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Open book foliation

TETSUYA ITO

KEIKO KAWAMURO

We study open book foliations on surfaces in 3–manifolds and give applications
to contact geometry of dimension 3 . We prove a braid-theoretic formula for the
self-linking number of transverse links, which reveals an unexpected connection with
to the Johnson–Morita homomorphism in mapping class group theory. We also give
an alternative combinatorial proof of the Bennequin–Eliashberg inequality.

57M27; 57M50, 57R17, 53D35

1 Introduction

In his seminal work [1], Bennequin shows that there is an “exotic” contact structure,
�ot , on S3 that is homotopic to the standard contact structure, �std , as a 2–plane field
but not contactomorphic to �std . In other words, �std is tight whereas �ot is overtwisted
in contemporary terminology. In order to distinguish these contact structures he studies
closed braids and characteristic foliations on their Seifert surfaces induced by the contact
structures. Since then, Bennequin’s method has been developed in two directions.

One direction is the theory of characteristic foliations and convex surfaces: Eliashberg
uses characteristic foliations to show the Bennequin–Eliashberg inequality for tight
contact 3–manifolds and generalizes the Bennequin inequality for the tight contact
3–sphere in [16]. Characteristic foliations also play important roles in Eliashberg’s
classification of overtwisted contact structures [15]. In [24], Giroux extends character-
istic foliation theory and initiates convex surface theory. This gives us cut-and-paste
techniques to study contact structures and to classify tight contact structures for various
3–manifolds. See also Honda’s work [28] on convex surface theory.

The other direction is the theory of braid foliations studied in a series of papers by
Birman and Menasco [5; 6; 7; 8; 9; 10; 11]. One of its highest achievements is
the “Markov theorem without stabilization,” which states that given two closed braid
representatives of any link in R3 can be transformed to each other in a very controlled
manner [11]. Moreover, Birman and Menasco apply the braid foliation to contact
geometry and construct examples of transversely non-simple knots in the standard
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contact 3–sphere: transverse knots of the same topological type and the same self-
linking number that are not transversely isotopic [12]. Their examples are closed
3–braids related by negative flypes. Analysis of a sequence of braid moves that relates
one to the other (a Markov tower) reveals that the two closed braids represent distinct
transverse links. See also Birman and Finkelstein [3] for a concise survey article.

We establish a foundation for open book foliations, which generalize braid foliations.

Our starting point is a classical theorem that dates back to Alexander: every closed,
oriented 3–manifold admits an open book decomposition. An open book decomposition
naturally induces a singular foliation on an embedded surface. When the foliation
satisfies certain conditions, we call it an open book foliation on the surface. As shown
in Theorem 2.5, any embedded surface can be isotoped to admit an open book foliation.

The idea of open book foliations has existed for some time. The project of this paper
started from a conversation between John Etnyre and the authors at the conference
“Braids in Seville” in 2011. Etnyre pointed out that Bennequin’s work [1] suggests that
characteristic foliations and open book foliations are essentially the “same”. Also, he
and Ko Honda had discussed generalizations of braid foliations. In addition, readers
may find a preliminary step toward open book foliations in Pavelescu’s thesis [39].

However, a foundation for open book foliations in the general setting has not been
fully developed in the literature, and an open book foliation has often been regarded
as a special kind of characteristic foliation in contact geometry. In this paper we
develop the basics of open book foliations in a topological and combinatorial way. It is
important that open book foliation theory is independent of the theory of characteristic
foliations. In fact in Remark 2.22 we list items that highlight differences between
the two foliations. The most notable difference is that open book foliations are more
“rigid” than characteristic foliations. For instance, the Giroux cancellation lemma
[25] for characteristic foliations does not apply to open book foliations. However the
two foliations have similar appearances, as Etnyre pointed out to us. We prove the
structural stability theorem (Theorem 2.21), which states that the two foliations can be
topologically conjugate to each other under certain conditions.

Hence, via the Giroux-correspondence [26], open book foliation theory gives rise to a
new technique to analyze general contact 3–manifolds, just like Bennequin’s foliations
and Birman and Menasco’s braid foliations have been used to study the standard tight
contact 3–sphere.

Our first application of open book foliations to contact geometry is a self-linking
number formula for an n–stranded braid, b , with respect to an open book .S; �/:

sl.yb; Œ†�/D�nCbexp.b/���.a/ � Œb�C c.Œ��; a/
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The precise statement and definitions can be found in Theorem 3.10. Interestingly
the function c.Œ��; a/ in the formula reveals an unexpected relationship between the
self-linking number, an invariant in contact geometry, and the Johnson–Morita homo-
morphism in mapping class group theory. We discuss this in detail in Section 3.5.

Our formula generalizes Bennequin’s self-linking number formula [1] for a braid in the
open book .D2; id/ that is a usual closed braid in R3 around the z–axis. Bennequin’s
formula is

sl.b/D�nC exp.b/;

where exp.b/ (with no “hat” over exp) is the exponent sum of a braid word representing
b . When the page surface S is an annulus, Kawamuro and Pavelescu [33] show that

sl.b; Œ†�/D�nC exp.b/���.a/ � Œb�:

Moreover if S is planar, Kawamuro [32] shows that

sl.b; Œ†�/D�nC exp.b/���.a/ � Œb�C c0.�; a/;

where the function c0 is a part of the function c and the gap of c and c0 is essentially
the Johnson–Morita homomorphism mentioned above. We can see that the formula
gets more complicated as the topology of S gets complicated.

The self-linking number is not merely an invariant of knots and links in contact mani-
folds. By the following celebrated Bennequin–Eliashberg inequality [16], one can use
the self-linking number to determine tightness or overtwistedness of a given contact
structure:

Theorem 4.3 [16] If a contact 3–manifold .M; �/ is tight, then for any null-homolo-
gous transverse link L and its Seifert surface †, we have

sl.L; Œ†�/� ��.†/:

Our second application of open book foliations to contact geometry is to give an
alternative combinatorial proof to the above Bennequin–Eliashberg inequality. Because
of its rigidity, an open book foliation is effective at visualizing or constructing surfaces
like overtwisted discs. In fact we define a transverse overtwisted disc (Definition 4.1),
a notion corresponding to an overtwisted disc in contact geometry, and we use it to
reprove the Bennequin–Eliashberg inequality.

1.1 Origins of open book foliation

In this section we briefly review braid foliations and characteristic foliations. We
generalize braid foliations to open book foliations. On the other hand, many applications
of open book foliations are derived from problems in characteristic foliation theory.
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1.1.1 Braid foliations In Birman and Menasco’s braid foliation theory [5; 6; 7; 8; 9;
10; 11], braids are geometric objects. Let A be an oriented unknot in S3 . We regard
S3 as R3[f1g and identify A with the union of the z–axis and the point f1g. As
is well-known, A is a fibered knot. With the cylindrical coordinates .r; �; z/ of R3 ,
the fibration � W S3 nA! S1 is given by the projection .r; �; z/ 7! � . An oriented
link L� S3 is called a closed braid with respect to A (and � ) if L is disjoint from A

and positively transverse to each fiber S� D �
�1.�/. In other words, L winds around

the z–axis in the positive direction.

Consider an incompressible Seifert surface F of a braid L, or an essential closed
surface F � S3 nL. The intersection of F and the fibers fS� j � 2 S1g induces a
singular foliation F on F . We can put F in a position so that F satisfies the following
conditions:

(i) The z–axis pierces F transversely in finitely many points, around which the
foliation F is radial.

(ii) The leaves of F along @F are transverse to @F .

(iii) All but finitely many fibers S� meet F transversely. Each exceptional fiber is
tangent to F at a single point.

(iv) All the tangencies of F and fibers are saddles.

This F is called a braid foliation on the surface F . (Later in Section 2.1 we borrow
Birman and Menasco’s axioms (i)–(iv) to define open book foliations.)

The foliation F encodes both topological and algebraic information of the closed braid
L. For example, let L be the closure of the braid word �1 in the Artin braid group B2

and F its Bennequin surface consisting of two discs and one positively twisted band.
The surface F and its braid foliation F are depicted in Figure 1(a). (The meaning of ˚
will be made clear in Section 2.1.1.) We collapse the twisted band and the upper disc to
get the trivial braid as in Figure 1(b). Algebraically this corresponds to destabilization
of �1 and the topology of F indicates that L is destabilizable.

In general if F can be “simplified” then L is also “simplified”. Moreover, as the
above example suggests, a simplification of F can be understood as a certain braid
operation. Therefore, by studying F one may find a sequence of braid operations to
get the “simplest” braid representative of L.

Braid foliations have numerous applications to study of knots and links in S3 [4; 5; 6;
7; 8; 9; 10; 11]. Moreover, via the correspondence [1] between the transverse links
in the standard contact S3 and the closed braids around the z–axis, braid foliations
are used to solve problems in contact geometry, in particular detecting transversely
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A
(a)

(b)
Destabilization Collapse

Figure 1: Example: Braid foliation and destabilization

non-simple links [12; 13; 14; 34]. (Here a topological link type L is called transversely
simple if the transverse link representatives of L can be completely classified by an
invariant called the self-linking number).

In [10], Birman and Menasco study the set of 3–braids and prove that two closed
3–braids representing topologically the same link are related to each other by the
so-called flype move. This is the key to their construction of transversely non-simple
3–braid links [12]. In [8] they prove that every closed braid representative of the unknot
can be deformed into the one-stranded braid by a sequence of exchange moves and
destabilizations. Based on this, Birman and Wrinkle [14] give an alternative topological
proof, first proven by Eliashberg and Fraser [17], that the unknot in .S3; �std/ is
transversely simple.

It should be pointed out that the braid foliation is not too difficult to see or illustrate
once we understand how a surface is embedded. This contrasts strikingly with the
flexibility of the characteristic foliations, which we describe next.

1.1.2 Characteristic foliations Let .M; �/ be a closed contact 3–manifold. Let
F �M be an oriented embedded surface, usually either closed or with Legendrian
boundary. (A convex surface with transverse boundary is established by Etnyre and
Van Horn-Morris [22, Section 2].) Integrating the vector field � \TF on F we get
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a singular foliation F�.F / on F called the characteristic foliation. If two contact
structures induce the same characteristic foliation on F then they are isotopic near F .

A surface F is called convex if there exists a vector field v whose flow preserves �
and is transverse to F . The dividing set [24] on a convex surface F is a multi-curve
defined by fp 2 F j vp � �pg. Giroux’s flexibility theorem [24; 28] states that it is
the isotopy type of a dividing set (not an individual characteristic foliation compatible
with the dividing set) that encodes information of the contact structure near F . If two
contact structures induce isotopic dividing sets on F then they are isotopic near F .

In [28], Honda introduces bypass attachment, which allows us to modify dividing sets in
controlled manner. With careful examination of dividing sets, one can apply topological
techniques such as gluing and cutting contact 3–manifolds along convex surfaces. This
leads to various results in contact geometry. For example, Etnyre and Honda prove the
non-existence of tight contact structures on a Poincaré homology sphere [19]. They
also prove transverse non-simplicity of the .2; 3/–cable of the .2; 3/–torus knot by
classifying its Legendrian representatives [20]. Later, LaFountain and Menasco [34]
establish Legendrian and transversal “Markov theorem without stabilization” for the
above knot by using both braid foliation and convex surface techniques.

In practice, except for certain simple cases, it is not very easy to grasp the entire picture
of a characteristic foliation and a dividing set. It is also not very clear how they change
under isotopies of surfaces. In contrast, the structural stability theorem that we prove
in Section 2.2 allows us to visualize a characteristic foliation through an open book
foliation.

2 Basics of open book foliation

In this section we define open book foliations and develop basic machinery by applying
(sometimes with modifications) existing notions in braid foliation theory.

Hence most of our definitions in this section can be found in Birman and Menasco’s
papers [5]–[12]. We also cite Birman and Finkelstein’s paper [3] because it is a concise
survey of braid foliation theory and conveniently contains all the basic notions we want
to borrow.

2.1 Definition of open book foliation

An open book .S; �/ is a compact surface S with non-empty boundary @S along with
a diffeomorphism � 2Aut.S; @S/ fixing the boundary pointwise. Given an open book
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.S; �/ we define a closed oriented 3–manifold M DM.S;�/ by

M.S;�/ DM� [

�a
j@S j

D2
�S1

�
;

where M� denotes the mapping torus S � Œ0; 1�=.x; 1/� .�.x/; 0/ and the solid tori
are attached so that for each point p 2 @S the circle fpg � S1 � @M� bounds a
meridian disc of D2 � S1 . If a closed oriented manifold M is homeomorphic to
M.S;�/ , we say that .S; �/ is an open book decomposition of the manifold M . For
example, M.D2;id/ Š S3 . The union of core circles of the attached solid tori, B , is
called the binding of the open book. Let � W M nB! S1 DR=Z denote the fibration.
The fibers ��1.t/DW St where t 2 Œ0; 1/ are called the pages of the open book.

We say that an oriented link L in M.S;�/ is in braid position with respect to the open
book .S; �/ if L is disjoint from the binding and positively transverses each page St .
This generalizes the familiar concept of braid position for M.D2;id/ ' S3 .

Let F be an oriented, connected, compact surface smoothly embedded in M.S;�/

whose boundary @F (if it exists) is in braid position with respect to the open book
.S; �/.

Consider the singular foliation F D F.F / on F induced by the pages fSt j t 2 S1g.
That is, F is obtained by integrating the singular vector field fTpSt \TpFgp2F on
F . We call each connected component of the integral curves a leaf. We may regard
the leaves as F \ St . By standard general position arguments (see Hirsch [27] for
example) the surface F can be perturbed while the braid isotopy class of @F is fixed
(if @F is non-empty) so that F satisfies the same conditions in [7, page 23], namely:

(F i) The binding B pierces the surface F transversely in finitely many points.
Moreover, p 2 B \F if and only if there exists a disc neighborhood Np �

Int.F / of p on which the foliation F.Np/ is radial with the node p (see the
top sketches in Figure 2). We call the singularity p an elliptic point.

(F ii) The leaves of F along @F are transverse to @F .

(F iii) All but finitely many fibers St intersect F transversely. Each exceptional fiber
is tangent to Int.F / at a single point. In particular, F has no saddle-saddle
connections.

(F iv 0 ) The type of a tangency in (F iii) is saddle or local extremum.

Definition 2.1 [7, page 23] We say that a page St is regular if St intersects F

transversely and it is singular otherwise. Similarly, a leaf l of F is called regular if l

does not contain a tangency point.
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The arguments in [3, page 272–273] imply the following:

Proposition 2.2 Since @F is in braid position (if @F is non-empty), no regular leaf of
F.F / has both of its endpoints on @F . Hence, the regular leaves of F are classified
into the following three types:

a–arc: An arc where one of its endpoints lies on B and the other lies on @F

b–arc: An arc whose endpoints both lie on B

c–circle: A simple closed curve

Definition 2.3 We say that the singular foliation F.F / is an open book foliation if
the above conditions (F i), (F ii), (F iii) and the following condition (F iv), which
is stronger than (F iv 0 ), are satisfied, and we denote it by Fob.F /.

(F iv) All the tangencies of F and fibers are of saddle type (see the bottom sketches
of Figure 2). We call them hyperbolic points.

Remark 2.4 Here we list differences between the braid foliation and the open book
foliation.

(1) For braid foliations the ambient manifold M is S3 , whereas for open book
foliations M can be any closed oriented 3–manifold.

(2) In braid foliation theory each regular leaf l � St is required to be essential in
St n .St \ @F / [3, Theorem 1.1]. In open book foliation theory we relax this
restriction, so a regular leaf can be inessential, ie F can be compressible.
We do this for the following reasons: First, we prefer to establish the basics of
open book foliations under less restrictive conditions. Second, characteristic
foliations, which share common properties with open book foliations, also contain
inessential circles. Third, in some cases it is more convenient and natural to
allow inessential leaves: For example, as we will see in Proposition 2.6, one can
remove c–circles at the cost of introducing inessential leaves. (In [29] we study
open book foliations where all of the b–arc leaves are essential, and give several
applications to the topology of 3–manifolds.)

The open book foliation is intrinsic in the following sense:

Theorem 2.5 If (F i), (F ii), (F iii), (F iv 0 ) are satisfied then (F iv) holds. Namely,
with an ambient isotopy (that fixes @F if it exists), every surface F admits an open
book foliation Fob.F /.
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We prove Theorem 2.5 in Section 2.1.2. At a glance, this theorem is similar to [7,
Lemma 2]. However we allow our pages to be of type Sg;r (rather than D2 ) and
moreover we allow F to be compressible. As a result Birman and Menasco’s proof
(which is a refined argument of Bennequin’s [1] with much more details) does not
apply. For the same reason, Roussarie and Thurston’s argument [41] does not work
either.

As a byproduct of the proof of Theorem 2.5 we obtain:

Proposition 2.6 Given an open book foliation Fob.F /, we can perturb F (fixing @F
if it exists) so that the new Fob.F / contains no c–circles.

We prove Proposition 2.6 also in Section 2.1.2. This is a useful proposition that allows
us to convert an open book foliation into Morse–Smale type. In this paper we use
Proposition 2.6 many times, including in a new proof of the Bennequin–Eliashberg
inequality.

2.1.1 Signs of singularities, describing arcs and orientation of leaves

Definition 2.7 [1, page 19; 3, page 280] We say that an elliptic singularity p is
positive (negative) if the binding B is positively (negatively) transverse to F at p .
The sign of the hyperbolic singularity p is positive (negative) whether the orientation
of the tangent plane TpF does (does not) coincide with the orientation of TpSt .

See Figure 2, where we describe an elliptic point by a hollowed circle with its sign
inside, a hyperbolic point by a black dot with the sign indicated nearby, and positive
normals EnF to F by dashed arrows.

With this definition, we observe that:

Claim 2.8 The elliptic point at the end of every a–arc is positive, and the endpoints of
every b–arc have opposite signs.

Definition 2.9 (Describing arc) Consider a saddle shape subsurface of F whose
leaves l1 and l2 (possibly l1 D l2 ) as in Figure 3 are sitting on a page St . As t

increases (the page moves up) the leaves converge along a properly embedded arc
 �St (dashed in Figure 3) joining l1 and l2 and switch configuration. See the passage
in Figure 3.

We call  the describing arc of the hyperbolic singularity. Up to isotopy,  is uniquely
determined. We also often put the sign of a hyperbolic point near its describing arc
(see Figure 11).

Geometry & Topology, Volume 18 (2014)
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t

B
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Figure 2: Signs of singularities and normal vectors EnF

l1 l2


F

l2
l1 St

Figure 3: The describing arc (dashed) for a hyperbolic singularity

Definition 2.10 We denote the number of positive (resp. negative) elliptic points of
Fob.F / by eC D eC.Fob.F // (resp. e� D e�.Fob.F //). Similarly, the number of
positive (resp. negative) hyperbolic points is denoted by hC D hC.Fob.F // (resp.
h� D h�.Fob.F //).

Proposition 2.11 The Euler characteristic of the surface F is

�.F /D .eCC e�/� .hCC h�/:

To prove Proposition 2.11, we define orientations of leaves:

Definition 2.12 (Orientation of leaves) Both the surface F and the ambient manifold
M are oriented so that the positive normal EnF of F (in this paper we indicate EnF by
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dashed arrows like in Figure 2) is canonically defined. We orient each leaf of Fob.F /,
for both regular and singular, so that if we were to stand up on the positive side of F

and walk along a leaf, the positive side of the intersecting page St of the open book
would be on our left. In other words, at a non-singular point p on a leaf l � .St \F /,
let EnS be a positive normal to St . Then Xob WD EnS � EnF is a positive tangent to l .
As a result, positive/negative elliptic points are sources/sinks of the vector field Xob .

Proof of Proposition 2.11 The orientations of the leaves give a vector field Xob on
F . By the axiom (F iv) any singularity of Fob.F / is either elliptic or hyperbolic. The
statement follows from the Poincaré–Hopf theorem.

2.1.2 Proofs of Theorem 2.5 and Proposition 2.6 Since we do not assume incom-
pressibility of the surface F , we cannot directly apply Roussarie and Thurston’s
general position theorem [41, Theorem 4] or the proof of a corresponding result in
braid foliation theory [7, Lemma 2] in order to remove all the local extrema from a
foliation satisfying (F i), (F ii), (F iii), (F iv 0 ). Instead, we use a trick that we call a
finger move.

Proof of Theorem 2.5 Let F be a surface in a general position such that the singular
foliation F D F.F / satisfies (F i), (F ii), (F iii), (F iv 0 ). We show that we can
isotope F so that (F iv) is satisfied.

Let p be a local extremal point on the page St . We will replace p with a pair of
elliptic points and one hyperbolic point by the following isotopy, which we call a finger
move. Repeating finger moves we can get rid of all the local extrema, ie (F iv) is
satisfied.

Choose an arc  in St that joins p and a binding component B . See Figure 4.
If  intersects other regular leaves of F.F /, by small local perturbation, we make
the intersections transverse. Take a small 3–ball neighborhood N of  (dashed
ellipses). We may assume that N contains no singularities of F other than p . Push a
neighborhood of p along  so that no changes occur outside the region N . See the
passage in Figure 4(a)

Call this isotopy a finger move supported on N . Figure 4(b) illustrates this finger move
viewed from “above” the binding component B .

The finger move removes p and introduces new elliptic (black dots in Figure 4) and
hyperbolic (gray dots) singularities to F . But since the finger move is supported on N ,
no new local extrema are introduced. More precisely, if a positive normal to St agrees
(resp. disagrees) with a positive normal to F at p , then the finger move introduces
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St
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St

B

N

 p

F
F

St

N

St

(a)

(b)

Figure 4: A finger move supported on a small neighborhood N of 

one negative (resp. positive) hyperbolic point and a pair of ˙ elliptic points. See the
top passage in Figure 5. For other part of F that is involved in the finger move, a pair
of ˙ elliptic points and a pair of ˙ hyperbolic points are inserted. See the bottom
passage of Figure 5.

Proof of Proposition 2.6 Let Fob.F / be an open book foliation containing c–circles.
For a c–circle c there exists a maximal annulus c �Ac � F whose interior is foliated
only by c–circles and whose boundary components are singular leaves. Let us call
Ac a c–circle annulus. The number of c–circle annuli in Fob.F / is finite since the
number of singularities of Fob.F / is finite.

In the following, applying finger moves introduced in the proof of Theorem 2.5 we
will eliminate all the c–circle annuli. Recall that a finger move does not introduce new
c–circles.

Let A�F be a c–circle annulus whose interior consists of a smooth family of c–circles
fct � Stg and let cti

� Sti
\@A (i D 0; 1) denote the limit circles of the family. There
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+

+

+ +

Figure 5: (Top) Foliation change by a finger move near a local maximum.
(Bottom) Non-singular region involved in a finger move.

is no restriction on the way that A may wind around the binding components. Each
limit circle cti

has one (or two) hyperbolic point(s). (In the latter case the two points
must be identical due to the condition (F iii) and the limit circle is immersed like the
singular leaf in cc–pants as in Figure 7.)

Since the open book foliation Fob.F / contains only finitely many hyperbolic points,
there exists a finite family of disjoint smooth arcs and points

farc ˛i �A; point pi 2 B j i D 1; : : : ; kg;

where B is the set of binding components, such that

� every c–circle of A intersects at least one of the arcs ˛i ,
� all the intersections of ˛i and c–circles are transverse,
� for each ˛i there exists a smooth family of arcs �i

t � St from the point ˛i \St

to pi that avoids hyperbolic points of Fob.F / and is never tangent to leaves of
Fob.F /. See Figure 6. (It is convenient to imagine a triangle �i D f�

i
tg with

the bottom edge ˛i and the top vertex pi .)

We apply a finger move (see the proof of Theorem 2.5) along the triangle �i . The open
book foliation locally changes as in the bottom passage of Figure 5 in a neighborhood
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pi

˛1

˛k

�i

ct0

ct1

A
˛i

Figure 6: Arc ˛i , point pi and triangle �i

of ˛i . Then all the c–circles through ˛i disappear. Repeat finger moves along all
�1; : : : ; �k . As a consequence all the c–circles of A disappear. Note that the finger
moves may introduce new singularities even away from A if some �i intersect other
parts of the surface F . We apply this procedure to every c–circle annulus.

2.1.3 Regions

Definition 2.13 [7, page 30] Recall the three types of regular leaves: Type a, b

and c (Proposition 2.2). The hyperbolic points in Fob.F / are classified into six
types, according to types of nearby regular leaves: Type aa, ab , bb , ac , bc and
cc as depicted in Figure 7. We call such model regions aa–tile, ab–tile, bb–tile,
ac–annulus, bc–annulus, cc–pants, respectively. (Note that ac–annuli do not exist in
braid foliation theory [3, page 279].)

For each region, the sign of the hyperbolic point can be either C1 or �1, but the signs
of the elliptic points are determined as depicted in Figure 7 due to Claim 2.8. For ac

and bc–annuli, the hyperbolic points can be on the left parts of the annuli. The interior
of a region is embedded in F as a disc, an annulus, or a pair of pants.
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@F

@F @F

@F

aa–tile ab–tile bb–tile

ac–annulus bc–annulus cc–pants

Figure 7: The six types of regions

Definition 2.14 (Degenerate regions) If a region R is of type aa, ac , bc or cc ,
some parts of @R are possibly identified in F . In such case we say that R is degenerate.
For example, in Figure 8(1), two boundary a–arcs of an aa–tile are identified, and in
(2) the two boundary b–arcs of a bc–annulus are identified (we have already seen this
in Figure 5).

On the other hand, a region like in Figure 8(3), where two ends of the singular leaf lie
on the same positive elliptic point, does not exist. This is because around an elliptic
point all the leaves (both regular and singular) sit on distinct pages.

(1) (2) (3)

Figure 8: (1) A degenerate aa–tile (2) A degenerate bc –annulus
(3) Non-existing region

We study degenerate regions in [30].
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The next proposition shows one of the useful combinatorial features of open book
foliations. It is originally a theorem in braid foliation theory.

Proposition 2.15 (Region decomposition [3, Theorem 1.2]) If Fob.F / contains a
hyperbolic point, the surface F is decomposed into a union of model regions whose
interiors are disjoint.

We omit a proof and refer the readers to the proof of [3, Theorem 1.2].

The decomposition is called a region decomposition of F . It describes how F is
embedded in M.S;�/ . If Fob.F / has no c–circles then the region decomposition gives
a cellular decomposition of F .

2.1.4 The graph G��

Definition 2.16 The two flow lines, induced by the orientation vector field Xob on F

(Definition 2.12), approaching to (resp. departing from) the hyperbolic point in an aa,
ab or bb–tile is called stable (resp. unstable) separatrices.

Definition 2.17 [11, page 471] The graph G�� is a graph embedded in F . The
edges of G�� are the unstable separatrices for negative hyperbolic points in aa, ab

and bb–tiles. See Figure 9. We regard the negative hyperbolic points as part of the
edges. The vertices of G�� are the negative elliptic points in ab and bb–tiles and the
end points of the edges of G�� that lie on @F , called the fake vertices.

aa–tile ab–tile bb–tile

: G��

: Fake vertex

Figure 9: The graph G��

In the same way, we can define GCC the graph consists of positive elliptic points and
stable separatrices of positive hyperbolic points.

Remark 2.18 The origin of the above definition is the graphs G˙˙;G˙� [3, page 314;
11, page 471] in braid foliation theory. In convex surface theory our G�� corresponds
to a sub-graph of the Giroux graph [25, page 646].

We will use the graphs G�� and GCC to define a transverse overtwisted disc and to
give an alternative proof to the Bennequin–Eliashberg inequality in Section 4.
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2.1.5 Movie presentation A useful tool for expressing how the surface, F , is em-
bedded in M.S;�/ , movie presentations, can be borrowed from braid foliation theory;
see [7, Figure 8]. Using a movie presentation allows us to grasp the whole picture of
Fob.F /.

Let fSti
giD1;:::;k be the set of singular pages of Fob.F /, where 0< t1< t2< � � �< tk<1.

Consider the family f.St ;F \ St / j t 2 Œ0; 1�g of slices of F by the pages St . For
s; t 2 .ti ; tiC1/, the slices .Ss;F \Ss/ and .St ;F \St / are isotopic, and the isotopy
type of .St ;F \St / changes only when t D ti . The describing arcs (Definition 2.9)
encode all the information of the configuration changes.

Choose s0 D 0, sk D 1 and si 2 .ti ; tiC1/. Consider the slices

f.Ssi
;F \Ssi

/ j i D 0; : : : ; kg:

These are the slices on which we may place describing arcs. The describing arc for
the singularity on Sti

is found on Ssi�1
. The above observation shows that those are

the slices that determine the embedding of F and the open book foliation Fob.F / up
to isotopy. The slice .S1;F \S1/ is identified with the slice .S0;F \S0/ under the
monodromy � . We call this family of slices with describing arcs a movie presentation
of Fob.F /.

We will often use part of a movie presentation to express a local picture of a surface.
Also, for the reader’s convenience, some movie presentations may contain singular
slices .Sti

;F \Sti
/ like in Figure 12.

2.1.6 Examples of open book foliations

Example 2.19 First we consider the simplest open book .D2; id/, which supports
the standard tight contact structure on S3 . This is the case that Birman and Menasco
studied in their braid foliation theory. Consider a 2–sphere F embedded as shown in
the left sketch of Figure 10.

Since F intersects the binding in four points, the open book foliation Fob.F / has four
elliptic points, two positive and two negative. It also has two hyperbolic points of
opposite signs where F is tangent to pages of the open book (we may assume that the
hyperbolic points lie on pages S1=4 and S3=4 ). The right sketch of Figure 10 depicts
the whole picture of Fob.F / and Figure 11 depicts a movie presentation of Fob.F /,
where the dashed arrows indicate positive normals to F . Note that the open book
foliation Fob.F / contains inessential b–arcs so, strictly speaking, this foliation is not
treated in braid foliation theory.
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Figure 10: Example 2.19

S0 S 1
2

S1

�
C

Figure 11: A movie presentation of Example 2.19

Example 2.20 Next we study a more informative example. Consider the open book
.S; �/ WD .A;T �1

A
/ where A denotes an annulus and TA the right-handed Dehn twist

along a core circle of A. The ambient manifold is again S3 . However in this case the
binding is a negative Hopf link and .A;T �1

A
/ supports an overtwisted contact structure.

In order to visualize an overtwisted disc, D , we cut the complement of the binding
S3 nB along the page S0 . The resulting manifold is homeomorphic to S � Œ0; 1� and
each page St is naturally identified with S �ftg. The disc D �M.S;�/ is also cut out
along D\S0 and becomes a properly embedded surface, D0 , in S � Œ0; 1� such that
D0\ .S �f0g/D �.D0\ .S �f1g// and D0\ .@S � Œ0; 1�/D .D\ @S0/� Œ0; 1�. The
left sketch in Figure 12 shows how D0 is embedded in S � Œ0; 1�.

The sketch on the right depicts a movie presentation of Fob.D/. (For convenience,
as we note in Section 2.1.5, redundant slices that contain hyperbolic points are added
in the 2nd and 4th rows.) We see that the multi-curve in the top annulus is identified
with the multi-curve in the bottom annulus under the monodromy T �1

A
. The movie

presentation also shows that the open book foliation Fob.D/ contains two positive
hyperbolic points, two positive elliptic points and one negative elliptic point. See
Figure 13 for the entire picture of Fob.D/.
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A� f1g

A� f0g

Figure 12: Example 2.20: An overtwisted disc in an annulus open book .A;T �1
A /

Figure 13: Example 2.20: The open book foliation Fob.D/

2.2 Open book foliation vs characteristic foliation

Let F�.F / denote the characteristic foliation of a surface F embedded in .M; �/.
In this section, we compare the open book foliation Fob.F / and the characteristic
foliation F�.F /.

Theorem 2.21 (Structural stability) Assume that a surface F in M.S;�/ admits an
open book foliation Fob.F /. There exists a contact structure � on M.S;�/ supported
by the open book .S; �/ such that e˙.Fob.F // D e˙.F�.F // and h˙.Fob.F // D

h˙.F�.F //.

Moreover, if Fob.F / contains no c–circles, then Fob.F / and F�.F / are topologically
conjugate, namely there exists a homeomorphism of F that takes Fob.F / to F�.F /.
In particular [22, Lemma 2.1] implies that F is a convex surface.
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Proof Recall the Thurston–Winkelnkemper construction (Thurston and Winkelnkem-
per [42], and Geiges [23, page 151–153]) of a contact structure compatible with the
open book .S; �/:

Away from the binding, Thurston and Winkelnkemper’s contact 1–form is written
as ˛ D ˇt CC dt , where t 2 Œ0; 1� (page parameter), C � 1 is a sufficiently large
constant number and fˇtg is a smooth family of 1–forms on the page St such that
dˇt is an area form of St of total area 2� and ˇ1 D �

�ˇ0 . Such a family fˇtg is not
unique, so we choose any to start with.

Near a binding component there exist cylindrical coordinates .�; r; t/, where � repre-
sents the positive direction of the binding and t 2 Œ0; 1� is the same t as above, such
that

(2-1) ˛ D 2 d� C r2 dt:

Assume that F admits an open book foliation Fob.F /. In the following we use
the 1–form on M.S;�/ , ˛ , chosen above, and contact planes � WD ker˛ to study
neighborhoods of singular and non-singular points.

Elliptic points Suppose p 2 Int.F / is an elliptic point of sgn.p/DW � 2 f˙1g. This
means that a binding component,  , intersects F transversely at p with sign � ; see
Figure 14(1). Take a disc neighborhood D � F of p whose open book foliation
Fob.D/ contains no other singularities. By (2-1) we know that along  the contact
planes and  intersect transversely with sign C1. We push down (or up) a very small
neighborhood D0 � D of p along  without touching the rest of the surface; see
Figure 14(2).



F�.D0/

Fob.D/ p

p

p

(1) (2)

Figure 14

Since this operation preserves the open book foliation, we may call the perturbed
surface by the same name F . By the symmetry with respect to  of the pushed D0

and ˛ D 2 d� C r2 dt , at the new p DD0\  the tangent plane and the contact plane
satisfy TpF D � � �p , hence the new p is an elliptic point of the characteristic foliation
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F�.D0/ of sign � . (If we push up in Figure 14(2) instead of push down exactly the
same argument holds.)

Hyperbolic points Let p2Fob.F / be a hyperbolic point of sgn.p/DC1. (A parallel
argument holds for the negative case.) Take an open ball neighborhood U �M.S;�/ of
p in which p is the only singularity of the open book foliation Fob.F /. Let .x;y; z/
be coordinates of U such that

(i) z is a coordinate for a sub-interval of Œ0; 1� such that @z D @t ,

(ii) .x;y/ are coordinates for the open disc U \St ,

(iii) p D .0; 0; 0/.

We may assume that F \U is a saddle surface and satisfies z D x2�y2 . The normal
vector EnF to the surface at q D .x;y; z/ 2F \U is EnF D .�2x; 2y; 1/. Suppose that
the contact plane �q D ker.˛q/ at q is spanned by

(2-2) �q D spanh@xCf .q/@z; @y Cg.q/@ziR

for some smooth functions f;gW U !R. Let En� WD .�f .q/;�g.q/; 1/. Then En� is a
positive normal to �q . We have

0D ˛q.@xCf .q/@z/D ˇq.@x/CCf .q/;

0D ˛q.@y Cg.q/@z/D ˇq.@y/CCg.q/:

Since C can be taken as large as we want, we have

(2-3) jf .q/j D jˇq.@x/j=C � 1 and jg.q/j D jˇq.@y/j=C � 1:

Therefore, if we take U small enough there exists a unique point p0 2 U \ F at
which EnF D En� , and the foliations Fob.F \ U / and F�.F \ U / are topologically
conjugate. In particular, p0 is a hyperbolic point of the characteristic foliation and
sgn.p0/D sgn.p/.

Non-singular points Let p 2 Int.F / be a non-singular point in Fob.F /. Take a small
open 3–ball neighborhood U � M.S;�/ of p so that the surface F \ U contains
no singularity of Fob.F /. Let .x;y; z/ 2 R3 be coordinates of U with the above
conditions (i), (ii), (iii). We may suppose that z D ky is satisfied on F \U for some
k ¤ 0. So the leaves of Fob.U \F / are the integral curves of the vector field @x .
Given a point q D .x;y; z/ 2 U , we may assume the above (2-2) and (2-3). Hence the
normal vector En� D .�f .q/;�g.q/; 1/ to �q and the normal vector EnF D .0;�k; 1/ to
TqF are not parallel to each other, ie �q ¤˙TqF , and the point q is not a singularity
of F�.F /.
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The above arguments conclude the first assertion of the theorem: e˙.Fob.F // D

e˙.F�.F // and h˙.Fob.F //D h˙.F�.F //.
To prove the second assertion, we assume that Fob.F / contains no c–circles. By
Proposition 2.15, F decomposes into type aa, ab and bb–tiles. For the stable separa-
trices S in each tile we take a small disc neighborhood D � F of S . The leaves of
Fob.D/ are oriented outward along the boundary @D . This implies that @D is a positive
braid with respect to the open book .S; �/, or equivalently, a positive transverse unknot
in .M.S;�/; �/, where � is the contact structure chosen above. Therefore, the leaves of
F�.D/ are also outward along @D . Moreover, the above argument shows that F�.D/
and Fob.D/ are topologically conjugate relative to @D .

A similar argument holds for each unstable separatrices. Hence we conclude that
F�.F / and Fob.F / are topologically conjugate.

Remark 2.22 The above proof of Theorem 2.21 shows that the open book and char-
acteristic foliations may coincide, especially when there are no c–circles in Fob .
Interesting contrast is found between open book foliations and characteristic foliations
(on convex surfaces).
� For a given closed surface F , we can always find a convex surface Fcv that is

isotopic and C1–close to F . However, in general, there may not exist a surface
admitting an open book foliation that is even C 1 –close to F (eg when F has
local extrema relative to the pages and then we apply finger moves).

� The dividing set �F of a convex surface F encodes essential information of the
contact structure near F . It yields a decomposition F n � D FC tF� of F .
If Fob.F / has no c–circles then the region F� is homotopy equivalent to our
graph G�� .

� In the characteristic foliation on a convex surface, any closed leaf is either
repelling or attracting, and there are no type ac , bc and cc–hyperbolic points
(Figure 7) due to the Morse–Smale condition (cf [23, page 171]). On the other
hand, an annular neighborhood of a c–circle in an open book foliation is foliated
by parallel c–circles.

� In the theory of convex surfaces, Giroux elimination [25; 23, Lemma 4.6.26]
allows us to remove a pair of elliptic and hyperbolic singularities of the same sign
by an arbitrary C 0 –small isotopy. Morally, one thinks that Giroux elimination
corresponds to elimination of a certain arrangement of a pair consisting of a local
extremum and a saddle point in an open book foliation Fob.F / by “flattening”
the surface F . See Figure 15.
In a subsequent paper [30] we discuss a number of operations in open book
foliation theory that allow us to remove singularities.
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elimination of
a local maximum

and a saddle

Giroux elimination

isotopy

C C

C C

Figure 15: (Left) Elimination of a local extremum and a saddle point in open
book foliation. (Right) Giroux elimination takes place in the shaded region of
characteristic foliation.

3 The self-linking number

A transverse knot in a contact 3–manifold .M; �/ is an embedding of S1 transverse
to � . It is known that a transverse knot is a contact submanifold of a contact 3–manifold
(see [23, Remark 2.1.15] for example). In this section we study an invariant of transverse
knots, called the self-linking number.
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Definition 3.1 Let L� .M; �/ be a transverse link that bounds a surface F , ie L is
0–homologous. The rank-2 vector bundle �jF !F over F is trivializable. Let s be a
nowhere vanishing smooth section of the bundle. Push L into the direction of s and call
the resulting link LCs . The self-linking number of L relative to ŒF � 2H2.M;LIZ/,
which we denote by sl.L; ŒF �/, is the algebraic intersection number of LCs and F .

Using Mitsumatsu and Mori’s Theorem [35, Appendix] or Pavelescu’s [39; 40], we
can identify a transverse link in .M; �/ with a closed braid in any compatible open
book .S; �/. The goal of this section is to prove Theorem 3.10, a self-linking number
formula for closed braids.

Our strategy is to construct a special Seifert surface † for a given closed braid and
count the singularities of its open book foliation Fob.†/, then apply the following
proposition:

Proposition 3.2 Suppose that F �M.S;�/ is a surface with the open book foliation
Fob.F /. In particular, @F is a transverse link in .M.S;�/; �.S;�//. Recall the integers
e˙ D e˙.Fob.F //, h˙ D h˙.Fob.F // defined in Definition 2.10. We have

sl.@F; ŒF �/D�he.�/; ŒF �i D �.eC� e�/C .hC� h�/:

Proof The self-linking number formula in characteristic foliation theory (see [23,
page 203] for example) together with Theorem 2.21 yields the above formula.

In order to state our main theorem (Theorem 3.10), we first need to define a function
cWMCG.S/ �H1.S I @S/ ! Z in Section 3.1. Later in Section 3.5 we show that
the function c is related to the first Johnson–Morita homomorphism, a well-studied
homomorphism in mapping class group theory.

3.1 Definition of function c

Let S D Sg;r be an oriented genus g surface with r boundary components. We divide
the surface S by walls (dashed arcs in Figure 19) into gC r �1 chambers, g of which
are once-punctured tori and r � 1 of which are annuli.

Definition 3.3 (Normal form) A relative homology class a 2 H1.S; @S/ is repre-
sented by a set of properly embedded oriented simple closed curves and arcs in S .
Among such multi-curve representatives, we take a special one, N.a/, which satisfies
the following conditions:

� N.a/ does not intersect the walls.
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� Any subset of N.a/ has non-trivial homology in H.S; @S/, ie the components
of N.a/ in a torus (resp. an annulus) chamber are a torus knot or link (resp.
parallel arcs joining 0 and i in Figure 19) oriented in the same direction.

Clearly the multi-curve N.a/ is uniquely determined up to isotopy. We call N.a/ the
normal form of the homology class a 2H1.S; @S/.

Definition 3.4 (OB cobordism) Let A and A0 be oriented, properly embedded multi-
curves in S representing the same homology class ŒA�D ŒA0� 2H1.S; @S/. An open
book foliation cobordism (OB cobordism) between A and A0 , denoted by A †

�!A0 ,
is a properly embedded oriented compact surface † in S � Œ0; 1� such that:

� †\S0 D @†\S0 D�A� f0g

� †\S1 D @†\S1 DA0 � f1g

� @ADA\ @S DA0\ @S D @A0

� @†D .�A� f0g/[ .A0 � f1g/[ .@A� Œ0; 1�/

� The fibration fStgt2Œ0;1� induces a foliation F† on †, all of whose singularities
are of hyperbolic type

Proposition 3.5 There is an OB cobordism A †
�! N.a/ for any multi-curve repre-

sentative A of a 2H1.S; @S/. That is, if multi-curves A and A0 represent the same
homology class then there exists an OB cobordism A †

�!A0 .

Proof We construct an oriented surface † embedded in S � Œ0; 1� with †\S0D�A

and †\ S1 D N.a/. Let w be one of the walls. Since ŒA� D ŒN.a/� 2 H1.S; @S/

and the normal form N.a/ does not intersect w , the algebraic intersection number
ŒA� �wD 0. We take a collar neighborhood �.w/� S of w so that each component of
�.w/\A has geometric intersection number 1 with w . The arcs �.w/\A may not all
have the same orientation. As t 2 Œ0; 1� increases, we apply the configuration changes
to pairs of consecutive arcs in �.w/\A with opposite orientations as in the passage
of Figure 16, until we remove all the arcs of �.w/\A. Each configuration change
introduces a new hyperbolic singularity. We repeat the procedure for all the walls. The
deformed multi-curve A, which we denote A0 , no longer intersects the walls.

The multi-curve A0 � S may contain null-homologous sets of c–circles. We remove
them by the following three steps.

Step 1 If there exist c–circles bounding concentric discs in a chamber H of S and
oriented in the same direction, then we remove them from the outermost one. We
can find a describing arc of a hyperbolic point (cf Figure 3) that joins the outermost
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w

� C

Figure 16: Configuration change of �.w/\A

Figure 17: Step 1 (top) and Step 2 (bottom)

c–circle and some curve in A0\H and is properly embedded in H nA0 . As shown in
the top row of Figure 17, one hyperbolic singularity is introduced then the c–circle
disappears. The sign of the hyperbolic singularity is C1 if and only if the c–circle is
oriented clockwise.

Step 2 If there is a pair of c–circles with opposite orientations that bounds an annulus
in S n A0 , then remove the pair by introducing a hyperbolic singularity of sign "

between the two c–circles as in Figure 17. The resulting c–circle bounds a disc that
can be removed by Step 1 at the expense of another hyperbolic singularity of sign �".

Step 3 Let H be a once-punctured torus chamber of S . After Steps 1 and 2, there
exist p; q; r 2 Z such that in H the multi-curve A0 is the union of .p; q/ torus link
and r boundary parallel c–circles oriented in the same direction. As in Figure 18 we
remove the c–circles by introducing r hyperbolic points of the same sign. The sign
depends on the signs of p; q and the orientation of the boundary parallel c–circles.

Now A0 is deformed to the normal form N.a/. Hence, we get a desired surface †.

Proposition 3.6 For an OB cobordism A †
�!A0 , let hC.F†/ (resp. h�.F†/) denote

the number of the positive (resp. negative) hyperbolic singularities of F† . The value

d.A †
�!A0/ WD hC.F†/� h�.F†/

is independent of the choice of cobordism surface † and it only depends on the
multi-curve representatives A and A0 . Hence we may denote

d.A;A0/ WD d.A †
�!A0/:
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q

q q

r

r

p

q� 1

r � 1

r � 1

p

r �1

Figure 18: Step 3: Remove boundary parallel null-homologous c –circles by
configuration changes along the dashed arcs.

Proof Suppose that A †0
�!A0 is another OB cobordism. We embed �†0 in S � Œ1; 2�.

We glue † and �†0 at the page S1 and obtain a surface F 0 in S � Œ0; 2�. Since
F 0 \ S2 D A D �.F 0 \ S0/, we can further identify F 0 \ S2 and F 0 \ S0 by the
identity map that defines a surface F embedded in the open book .S; id/. Since a
˙–hyperbolic singular point in F†0 turns to a �–hyperbolic point in F�†0 we have
d.A0 �†

0

�!A/D�d.A †0
�!A0/ and

(3-1) hC.Fob.F //� h�.Fob.F //D d.A F
�!A/D d.A †

�!A0/� d.A †0
�!A0/:

By Definition 3.4 the elliptic points in Fob.F / correspond to the lines @A � Œ0; 2�.
Since the endpoints of each arc component of A correspond to two elliptic points of
opposite signs, we get

(3-2) eC.Fob.F //D e�.Fob.F //:

Let �id be the contact structure supported by the open book .S; id/. Since the Euler
class of �id is equal to zero, by Proposition 3.2, (3-1) and (3-2), we have

0D he.�id/; ŒF �i D d.A †
�!A0/� d.A †0

�!A0/:

We are ready to define the function c.Œ��; a/. The following definition is geomet-
ric. Later we study algebraic properties of c.Œ��; a/ in Propositions 3.14, 3.20 and
Theorem 3.21.

Let MCG.S/ denote the mapping class group of S , that is, the group of isotopy classes
of orientation-preserving homeomorphisms of S fixing the boundary @S pointwise.
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Definition 3.7 Let Œ�� 2MCG.S/ and a 2H1.S; @S/. Define

c.Œ��; a/ WD d.�.N.a//;N.��a//:

In general, the multi-curve �.N.a// may not be isotopic to N.��.a//. But if �.N.a//
is isotopic to N.��.a//, we can choose an OB cobordism �.N.a// †

�!N.��.a// to be
the product †' �.N.a//� Œ0; 1� with no hyperbolic singularities, hence c.Œ��; a/D 0.
We call such an OB cobordism trivial.

3.2 A self-linking number formula for braids

Let S D Sg;r be an oriented genus g surface with r boundary components 1; : : : ; r .
The orientation of i is induced from that of S . Let b be an n–stranded braid in
S � Œ0; 1� with b\S1D b\S0D fx1; : : : ;xng � S . By braid isotopy we may assume
that points x1; : : : ;xn are lined up in this order on an arc parallel to and very close
to 0 . The arc fxig � Œ0; 1� is called the i th braid strand in S � Œ0; 1�. We define
oriented loops, �i � S (i D 1; : : : ; 2gC r � 1) with the base point xn as in Figure 19.

�1
0

1r�1
�1�r�1

�rC1 �0
1

�0
r�1

y1

yn�n

x1

xn

wall

�r

�2gCr�1

�2gCr�2

Figure 19: Surface S

Geometrically, �i represents the nth braid strand winding along �i as t 2 Œ0; 1� increases.
Let �i denote the positive half twist of the i th and the .i C 1/st braid strands. As a
consequence of the Birman exact sequence [2], the braid b is represented by a braid
word b

"1

1
b
"2

2
� � � b

"l

l
(read from the left) where bi 2 f�1; : : : ; �2gCr�1; �1; : : : ; �n�1g

and "i 2 Z n f0g.

Fix a diffeomorphism � 2Aut.S; @S/. Since xi is near 1 � @S , we have �.xi/D xi

and identify fxig � f1g and fxig � f0g under � , which yields a closed braid yb in
M.S;�/ . We assume that yb is null-homologous in the rest of the section.

Claim 3.8 Put Œb�D
Pl

iD1"i Œbi �2H1.S IZ/, where we set Œ�k �D0 for kD1; : : : ; n�1.
Then there exists a (not necessarily unique) homology class a 2H1.S; @S IZ/ such
that Œb�D a���.a/ in H1.S IZ/.
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Proof The homology group of the manifold M.S;�/ is computed by Etnyre and
Ozbagci [21, page 3136]:

H1.M.S;�/IZ/D
˝
Œ�1�; : : : ; Œ�2gCr�1�

ˇ̌
Œ�0i ����Œ�

0
i �D 0; i D 1; : : : ; 2gC r � 1

˛
;

where

�0i D

�
a properly embedded arc from 0 to i and dual to �i for i D 1; : : : ; r � 1;

�i for i D r; : : : ; 2gC r � 1:

Though �0i is an arc for i D 1; : : : ; r�1, since �D id on @S , we can view �0i[�.��
0
i/

as an oriented (immersed) loop in Int.S/. Then we consider Œ�0i ����Œ�
0
i � 2H1.S IZ/

representing the loop �0i [�.��
0
i/.

Since Œyb�D 0 in H1.M IZ/, there exist si 2 Z for i D 1; : : : ; 2gC r � 1, such that

Œb�D

2gCr�1X
iD1

si.Œ�
0
i ����Œ�

0
i �/ in H1.S IZ/:

Hence if we put aD
P2gCr�1

iD1
si Œ�
0
i �, under the identification

Œ�0i ����Œ�
0
i �D Œ�

0
i [�.��

0
i/�;

we have Œb�D a���.a/.

Definition 3.9 For homology classes Œa1� 2H1.S; @S IZ/ and Œa2� 2H1.S IZ/, we
denote the algebraic intersection number by Œa1� � Œa2� 2 Z. It counts the transverse in-
tersections of representatives a1 and a2 algebraically in the way described in Figure 20.
For example, we have Œ�0

1
� � Œ�1�D 1 and Œ�r � � Œ�rC1�D 1.

a2 a1 a1 a2

C �

Figure 20: Algebraic intersection number Œa1� � Œa2�

Here is our main theorem of this section:
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Theorem 3.10 (Self-linking number formula) Let Œb�2H1.S IZ/ and yb be as above.
Let a 2 H1.S; @S IZ/ be a homology class such that Œb� D a� ��.a/ in H1.S IZ/
(see Claim 3.8). Recall the function c.Œ��; a/ in Definition 3.7. For the choice of
a 2H1.S; @S IZ/, there exists a Seifert surface †D†a of yb such that the self-linking
number satisfies the formula

(3-3) sl.yb; Œ†�/D�nCbexp.b/���.a/ � Œb�C c.Œ��; a/;

where

bexp.b/D
lX

iD1

"i �

X
1�j<i�l

"i"j Œbj � � Œbi �:

Remark 3.11 The formula (3-3) is a generalization of Bennequin’s self-linking for-
mula of braids in the open book .D2; id/ [1], and it also covers the works in [32;
33]. When .S; �/ D .D2; id/ the function bexp is equal to the usual exponent sum,
expW Bn! Z, for the Artin braid group Bn and ��.a/ � Œb�D c.Œ��; a/D 0. Thus the
formula (3-3) contains Bennequin’s self linking formula

sl.yb/D�nC exp.b/:

With more elaborate investigation of the function c we will deduce the self-linking
number formulae of [32; 33] in Corollary 3.17 below.

Proof For each i D 1; : : : ; n, take a point yi on the binding component 0 near xi

so that y1; : : : ;yn lined up in this order with respect to the orientation of 0 ; see
Figure 19. Choose a properly embedded arc �i from xi to yi that is contained in a
small collar neighborhood of 0 so that �.�i/D �i . We require that �1; : : : ; �n are
mutually disjoint.

Construction of surface †� � S � Œ0; 1
2
� Fix a 2H1.S; @S IZ/ with a���.a/D

Œb�. Let N.a/ denote the normal form of a; see Definition 3.3. Let A1;A1=2;A0 be
oriented multi-curves in S defined by

A1 D �1[ � � � [ �n[N.a/;

A1=2 D �1[ � � � [ �n[N.��a/;

A0 D �.A1/D �1[ � � � [ �n[�.N.a//:

Unlike A1 or A1=2 , the multi-curve A0 possibly intersects the walls. We have

ŒA1�D a; ŒA1=2�D ŒA0�D ��a:

Let �.N.a// †ı�! N.��a/ be an OB cobordism whose existence is guaranteed by
Proposition 3.5. We compress †ı vertically to fit in S � Œ0; 1

2
� and take disjoint union
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Open book foliation 1611

with the vertical rectangle strips .�1[ � � � [ �n/� Œ0;
1
2
�. We call the resulting surface

†� . By the construction

†�\S0 D�A0; †�\S1=2 DA1=2;

where S0DS�f0g and S1=2DS�f1
2
g are pages of the open book, and by Definition 3.7

the algebraic count of the hyperbolic points of Fob.†�/ is c.Œ��; a/.

Construction of surface †�� � S � Œ1
2
; 1� The next goal is to construct an oriented

surface †�� embedded in S � Œ1
2
; 1� with †��\S1 DA1 and †��\S1=2 D�A1=2 .

Recall that b is represented by the braid word b
"1

1
� � � b

"l

l
. Let Ii D Œ

lCi�1
2l

; lCi
2l
�. Then

Œ1
2
; 1� D I1 [ � � � [ Il . We will build an oriented surface †i embedded in S � Ii

inductively from i D 1 to l such that:

(1) †1\S1=2 D�A1=2 and †l \S1 DA1

(2) †i \S.lCi/=2l D�.†iC1\S.lCi/=2l/; we denote this multi-curve on the page
S.lCi/=2l by A.lCi/=2l

(3) A.lCi/=2l does not intersect the walls

(4) A.lCi/=2l contains �1[ � � � [ �n and any subset of A.lCi/=2l n .�1[ � � � [ �n/

has non-trivial homology in H1.S; @S/

(5) @†i \ .S � Int.Ii// D b
"i

i , so ŒA.lCi/=2l � D ŒA1=2�C "1Œb1�C � � � C "i Œbi � in
H1.S; @S/

Eventually we will define †�� D †1 [ � � � [†l . Suppose that we have constructed
†1; : : : ; †i�1 satisfying the above conditions.

Case 1 If the braid word bi D �k , then as t 2 Ii increases, apply the deformation
of the graph A.lCi�1/=2l as in the passage of Figure 21 (where ˇ and � denote the
intersection of the braid b and the page St ) for j"i j times in a small neighborhood
of �k and �kC1 . We call the surface that the graph traces out †i . The surface †i

satisfies the above conditions (1)–(5) and the open book foliation Fob.†i/ has j"i j

hyperbolic singularities of sgn."i/.

Case 2-1 Suppose that bi D �k and "i D 1. Let H be the chamber that �k belongs to.

Assume that r � k � 2gC r � 1 so that H is a torus with connected boundary. For
simplicity, put uD A.lCi�1/=2l . By conditions (3), (4) above, we may assume that
u\H is some .p; q/–torus link. As t 2 Ii increases, move the point xn along �k .
See Figure 22.

To come back to the original position xn has to traverse u, which yields p D Œu� � Œ�k �

many negative (=� sgn."i/) hyperbolic points. Moreover, the last step (Sketch (4))
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+ + + +

+ +

+ +

+ +

+ ++ +

+ +

-

+

yk

�k

ykC1

�kC1

yk ykC1

�k �kC1

Figure 21: (Case 1) Deformation of graph �k [�kC1 corresponding to �k

(top) and ��1
k

(bottom)

xn

H
p

p

q

qC 1

(1) (2) (3)

(4) (5)

Figure 22: (Case 2-1) Construction of surface †i when b
"i
i D �k

adds one more hyperbolic singularity of positive (D sgn."i/) sign. This defines the
surface †i in S � Ii . In summary, the value hC� h� increases by

sgn."i/ � 1� Œu� � Œ�k �

and the class Œu� 2H1.S; @S/ is replaced by Œu�C Œ�k � (compare Sketches (1) and (4)).
No circle bounding a disc in S has been created.

When k D 1; : : : ; r � 1 (ie the chamber H is an annulus), a parallel argument holds
and the value hC� h� increases by sgn."i/ � 1� Œu� � Œ�k �.
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Case 2-2 If bi D �k and "i ¤ 1; 0, repeat the above construction j"i j times. Since
.Œu�C Œ�k �/ � Œ�k �D Œu� � Œ�k �, the total change in hC� h� is

(3-4) "i � "i Œu� � Œ�k �
.5/
D "i � "i.ŒA1=2�C "1Œb1�C � � �C "i�1Œbi�1�/ � Œbi �

D "i �

� i�1X
jD1

"i"j Œbj � � Œbi �

�
� "i ŒA1=2� � Œbi �:

After constructing †1; : : : ; †l , we glue them and obtain a desired surface †�� in
S � Œ1=2; 1�, which increases the algebraic count of the hyperbolic singularities by

hC� h� D

lX
iD1

"i �

� lX
iD1

i�1X
jD1

"i"j Œbj � � Œbi �

�
� ŒA1=2� � Œb�:

Finally, we glue †� and †�� by identifying †� \ S1=2 D �.†�� \ S1=2/ and
�.†�\S0/D �.†��\S1/, which yields a Seifert surface † for yb in the open book
.S; �/. By the construction, it is clear that y1; : : : ;yn 2 0 are positive elliptic points,
and the end points of arc �0i are elliptic points with distinct signs. By Proposition 3.2,
we obtain our self-linking formula (3-3).

3.3 Properties of the function c

In this section we study properties of the function c in the self linking number formula
(3-3). We will use the properties repeatedly in the later sections to deduce algebraic
descriptions of the function c , which is originally defined geometrically.

Proposition 3.12 Take Œ��; Œ � 2 MCG.S/ to be the mapping classes of �; 2
Aut.S; @S/, and let a; a0 2H1.S; @S/. We have:

(1) c.Œ��; aC a0/D c.Œ��; a/C c.Œ��; a0/

(2) c.Œ ��; a/D c.Œ��; a/C c.Œ �; ��.a//

(3) Let C be a simple closed curve which does not intersect the walls, let TC denote
the right-handed Dehn twist along C , then c.ŒTC �; a/D 0 for any a.

(4) Let C be a simple closed curve in S such that a � ŒC �D 0, then c.ŒTC �; a/D 0.

In particular, (1) and (2) imply that the function c induces a crossed homomorphism

CWMCG.S/! Hom.H1.S; @S/;Z/'H 1.S IZ/; � 7! c.Œ��;�/:
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Proof First we prove (1). Let �N.a/ †
�!N.��a/ and �N.a0/ †0

�!N.��a
0/ be OB

cobordisms. We place the surfaces † and †0 so that
� �N.a/ and �N.a0/ in S0 have the minimal geometric intersection (ie, so do

N.a/ and N.a0/),
� N.��a/ and N.��a

0/ in S1 have the minimal geometric intersection.

Let H � S be one of the once-punctured torus chambers. Then H \ N.a/ and
H \N.a0/ are oriented torus links. Suppose that H \N.a/ is a .p; q/–torus link and
H\N.a0/ is a .p0; q0/–torus link. Then H\N.aCa0/ is a .pCp0; qCq0/–torus link.
By isotopy, we arrange the curves H \N.a/ and H \N.a0/ realizing the minimum
geometric intersection, hence in particular, they transversely intersect. We resolve
all the intersection points as shown in Figure 23, and call the resulting multi-curve
AH ;a;a0 .

Figure 23: Smoothing an intersection

Note that ŒAH ;a;a0 � D ŒH \N.aC a0/� in H1.S; @S/. We compare curves AH ;a;a0

and H \N.aC a0/:
(i) Suppose that

.sgn.p/; sgn.q//D .�sgn.p0/;�sgn.q0//:

If nDminfjpj; jqj; jp0j; jq0jg, then AH ;a;a0 is the disjoint union of H\N.aCa0/,
n circles bounding concentric discs oriented counterclockwise, and n circles
bounding concentric discs oriented clockwise. Removing the circles as shown in
Figure 17 yields n negative and n positive hyperbolic points. Hence we obtain
an OB cobordism

H \N.aC a0/
†H;a;a0

�����!AH ;a;a0

with d.†H ;a;a0/D n� nD 0.

(ii) Suppose that .sgn.p/; sgn.q//¤ .�sgn.p0/;�sgn.q0//. In this case, we have
AH ;a;a0 DH \N.aC a0/. Hence we obtain a trivial OB cobordism

H \N.aC a0/
†H;a;a0

�����!AH ;a;a0

with d.†H ;a;a0/D 0.
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Next let H � S be the k th annulus chamber. Recall the properly embedded arc
�0

k
�H joining the boundary circles 0 and k (cf Figure 19). Due to the definition

of normal forms we may suppose that H \N.a/D n�0
k

and H \N.a0/D n0�0
k

. Then
H \N.aC a0/D .nC n0/�0

k
.

(iii) If sgn.n/Dsgn.n0/, let AH ;a;a0 WD .H\N.a//t.H\N.a0//. Then AH ;a;a0D

H \N.aC a0/. Again we obtain a trivial OB cobordism

H \N.aC a0/
†H;a;a0

�����!AH ;a;a0

with d.†H ;a;a0/D 0.
(iv) If sgn.n/¤ sgn.n0/, join N.a/ and N.a0/ by describing arcs from the nearest

pairs of �0
k

and ��0
k

to introduce mDminfjnj; jn0jg hyperbolic singularities of
the same sign, equal to ". See Figure 24. Call the resulting set of curves AH ;a;a0 .
Then AH ;a;a0 is the disjoint union of H \ N.aC a0/ and null-homologous
nested arcs. This yields an OB cobordism

H \N.aC a0/
†H;a;a0

�����!AH ;a;a0

with d.†H ;a;a0/D "m.

H

Figure 24: Case (iv): (Left) Curves N.a/tN.a0/ . (Right) AH ;a;a0 .

Let

A0 D �

� G
H�S

AH ;a;a0

�
; †0 D .� � id/

� G
H�S

†H ;a;a0

�
;

where the disjoint union is taken for all the gC r � 1 chambers H of S . Now we
obtain an OB cobordism

�N.aC a0/
†0
�!A0 with d.†0/D

X
H

d.†H ;a;a0/:

We repeat the arguments parallel to (i)–(iv) by replacing a by ��a and a0 by ��a0 .
Namely, for each chamber H we construct a multi-curve AH ;��a;��a0 from

H \ .N.��a/[N.��a
0//
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and obtain an OB cobordism

AH ;��a;��a0
†H;��a;��a0

���������!H \N.��.aC a0//:

Let A1 D
F

H�S AH ;��a;��a0 , †1 D
F

H�S †H ;��a;��a0 . Then we obtain an OB
cobordism

A1
†1
�!N.��.aC a0// with d.†1/D

X
H

d.†H ;��a;��a0/:

Claim 3.13 We have d.†1/D�d.†0/.

Proof For cases (i), (ii), (iii), we have d.†H ;��a;��a0/D 0. For case (iv), ie, H is the
k th annulus chamber, since �Did near @S , we have H \N.��a/DH \N.a/D n�0

k

and H \N.��a
0/DH \N.a0/D n0�0

k
. Therefore, the OB cobordism †H ;��a;��a0 is

given by the reverse direction as depicted in Figure 24. Recalling that d.†H ;a;a0/D "m,
we have d.†H ;��a;��a0/D�"m. This concludes the claim.

Next we construct an OB cobordism A0
†C
�! A1 . Recall that the OB cobordism

surfaces † and †0 are obtained by a sequence of configuration changes (cf Figure 16).
In general, a describing arc, ı , of a hyperbolic singularity on † may intersect †0 (or
vice versa) as shown in the top left sketch of Figure 25, where the black arc (resp. gray
arcs) are leaves of † (resp. †0 ), the dashed arc is ı , and the dashed arrows indicate
positive normal directions of the surfaces.

† †0

ı

Configuration
change

Modification of
describing arc ı

Configuration
change

Resolution of
crossings

Figure 25: Modification of configuration changes

By isotopy, we make ı;†;†0 have no triple intersection points and ı and †0 attain
the minimal geometric intersection. We project ı to the diagram of A0 then replace
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ı with several describing arcs for A0 as in the vertical left passage in Figure 25
so that the diagram commutes. If the sign of original ı is ", then the algebraic
count of the replacing describing arcs is also ". This modification of configuration
changes yields an OB cobordism A0

†C
�! A1 . By the construction of †C , we have

d.†C/D d.†/C d.†0/.

Finally we obtain a sequence of OB cobordisms

�N.aC a0/
†0
�!A0

†C
�!A1

†1
�!N.��.aC a0//:

By Claim 3.13,

c.Œ��; aC a0/D d.†0/C d.†C/C d.†1/D d.†/C d.†0/D c.Œ��; a/C c.Œ��; a0/:

We proceed to prove (2). Let �N.a/ †
�! N.��.a// be an OB cobordism. Extend

 2MCG.S; @S/ to a diffeomorphism z D  � idW S � Œ0; 1�! S � Œ0; 1� and we
obtain an OB cobordism

 �.N.a//
z †
��!  .N.��.a///:

Now let us take an OB cobordism  .N.��.a///
‚
�!N. ���.a//. Gluing z † and ‚,

we obtain an OB cobordism

 �.N.a//
z †
��!

‚
�!N. ���.a//:

Since z preserves the signs and the number of hyperbolic singularities, d.†/Dd. z †/.
This yields the desired equation.

To see (3), we observe that if a simple closed curve C does not intersect the walls, then
TC .N.a// is in the normal form for any a 2 H1.S; @S/, ie, TC .N.a// D N.TC a/.
Consider the product † D TC .N.a// � I , which yields the trivial OB cobordism
TC .N.a//

†
�!N.TC a/. Since the foliation is trivial, c.ŒTC �; a/D 0.

Finally, we prove (4). We construct an OB cobordism TC N.a/ †
�!N.a/DN.TC a/

with d.TC N.a/;N.a// D 0 as follows. Since ŒC � � ŒTC N.a/� D ŒC � � a D 0, by
applying the configuration changes, described in Figure 16, to a portion of the multi-
curve TC N.a/ that lives in a small collar neighborhood of C , we can modify TC N.a/

so that it is disjoint from C . For example, the left sketch in Figure 26 depicts the
case when the geometric intersection number i.TC N.a/;C / D 2, where the thin
dashed arcs indicate describing arcs for hyperbolic singularities. Suppose that the sign
of the hyperbolic singularity corresponding to the configuration change is ". Next,
we add a describing arc of sign �" to the deformed TC N.a/ (cf the middle sketch)
so that the corresponding configuration change yields the multi-curve N.a/ (cf the
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right sketch). This defines an OB cobordism TC N.a/ †
�! N.a/, which satisfies

d.TC N.a/;N.a//D 0.

When the geometric intersection number is greater than 2, a similar construction applies.
In particular, the sum of the total algebraic count of the signs in the first operation and
the second operation is 0.

C

�

��

Figure 26: Untwisting multi-curve TC N.a/ (left) to obtain N.a/ (right)

3.4 The function c : Planar surface case

In this section, we study the function c for the case of S D S0;r , a planar surface
with r boundary components. We adopt the same notation as in Section 3.2. The next
proposition essentially has been proved in [32] by direct analysis of the OB cobordism
(though this terminology is not explicitly used). Based on the fact that c is a crossed
homomorphism, we will give a more detailed expression of c .

Recall the arcs �0j and loops �j (j D 1; : : : ; r � 1) specified in Figure 19. Under
Poincaré duality, H1.S; @S IZ/'H 1.S IZ/, Œ�0j � 7! PDŒ�0j �, we may view fŒ�0j �g

r�1
jD1 as

a basis of H 1.S/. Let h � ; � i denote the natural pairing of cohomology and homology.
Then we have hŒ�0i �; Œ�j �i D Œ�

0
i � � Œ�j �D ıi;j , the Kronecker delta.

Proposition 3.14 Let S D S0;r be a planar surface with r boundary components. For
a 2H1.S; @S IZ/, the function c is formulated as

(3-5) c.Œ��; a/D

r�1X
iD1

hŒ�0i �; ��a� ai �

r�1X
jD1

ha; Œ�j �ihŒ�
0
j �; ��Œ�

0
j �� Œ�

0
j �i

where ��a� a and ��Œ�0i �� Œ�
0
i � are regarded as elements of H1.S IZ/. Moreover,

let fti;j g1�i;j�r�1 be the matrix with Œ�0i � � ��Œ�
0
i � D

Pr�1
jD1 ti;j Œ�j � and suppose

that aD
Pr�1

jD1 xj Œ�
0
j �. Then (3-5) can be restated as follows:

(3-6) c.Œ��; a/D�

r�1X
jD1

xj

X
1�i�r�1

i¤j

tj ;i
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Remark 3.15 For the planar case, Proposition 3.14 shows that the crossed homomor-
phism C or c.Œ��;�/ is completely determined by the map �� � idW H1.S; @S/!

H1.S/.

Proof For j D 1; : : : ; r � 1, we have

(3-7) c.Œ��; Œ�0j �/D
X

1�i�r�1
i¤j

˝
Œ�0i �; ��Œ�

0
j �� Œ�

0
j �
˛

for the following reasons. We recall that c.Œ��; Œ�0j �/ algebraically counts the hyperbolic
singularities produced by the configuration changes (cf Figure 16) of the multi-curve
�.�0j / where it crosses the walls. We write � as a product of special type of Dehn twists
that are used in [32] and denoted by Ak;l ;Am there. We observe that a ˙ Dehn twist
that involves the i th and j th binding components (i¤ j ) contributes ˙1 hyperbolic sin-
gularity for the OB cobordism �.�0j /

†
�!N.��Œ�

0
j �/. But a Dehn twist around a single

binding component k , where .k D 1; : : : ; r � 1/, does not contribute any hyperbolic
singularity to the OB cobordism. Since the quantity hŒ�0i �; ��Œ�

0
j �� Œ�

0
j �i algebraically

counts the number of circles in N.��Œ�
0
j �/ around the binding i , Equation (3-7)

follows.

Recall that fŒ�i � 2H1.S/g
r�1
iD1 is the dual basis of fŒ�0i � 2H1.S; @S/g

r�1
iD1 . We may ex-

press a2H1.S; @S/'H 1.S/ as aD
P

j ha; Œ�j �iŒ�
0
j �. By the crossed homomorphism

property of the function c (Proposition 3.12), we can deduce (3-5) as follows:

c.Œ��; a/D
X

j

ha; Œ�j �ic.Œ��; Œ�
0
j �/

(3-7)
D

X
j

X
i¤j

hŒ�0i �; ha; Œ�j �i.��Œ�
0
j �� Œ�

0
j �/i

D

X
i

hŒ�0i �; ��a� ai �
X

j

ha; Œ�j �ihŒ�
0
j �; ��Œ�

0
j �� Œ�

0
j �i

Now plugging the relation Œ�0j ����Œ�
0
j �D

Pr�1
iD1 tj ;i Œ�i � to (3-7) we obtain

(3-8) c.Œ��; Œ�0j �/D�
X

1�i�r�1
i¤j

tj ;i :

Linearly extending (3-8) to an arbitrary element aD
P

j xj Œ�
0
j �, we obtain (3-6).

Remark 3.16 Since ��Œ�0j �D Œ�
0
j �2H1.S; @S/, we have c.Œ �; ��Œ�

0
j �/D c.Œ �; Œ�0j �/.

Therefore, when S is planar the property (2) in Proposition 3.12 can be restated as

c.Œ ��; Œ�0j �/D c.Œ��; Œ�0j �/C c.Œ �; Œ�0j �/:
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By using Theorem 3.10 and Proposition 3.14, now we can deduce the self-linking
number formulae in [33; 32]. Let a� (resp. a�j ) be the exponent sum of the braid gen-
erators f�ig

n�1
iD1 (resp. �j ) in the braid word bD b

"1

1
b
"2

2
� � � b

"l

l
. Let aD

Pr�1
iD1 si Œ�

0
i �2

H1.S; @S/, the homology class introduced in the proof of Claim 3.8 such that Œb�D
a���a.

Corollary 3.17 (The self-linking number formula for planar open books [32]) With
the notation above, the self-linking number is given by the formula

sl.yb; Œ†�/D�nC a� C

rX
jD2

a�j .1� sj /�

r�1X
jD1

sj

X
1�i�r�1

i¤j

tj ;i :

Proof Since Œbi � � Œbj �D 0 for all bi ; bj 2 f�1; : : : ; �r�1; �1; : : : ; �n�1g, we have

bexp.b/D
lX

iD1

"i D a� C

r�1X
jD1

a�j ;

and since Œ�0j � � Œ�k �D ıj ;k , we have

��.a/ � Œb�D .a� Œb�/ � Œb�D

�r�1X
jD1

sj Œ�
0
j �

�
�

� lX
iD1

"i Œbi �

�
D

r�1X
jD1

a�j sj :

Hence by Theorem 3.10 and Proposition 3.14, we have

sl.yb; †/D�nCbexp.b/���.a/ � Œb�C c.Œ��; a/

D�nC a� C

r�1X
jD1

a�j .1� sj /�

r�1X
jD1

sj

X
1�i�r�1

i¤j

tj ;i :

3.5 The function c : surface with connected boundary

Let S D Sg;1 be a genus g surface with one boundary component. When gD 1, since
there is no wall, Proposition 3.12(3) implies that c.Œ��; a/D 0 for all Œ��2MCG.S1;1/

and a2H1.S; @S/. Henceforth in this section we restrict our attention to the case g�2.

We observe in the following example that, unlike the planar case discussed in Remark
3.15, the function c.Œ��;�/ is no longer completely determined by the action of ��
on homologies. In fact we see in Proposition 3.20 that c.Œ��;�/ carries more delicate
information about Œ�� 2MCG.S/.
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C

C 0

�

wall

Figure 27: Curves C , C 0 and � in Example 3.18

Example 3.18 Let us take simple closed curves C , C 0 and � as in Figure 27.

Since C and C 0 cobound a subsurface, TC and TC 0 induce the same action on the
homology groups H1.S IZ/ and H1.S; @S IZ/. As shown in Figure 28, we modify the
curve TC .�/ into the normal form N.TC .�// by introducing three positive hyperbolic
singularities and one negative hyperbolic singularity. Hence c.ŒTC �; Œ��/D 3� 1D 2.
On the other hand, C 0 does not intersect the walls, so by Proposition 3.12(3), we get
c.ŒTC 0 �; Œ��/D 0.

TC .�/
C

C

C

�

Figure 28: Configuration change of TC .�/ to the normal form N.TC .�//

In this section we use the following notation: Recall the circles �j ; �
0
j � S defined

in Section 3.2. To distinguish elements of H1.S IZ/ and H1.S; @S IZ/ŠH 1.S IZ/,
we use the symbol Œ�j � (j D 1; : : : ; 2g ) to express the homology class of H1.S/

represented by the circle �j , and the symbol Œ�0j � for the relative homology class of
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H1.S; @S/ŠH 1.S/ represented by the circle �0j . Note that since S has connected
boundary, �j D �

0
j as a set for all j , and as a group H1.S IZ/ŠH1.S; @S IZ/ŠZ2g .

Let h � ; � iW H1.S; @S IZ/�H1.S IZ/! Z denote the natural pairing of cohomology
and homology, or the intersection pairing, ie, hPD Œ�0j �; Œ�k �i D Œ�

0
j � � Œ�k �. For simplicity,

we denote PDŒ�0j � by Œ�0j � in the following. We have

hŒ�0j �; Œ�k �i D

8<:
1 if .j ; k/D .2i � 1; 2i/;

�1 if .j ; k/D .2i; 2i � 1/;

0 otherwise.

Let �1 WD �1.S/, the fundamental group, �2 WD Œ�1; �1�, the commutator subgroup,
and �kC1 WD Œ�k ; �1�, namely, f�kgk�1 is the lower central series of �1 . Then the
natural action of MCG.Sg;1/ on �1 induces the k th Johnson–Morita representation
(Morita [38, page 199]):

%k WMCG.Sg;1/! Aut.�1=�k/; k � 2

Let M.k/ WD ker �k and H WDH1.S IZ/. Morita generalizes the Johnson homomor-
phism �2WM.2/! Hom.H; �2=�3/ to the k th Johnson–Morita homomorphism [38,
page 201]:

�k WM.k/! Hom.H; �k=�kC1/

with ker �k DM.k C 1/. Let K be the subgroup of MCG.Sg;1/ generated by the
Dehn twists about separating simple closed curves in S . Johnson proves in [31] that
for g � 3, we can identify ker �2 D K . Recall that by Proposition 3.12(2), (4) our
crossed homomorphism CWMCG.S/!H 1.S IZ/ also vanishes on K . Hence it is
natural to expect that the map C is related to �2 .

Associated to the representation %3WMCG.Sg;1/! Aut.�1=�3/, Morita [38] finds
the embedding MCG.Sg;1/=M.3/� 1

2

V3
H ÌSp.H / as a finite index subgroup and

the crossed homomorphism zkWMCG.Sg;1/!
1
2

V3
H , which is the unique (modulo

coboundaries for H 1.MCG.Sg;1/;
V3

H /) extension of �2 . For our purpose we are
interested in the composition

k D C ı zkWMCG.Sg;1/!H 1.S IZ/;

where C W 1
2

V3
H !H is the contraction defined by

C.x ^y ^ z/D 2Œ.x �y/zC .y � z/xC .z �x/y�:

The associated map, which we denote by the same letter, kWMCG.Sg;1/�H1.S/!Z,
given by k.�; a/D k.�/.a/, is a crossed homomorphism. Since k is a generator of
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the cohomology group H 1.MCG.Sg;1/IH /ŠZ [38, Rem 4.9], it is natural to expect
that k appears in the description of c.�; a/.

Below we fix conventions and define the crossed homomorphism k following Morita’s
[36, Section 6] that is based on combinatorial group theory.

Definition 3.19 Let F2 be the free group of rank two with generators ˛ and ˇ .
Any element of F2 is uniquely written in the form ˛�1ˇı1 � � �˛�nˇın , where �i ; ıi 2

f�1; 0; 1g. With this expression, we define a function d W F2! Z by

d.˛�1ˇı1 � � �˛�nˇın/D

nX
iD1

ıi

iX
jD1

�j :

Let ˛i ; ˇi (i D 1; : : : ;g ) be generating curves of �1.S/ as in Figure 29.

˛1 ˛2 ˛g

1̌

ˇ2 ˇg

Figure 29

Let pi W �1.S/! F2 be a homomorphism defined by

pi. /D

8<:
˛ if  D ˛i ;

ˇ if  D ˇi ;

1 otherwise:

Finally we define a map kWMCG.Sg;1/�H1.S; @S/! Z by

k.Œ��; a/D

gX
iD1

d.pi.��a//� d.pi.a//;

where a 2 �1.S/ represents a 2H1.S; @S/. Morita proves in [36, Lemma 6.3] that
k.Œ��; a/ is a crossed homomorphism.

We give an explicit formula of the function c by using k . It provides a new geometric
meaning of the classically known crossed homomorphism k : the signed count of the
saddle points in an OB cobordism.
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Proposition 3.20 If S D Sg;1 has connected boundary and g � 2, then the function
c is expressed as

(3-9) c.Œ��; a/D�2k.Œ��; a/C

gX
iD1

hŒ�02i�1�� Œ�
0
2i �; ��a� ai

�

gX
iD1

ha; Œ�2i�1�ihŒ�
0
2i �; ��Œ�

0
2i �� Œ�

0
2i �i

�

gX
iD1

ha; Œ�2i �ihŒ�
0
2i�1�; ��Œ�

0
2i�1�� Œ�

0
2i�1�i;

where ��a� a and ��Œ�0j �� Œ�
0
j � are regarded as elements of H1.S IZ/.

Proof Recall that the left hand side of (3-9) satisfies the crossed homomorphism
properties (1), (2) in Proposition 3.12. Hence it is sufficient to verify (3-9) for a
generating set of the mapping class group MCG.Sg;1/.

We use the Lickorish generators of MCG.Sg;1/. Let Ai ;Bi (i D 1; : : : ;g ) and Cj

(j D 1; : : : ;g� 1) be simple closed curves as shown in Figure 30.

A1

B1

C1

A2

B2

C2

Ag

Bg

Cg�1

Figure 30: Generating curves for MCG.Sg;1/

Lickorish proved that the Dehn twists along these 3g�1 curves generate MCG.Sg;1/.
With the orientations indicated in Figure 30, we have in H1.S IZ/ that

ŒAi �D Œ�2i�1�; ŒBi �D Œ�2i � and ŒCi �D�Œ�2i�1�C Œ�2iC1�:

If D 2 fAi ;Bi ;Cig is disjoint from the loop �j , then c.ŒTD �; Œ�
0
j �/D k.ŒTD �; Œ�

0
j �/D 0

and TD�Œ�
0
j �� Œ�

0
j �D 0; thus the formula (3-9) holds. So we only need to consider the

case where D has non-trivial intersection with �j . There are four cases to study:

Case I .�; a/D .TAi
; Œ�0

2i
�/ Since Ai is disjoint from the walls, Proposition 3.12(3)

implies that c.ŒTAi
�; Œ�0

2i
�/D 0. On the other hand, TAi

.�2i/D �2i�1�2i D ˇg�i˛
�1
g�i
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in �1.S/, hence k.ŒTAi
�; Œ�0

2i
�/ D d.ˇ˛�1/ D 0. Finally, observe that TAi �

Œ�0
2i
��

Œ�0
2i
�D Œ�2i�1�, hence

.?/ WD

gX
kD1

hŒ�02k�1�� Œ�
0
2k �; ��a� ai D h�Œ�02i �; Œ�2i�1�i D 1;

.??/ WD

gX
kD1

ha; Œ�2k�1�ihŒ�
0
2k �; ��Œ�

0
2k �� Œ�

0
2k �i

C

gX
kD1

ha; Œ�2k �ihŒ�
0
2k�1�; ��Œ�

0
2k�1�� Œ�

0
2k�1�i

D hŒ�02i �; Œ�2i�1�i
2
D .�1/2 D 1:

Thus the equality (3-9) holds.

Case II .�; a/D .TBi
; Œ�0

2i�1
�/ As in Case I, Bi is disjoint from the walls, so

c.ŒTBi
�; Œ�0

2i�1
�/D 0. On the other hand, TBi

.�2i�1/D �2i�1�
�1
2i
Dˇg�i˛g�i , hence

k.ŒTBi
�; Œ�0

2i�1
�/D d.ˇ˛/D 0. Finally, observe that TBi �

Œ�0
2i�1

�� Œ�0
2i�1

�D�Œ�2i �,
hence

.?/D hŒ�02i�1�;�Œ�2i �i D �1;

.??/D hŒ�02i�1�; Œ�2i �ihŒ�
0
2i�1�;�Œ�2i �i D �1:

Thus the equality (3-9) holds.

Case III .�; a/D .TCi
; Œ�0

2i
�/ Observe that c.ŒTCi

�; Œ�0
2i
�/D�1. Since

TCi
.�2i/D �2i�

�1
2iC1�

�1
2i �2i�1�2i D ˛

�1
g�iˇ

�1
g�i�1˛g�iˇg�i˛

�1
g�i ;

k.ŒTCi
�; Œ�0

2i
�/Dd.ˇ˛�1/Cd.ˇ�1/D0. Finally, TCi �

Œ�0
2i
��Œ�0

2i
�D Œ�2i�1��Œ�2iC1�,

hence

.?/D 0;

.??/D hŒ�02i �; Œ�2i�1�ihŒ�
0
2i �;�Œ�2iC1�C Œ�2i�1�i D .�1/2 D 1:

Thus the equality (3-9) holds.

Case IV .�; a/D .TCi
; Œ�0

2iC2
�/ In this case, c.ŒTCi

�; Œ�0
2iC2

�/D 1 and

TCi
.�02iC2/D �

�1
2i �
�1
2i�1�2i�2iC1�2iC2 D ˛g�iˇ

�1
g�i˛

�1
g�iˇg�i�1˛

�1
g�i�1:

Hence k.ŒTCi
�; Œ�0

2iC2
�/D d.˛ˇ�1˛�1/C d.ˇ˛�1/D�1. Finally,

TCi �
Œ�02iC2�� Œ�

0
2iC2�D�Œ�2i�1�C Œ�2iC1�;

Geometry & Topology, Volume 18 (2014)



1626 Tetsuya Ito and Keiko Kawamuro

hence

.?/D 0;

.??/D hŒ�02iC2�; Œ�2iC1�ihŒ�
0
2iC2�;�Œ�2i�1�C Œ�2iC1�i D .�1/2 D 1:

Thus the equality (3-9) holds. These computations complete the proof.

The map k appears in various contexts in the theory of mapping class groups (see
Section 2 of [37] for concise overview). In particular, k can be interpreted in terms
of winding numbers of curves on surfaces. Fixing a non-vanishing vector field X on
S , one defines the winding number of an oriented simple closed curve  on S as the
rotation number of the tangent vector to  with respect to X as  is traversed once
positively. Then k.�;  / is equal to the difference of winding numbers of �. / and 
as stated in Definition 1.3.1 of Trapp’s paper [43].

Recall that in (Step 1) near Figure 17 we have observed that a c–circle bounding a disc
contributes ˙1 to the function c.Œ��; a/. Such a disc also contributes ˙1 to the above
winding number.

In addition, the self-linking number sl.; Œ†�/ is the winding number of a nowhere
vanishing section X of the vector bundle �j†!† along  relative to †, where † is
a Seifert surface of  .

Interestingly, the keyword of the above facts is “winding number”. The authors thank
the anonymous referee for pointing this out.

Theorem 3.10 and Proposition 3.20 give a new relationship between the contact struc-
tures of 3–manifolds and the Johnson–Morita homomorphisms. This develops into
the following question: Our result roughly says that if we choose a homology class
a 2 �1=�2 DH1.S IZ/ (from the geometric point of view, this choice corresponds to
the choice of Seifert surface of the transverse link LD yb ), then the Johnson–Morita
representation %3WMCG.Sg;1/! Aut.�1=�3/ gives the self-linking number. Now
we ask whether a similar phenomenon occurs for the higher Johnson–Morita represen-
tation %i WMCG.Sg;1/! Aut.�1=�i/, where i > 3, and provides new invariants of
transverse links.

3.6 The function c : general surface case

Finally we give a complete description of the function c for general surfaces S D

Sg;r . We use the same convention as in Section 3.5, that is, Œ�0j � is an element of
H1.S; @S IZ/ŠH 1.S IZ/ and Œ�j � is an element of H1.S IZ/. Let S 0D Sg;1 be the
surface obtained from S D Sg;r by filling the boundary components 1; : : : ; r�1 by
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discs and i W S ! S 0 the canonical inclusion. Let � WMCG.Sg;r /!MCG.Sg;1/ be
the forgetful map. Let us consider the pull-back ��kWMCG.Sg;r /�H1.S; @S/!Z
of the crossed homomorphism k defined by ��kW .Œ��; a/ 7! k.�Œ��; i�.a//. For
1� i � r � 1C 2g , let

Œ& 0j �D

8̂<̂
:

Œ�0j � if j D 1; : : : ; r � 1;

�Œ�0
jC1

� if i D r; r C 2; : : : ; r � 2C 2g;

Œ�
0

j�1
� if i D r C 1; r C 3; : : : ; r � 1C 2g:

In particular, we have hŒ& 0i �; Œ�j �i D ıi;j . By combining Propositions 3.14 and 3.20, we
get an explicit formula of the function c .

Theorem 3.21 (A formula of function c ) Let S D Sg;r be the surface with genus g

and r boundary components. The function cWMCG.Sg;r /�H1.S; @S IZ/! Z has
the expression

c.Œ��; a/D�2.��k/.Œ��; a/C

2gCr�1X
jD1

hŒ& 0j �; ��a�ai�

2gCr�1X
jD1

ha; Œ�j �ihŒ&
0
j �; ��Œ&

0
j ��Œ&

0
j �i;

where ��a� a and ��Œ& 0j �� Œ&
0
j � are regarded as elements of H1.S IZ/.

4 On the Bennequin–Eliashberg inequality

In this section using open book foliations we give a new proof to the Bennequin–
Eliashberg inequality [16].

Recall that an overtwisted disc is an embedded disc whose boundary is a limit cycle in
the characteristic foliation. Thus an overtwisted disc always has Legendrian boundary.
As a corresponding notion in the framework of open book foliations, we introduce the
following:

Definition 4.1 Let D �M.S;�/ be an oriented disc whose boundary is a positively
braided unknot. If the following are satisfied D is called a transverse overtwisted disc:

(1) G�� (Definition 2.17) is a connected tree with no fake vertices.
(2) GCC is homeomorphic to S1 .
(3) Fob.D/ contains no c–circles.

By Proposition 3.2, we observe that sl.@D; ŒD�/ D 1 for a transverse overtwisted
disc D .

Proposition 4.2 If .S; �/ contains a transverse overtwisted disc then the compatible
contact 3–manifold .M; �/ contains an overtwisted disc.
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Proof By applying Theorem 2.21 and Giroux’s elimination lemma (see [23, page 187]),
we can convert a transverse overtwisted disc to an overtwisted disc.

We will prove the converse in Corollary 4.6, hence the existence of a transverse
overtwisted disc is equivalent to the existence of a usual overtwisted disc.

Theorem 4.3 (The Bennequin–Eliashberg inequality [16]) If a contact 3–manifold
.M; �/ is tight, then for any null-homologous transverse link L and its Seifert surface
†, the following inequality holds:

sl.L; Œ†�/� ��.†/

The following corollary was pointed out by John Etnyre and the proof is straightforward.

Corollary 4.4 The following are equivalent:

(1) .M; �/ is tight.

(2) For any null-homologous transverse link L and its Seifert surface † we have
sl.L; Œ†�/� ��.†/.

(3) For any transverse unknot U D @D , we have sl.U; ŒD�/� ��.D/D�1.

We use the following Lemma 4.5 and Proposition 3.2 to prove Theorem 4.3.

Lemma 4.5 Let L be a null-homologous transverse link in a contact 3–manifold
.M; �/ and † be a Seifert surface for L. Assume that sl.L; Œ†�/ > ��.†/, that is, the
Bennequin–Eliashberg inequality is violated. With some perturbation of † fixing the
boundary we can make the graph G�� contain a contractible component with no fake
vertices.

Proof Using Propositions 2.11 and 3.2, we assume that

sl.L; Œ†�/C�.†/D 2.e�� h�/ > 0;

ie, e�� h� > 0. Let �1; : : : ; �k denote the connected components of the graph G�� .
Let f .�i/ be the number of the fake vertices of �i and e�.�i/ the number of the
negative elliptic points in �i . Let h�.�i/ be the number of the edges in �i . By
Proposition 2.6 with some perturbation of † fixing the boundary we may assume that
Fob.†/ has no c–circles, hence the region decomposition (Proposition 2.15) does not
contain type ac , bc or cc regions, so e� D

Pk
iD1 e�.�i/ and h� D

Pk
iD1 h�.�i/.

Since �i is connected, the Euler characteristic of �i satisfies

�.�i/D .f .�i/C e�.�i//� h�.�i/� 1;
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ie e�.�i/� h�.�i/ � 1� f .�i/. Therefore we obtain that e�.�i/� h�.�i/ D 1 if
and only if f .�i/D 0 and �i is contractible. Now we have

0< e�� h� D

kX
iD1

e�.�i/�

kX
iD1

h�.�i/D

kX
iD1

.e�.�i/� h�.�i//�

kX
iD1

.1�f .�i//:

Thus for some i , the equality e�.�i/� h�.�i/D 1 must hold, which implies that �i

is contractible and has no fake vertices.

Now we are ready to prove Theorem 4.3. Eliashberg’s original proof of the Bennequin–
Eliashberg inequality uses characteristic foliation theory. We give an alternative proof
from the viewpoint of open book foliations.

Proof of Theorem 4.3 Suppose that there exists a null-homologous transverse link L

in .M; �/ with a Seifert surface † such that sl.L; Œ†�/ > ��.†/. We will show that
� is overtwisted.

Fix an open book .S; �/ that supports � and isotope L and † with the transverse link
type of L, preserved until it admits an open book foliation Fob.†/. By Proposition 2.6
and Lemma 4.5, we may assume that Fob.†/ contains no c–circles and the negativity
graph G�� contains a contractible component � � G�� with no fake vertices. In
particular, the induced region decomposition of † consists only of aa, ab , and bb–
tiles.

Let R � † be the set of b–arcs that end on the vertices of � . Since � lives only
in ab and bb–tiles and has no fake vertices, we have � � Int.R/, where R is the
closure of R. Let P D GCC.R/ be the set of positive elliptic points in R and the
stable separatrices approaching to the positive hyperbolic points in R. Since � is a
tree with no fake vertices, RXP is an open disc, D , embedded in †.

In general, R may not be a disc, or @D D P may not be an embedded circle. Let
Pı�P denote the subset of P where we cut out R to obtain D . We have R nPıDD .
A connected component � of Pı is either

(i) a positive elliptic point like in Figure 31, or

(ii) a union of stable separatrices like the thick arcs in Figures 32 and 33.

Cutting R along � produces two copies of �, which we denote by �1 and �2 . Move
�2 slightly away from �1 so that now @D is an embedded circle in M . We extend D

by adding a collar neighborhood along @D so that the resulting surface, zD , is a disc
embedded in M , its boundary @ zD is a positive transverse unknot, and the open book
foliation of the collar zD nD has no singularities. Figure 32 shows the change in open
book foliation near � and corresponding movie presentations.
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+

+
+

+

part of R part of R part of zD

�

�

�1

cut at �
and put collar

�2

Figure 31: Case (i): Construction of zD when � is a single positive elliptic
point. The arrows depict the binding.

+

+ +

+
+

+

part of R

�

w1

w2

v1

v2

part of zD

w01
w001

w00
2 w0

2

v1

v2
cut along �

and put collar

v2w001

w01

v1 w002
w02

v2w00
1

w0
1

v1 w002

w02

v2w00
1

w0
1

v1 w00
2

w0
2

w1

w2v1

v2

w1

w2v1

v2

�1 �2

Figure 32: Case (ii): Construction of zD . The thin arrows represent part of the binding.

By the construction, zD satisfies all the requirements in Definition 4.1, so zD is a
transverse overtwisted disc. By Proposition 4.2 we conclude that � is overtwisted.

Corollary 4.6 If a contact 3–manifold .M.S;�/; �.S;�// contains an overtwisted disc,
then .S; �/ contains a transverse overtwisted disc.
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+ - + -

+

+

-

+

part of R part of D part of zD
G�� G�� G��

�

cut along � put collar

�1

�2

�1

�2

Figure 33: Case (ii): Construction of zD

Proof Let �� .M; �/ be an overtwisted disc. We orient � so that the elliptic point
of F�.D/ has negative sign. Since � is embedded and the boundary L D @� is a
Legendrian knot, [18, page 129] implies that we can take a collar neighborhood �.�/
of � whose characteristic foliation F�.�.�// is sketched in Figure 34.

L LC

Figure 34: The characteristic foliation F�.�.�// and a positive transverse
push off LC

Let LC � �.�/ (dashed circle in Figure 34) be a positive transverse push off of L.
Let �C � �.�/ be the disc bounded by LC . Then sl.LC; Œ�C�/D 1 and the Euler
characteristic has �.�C/D 1. In particular, sl.LC; Œ�C�/ > ��.�C/. By the proof
of Theorem 4.3, we can find a transverse overtwisted disc.
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