Volume 18, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
$2$–strand twisting and knots with identical quantum knot homologies

Andrew Lobb

Geometry & Topology 18 (2014) 873–895
Abstract

Given a knot, we ask how its Khovanov and Khovanov–Rozansky homologies change under the operation of introducing twists in a pair of strands. We obtain long exact sequences in homology and further algebraic structure which is then used to derive topological and computational results. Two of our applications include giving a way to generate arbitrary numbers of knots with isomorphic homologies and finding an infinite number of mutant knot pairs with isomorphic reduced homologies.

Keywords
Khovanov–Rozansky, knots
Mathematical Subject Classification 2010
Primary: 57M25
References
Publication
Received: 3 May 2011
Revised: 4 May 2011
Accepted: 9 October 2013
Published: 20 March 2014
Proposed: Tom Mrowka
Seconded: Richard Thomas, Peter Teichner
Authors
Andrew Lobb
Department of Mathematical Sciences
Durham University
Science Labs
South Road
Durham DH1 3LE
UK