Volume 18, issue 3 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 27
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A categorification of $\boldsymbol{U}_T(\mathfrak{sl}(1|1))$ and its tensor product representations

Yin Tian

Geometry & Topology 18 (2014) 1635–1717
Bibliography
1 G Benkart, D Moon, Planar rook algebras and tensor representations of gl(1|1), arXiv:1201.2482
2 J Bernstein, V Lunts, Equivariant sheaves and functors, 1578, Springer, Berlin (1994) MR1299527
3 S Bigelow, E Ramos, R Yi, The Alexander and Jones polynomials through representations of rook algebras, J. Knot Theory Ramifications 21 (2012) 1250114, 18 MR2978881
4 J Chuang, R Rouquier, Derived equivalences for symmetric groups and sl2–categorification, Ann. of Math. 167 (2008) 245 MR2373155
5 L Crane, I B Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994) 5136 MR1295461
6 D Flath, T Halverson, K Herbig, The planar rook algebra and Pascal’s triangle, Enseign. Math. (2) 55 (2009) 77 MR2541502
7 E Giroux, Structures de contact sur les variétés fibrées en cercles audessus d’une surface, Comment. Math. Helv. 76 (2001) 218 MR1839346
8 K Honda, Contact structures, Heegaard–Floer homology and triangulated categories, in preparation
9 K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 MR1786111
10 K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435 MR1940409
11 K Honda, W H Kazez, G Matić, Pinwheels and bypasses, Algebr. Geom. Topol. 5 (2005) 769 MR2153107
12 K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, II, Geom. Topol. 12 (2008) 2057 MR2431016
13 K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 MR2501299
14 Y Huang, Bypass attachments and homotopy classes of 2–plane fields in contact topology, arXiv:1105.2348
15 L H Kauffman, H Saleur, Free fermions and the Alexander–Conway polynomial, Comm. Math. Phys. 141 (1991) 293 MR1133269
16 B Keller, On differential graded categories, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc., Zürich (2006) 151 MR2275593
17 M Khovanov, How to categorify one-half of quantum gl(1|2), arXiv:1007.3517
18 M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 MR1740682
19 M Khovanov, A D Lauda, A categorification of quantum sl(n), MR2628852
20 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 MR2525917
21 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 MR2763732
22 A D Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2010) 3327 MR2729010
23 R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard–Floer homology : Invariance and pairing, arXiv:0810.0687
24 S Makar-Limanov, Morse surgeries of index 0 on tight manifolds, Preprint (1997)
25 C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 MR2480614
26 D Mathews, Chord diagrams, contact-topological quantum field theory and contact categories, Algebr. Geom. Topol. 10 (2010) 2091 MR2745667
27 D V Mathews, Sutured TQFT, torsion and tori, Internat. J. Math. 24 (2013) 1350039, 35 MR3070808
28 P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 MR2065507
29 P Ozsváth, Z Szabó, Heegaard–Floer homology and contact structures, Duke Math. J. 129 (2005) 39 MR2153455
30 J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
31 N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 MR1036112
32 R Rouquier, 2–Kac–Moody algebras, arXiv:0812.5023
33 L Rozansky, H Saleur, Quantum field theory for the multivariable Alexander–Conway polynomial, Nuclear Phys. B 376 (1992) 461 MR1170953
34 A Sartori, Categorification of tensor powers of the vector representation of Uq(gl(1|1)), arXiv:1305.6162
35 L Solomon, Representations of the rook monoid, J. Algebra 256 (2002) 309 MR1939108
36 Y Tian, Categorical braid group actions on representations of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(sl(1|1)), in preparation
37 Y Tian, A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUq(sl(1|1)) as an algebra arXiv:1210.5680
38 B Webster, Knot invariants and higher representation theory I : Diagrammatic and geometric categorification of tensor products, arXiv:1001.2020
39 B Webster, Knot invariants and higher representation theory II : The categorification of quantum knot invariants, arXiv:1005.4559
40 C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) MR1269324
41 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 MR990772
42 R Zarev, Bordered Floer homology for sutured manifolds, arXiv:0908.1106
43 R Zarev, Equivalence of gluing maps for SFH, in preparation