� is the right adjoint of j � . The functor j � , being a left adjoint, preserves
small colimits. By [43, Proposition 5.15], the functor j� preserves small colimits as
well (this is where the quasicompact hypothesis is used). Since i ! is defined via a finite
limit diagram, it follows that i ! preserves filtered colimits, and hence that i! preserves
compact objects. Hence, i!P ˚Q is a compact object of ModX .C/. Suppose now
that M is an object of ModX .C/ such that

MapX .i!P ˚Q;M /' 0:

Then, MapZ .P; i
!M / ' MapX .i!P;M / ' 0. Since P is a compact generator of

ModX ;Z .C/, it follows that i !M ' 0. Hence the unit map M ! j�j
�M is an

equivalence. At the same time,

MapU .j
�Q; j �M /'MapX .Q; j�j

�M /' 0:

Thus, j �M '0, since j �Q is a compact generator of ModU .C/. Since M ' j�j
�M ,

we see that M ' 0. Therefore, i!P˚Q is indeed a compact generator of ModX .C/.

Lemma 6.14 Let C be an R–linear category. Let f W X 0 ! X be a morphism in
Test�0R where X 0 is affine. Suppose that ModX .C/ is compactly generated, and
suppose that there exists a quasicompact open subset U �X with complement Z such
that f jZ 0 W Z0!Z is an equivalence, where Z0DZ�X X 0 , and such that ModX 0.C/

and ModU .C/ possess compact generators P and Q. Then, ModX .C/ has a compact
generator.

Proof We verify the conditions of Lemma 6.13. Because Mod.C/ is a Nisnevich
sheaf, there is a cartesian square of R–linear 1–categories

ModX .C/ //

��

ModX 0.C/

��

ModU .C/ // ModU 0.C/:

Taking the fibers of the vertical maps induces an equivalence ModX ;Z.C/'ModX 0;Z 0.C/.
By Proposition 6.9, the fact that ModX 0.C/ has a compact generator implies that
ModX 0;Z 0.C/ has a compact generator, and hence ModX ;Z .C/ has a compact generator.
To finish the proof, we show that ModU .C/ has a compact generator which is the
restriction of a compact object over X . But, by Proposition 6.10, Q˚†Q is the
restriction of a compact object of X . It clearly generates ModU .C/.

Let C be an R–linear 1–category, and let �C be the presheaf on CAlgKet
R defined by

�C.S/D

�
� if ModS .C/ has a compact generator,
∅ otherwise.
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The presheaf �C extends to a presheaf �0C on Test�0R by right Kan extension. By
definition, if X is an object of Test�0R , then �0C.X / is contractible if and only if �C.S/

is nonempty for all R–algebras S and all Spec�0S !X .

Lemma 6.15 Suppose that C is an R–linear 1–category and that R! S is a finite
faithfully flat cover. Then, ModS .C/ has a compact generator if and only if ModR.C/

does.

Proof If ModR.C/ has a compact generator, then by Lemma 6.6 it is a perfect
generator, so that ModS .C/ has a compact generator. Suppose that ModS .C/ has a
compact generator P . The functor ��W ModS !ModR has a right adjoint, which is
given explicitly by � !.M /DMapR.S;M /. Since S is a finite and flat R–module, it
follows that � ! preserves filtered colimits. Therefore, ��W ModS .C/!ModR.C/ has
a continuous right adjoint given by tensoring C with � !W ModR!ModS . We abuse
notation and write � ! for this right adjoint as well. It follows immediately that ��
preserves compact objects so that ��.P / is a compact object of ModR.C/. To show
that ��.P / is a compact generator of ModR.C/, suppose that MapR.��.P /;M /' 0.
Using the adjunction, we get that MapS .P; �

!.M //' 0. Therefore, � !.M /' 0. In
general, the functor �� is conservative. But, ��� !.M /' S_˝R M , so that ��� ! is
conservative by the faithful flatness of S . Therefore, � ! is conservative. Thus, M ' 0,
so that ��.P / is a compact generator of ModR.C/.

Now, we come to the étale local-global principle. The idea of the proof is due to
Lurie [43, Section 6].

Theorem 6.16 If C is an R–linear 1–category, then �C is an étale sheaf.

Proof By [43, Theorems 2.9, 3.7], it suffices to show that �C satisfies finite étale
descent, and that �0C satisfies affine Nisnevich excision. Finite étale descent follows
from Lemma 6.15. To show that �0C satisfies affine Nisnevich excision, suppose
that f W X 0 ! X is an affine morphism in TestR , that U � X is a quasicompact
open subset such that X 0 �U 0 ' X �U , where U 0 D X 0 �X U , and that �0C.X

0/

and �0C.U / are nonempty. Note that by [43, Proposition 6.12 and Lemma 6.17] all
of the stable presentable 1–categories that appear in proof are compactly generated.
This is important because we will use Lemma 6.14. To show that �0C.X / is nonempty,
let Spec S ! X be a point of X . Pull back the affine elementary Nisnevich square
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via this map, to obtain

X 0 �X U �X Spec S //

��

X 0 �X Spec S

��

U �X Spec S // Spec S:

By our hypotheses, X 0�X Spec S is affine, so �C.X
0�X Spec S/'�0C.X

0�X Spec S/

is contractible, as we see by using the map X 0 �X Spec S !X 0 . By Lemma 6.14, to
complete the proof, it suffices to show that ModU�X Spec S .C/ has a compact generator.
By hypothesis, we know that �0C.U �X Spec S/ is nonempty. As U is quasicompact
in X , we may write U �X Spec S as a union of Zariski open subschemes:

U �X Spec S D

n[
iD1

Spec Si

Since �0C.U �X Spec S/ is nonempty, ModSpec Si
.C/ has a compact generator for all i .

Write

Vk D

k[
iD1

Spec Si ;

and assume that ModVk
.C/ has a compact generator for some k in Œ1; n/. Then,

Spec SkC1! VkC1 and the open Vk � VkC1 satisfy the hypotheses of Lemma 6.14
(take X D VkC1 , X 0 D Spec SkC1 and U D Vk ). Therefore, ModVkC1

.C/ has
a compact generator. By induction, we see that ModU�X Spec S .C/ has a compact
generator, as desired.

6.4 Lifting theorems

Now we put together the local-global principles of the previous sections into one of the
main theorems of the paper. In the case of schemes built from simplicial commutative
rings, this was proved in [57, Theorem 4.7]. Our proof is rather different, as the étale
local-global principle requires different methods for connective E1–rings.

Theorem 6.17 Let X be a quasicompact, quasiseparated derived scheme. Then, every
Morita class ˛W X !Mr on X lifts to an algebra X ! Alg.

Proof By definition of sheafification, the Morita class ˛W X !Mr lifts étale locally
through Alg! Pr. It follows that there is an étale cover � W

`
i Spec Ti ! X such

that ��˛W
`

i Spec Ti !Mr factors through Alg! Pr; in other words, Mod˛Ti
has

a compact generator for all i . Since étale maps are open, we can assume, possibly
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by refining the cover, that the image of Spec Ti in X is an affine subscheme Spec Si .
By Theorem 6.16, Mod˛Si

has a compact generator. By Theorem 6.11, it follows that
Mod˛X has a perfect generator. This completes the proof by Proposition 6.8.

We now consider several applications, which show the power of this theorem in
establishing the compact generation of various stable presentable 1–categories. These
are motivated by the results of [52] in the affine case.

Example 6.18 If X is a quasicompact and quasiseparated derived scheme, and if E

is an R–module such that localization with respect to E is smashing, then LEModX ,
the full subcategory of E–local objects in ModX , is compactly generated by a single
compact object.

Example 6.19 If X is a quasicompact and quasiseparated derived scheme over the
p–local sphere, consider the localization LK.n/ModX , where K.n/ is the nth Morava
K–theory at the prime p . In this case, the K.n/–localization of OX need not be
compact in LK.n/ModX . However, if F is a finite type n complex, then over any affine
Spec S!X , the K.n/–localization of S˝F is a compact generator of LK.n/ModS .
It follows from Theorem 6.17 that there is a compact generator of LK.n/ModX .

Our main application of the theorem is the following statement.

Corollary 6.20 Let X be a quasicompact, quasiseparated derived scheme. Then,
every Brauer class ˛W X ! Br on X lifts to an Azumaya algebra X ! Az.

Note that this theorem is false in nonderived algebraic geometry. There is a nonseparated,
but quasicompact and quasiseparated, surface X and a nonzero cohomological Brauer
class ˛ 2 H2

Ket.X;Gm/tors that is not represented by an ordinary Azumaya algebra; see
Edidin, Hassett, Kresch and Vistoli [22, Corollary 3.11]. In this case, the Brauer class
vanishes on a Zariski cover of X . However, there is no global ˛–twisted vector bundle,
so there cannot be a nonderived Azumaya algebra. The corollary shows that, even in
this case, there is a derived Azumaya algebra with class ˛ .

7 Brauer groups

We prove our main theorems on the Brauer group, which will, in particular, allow us to
show that the Brauer group of the sphere spectrum vanishes.
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7.1 The Brauer space

Classically, there are two Brauer groups of a commutative ring or a scheme X . The
first is the algebraic Brauer group, which is the group of Morita equivalence classes
of Azumaya algebras over X . This notion goes back to Azumaya [6] for algebras
free over commutative rings, Auslander and Goldman [5] for the general affine case,
and Grothendieck [31] for schemes. The second is the cohomological Brauer group
H2
Ket.X;Gm/tors introduced by Grothendieck [31]. There is an inclusion from the

algebraic Brauer group into the cohomological Brauer group (under the reasonable
assumption that X has only finitely many connected components), but they are not
always identical, as noted above. As a result of Corollary 6.20, the natural generaliza-
tions of these definitions to quasicompact, quasiseparated schemes do agree. Moreover,
these generalizations yield not just groups but in fact grouplike E1–spaces; the Brauer
groups are the groups of connected components of these spaces. We work again over
some fixed connective E1–ring R.

Definition 7.1 Let X be an étale sheaf. Then, the Brauer space of X is Br.X /, the
space of maps from X to Br in ShvKet

R . The Brauer group of X is �0Br.X /.

When X is an arbitrary étale sheaf, we cannot say much about the algebraic nature of
the classes in �0Br.X /. However, write Bralg.X / for the full subspace of Br.X / of
classes ˛W X ! Br that factor through Az! Br. In other words, �0Bralg.X / is the
subgroup of the Brauer group consisting of those classes representable by an Azumaya
algebra over X . When X D Spec S , we will write Br.S/ for Br.Spec S/.

We now can answer the analogue of the BrD Br0 question of Grothendieck.

Theorem 7.2 For any quasicompact and quasiseparated derived scheme X , we have
Bralg.X /' Br.X /.

Proof This is the content of Corollary 6.20.

An important fact about the Brauer space of a connective commutative ring spectrum
is that it has a purely categorical formulation. Recall that CatS;! is the symmetric
monoidal 1–category of compactly generated S –linear categories together with
colimit preserving functors that preserve compact objects. We saw in Theorem 3.15
that if A is an S –algebra, then ModA is invertible in CatS;! if and only if A is
Azumaya. Write Cat�S;! for the grouplike E1–space of invertible objects in CatS;! .

Proposition 7.3 If S is a connective commutative R–algebra, then the natural mor-
phism Cat�S;!! Br.S/ is an equivalence.
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Proof Consider the diagram

Cat�S;!
i
�! Br.S/

j
�! Pr.S/:

The composition j ı i is fully faithful, by definition. The map j is fully faithful by
construction of Br. Thus, i is fully faithful. On the other hand, by Corollary 6.20, the
map i is essentially surjective. Thus, i is an equivalence.

This proposition has the following two interesting corollaries, which will not be used
in the sequel.

Corollary 7.4 The presheaf of spaces which sends a connective commutative R–
algebra S to Cat�S;! is an étale sheaf.

Corollary 7.5 The space Br.X / is a grouplike E1–space.

Proof The space Br.S/ is a grouplike E1–space for every connective commutative
R–algebra S , and the grouplike E1–structure is natural in S . Thus, Br is a grouplike
E1–object in ShvKet

R . The mapping space

Br.X /DMapShvKet
R

.X;Br/

thus inherits a grouplike E1–structure from that on Br.

As a result of the corollary, when X is an étale sheaf, we may construct via delooping a
spectrum br.X /, with �1br.X /' Br.X /. A similar idea has been pursued recently
by Szymik [54], but with rather different methods.

We will need the following proposition, as well as the computations in the following
section, to tell us the homotopy sheaves of Br. This will be used to give a complete
computation of Br.X / using a descent spectral sequence when X is affine.

Proposition 7.6 There is a natural equivalence of étale sheaves �Br'Pic, where Pic
is the sheaf of line bundles.

Proof By the étale local triviality of Azumaya algebras proven in Theorem 5.11, it
follows that Br is a connected sheaf and that it is equivalent to the classifying space of
the trivial Brauer class. But, the sheaf of auto-equivalences of Mod is precisely the
sheaf of line bundles in Mod.
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7.2 Picard groups of connective ring spectra

In the previous section, we showed that �Br' Pic, and by the étale local triviality
of Azumaya algebras, we know that the sheaf �0Br vanishes. Thus, to compute the
homotopy sheaves of Br, it is enough to compute them for Pic, which is what we
now do.

If R is a discrete commutative ring, let Pic.R/ be the Picard group of invertible R–
modules. This should be distinguished from Pic.HR/, the grouplike E1–space of
invertible HR–modules, and from Pic.HR/.

Proposition 7.7 (Fausk [24]) Let R be a discrete commutative ring. Then, there is
an exact sequence

0! Pic.R/! �0Pic.HR/
c
�! H0.Spec R;Z/! 0;

where the inclusion comes from the monoidal functor ModR ! ModHR , and the
map c sends an invertible element L to its degree of connectivity on each connected
component of Spec R. Thus, c.L/ D n if and only if �m.L/ D 0 for m < n, and
�n.L/¤ 0.

The purpose of this section is to extend Proposition 7.7 to all connective commutative
rings. The following lemma is essentially found in Hopkins, Mahowald and Sadof-
sky [34, page 90]. We remark that if L is an invertible R–module, then L is perfect
and L�1 is the dual of L, MapR.L;R/. It follows that there is a canonical evaluation
map ev WL˝R L�1!R, which is an equivalence.

Lemma 7.8 Let R be an E1–ring spectrum, and let L be an invertible R–module.
Suppose that there are R–module maps �W †nR!L and !W †�nR!L�1 such that

ev ı�˝R !W R'†
nR˝R †

�nR!L˝R L�1
!R

is homotopic to the identity. Then, � and ! are weak equivalences.

Proof The nth suspension of ev ı�˝R ! is homotopic to the composition

†nR
�
�!L'L˝R R

1˝†n!
�����!L˝R †

nL�1
!†nR:

Therefore, †nR is a retract of L; specifically, there exists a perfect R–module M

and an equivalence L ' †nR˚M . Similarly, L�1 ' †�n˚N for some perfect
R–module N . But,

R'L˝R L�1
' .†nR˚M /˝R .†

�nR˚N /'R˚†�nM˚†nN˚.M˝R N /;

which shows that M and N are zero, and hence that � and ! are equivalences.

Geometry & Topology, Volume 18 (2014)



Brauer groups and étale cohomology in derived algebraic geometry 1233

Theorem 7.9 Let R be a connective local E1–ring spectrum (that is, �0R is a
local ring). Then, R ! ��0R ' H�0R induces an isomorphism �0Pic.R/ !
�0Pic.��0R/Š Z.

Proof Since �0R is local, �0Pic.��0R/D Z by Proposition 7.7. Thus, it suffices to
show that if L is an invertible R–module, then L'†nR for some n. Fixing L, we
first identify the appropriate integer n.

The invertibility of L implies that L is a perfect R–module. By Proposition 2.6, it
follows that L has a bottom homotopy group, say �nL. This means that for m< n,
�mL D 0, while �nL ¤ 0. Similarly, let �mL�1 be the bottom homotopy group
of L�1 . We will show that nD�m, and that L'†nR. Consider the Tor spectral
sequence for L˝R L�1 ,

E2
p;q D Tor��R

p .��L; ��L
�1/q) �pCqR:

The differential dr is of degree .�r; r�1/. Thus, for degree reasons, E2
0;nCm

DE1
0;nCm

.
In this case, we have

.��L˝��R ��L
�1/nCm Š �nL˝�0R �mL�1:

Since �nL and �mL�1 are nonzero and �0R is local, the term E2
0;nCm

is nonzero. It
is the term of smallest total degree that is nonzero. Thus, since it is permanent in the
spectral sequence,

�nL˝�0R �mL�1
Š �0R;

and nD�m. Again, since �0R is local, �nL and �mL�1 are both in fact isomorphic
to �0R.

Choose � 2�nL and ! 2�mL�1 so the isomorphism above gives �˝R!D1R 2�0R.
The homotopy classes � and ! are represented by R–module maps

�W †nR!L;

!W †mR!L�1:

Then,
R

�˝R!
����!L˝R L�1

!R

is homotopic to �˝R � ' 1R . Thus, applying Lemma 7.8, the R–module maps �
and ! are in fact equivalences. This completes the proof.

Consider the étale sheaf GL1 , which sends a connective commutative R–algebra S

to the space of units in S . That is, GL1.S/ is defined as the pullback in the diagram
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of spaces

GL1.S/ //

��

�1S

��

�0S� // �0S:

The classifying space BGL1.S/ of this grouplike E1–space naturally includes as
the identity component into Pic.S/. Thus, there is a natural map BGL1! Pic from
the classifying sheaf of GL1 into Pic. When S is a local connective commutative
R–algebra, then Pic.S/ decomposes as the product BGL1.S/�Z, where the map

Z �! Pic.S/

sends n to †nS . Thus, we have the following corollary.

Corollary 7.10 The sequence BGL1! Pic! Z is a split fiber sequence of hyper-
sheaves.

Proof Since GL1 is a hypersheaf, so is BGL1 . We also know that Pic is a hypersheaf
by Proposition 4.3. Finally, Z is by definition the hypersheaf associated to the constant
presheaf with values Z. Evidently, the sequence is in fact a sequence of sheaves of
grouplike E1 –spaces. Since Z is freely generated as a sheaf of grouplike E1 –spaces
by a single object, the splitting is obtained by taking the canonical basepoint of Pic.

With this corollary, we can give the computation of the homotopy sheaves of Br, which
we need in the next section in order to actually compute the Brauer groups of some
connective E1–rings.

Corollary 7.11 The homotopy sheaves of Br are

(12) �iBrŠ

8̂̂̂<̂
ˆ̂:

0 if i D 0,
Z if i D 1,
�0O� if i D 2,
�i�2O if i � 3,

where O is the structure sheaf on ShvKet
R .
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7.3 The exact sequence of Picard and Brauer groups

Suppose that X DU [V is a derived scheme, written as the union of two Zariski open
subschemes. Then, because Br is an étale sheaf, there is a fiber sequence of spaces

Br.X /! Br.U /�Br.V /! Br.U \V /:

Taking long exact sequences, we obtain the following exact sequence:

�2Br.U \V /! �1Br.X /! �1Br.U /˚�1Br.V /! �1Br.U \V /

! �0Br.X /! �0Br.U /˚�0Br.V /! �0Br.U \V /

which generalizes the classical Picard–Brauer exact sequence

Pic.X /!Pic.U /˚Pic.V /!Pic.U \V /!Br.X /!Br.U /˚Br.V /!Br.U \V /;

when U , V and X are ordinary schemes. The computations in the next section can be
used to show that the sequence is not, in general, exact on the right.

The important connecting morphism ıW �1Br.U \V /! �0Br.X / can be described
in the following Morita-theoretic way. The 1–category ModX of quasicoherent
sheaves on X can be glued from ModU and ModV by taking the natural equivalence
ModU jU\V 'ModV jU\V . On the other hand, given a line bundle L over U \V , we
can twist the gluing data by tensoring with L. The resulting category is Modı.L/

X
, the

1–category of quasicoherent ı.L/–twisted sheaves.

7.4 The Brauer space spectral sequence

In this section, we obtain a spectral sequence converging conditionally to the homotopy
groups of Br.X /. In most cases of interest, for instance when X is affine or has
finite étale cohomological dimension, we show that the spectral sequence converges
completely (see [16, Section IX.5]). In particular, the graded pieces of the filtration on
the abutment of the spectral sequence are in fact computed by the spectral sequence.
As an application, in the next section, we give various example computations of Brauer
groups. For now, we fix a connective E1–ring spectrum R.

If A is a grouplike E1–object of ShvKet
R , and if X is any object of ShvKet

R , then for
every p � 0, there is a cohomology group

Hp

Ket.X;A/D �0MapShvKet
R

.X;BpA/;

where BpA denotes a p–fold delooping of A. In particular, if A is a sheaf of abelian
groups in ShvKet

X , then we can view A canonically as a grouplike E1–space. An 1–
topos X has cohomological dimension � n if Hm.X;A/D 0 for all abelian sheaves A

in X and all m> n [41, Definition 7.2.2.18].

Geometry & Topology, Volume 18 (2014)



1236 Benjamin Antieau and David Gepner

Recall that by [45, Theorem 8.5.0.6], the small étale site on Spec S is equivalent to
the nerve of the small étale site on Spec�0S . Therefore, by [41, Remark 7.2.2.17],
for any sheaf of abelian groups A over S , there is a natural isomorphism

Hp

Ket.Spec S;A/Š Hp

Ket.Spec�0S;A/;

where the right-hand side denotes the classical étale cohomology groups over Spec�0S .

Theorem 7.12 Let X be an object of ShvKet
R . Then, there is a conditionally convergent

spectral sequence

(13) Ep;q
2
D

�
Hp

Ket.X; �qBr/ if p � q;

0 if p > q;
) �q�pBr.X /;

with differentials dr of degree .r; r � 1/. If X is affine, discrete, or if .ShvKet
R/=X has

finite cohomological dimension, then the spectral sequence converges completely.

Proof Because Br is hypercomplete, the map from Br to the limit of its Postnikov
tower Br ! limn ��nBr is an equivalence; see [41, Section 6.5]. Taking sections
preserves limits, so that

Br.X /! lim
n
..��nBr/.X //

is also an equivalence. Thus, Br.X / is the limit of a tower, and to any such tower there
is an associated spectral sequence [16, Chapter IX] which converges conditionally to
the homotopy groups of the limit. Using the methods of Brown and Gersten [17], one
identifies the E2 –page as (13).

If X is affine, discrete, or if .ShvKet
R/=X has finite cohomological dimension, then the

spectral sequence degenerates at some finite page. This is clear in the latter case, and
if X is discrete the spectral sequence collapses entirely at the E2 –page. So, suppose
that X D Spec S . Then, Br.X / can be computed on the small étale site on Spec S .
But, as mentioned above, this site is the nerve of a discrete category, the small étale
site on Spec�0S . Therefore,

Hp

Ket.Spec S; �qBr/Š Hp

Ket.Spec�0S; �qBr/:

Since �qBr' �q�2O for q � 3, and since these are all quasicoherent �0O–modules,
it follows that

Hp

Ket.Spec S; �qBr/Š Hp

Ket.Spec�0S; �q�2O/D 0
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for q � 3 and p � 1 by Grothendieck’s vanishing theorem. Thus, the only possible
differentials are

d2W Hp.Spec S;Z/! HpC2.Spec S; �0O�/:

However, these differentials vanish because BZ is in fact a split retract of Br. Therefore,
if X is affine, the spectral sequences degenerates at the E2 –page. It follows from
the degeneration and the complete convergence lemma [16, IX.5.4] that the spectral
sequence converges completely to ��Br.X /. This completes the proof.

Using the theorem and the remarks preceding it, we deduce the following corollary,
which completely computes the homotopy groups of the Brauer space of a connective
commutative ring R. In particular, in the case of an Eilenberg–Mac Lane spectrum,
the corollary determines the image of the map Br.R/ ! �0Br.HR/ constructed
in [8, Proposition 5.2].

Corollary 7.13 If R is a connective E1–ring spectrum, then the homotopy groups
of Br.R/ are described by

�kBr.R/Š

8̂̂̂̂
<̂
ˆ̂̂:

H1
Ket.Spec�0R;Z/�H2

Ket.Spec�0R;Gm/ if k D 0;

H0
Ket.Spec�0R;Z/�H1

Ket.Spec�0R;Gm/ if k D 1;

�0R� if k D 2;

�k�2R if k � 3:

Proof This follows immediately from the degeneration of the Brauer spectral sequence
for Spec R together with the fact that BZ splits off of Br.

Note that in the special case where R is a discrete commutative ring, Szymik obtained
similar computations for the purely algebraic Brauer spectrum of HR defined in [54].
The computations also follow from the next corollary.

Corollary 7.14 If X is a quasicompact and quasiseparated ordinary scheme, then

�kBr.X /Š

8̂̂̂̂
<̂
ˆ̂̂:

H1
Ket.X;Z/�H2

Ket.X;Gm/ if k D 0;

H0
Ket.X;Z/�H1

Ket.X;Gm/ if k D 1;

H0
Ket.X;Gm/ if k D 2;

0 if k � 3:
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7.5 Computations of Brauer groups of ring spectra

In this section, we give several examples of Brauer groups of ring spectra and of
derived schemes. Our convention throughout this section is to write Br.R/ for the
Brauer group of Azumaya algebras over a discrete commutative ring R. This injects
but is not, in general, the same as �0Br.HR/, as we will see below. Note that
Br.R/ Š H2

Ket.Spec R;Gm/tors , by Gabber [25]. If R is a regular domain, then by
Grothendieck [32, Corollaire 1.8], we have H2

Ket.Spec R;Gm/tors D H2
Ket.Spec R;Gm/.

Lemma 7.15 If X is a normal ordinary scheme, then H1
Ket.X;Z/D 0.

Proof Using the exact sequence 0!Z!Q!Q=Z! 0, it is enough to show that
H1
Ket.X;Q/D 0. This is can be shown as in Deninger [20, 2.1].

However, the H1
Ket.X;Z/ term does not always vanish, even when X is ordinary and

affine, so there are some truly exotic elements in the derived Brauer group, even
over discrete rings. Here is an example: let k be an algebraically closed field, and
let R D kŒx;y�=.y2 � x3 C x2/. Then, Spec R is a nonnormal affine curve with
singular point at .0; 0/. The normalization of Spec R is A1

k
. It follows from De-

Meyer [19, page 19] that Br.R/ D 0. It is also known that H1
Ket.Spec R;Z/ Š Z.

Therefore, we have computed that �0Br.HR/Š Z.1

We can show that the Brauer group vanishes in many cases.

Theorem 7.16 Let R be a connective commutative ring spectrum such that �0R is
either Z or the ring of Witt vectors Wq of Fq . Then,

�0Br.R/D 0:

Proof Both Z and Wp are normal, so that H1
Ket.�0R;Z/D 0. The ring of Witt vectors

Wq is a Hensel local ring with residue field Fq . Thus, by a theorem of Azumaya
(see [31, Théorème 1]), there is an isomorphism Br.Wq/Š Br.Fq/. But, Br.Fq/D 0

by a theorem of Wedderburn. The Albert–Brauer–Hasse–Noether Theorem from class
field theory implies that H2

Ket.Spec Z;Gm/ D 0 [33, Proposition 2.4]. Thus, in both
cases, we have established the required vanishing.

Corollary 7.17 The Brauer group of the sphere spectrum is zero.

1We thank Angelo Vistoli for pointing this out to us at mathoverflow.net/questions/84414.
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Of course, it would be nice to have some more examples where the Brauer group does
not vanish. We can give several. First, we recall some standard results, all of which
can be found in [33, Section 2]. There is a residue isomorphism

hpW Br.Qp/! H1
Ket.Spec Fp;Q=Z/ŠQ=Z;

and, for any open subscheme U of Spec Z, there is an exact sequence

0! Br.U /! Br.Q/!
M
p2U

Br.Qp/;

where the sum is over all prime integers p in U . We may also identify hRW Br.R/Š
Z=2�Q=Z; the unique nonzero class is represented by the real quaternions. Finally,
there is an exact sequence

0! Br.Q/! Br.R/˚
M

p

Br.Qp/!Q=Z! 0;

where the right-hand map is induced by mapping Br.R/ or Br.Qp/ to Q=Z and
summing. These two exact sequences are compatible in the obvious way.

If ˛ 2Br.Q/ write p̨ for the image of ˛ in Br.Qp/, and write ˛R for the image of ˛
in Br.R/. By examining the two exact sequences above, it follows that

Br.ZŒ 1
p
�/Š Z=2:

Indeed, if ˛ is a class of Br.Q/ that lifts to Br.ZŒ1=p�/, then it follows that hq.˛q/D 0

for all primes q¤p . Therefore, hp. p̨/ChR.˛R/D0. Since there is a unique nonzero
class in Br.R/, the result follows.

Similarly, if ˛ 2 Br.Q/ lifts to Br.Z.p//, then hp. p̨/ D 0. Thus, there is an exact
sequence

0! Br.Z.p//! Z=2˚
M
q¤p

Q=Z!Q=Z! 0:

We have therefore proven the following corollary to Corollary 7.13.

Corollary 7.18 (1) The Brauer group of the sphere with p inverted is given by
�0Br.SŒ1=p�/Š Z=2.

(2) The Brauer group of the p–local sphere fits into the exact sequence

0! �0Br.S.p//! Z=2˚
M
q¤p

Q=Z!Q=Z! 0:

(3) There is an isomorphism �0Br.LQp
S/ Š Q=Z, where LQp

S is the rational
p–adic sphere.
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Note the important fact that the first two cases in the corollary give examples of
non-Eilenberg–Mac Lane commutative ring spectra with nonzero Brauer groups.

Finally, we mention two examples of ordinary schemes, where the derived Brauer group
exhibits different behavior than the classical Brauer group. The first is the scheme X

used in [22, Corollary 3.11], which is the gluing of two affine quadric cones along
the nonsingular locus, viewed as a derived scheme over the complex numbers. This
is a normal, quasicompact, nonseparated, quasiseparated scheme, so it satisfies the
hypotheses of the theorems. One can check that �0Br.X /D Z=2 by Corollary 7.14.
This example was studied originally because the classical Brauer group of the scheme X

viewed as an ordinary geometric object over C is Br.X /D 0, while the cohomological
Brauer group is Br0.X / D H2

Ket.X;Gm/ D Z=2. In other words, the nonzero class
˛ 2 Br0.X / is represented by an Azumaya algebra, but not by an ordinary Azumaya
algebra (an algebra concentrated in degree 0).

The second example is the surface of Mumford [32, Remarques 1.11(b)]. He constructs
a normal surface Y such that H2

Ket.Y;Gm/ has nontorsion elements. Of course, these
can never be the classes of ordinary Azumaya algebras over Y . On the other hand, by
Corollary 6.20, they are represented by (derived) Azumaya algebras over Y .
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