Volume 18, issue 3 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A mirror theorem for the mirror quintic

Yuan-Pin Lee and Mark Shoemaker

Geometry & Topology 18 (2014) 1437–1483
Abstract

The celebrated Mirror theorem states that the genus zero part of the A model (quantum cohomology, rational curves counting) of the Fermat quintic threefold is equivalent to the B model (complex deformation, variation of Hodge structure) of its mirror dual orbifold. In this article, we establish a mirror-dual statement. Namely, the B model of the Fermat quintic threefold is shown to be equivalent to the A model of its mirror, and hence establishes the mirror symmetry as a true duality.

Keywords
mirror symmetry, mirror theorem
Mathematical Subject Classification 2010
Primary: 14N35
Secondary: 53D45
References
Publication
Received: 5 November 2013
Accepted: 17 January 2014
Published: 7 July 2014
Proposed: Jim Bryan
Seconded: Richard Thomas, Yasha Eliashberg
Authors
Yuan-Pin Lee
Department of Mathematics
University of Utah
155 S 1400 E Room 233
Salt Lake City, UT 84112-0090
USA
http://www.math.utah.edu/~yplee/
Mark Shoemaker
Department of Mathematics
University of Utah
155 S 1400 E Room 233
Salt Lake City, UT 84112-0090
USA
http://www.math.utah.edu/~markshoe/