Volume 18, issue 3 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
An analytic family of representations for the mapping class group of punctured surfaces

Francesco Costantino and Bruno Martelli

Geometry & Topology 18 (2014) 1485–1538
Bibliography
1 J E Andersen, Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups, Ann. of Math. 163 (2006) 347 MR2195137
2 T M Apostol, Introduction to analytic number theory, Springer (1976) MR0434929
3 C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 MR1362791
4 D Bullock, Rings of SL2()–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 MR1600138
5 D Bullock, C Frohman, J Kania-Bartoszyńska, The Yang–Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1 MR1966749
6 M Burger, P de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 223 MR1467427
7 L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012) 409 MR2914854
8 F Costantino, J Marché, Generating series and asymptotics of classical spin networks, to appear in Journal of Europ. Math. Soc. arXiv:1103.5644
9 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
10 M H Freedman, K Walker, Z Wang, Quantum SU(2) faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002) 523 MR1943758
11 C Frohman, J Kania-Bartoszyńska, The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005 MR2439773
12 W M Goldman, The mapping class group acts reducibly on SU(n)–character varieties, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 115 MR2276138
13 E Guentner, N Higson, Weak amenability of CAT(0)–cubical groups, Geom. Dedicata 148 (2010) 137 MR2721622
14 J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Experiment. Math. 16 (2007) 167 MR2339273
15 J Hoste, J H Przytycki, The Kauffman bracket skein module of S1 × S2, Math. Z. 220 (1995) 65 MR1347158
16 T Januszkiewicz, For right-angled Coxeter groups z|g| is a coefficient of a uniformly bounded representation, Proc. Amer. Math. Soc. 119 (1993) 1115 MR1172951
17 L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 MR899057
18 L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of 3–manifolds, 134, Princeton Univ. Press (1994) MR1280463
19 A N Kirillov, N Y Reshetikhin, Representations of the algebra Uq(sl2), q–orthogonal polynomials and invariants of links, from: "Infinite-dimensional Lie algebras and groups" (editor V G Kac), Adv. Ser. Math. Phys. 7, World Sci. Publ. (1989) 285 MR1026957
20 W B R Lickorish, Three-manifolds and the Temperley–Lieb algebra, Math. Ann. 290 (1991) 657 MR1119944
21 W B R Lickorish, Skeins and handlebodies, Pacific J. Math. 159 (1993) 337 MR1214075
22 W B R Lickorish, An introduction to knot theory, 175, Springer (1997) MR1472978
23 G W Mackey, The theory of unitary group representations, University of Chicago Press (1976) MR0396826
24 J Marché, The Kauffman skein algebra of a surface at √ − 1, Math. Ann. 351 (2011) 347 MR2836662
25 J Marché, M Narimannejad, Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008) 573 MR2387432
26 G Masbaum, P Vogel, 3–valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361 MR1272656
27 A Papadopoulos, R C Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987) 359 MR914107
28 L Paris, Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002) 301 MR1893918
29 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
30 R C Penner, Universal constructions in Teichmüller theory, Adv. Math. 98 (1993) 143 MR1213724
31 M V Pimsner, Cocycles on trees, J. Operator Theory 17 (1987) 121 MR873465
32 J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 MR1194712
33 J H Przytycki, Kauffman bracket skein module of a connected sum of 3–manifolds, Manuscripta Math. 101 (2000) 199 MR1742248
34 T Pytlik, R Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986) 287 MR857676
35 J Roberts, Quantum invariants and skein theory, PhD thesis, University of Cambridge (1994)
36 A S Sikora, Skein modules and TQFT, from: "Knots in Hellas ’98 (Delphi)" (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. Publ. (2000) 436 MR1865721
37 A Valette, Cocycles d’arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 703 MR1055232